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ABSTRACT

Learning with confidence labels is an emerging weakly supervised learning
paradigm, where training data are equipped with confidence labels instead of ex-
act labels. Positive-confidence (Pconf) classification is a typical learning problem
in this context, where we are given only positive data equipped with confidence.
However, pointwise confidence may not be accessible in real-world scenarios.
In this paper, we dive into a novel weakly supervised learning problem called
confidence-difference (ConfDiff) classification. Instead of pointwise confidence,
we are given only unlabeled data pairs equipped with confidence difference spec-
ifying the difference in the probabilities of being positive. An unbiased risk es-
timator is derived to tackle the problem, and we show that the estimation error
bound achieves the optimal convergence rate. Extensive experiments on bench-
mark data sets validate the effectiveness of our proposed approaches in leveraging
the supervision information of the confidence difference.

1 INTRODUCTION

Recent years have witnessed the prevalence of deep learning and its successful applications. How-
ever, the success is built on the basis of the collection of large amounts of data with unique and
accurate labels. In many real-world scenarios, it is often difficult to satisfy such requirements.
To circumvent the difficulty, various weakly supervised learning problems have been investigated
accordingly, including but not limited to semi-supervised learning (Chapelle et al., 2006; Zhu &
Goldberg, 2009; Li & Zhou, 2015; Berthelot et al., 2019), label-noise learning (Patrini et al., 2017;
Han et al., 2018; Li et al., 2021; Wang et al., 2021; Wei et al., 2022), positive-unlabeled learning
(du Plessis et al., 2014; Su et al., 2021; Yao et al., 2022), partial-label learning (Cour et al., 2011;
Wang & Zhang, 2020; Wen et al., 2021; Wang et al., 2022; Wu et al., 2022), unlabeled-unlabeled
learning (Lu et al., 2019; 2020) and similarity-based classification (Bao et al., 2018; Cao et al.,
2021b; Bao et al., 2022).

Learning with confidence labels (Ishida et al., 2018; Cao et al., 2021a;b) is another weakly super-
vised learning paradigm, where we are given training examples with confidence labels instead of
exact labels. Positive-confidence (Pconf) classification (Ishida et al., 2018) is a problem setting
within this scope, which is aimed at learning a binary classifier from only positive data equipped
with confidence (the probability of being positive) without negative data. Pconf classification can
alleviate the difficulty when negative data cannot be acquired due to privacy or security issues dur-
ing the data annotation process. The need to learn from such inexact supervision widely exists in
real-world scenarios, such as purchase prediction (Ishida et al., 2018), user preservation prediction
(Ishida et al., 2018), drivers’ drowsiness prediction (Shinoda et al., 2020), etc.

However, the process of collecting large amounts of training examples with pointwise confidence
might be actually demanding under many circumstances, since it is tough to describe the probabil-
ity of being positive for each training example exactly (Shinoda et al., 2020). Feng et al. (2021)
showed that learning from pairwise comparisons could serve as an alternative strategy given limited
pointwise labeling information. Inspired by it, we investigate a more practical problem setting in
this paper, where we are given only unlabeled data pairs with confidence difference indicating the
difference in the probabilities of being positive. Compared with pointwise confidence, confidence
difference can be collected more easily in many real-world scenarios. Take click-through rate pre-
diction in recommender systems (Zhang et al., 2019) for example. The combinations of users and
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their favorite/disliked items can be regarded as positive/negative data. When collecting training data,
it is not easy to distinguish between positive and negative data. Furthermore, the positive confidence
of training data may be difficult to be determined due to the extremely sparse and class-imbalance
problems (Yao et al., 2021). However, it is much easier to obtain the difference in the preference
between a pair of candidate items for a given user. Take the disease risk estimation problem for
another example. The goal is to predict the risk of having some disease given a person’s attributes.
When asking doctors to annotate the probabilities of having the disease for people, it is not easy to
determine the exact values of the probabilities. Furthermore, the probability values given by dif-
ferent doctors may be different due to personally subjective assumptions and will deviate from the
ground-truth values. However, it is much easier and less biased to estimate the relative difference in
the probabilities of having the disease between two people.

Our contributions are summarized as follows:

• We investigate confidence-difference (ConfDiff) classification, a novel and practical weakly su-
pervised learning problem, which can be solved via empirical risk minimization by constructing
an unbiased risk estimator. The proposed approach can be equipped with any model, loss func-
tion, and optimizer flexibly.

• The estimation error bound is derived, showing that the proposed approach achieves the optimal
parametric convergence rate. The robustness is further demonstrated by probing into the influence
of an inaccurate class prior probability and noisy confidence difference.

• To mitigate overfitting issues, a risk correction approach (Lu et al., 2020) with consistency guar-
antee is further introduced. Extensive experimental results on benchmark data sets validate the
effectiveness of the proposed approaches.

Related works. Learning with pairwise comparisons has been investigated pervasively in the
community (Burges et al., 2005; Cao et al., 2007; Jamieson & Nowak, 2011; Park et al., 2015; Kane
et al., 2017; Xu et al., 2017; Shah et al., 2019), with applications in information retrieval (Liu, 2011),
computer vision (Fu et al., 2015), regression (Xu et al., 2019; 2020), crowdsourcing (Chen et al.,
2013; Zeng & Shen, 2022), graph learning (He et al., 2022), etc. It is noteworthy that there exist
distinct differences between our work and previous works on learning with pairwise comparisons.
Previous works have mainly tried to learn a ranking function which can rank candidate examples
according to the relevance or preference. In this paper, we try to learn a pointwise binary classifier
by conducting empirical risk minimization under the binary classification setting.

Relationship to Pcomp classification. Feng et al. (2021) elaborated that a binary classifier could
be learned from pairwise comparisons, which was termed as Pcomp classification. There are distinct
differences between our work and Pcomp classification. First, Pcomp classification is not capable
of leveraging the fine-grained confidence difference, which can be incidentally obtained when col-
lecting pairwise comparison data. We will experimentally elucidate the benefit of exploiting the
confidence difference in the later section. Second, the assumptions of the data generation process
are different. Pcomp classification assumes that the unlabeled data pair is ordered, where the first
instance is more likely to be positive than the other. In ConfDiff classification, the instances of the
unlabeled data pair are independent, which can be easier to collect.

2 PRELIMINARIES

In this section, we introduce the notations used in this paper and discuss the background of binary
classification, Pconf classification and Pcomp classification. Then, we elucidate the data generation
process of confidence-difference classification.

2.1 BINARY CLASSIFICATION

For binary classification, let X = Rd denote the d-dimensional feature space and Y = {+1,−1}
denote the label space. Let p(x, y) denote the unknown joint probability distribution over random
variables (x, y) ∈ X ×Y . The task of binary classification is to learn a binary classifier g : X → R
which minimizes the following classification risk:

R(g) = Ep(x,y)[ℓ(g(x), y)], (1)
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where ℓ(·, ·) is a non-negative binary-class loss function, such as the 0-1 loss and logistic loss. Let
π+ = p(y = +1) and π− = p(y = −1) denote the class prior probabilities for the positive and
negative classes respectively. Furthermore, let p+(x) = p(x|y = +1) and p−(x) = p(x|y = −1)
denote the class-conditional probability densities of positive and negative data respectively. Then
the classification risk in Eq. (1) can be equivalently expressed as

R(g) = π+Ep+(x)[ℓ(g(x),+1)] + π−Ep−(x)[ℓ(g(x),−1)]. (2)

2.2 POSITIVE-CONFIDENCE (PCONF) CLASSIFICATION

In many real-world applications, it may be difficult to collect negative data. Pconf classification
(Ishida et al., 2018) is aimed at inducing a binary classifier from only positive data. The additional
requirement is that the confidence of being positive should be accessible to the learning algorithm.
Given only positive data equipped with confidence {(xi, ri)}ni=1, Ishida et al. (2018) provided an
unbiased risk estimator to conduct empirical risk minimization:

R̂Pconf(g) =
π+

n

n∑
i=1

(ℓ(g(xi),+1) +
1− ri
ri

ℓ(g(xi),−1)), (3)

where ri = p(yi = +1|xi) is the positive confidence associated with xi. However, pointwise
positive confidence may not be easy to obtain in real-world scenarios (Shinoda et al., 2020).

2.3 PAIRWISE-COMPARISON (PCOMP) CLASSIFICATION

Pcomp classification is a weakly supervised binary classification problem (Feng et al., 2021). In
Pcomp classification, we are given pairs of unlabeled data where we know which one is more likely
to be positive than the other. It is assumed that Pcomp data are sampled from labeled data pairs
whose labels belong to {(+1,−1), (+1,+1), (−1,−1)}. Based on this assumption, the probability
density of Pcomp data (x,x′) is given as

p̃(x,x′) =
q(x,x′)

π2
+ + π2

− + π+π−
, (4)

where q(x,x′) = π2
+p+(x)p+(x

′) + π2
−p−(x)p−(x

′) + π+π−p+(x)p−(x
′). Then, an unbiased

risk estimator for Pcomp classification is derived as follows:

R̂Pcomp(g) =
1

n

n∑
i=1

(ℓ(g(xi),+1) + ℓ(g(x′
i),−1)− π+ℓ(g(xi),−1)− π−ℓ(g(x

′
i),+1)). (5)

In real-world applications, we may not only know one example is more likely to be positive than
the other, but also know how much the difference of confidence is. Next, a novel weakly supervised
learning setting named ConfDiff classification is introduced.

2.4 CONFIDENCE-DIFFERENCE (CONFDIFF) CLASSIFICATION

In this subsection, the formal definition of confidence difference is given firstly. Then, we elaborate
the data generation process of ConfDiff data.
Definition 1 (Confidence Difference). The confidence difference c(x,x′) between the unlabeled
data pair (x,x′) is defined as

c(x,x′) = p(y′ = 1|x′)− p(y = 1|x). (6)

As shown in the definition above, the confidence difference denotes the difference in the class pos-
terior probabilities between the unlabeled data pair, which can measure how confident the pairwise
comparison is. In ConfDiff classification, we are only given n unlabeled data pairs with confidence
difference D = {((xi,x

′
i), ci)}ni=1. Here, ci = c(xi,x

′
i) is the confidence difference for the unla-

beled data pair (xi,x
′
i). Furthermore, the unlabeled data pair (xi,x

′
i) is assumed to be drawn from

a probability density p(x,x′) = p(x)p(x′). This indicates that xi and x′
i are two i.i.d. instances

sampled from p(x). It is worth noting that the confidence difference ci will be positive if the second
instance x′

i has a higher probability to be positive than the first instance xi, and will be negative
otherwise. During the data collection process, the labeler can first sample two unlabeled data from
the marginal distribution p(x), then provide the confidence difference for them. This data generation
assumption makes the unlabeled data pairs easier to be collected.
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3 THE PROPOSED APPROACH

In this section, an unbiased risk estimator is presented for ConfDiff classification. Then, we give
an estimation error bound to show the convergence property. Besides, we show the influence of an
inaccurate class prior probability and noisy confidence difference on the risk estimator. Furthermore,
a risk correction approach (Lu et al., 2020) is elaborated to improve the generalization performance
of our proposed approach.

3.1 UNBIASED RISK ESTIMATOR

In this subsection, we show that the classification risk in Eq. (1) can be expressed with ConfDiff
data in the equivalent way.
Theorem 1. The classification risk R(g) in Eq. (1) can be equivalently expressed as

RCD(g) = Ep(x,x′)[
1

2
(L(x,x′) + L(x′,x))], (7)

where
L(x,x′) = (π+ − c(x,x′))ℓ(g(x),+1) + (π− − c(x,x′))ℓ(g(x′),−1).

Accordingly, we can derive an unbiased risk estimator for ConfDiff classification:

R̂CD(g) =
1

2n

n∑
i=1

((π+ − ci)ℓ(g(xi),+1) + (π− − ci)ℓ(g(x
′
i),−1)

+(π+ + ci)ℓ(g(x
′
i),+1) + (π− + ci)ℓ(g(xi),−1)). (8)

To estimate the class prior probability π+, we can transform ConfDiff data into Pcomp data by
ranking the two instances in the unlabeled data pair according to the confidence difference. Then,
we can adopt the approach proposed in Feng et al. (2021) to estimate π+. It is worth noting that the
risk estimator in Eq. (3) for Pconf classification is very sensitive to small confidence values, while
our risk estimator will not be influenced by them.

Minimum-variance risk estimator. Actually, Eq. (8) is one of the candidates of the unbiased risk
estimator. We introduce the following lemma:
Lemma 1. The following expression is also an unbiased risk estimator:

1

n

n∑
i=1

(αL(xi,x
′
i) + (1− α)L(x′

i,xi)), (9)

where α ∈ [0, 1] is an arbitrary weight.

Then, we introduce the following theorem:
Theorem 2. The unbiased risk estimator in Eq. (8) has the minimum variance among all the can-
didate unbiased risk estimators in the form of Eq. (9) w.r.t. α ∈ [0, 1].

Theorem 2 indicates the variance minimality of the proposed unbiased risk estimator in Eq. (8), and
we adopt this risk estimator in the following sections.

3.2 ESTIMATION ERROR BOUND

In this subsection, we elaborate the convergence property of the proposed risk estimator R̂CD(g) by
giving an estimation error bound. Let G = {g : X 7→ R} denote the model class. It is assumed
that there exists some constant Cg such that supg∈G ∥g∥∞ ≤ Cg and some constant Cℓ such that
sup|z|≤Cg

ℓ(z, y) ≤ Cℓ. We also assume that the binary loss function ℓ(z, y) is Lipschitz continuous
for z and y with a Lipschitz constant Lℓ. 1 Let g∗ = argming∈G R(g) denote the minimizer of the
classification risk in Eq. (1) and ĝCD = argming∈G R̂CD(g) denote the minimizer of the unbiased
risk estimator in Eq. (8). The following theorem can be derived:

1The theoretical analysis in the next subsections is also based on these assumptions. For simplicity, we do
not restate them in the next subsections.
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Theorem 3. For any δ > 0, the following inequality holds with probability at least 1− δ:

R(ĝCD)−R(g∗) ≤ 8LℓRn(G) + 4Cℓ

√
ln 2/δ

2n
, (10)

where Rn(G) denotes the Rademacher complexity of G for unlabeled data with size n.

From Theorem 3, we can observe that as n → ∞, R(ĝCD) → R(g∗) because Rn(G) → 0 for all
parametric models with a bounded norm, such as deep neural networks trained with weight decay
(Golowich et al., 2018). Furthermore, the estimation error bound converges in Op(1/

√
n), where Op

denotes the order in probability, which is the optimal parametric rate for empirical risk minimization
without making additional assumptions (Mendelson, 2008).

3.3 ROBUSTNESS OF RISK ESTIMATOR

In the previous subsections, it was assumed that the class prior probability is known in advance or
estimated accurately. In addition, it was assumed that the ground-truth confidence difference of each
unlabeled data pair is accessible. However, these assumptions can rarely be satisfied in real-world
scenarios, since the collection of confidence difference is inevitably injected with noise. In this
subsection, we theoretically analyze the influence of an inaccurate class prior probability and noisy
confidence difference on the learning procedure. Later in subsection 4.4, we will experimentally
verify our theoretical findings.

Let D̄ = {((xi,x
′
i), c̄i)}ni=1 denote n unlabeled data pairs with noisy confidence difference, where

c̄i is generated by corrupting the ground-truth confidence difference ci with noise. Besides, let π̄+

denote the inaccurate class prior probability accessible to the learning algorithm. Furthermore, let
R̄CD(g) denote the empirical risk calculated based on the inaccurate class prior probability and noisy
confidence difference. Let ḡCD = argming∈G R̄CD(g) denote the minimizer of R̄CD(g). Then, the
theorem demonstrating an estimation error bound is given as follows:
Theorem 4. Based on the assumptions above, for any δ > 0, the following inequality holds with
probability at least 1− δ:

R(ḡCD)−R(g∗) ≤ 16LℓRn(G) + 8Cℓ

√
ln 2/δ

2n
+

4Cℓ

∑n
i=1 |c̄i − ci|
n

+ 4Cℓ|π̄+ − π+|. (11)

Theorem 4 indicates that the estimation error is bounded by twice the original bound in Theorem
3 with the mean absolute error of the noisy confidence difference and the inaccurate class prior
probability. Furthermore, if

∑n
i=1 |c̄i − ci| has a sublinear growth rate with high probability and

the class prior probability is estimated consistently, the risk estimator can be even consistent. It
elaborates the robustness of the proposed approach.

3.4 RISK CORRECTION APPROACH

It is worth noting that the empirical risk in Eq. (8) may be negative due to negative terms, which is
unreasonable because of the non-negative property of loss functions. This phenomenon will result
in severe overfitting problems when complex models are adopted (Lu et al., 2020; Cao et al., 2021b;
Feng et al., 2021). To circumvent this difficulty, we wrap the individual loss terms in Eq. (8)
with risk correction functions proposed in Lu et al. (2020), such as the rectified linear unit (ReLU)
function f(z) = max(0, z) and the absolute value function f(z) = |z|. In this way, the corrected
risk estimator for ConfDiff classification can be expressed as follows:

R̃CD(g) =
1

2n
(f(

n∑
i=1

(π+ − ci)ℓ(g(xi),+1)) + f(

n∑
i=1

(π− − ci)ℓ(g(x
′
i),−1))

+f(

n∑
i=1

(π+ + ci)ℓ(g(x
′
i),+1)) + f(

n∑
i=1

(π− + ci)ℓ(g(xi),−1))). (12)

Theoretical analysis. We assume that the risk correction function f(z) is Lipschitz continuous
with Lipschitz constant Lf . For ease of notation, let Âg =

∑n
i=1(π+ − ci)ℓ(g(xi),+1)/2n, B̂g =

5



Under review as a conference paper at ICLR 2023

∑n
i=1(π− − ci)ℓ(g(x

′
i),−1)/2n, Ĉg =

∑n
i=1(π+ + ci)ℓ(g(x

′
i),+1)/2n, D̂g =

∑n
i=1(π− +

ci)ℓ(g(xi),−1)/2n. From Lemma 3 in Appendix A, the values of E[Âg],E[B̂g],E[Ĉg], and E[D̂g]
are non-negative. Therefore, we assume that there exist non-negative constants a, b, c, d such that
E[Âg] ≥ a,E[B̂g] ≥ b,E[Ĉg] ≥ c, and E[D̂g] ≥ d. Besides, let g̃CD = argming∈G R̃CD(g) denote
the minimizer of R̃CD(g). Then, Theorem 5 is provided to elaborate the bias and consistency of
R̃CD(g).

Theorem 5. Based on the assumptions above, the bias of the risk estimator R̃CD(g) decays expo-
nentially as n → ∞:

0 ≤ E[R̃CD(g)]−R(g) ≤ 2(Lf + 1)Cℓ∆, (13)

where ∆ = exp (−2a2n/C2
ℓ ) + exp (−2b2n/C2

ℓ ) + exp (−2c2n/C2
ℓ ) + exp (−2d2n/C2

ℓ ). Fur-
thermore, with probability at least 1− δ, we have

|R̃CD(g)−R(g)| ≤ 2CℓLf

√
ln 2/δ

2n
+ 2(Lf + 1)Cℓ∆. (14)

Theorem 5 demonstrates that R̃CD(g) → R(g) in Op(1/
√
n), which means R̃CD(g) is biased yet

consistent. The estimation error bound of g̃CD is analyzed in Theorem 6.
Theorem 6. Based on the assumptions above, for any δ > 0, the following inequality holds with
probability at least 1− δ:

R(g̃CD)−R(g∗) ≤ 8LℓRn(G) + 4Cℓ(Lf + 1)

√
ln 2/δ

2n
+ 4(Lf + 1)Cℓ∆. (15)

Theorem 6 elucidates that as n → ∞, R(g̃CD) → R(g∗), since Rn(G) → 0 for all parametric
models with a bounded norm (Mohri et al., 2012) and ∆ → 0. Furthermore, the estimation error
bound converges in Op(1/

√
n), which is the optimal parametric rate for empirical risk minimization

without additional assumptions (Mendelson, 2008).

4 EXPERIMENTS

In this section, we verify the effectiveness of our proposed approaches experimentally.

4.1 EXPERIMENTAL SETUP

We conducted experiments on benchmark data sets, including MNIST (LeCun et al., 1998),
Kuzushiji-MNIST (Clanuwat et al., 2018), Fashion-MNIST (Xiao et al., 2017), and CIFAR-10
(Krizhevsky & Hinton, 2009). In addition, four UCI data sets (Dua & Graff, 2017) were used,
including Optdigits, USPS, Pendigits, and Letter. Since the data sets were originally designed for
multi-class classification, we manually partitioned them into binary classes. The detailed descrip-
tions of data sets is illustrated in Appendix. For CIFAR-10, we used ResNet-34 (He et al., 2016) as
the model architecture. For other data sets, we used a multilayer perceptron (MLP) with three hidden
layers of width 300 equipped with the ReLU (Nair & Hinton, 2010) activation function and batch
normalization (Ioffe & Szegedy, 2015). The logistic loss is utilized to instantiate the loss function
ℓ(·, ·). It is worth noting that confidence difference is given by labelers in real-world applications,
while it was generated synthetically in this paper to facilitate comprehensive experimental analysis.
We firstly trained a probabilistic classifier via logistic regression with ordinarily labeled data and
the same neural network architecture. Then, we sampled unlabeled data in pairs at random, and
generated the class posterior probabilities by inputting them into the probabilistic classifier. After
that, we generated confidence difference for each pair of sampled data according to Definition 1.

In the experiments, we adopted the following variants of our proposed approaches: 1) ConfDiff-
Unbiased, which denotes the method working by minimizing the unbiased risk estimator proposed
in Eq. (8); 2) ConfDiff-ReLU, which denotes the method working by minimizing the corrected risk
estimator proposed in Eq. (12) with the ReLU function as the risk correction function; 3) ConfDiff-
ABS, which denotes the method working by minimizing the corrected risk estimator proposed in
Eq. (12) with the absolute value function as the risk correction function. We compared our proposed
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Table 1: Classification accuracy (mean±std) of each method on benchmark data sets with different
class priors, where the best performance is shown in bold.

Class Prior Method MNIST Kuzushiji Fashion CIFAR-10

π+ = 0.2

Pcomp-Unbiased 0.761±0.017 0.637±0.052 0.737±0.050 0.776±0.023
Pcomp-ReLU 0.800±0.000 0.800±0.000 0.800±0.000 0.800±0.000
Pcomp-ABS 0.800±0.000 0.800±0.000 0.800±0.000 0.800±0.000
Pcomp-Teacher 0.965±0.010 0.871±0.046 0.853±0.017 0.836±0.019
ConfDiff-Unbiased 0.789±0.041 0.672±0.053 0.855±0.024 0.789±0.025
ConfDiff-ReLU 0.968±0.003 0.860±0.017 0.964±0.004 0.844±0.020
ConfDiff-ABS 0.975±0.003 0.898±0.003 0.965±0.002 0.862±0.015

Class Prior Method MNIST Kuzushiji Fashion CIFAR-10

π+ = 0.5

Pcomp-Unbiased 0.712±0.020 0.578±0.036 0.723±0.042 0.703±0.042
Pcomp-ReLU 0.502±0.003 0.502±0.004 0.500±0.000 0.602±0.032
Pcomp-ABS 0.842±0.012 0.727±0.006 0.851±0.012 0.583±0.018
Pcomp-Teacher 0.893±0.014 0.782±0.046 0.903±0.016 0.779±0.016
ConfDiff-Unbiased 0.911±0.046 0.712±0.046 0.896±0.036 0.720±0.024
ConfDiff-ReLU 0.944±0.011 0.805±0.015 0.960±0.003 0.830±0.007
ConfDiff-ABS 0.964±0.001 0.867±0.006 0.967±0.001 0.843±0.004

Class Prior Method MNIST Kuzushiji Fashion CIFAR-10

π+ = 0.8

Pcomp-Unbiased 0.799±0.005 0.671±0.029 0.813±0.029 0.737±0.022
Pcomp-ReLU 0.910±0.031 0.775±0.022 0.897±0.023 0.851±0.010
Pcomp-ABS 0.854±0.027 0.838±0.026 0.921±0.017 0.849±0.007
Pcomp-Teacher 0.943±0.026 0.814±0.027 0.936±0.014 0.821±0.003
ConfDiff-Unbiased 0.792±0.017 0.758±0.033 0.810±0.035 0.794±0.012
ConfDiff-ReLU 0.970±0.004 0.886±0.009 0.970±0.002 0.851±0.012
ConfDiff-ABS 0.983±0.002 0.915±0.001 0.975±0.002 0.874±0.011

approaches with the following approaches: 1) Pcomp-Unbiased, which denotes the method working
by minimizing the unbiased risk estimator for Pcomp classification proposed in Feng et al. (2021); 2)
Pcomp-ReLU, which denotes the risk correction approach for Pcomp classification with the ReLU
function as the risk correction function; 3) Pcomp-ABS, which denotes the risk correction approach
for Pcomp classification with the absolute value function as the risk correction function; 4) Pcomp-
Teacher, which denotes the state-of-the-art approach improving the label-noise learning approach
RankPruning (Northcutt et al., 2017) with consistency regularization.

The number of training epoches was set to 200 and we obtained the testing accuracy by averaging
the results in the last 10 epoches. The detailed hyperparameters can be found in Appendix. To verify
the effectiveness of our approaches under different class prior settings, we set π+ ∈ {0.2, 0.5, 0.8}
for all the data sets. For ease of implementation, we assumed that the class prior π+ was known for
all the compared methods. We repeated the sampling-and-training procedure for five times, and the
mean accuracy as well as the standard deviation were recorded.

4.2 EXPERIMENTAL RESULTS

Benchmark data sets. Table 1 reports detailed experimental results for all the compared methods
on four benchmark data sets. Based on Table 1, we can draw the following conclusions: a) On
all the cases of benchmark data sets, our proposed ConfDiff-ABS method achieves superior perfor-
mance against all of the other compared approaches significantly, which validates the effectiveness
of our approach in utilizing supervision information from confidence difference; b) Pcomp-Teacher
achieves superior performance against all of the other Pcomp approaches by a large margin. The
excellent performance benefits from the effectiveness of consistency regularization for weakly su-
pervised learning problems (Berthelot et al., 2019; Li et al., 2020; Wu et al., 2022); c) The risk cor-
rection methods for ConfDiff classification, i.e. ConfDiff-ReLU and ConfDiff-ABS, achieve better
performance against ConfDiff-Unbiased, which elaborates that the risk correction technique is ad-
vantageous; d) It is worth noting that the classification results of ConfDiff-ReLU and ConfDiff-ABS
have smaller variances than ConfDiff-Unbiased. It demonstrates that the risk correction method can
enhance the stability and robustness for ConfDiff classification.
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Table 2: Classification accuracy (mean±std) of each method on UCI data sets with different class
priors, where the best performance is shown in bold.

Class Prior Method Optdigits USPS Pendigits Letter

π+ = 0.2

Pcomp-Unbiased 0.771±0.016 0.721±0.046 0.743±0.057 0.757±0.028
Pcomp-ReLU 0.800±0.000 0.800±0.000 0.800±0.000 0.800±0.000
Pcomp-ABS 0.800±0.001 0.800±0.000 0.800±0.000 0.800±0.000
Pcomp-Teacher 0.901±0.023 0.894±0.023 0.928±0.019 0.883±0.006
ConfDiff-Unbiased 0.831±0.078 0.840±0.078 0.865±0.079 0.732±0.053
ConfDiff-ReLU 0.953±0.014 0.957±0.007 0.987±0.003 0.929±0.008
ConfDiff-ABS 0.963±0.009 0.960±0.005 0.988±0.002 0.942±0.007

Class Prior Method Optdigits USPS Pendigits Letter

π+ = 0.5

Pcomp-Unbiased 0.651±0.112 0.671±0.090 0.748±0.038 0.632±0.019
Pcomp-ReLU 0.630±0.076 0.554±0.048 0.514±0.019 0.525±0.023
Pcomp-ABS 0.787±0.031 0.814±0.018 0.793±0.017 0.748±0.031
Pcomp-Teacher 0.890±0.009 0.860±0.012 0.883±0.018 0.864±0.024
ConfDiff-Unbiased 0.917±0.006 0.936±0.010 0.945±0.052 0.755±0.041
ConfDiff-ReLU 0.921±0.011 0.945±0.009 0.981±0.004 0.895±0.006
ConfDiff-ABS 0.962±0.006 0.959±0.004 0.988±0.003 0.925±0.003

Class Prior Method Optdigits USPS Pendigits Letter

π+ = 0.8

Pcomp-Unbiased 0.765±0.023 0.746±0.012 0.743±0.026 0.694±0.031
Pcomp-ReLU 0.902±0.017 0.891±0.024 0.913±0.023 0.827±0.025
Pcomp-ABS 0.894±0.019 0.879±0.009 0.911±0.009 0.870±0.006
Pcomp-Teacher 0.918±0.007 0.933±0.023 0.903±0.008 0.872±0.011
ConfDiff-Unbiased 0.886±0.037 0.803±0.042 0.892±0.096 0.748±0.015
ConfDiff-ReLU 0.949±0.007 0.958±0.008 0.986±0.003 0.927±0.008
ConfDiff-ABS 0.964±0.005 0.964±0.003 0.987±0.002 0.945±0.007
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Figure 1: Classification performance of ConfDiff-ReLU and ConfDiff-ABS given a fraction of train-
ing data as well as Pcomp-Teacher given 100% of training data (π+ = 0.2).

UCI data sets. Table 2 reports detailed experimental results on four UCI data sets as well. From
Table 2, we can observe that: a) On all the UCI data sets under different class prior probability
settings, our proposed ConfDiff-ABS method achieves the best performance among all the com-
pared approaches with significant superiority, which verifies the effectiveness of our proposed ap-
proaches again; b) The performance of our proposed approaches is more stable than the compared
Pcomp approaches under different class prior probability settings, demonstrating the superiority of
our methods in dealing with various kinds of data distributions; c) ConfDiff-Unbiased has compara-
ble performance against its risk correction variants on some data sets while has inferior performance
on some other data sets. This is mainly because some data sets have simpler patterns and are thus
less affected by overfitting issues.

4.3 PERFORMANCE WITH FEWER TRAINING DATA

To validate the effectiveness of exploiting the confidence difference, we conducted experiments by
changing the fraction of training data for ConfDiff-ReLU and ConfDiff-ABS (100% indicated that
all the ConfDiff data were used for training). For comparison, we used 100% of training data for
Pcomp-Teacher during the training process. Figure 1 shows the results on four data sets with π+ =
0.2, and more experimental results can be found in Appendix. We can observe that the classification
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(a) ConfDiff-Unbiased (b) ConfDiff-ReLU (c) ConfDiff-ABS

(d) ConfDiff-Unbiased (e) ConfDiff-ReLU (f) ConfDiff-ABS

Figure 2: Classification accuracy on MNIST (the first row) and Pendigits (the second row) with
π+ = 0.5 given an inaccurate class prior probability and noisy confidence difference.

performance of our proposed approaches is still advantageous given a fraction of training data. Our
approaches can achieve superior or comparable performance even when only 10% of training data
are used. It validates the benefit and effectiveness of leveraging the supervision information of the
confidence difference.

4.4 ANALYSIS ON ROBUSTNESS

In this subsection, we investigate the influence of an inaccurate class prior probability and noisy
confidence difference on the generalization performance of the proposed approaches. Specifically,
let π̄+ = ϵπ+ denote the corrupted class prior probability with ϵ being a real number around 1. Let
c̄i = ϵ′ici denote the noisy confidence difference where ϵ′i is sampled from a normal distribution
N (1, σ2). Figure 2 shows the classification performance of our proposed approaches on MNIST
and Pendigits (π+ = 0.5) with different ϵ and σ. We can observe that ConfDiff-ABS is more robust
against corruptions compared with ConfDiff-Unbiased and ConfDiff-ReLU. It is demonstrated that
with π̄+ and c̄i varying in a reasonable range, the performance is generally stable and even still
superior against compared approaches. However, the performance degenerates with ϵ = 0.8 or
ϵ = 1.2 on some data sets, which indicates that it is more important to obtain an accurate estimation
of the class prior probability to facilitate model training.

5 CONCLUSION

In this paper, we dived into a novel weakly supervised learning setting where only unlabeled data
pairs equipped with confidence difference were given. To solve the problem, an unbiased risk es-
timator was derived to perform empirical risk minimization. An estimation error bound was estab-
lished to show that the optimal parametric convergence rate could be achieved. Furthermore, a risk
correction approach was introduced to alleviate overfitting issues. Extensive experimental results
validated the superiority of our proposed approaches. In future, it would be promising to apply our
approaches in real-world scenarios.
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A PROOF OF THEOREM 1

Before giving the proof of Theorem 1, we begin with the following lemmas:

Lemma 2. The confidence difference c(x,x′) can be equivalently expressed as

c(x,x′) =
π+p(x)p+(x

′)− π+p+(x)p(x
′)

p(x)p(x′)
(16)

=
π−p−(x)p(x

′)− π−p(x)p−(x
′)

p(x)p(x′)
(17)

Proof. On one hand,

c(x,x′) = p(y′ = 1|x′)− p(y = 1|x)

=
p(x′, y′ = 1)

p(x′)
− p(x, y = 1)

p(x)

=
π+p+(x

′)

p(x′)
− π+p+(x)

p(x)

=
π+p(x)p+(x

′)− π+p+(x)p(x
′)

p(x)p(x′)
.

On the other hand,

c(x,x′) = p(y′ = 1|x′)− p(y = 1|x)
= (1− p(y′ = 0|x′))− (1− p(y = 0|x))
= p(y = 0|x)− p(y′ = 0|x′)

=
p(x, y = 0)

p(x)
− p(x′, y = 0)

p(x′)

=
π−p−(x)

p(x)
− π−p−(x

′)

p(x′)

=
π−p−(x)p(x

′)− π−p(x)p−(x
′)

p(x)p(x′)
,

which concludes the proof.

Lemma 3. The following equations hold:

Ep(x,x′)[(π+ − c(x,x′))ℓ(g(x),+1)] = π+Ep+(x)[ℓ(g(x),+1)], (18)

Ep(x,x′)[(π− + c(x,x′))ℓ(g(x),−1)] = π−Ep−(x)[ℓ(g(x),−1)], (19)

Ep(x,x′)[(π+ + c(x,x′))ℓ(g(x′),+1)] = π+Ep+(x′)[ℓ(g(x
′),+1)], (20)

Ep(x,x′)[(π− − c(x,x′))ℓ(g(x′),−1)] = π−Ep−(x′)[ℓ(g(x
′),−1)]. (21)
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Proof. Firstly, the proof of Eq. (18) is given:

Ep(x,x′)[(π+ − c(x,x′))ℓ(g(x),+1)]

=

∫ ∫
π+p(x)p(x

′)− π+p(x)p+(x
′) + π+p+(x)p(x

′)

p(x)p(x′)
ℓ(g(x),+1)p(x,x′) dx dx′

=

∫ ∫
(π+p(x)p(x

′)− π+p(x)p+(x
′) + π+p+(x)p(x

′))ℓ(g(x),+1) dx dx′

=

∫
π+p(x)ℓ(g(x),+1) dx

∫
p(x′) dx′ −

∫
π+p(x)ℓ(g(x),+1) dx

∫
p+(x

′) dx′

+

∫
π+p+(x)ℓ(g(x),+1) dx

∫
p(x′) dx′

=

∫
π+p(x)ℓ(g(x),+1) dx−

∫
π+p(x)ℓ(g(x),+1) dx+

∫
π+p+(x)ℓ(g(x),+1) dx

=

∫
π+p+(x)ℓ(g(x),+1) dx

=π+Ep+(x)[ℓ(g(x),+1)].

After that, the proof of Eq. (19) is given:

Ep(x,x′)[(π− + c(x,x′))ℓ(g(x),−1)]

=

∫ ∫
π−p(x)p(x

′) + π−p−(x)p(x
′)− π−p(x)p−(x

′)

p(x)p(x′)
ℓ(g(x),−1)p(x,x′) dx dx′

=

∫ ∫
(π−p(x)p(x

′) + π−p−(x)p(x
′)− π−p(x)p−(x

′))ℓ(g(x),−1) dx dx′

=

∫
π−p(x)ℓ(g(x),−1) dx

∫
p(x′) dx′ +

∫
π−p−(x)ℓ(g(x),−1) dx

∫
p(x′) dx′

−
∫

π−p(x)ℓ(g(x),−1) dx

∫
p−(x

′) dx′

=

∫
π−p(x)ℓ(g(x),−1) dx+

∫
π−p−(x)ℓ(g(x),−1) dx−

∫
π−p(x)ℓ(g(x),−1) dx

=

∫
π−p−(x)ℓ(g(x),−1) dx

=π−Ep−(x)[ℓ(g(x),−1)].

It can be noticed that c(x,x′) = −c(x′,x) and p(x,x′) = p(x′,x). Therefore, it can be deduced
naturally that Ep(x,x′)[(π+ − c(x,x′))ℓ(g(x),+1)] = Ep(x′,x)[(π+ + c(x′,x))ℓ(g(x),+1)]. Be-
cause x and x′ are symmetric, we can swap them and deduce Eq. (20). Eq. (21) can be deduced in
the same manner, which concludes the proof.

Based on Lemma 3, the proof of Theorem 1 is given.

Proof of Theorem 1. To begin with, it can be noticed that Ep+(x)[ℓ(g(x),+1)] =
Ep+(x′)[ℓ(g(x

′),+1)] and Ep−(x)[ℓ(g(x),−1)] = Ep−(x′)[ℓ(g(x
′),−1)]. Then, by summing

up all the equations from Eq. (18) to Eq. (21), we can get the following equation:

Ep(x,x′)[L+(g(x), g(x
′)) + L−(g(x), g(x

′))]

= 2π+Ep+(x)[ℓ(g(x),+1)] + 2π−Ep−(x)[ℓ(g(x),−1)]

After dividing each side of the equation above by 2, we can obtain Theorem 1.
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B ANALYSIS ON VARIANCE OF RISK ESTIMATOR

B.1 PROOF OF LEMMA 1

Based on Lemma 3, it can be observed that
Ep(x,x′)[L(x,x′)] =Ep(x,x′)[(π+ − c(x,x′))ℓ(g(x),+1) + (π− − c(x,x′))ℓ(g(x′),−1)]

=π+Ep+(x)[ℓ(g(x),+1)] + π−Ep−(x′)[ℓ(g(x
′),−1)]

=π+Ep+(x)[ℓ(g(x),+1)] + π−Ep−(x)[ℓ(g(x),−1)]

=R(g)

and
Ep(x,x′)[L(x′,x)] =Ep(x,x′)[(π+ + c(x,x′))ℓ(g(x′),+1) + (π− + c(x,x′))ℓ(g(x),−1)]

=π−Ep−(x)[ℓ(g(x),−1)] + π+Ep+(x′)[ℓ(g(x
′),+1)]

=π−Ep−(x)[ℓ(g(x),−1)] + π+Ep+(x)[ℓ(g(x),+1)]

=R(g).

Therefore, for an arbitrary weight α ∈ [0, 1],
R(g) =αR(g) + (1− α)R(g)

=αEp(x,x′)[L(x,x′)] + (1− α)Ep(x,x′)[L(x′,x)],

which indicates that
1

n

n∑
i=1

(αL(xi,x
′
i) + (1− α)L(x′

i,xi))

is also an unbiased risk estimator and concludes the proof.

B.2 PROOF OF THEOREM 2

In this subsection, we show that Eq. (8) achieves the minimum variance of

S(g;α) =
1

n

n∑
i=1

(αL(xi,x
′
i) + (1− α)L(x′

i,xi))

w.r.t. any α ∈ [0, 1]. To begin with, we introduce the following notations:

µ1 ≜ Ep(x,x′)[(
1

n

n∑
i=1

L(xi,x
′
i))

2] = Ep(x,x′)[(
1

n

n∑
i=1

L(x′
i,xi))

2],

µ2 ≜ Ep(x,x′)[
1

n2

n∑
i=1

L(xi,x
′
i)

n∑
i=1

L(x′
i,xi)]. (22)

Furthermore, according to Lemma 1, we have
Ep(x,x′)[S(g;α)] = R(g).

Then, we provide the proof of Theorem 2 as follows.

Proof of Theorem 2.
Var(S(g;α)) =Ep(x,x′)[(S(g;α)−R(g))2]

=Ep(x,x′)[S(g;α)
2]−R(g)2

=α2Ep(x,x′)[(
1

n

n∑
i=1

L(xi,x
′
i))

2] + (1− α)2Ep(x,x′)[(
1

n

n∑
i=1

L(x′
i,xi))

2]

+ 2α(1− α)Ep(x,x′)[
1

n2

n∑
i=1

L(xi,x
′
i)

n∑
i=1

L(x′
i,xi)]−R(g)2

=µ1α
2 + µ1(1− α)2 + 2µ2α(1− α)−R(g)2

=(2µ1 − 2µ2)(α− 1

2
)2 +

1

2
(µ1 + µ2)−R(g)2.
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Besides, it can be observed that

2µ1 − 2µ2 = Ep(x,x′)[(
1

n

n∑
i=1

(L(xi,x
′
i)− L(x′

i,xi))
2] ≥ 0.

Therefore, Var(S(g;α)) achieves the minimum value when α = 1/2, which concludes the proof.

C PROOF OF THEOREM 3

To begin with, we give the definition of Rademacher complexity.

Definition 2 (Rademacher complexity). Let Xn = {x1, · · ·xn} denote n i.i.d. random variables
drawn from a probability distribution with density p(x), G = {g : X 7→ R} denote a class of
measurable functions, and σ = (σ1, σ2, · · · , σn) denote Rademacher variables taking values from
{+1,−1} uniformly. Then, the (expected) Rademacher complexity of G is defined as

Rn(G) = EXn
Eσ

[
sup
g∈G

1

n

n∑
i=1

σig(xi)

]
. (23)

Let Dn
i.i.d.∼ p(x,x′) denote n pairs of ConfDiff data and LCD(g;xi,x

′
i) = (L(x,x′) +

L(x′,x))/2, then we introduce the following lemma.

Lemma 4.
R̄n(LCD ◦ G) ≤ 2LℓRn(G),

where LCD ◦ G = {LCD ◦ g|g ∈ G} and R̄n(·) is the Rademacher complexity over ConfDiff data
pairs Dn of size n.

Proof.

R̄n(LCD ◦ G) =EDn
Eσ[sup

g∈G

1

n

n∑
i=1

σiLCD(g;xi,x
′
i)]

=EDn
Eσ[sup

g∈G

1

2n

n∑
i=1

σi((π+ − ci)ℓ(g(xi),+1) + (π− − ci)ℓ(g(x
′
i),−1)

+ (π+ + ci)ℓ(g(x
′
i),+1) + (π− + ci)ℓ(g(xi),−1))].

Then, we can induce that

∥∇LCD(g;xi,x
′
i)∥2

=∥∇(
(π+ − ci)ℓ(g(xi),+1) + (π− − ci)ℓ(g(x

′
i),−1)

2

+
(π+ + ci)ℓ(g(x

′
i),+1) + (π− + ci)ℓ(g(xi),−1)

2
)∥2

≤∥∇(
(π+ − ci)ℓ(g(xi),+1)

2
)∥2 + ∥∇(

(π− − ci)ℓ(g(x
′
i),−1)

2
)∥2

+ ∥∇(
(π+ + ci)ℓ(g(x

′
i),+1)

2
)∥2 + ∥∇(

(π− + ci)ℓ(g(xi),−1)

2
)∥2

≤|π+ − ci|Lℓ

2
+

|π− − ci|Lℓ

2
+

|π+ + ci|Lℓ

2
+

|π− + ci|Lℓ

2
. (24)

Suppose π+ ≥ π−, the value of RHS of Eq. (24) can be determined as follows: when
ci ∈ [−1,−π+), the value is −2ciLℓ; when ci ∈ [−π+,−π−), the value is (π+ − ci)Lℓ; when
ci ∈ [−π−, π−), the value is Lℓ; when ci ∈ [π−, π+), the value is (π+ + ci)Lℓ; when ci ∈ [π+, 1],
the value is 2ciLℓ. To sum up, when π+ ≥ π−, the value of RHS of Eq. (24) is less than 2Lℓ.
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When π+ ≤ π−, we can deduce that the value of RHS of Eq. (24) is less than 2Lℓ in the same way.
Therefore,

R̄n(LCD ◦ G) ≤2LℓEDnEσ[sup
g∈G

1

n

n∑
i=1

σig(xi)]

=2LℓEXnEσ[sup
g∈G

1

n

n∑
i=1

σig(xi)]

=2LℓRn(G),
which concludes the proof.

After that, we introduce the following lemma.
Lemma 5. The inequality below hold with probability at least 1− δ:

sup
g∈G

|R(g)− R̂CD(g)| ≤ 4LℓRn(G) + 2Cℓ

√
ln 2/δ

2n
.

Proof. To begin with, we introduce Φ = supg∈G(R(g) − R̂CD(g)) and Φ̄ = supg∈G(R(g) −̂̄RCD(g)), where R̂CD(g) and ̂̄RCD(g) denote the empirical risk over two sets of training examples
with exactly one different point {(xi,x

′
i), ci} and {(x̄i, x̄

′
i), c(x̄i, x̄

′
i)} respectively. Then we have

Φ̄− Φ ≤ sup
g∈G

(R̂CD(g)− ̂̄RCD(g))

≤ sup
g∈G

(
LCD(g;xi,x

′
i)− LCD(g; x̄i, x̄

′
i)

n
)

≤ 2Cℓ

n
.

Accordingly, Φ− Φ̄ can be bounded in the same way. The following inequalities holds with proba-
bility at least 1− δ/2 by applying McDiarmid’s inequality:

sup
g∈G

(R(g)− R̂CD(g)) ≤ EDn [sup
g∈G

(R(g)− R̂CD(g))] + 2Cℓ

√
ln 2/δ

2n
,

Furthermore, we can bound EDn
[supg∈G(R(g) − R̂CD(g))] with Rademacher complexity. It is a

routine work to show by symmetrization (Mohri et al., 2012) that

EDn [sup
g∈G

(R(g)− R̂CD(g))] ≤ 2R̄n(LCD ◦ G) ≤ 4LℓRn(G),

where the second inequality is from Lemma 4. Accordingly, supg∈G(R̂CD(g)−R(g)) has the same
bound. By using the union bound, the following inequality holds with probability at least 1− δ:

sup
g∈G

|R(g)− R̂CD(g)| ≤ 4LℓRn(G) + 2Cℓ

√
ln 2/δ

2n
,

which concludes the proof.

Finally, the proof of Theorem 3 is provided.

Proof of Theorem 3.

R(ĝCD)−R(g∗) = (R(ĝCD)− R̂CD(ĝCD)) + (R̂CD(ĝCD)− R̂CD(g
∗)) + (R̂CD(g

∗)−R(g∗))

≤ (R(ĝCD)− R̂CD(ĝCD)) + (R̂CD(g
∗)−R(g∗))

≤ |R(ĝCD)− R̂CD(ĝCD)|+
∣∣∣R̂CD(g

∗)−R(g∗)
∣∣∣

≤ 2 sup
g∈G

|R(g)− R̂CD(g)|

≤ 8LℓRn(G) + 4Cℓ

√
ln 2/δ

2n
.
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The first inequality is derived because ĝCD is the minimizer of R̂CD(g). The last inequality is derived
according to Lemma 5, which concludes the proof.

D PROOF OF THEOREM 4

To begin with, we provide the following inequality:

sup
g∈G

|R̄CD(g)− R̂CD(g)|

=
1

2n
|

n∑
i=1

((π̄+ − π+ + ci − c̄i)ℓ(g(xi),+1) + (π̄− − π− + ci − c̄i)ℓ(g(x
′
i),−1)

+ (π̄+ − π+ + c̄i − ci)ℓ(g(x
′
i),+1) + (π̄− − π− + c̄i − ci)ℓ(g(xi),−1))|

≤ 1

2n

n∑
i=1

(|(π̄+ − π+ + ci − c̄i)ℓ(g(xi),+1)|+ |(π̄− − π− + ci − c̄i)ℓ(g(x
′
i),−1)|

+ |(π̄+ − π+ + c̄i − ci)ℓ(g(x
′
i),+1)|+ |(π̄− − π− + c̄i − ci)ℓ(g(xi),−1)|)

=
1

2n

n∑
i=1

(|π̄+ − π+ + ci − c̄i|ℓ(g(xi),+1) + |π̄− − π− + ci − c̄i|ℓ(g(x′
i),−1)

+ |π̄+ − π+ + c̄i − ci|ℓ(g(x′
i),+1) + |π̄− − π− + c̄i − ci|ℓ(g(xi),−1))

≤ 1

2n

n∑
i=1

((|π̄+ − π+|+ |ci − c̄i|)ℓ(g(xi),+1) + (|π̄− − π−|+ |ci − c̄i|)ℓ(g(x′
i),−1)

+ (|π̄+ − π+|+ |c̄i − ci|)ℓ(g(x′
i),+1) + (|π̄− − π−|+ |c̄i − ci|)ℓ(g(xi),−1))

=
1

2n

n∑
i=1

((|π̄+ − π+|+ |ci − c̄i|)ℓ(g(xi),+1) + (|π+ − π̄+|+ |ci − c̄i|)ℓ(g(x′
i),−1)

+ (|π̄+ − π+|+ |c̄i − ci|)ℓ(g(x′
i),+1) + (|π+ − π̄+|+ |c̄i − ci|)ℓ(g(xi),−1))

≤
2Cℓ

∑n
i=1 |c̄i − ci|
n

+ 2Cℓ|π̄+ − π+|.

Then, we deduce the following inequality:

R(ḡCD)−R(g∗) =(R(ḡCD)− R̂CD(ḡCD)) + (R̂CD(ḡCD)− R̄CD(ḡCD)) + (R̄CD(ḡCD)− R̄CD(ĝCD))

+ (R̄CD(ĝCD)− R̂CD(ĝCD)) + (R̂CD(ĝCD)−R(ĝCD)) + (R(ĝCD)−R(g∗))

≤2 sup
g∈G

|R(g)− R̂CD(g)|+ 2 sup
g∈G

|R̄CD(g)− R̂CD(g)|+ (R(ĝCD)−R(g∗))

≤4 sup
g∈G

|R(g)− R̂CD(g)|+ 2 sup
g∈G

|R̄CD(g)− R̂CD(g)|

≤16LℓRn(G) + 8Cℓ

√
ln 2/δ

2n
+

4Cℓ

∑n
i=1 |c̄i − ci|
n

+ 4Cℓ|π̄+ − π+|.

The first inequality is derived because ḡCD is the minimizer of R̄(g). The second and third inequality
are derived according to the proof of Theorem 3 and Lemma 5 respectively.

E PROOF OF THEOREM 5

To begin with, let D+
n (g) = {Dn|Â(g) ≥ 0 ∩ B̂(g) ≥ 0 ∩ Ĉ(g) ≥ 0 ∩ D̂(g) ≥ 0} and D−

n (g) =

{Dn|Â(g) ≤ 0 ∪ B̂(g) ≤ 0 ∪ Ĉ(g) ≤ 0 ∪ D̂(g) ≤ 0}. Before giving the proof of Theorem 5, we
give the following lemma based on the assumptions in section 3.
Lemma 6. The probability measure of D−

n (g) can be bounded as follows:

P(D−
n (g)) ≤ exp (

−2a2n

C2
ℓ

) + exp (
−2b2n

C2
ℓ

) + exp (
−2c2n

C2
ℓ

) + exp (
−2d2n

C2
ℓ

). (25)
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Proof. It can be observed that

p(Dn) = p(x1,x
′
1) · · · p(xn,x

′
n)

= p(x1) · · · p(x′
n)p(x1) · · · p(x′

n).

Therefore, the probability measure P(D−
n (g)) can be defined as follows:

P(D−
n (g)) =

∫
Dn∈D−

n (g)

p(Dn) dDn

=

∫
Dn∈D−

n (g)

p(Dn) dx1 · · · dxn dx
′
1 · · · dx′

n.

When exactly one ConfDiff data pair in Sn is replaced, the change of Â(g), B̂(g), Ĉ(g) and D̂(g)
will be no more than Cℓ/n. By applying McDiarmid’s inequality, we can obtain the following
inequalities:

P(E[Â(g)]− Â(g) ≥ a) ≤ exp (
−2a2n

C2
ℓ

),

P(E[B̂(g)]− B̂(g) ≥ b) ≤ exp (
−2b2n

C2
ℓ

),

P(E[Ĉ(g)]− Ĉ(g) ≥ c) ≤ exp (
−2c2n

C2
ℓ

),

P(E[D̂(g)]− D̂(g) ≥ d) ≤ exp (
−2d2n

C2
ℓ

).

Furthermore,

P(D−
n (g) ≤P(Â(g) ≤ 0) + P(B̂(g) ≤ 0) + P(Ĉ(g) ≤ 0) + P(D̂(g) ≤ 0)

≤P(Â(g) ≤ E[Â(g)]− a) + P(B̂(g) ≤ E[B̂(g)]− b)

+ P(Ĉ(g) ≤ E[Ĉ(g)]− c) + P(D̂(g) ≤ E[D̂(g)]− d)

≤P(E[Â(g)]− Â(g) ≥ a) + P(E[B̂(g)]− B̂(g) ≥ b)

+ P(E[Ĉ(g)]− Ĉ(g) ≥ c) + P(E[D̂(g)]− D̂(g) ≥ d)

≤ exp (
−2a2n

C2
ℓ

) + exp (
−2b2n

C2
ℓ

) + exp (
−2c2n

C2
ℓ

) + exp (
−2d2n

C2
ℓ

),

which concludes the proof.

Then, the proof of Theorem 5 is given.

Proof of Theorem 5. To begin with, we prove the first inequality in Theorem 5.

E[R̃CD(g)]−R(g)

=E[R̃CD(g)− R̂CD(g)]

=

∫
Dn∈D+

n (g)

(R̃CD(g)− R̂CD(g))p(Dn) dDn

+

∫
Dn∈D−

n (g)

(R̃CD(g)− R̂CD(g))p(Dn) dDn

=

∫
Dn∈D−

n (g)

(R̃CD(g)− R̂CD(g))p(Dn) dDn ≥ 0,
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where the last inequality is derived because R̃CD(g) is an upper bound of R̂CD(g). Furthermore,

E[R̃CD(g)]−R(g)

=

∫
Dn∈D−

n (g)

(R̃CD(g)− R̂CD(g))p(Dn) dDn

≤ sup
Dn∈D−

n (g)

(R̃CD(g)− R̂CD(g))

∫
Dn∈D−

n (g)

p(Dn) dDn

= sup
Dn∈D−

n (g)

(R̃CD(g)− R̂CD(g))P(D−
n (g))

= sup
Dn∈D−

n (g)

(f(Â(g)) + f(B̂(g)) + f(Ĉ(g)) + f(D̂(g))

− Â(g)− B̂(g)− Ĉ(g)− D̂(g))P(D−
n (g))

≤ sup
Dn∈D−

n (g)

(Lf |Â(g)|+ Lf |B̂(g)|+ Lf |Ĉ(g)|+ Lf |D̂(g)|

+ |Â(g)|+ |B̂(g)|+ |Ĉ(g)|+ |D̂(g)|)P(D−
n (g)

= sup
Dn∈D−

n (g)

Lf + 1

2n
(|

n∑
i=1

(π+ − ci)ℓ(g(xi),+1)|+ |
n∑

i=1

(π− − ci)ℓ(g(x
′
i),−1)|

+ |
n∑

i=1

(π+ + ci)ℓ(g(x
′
i),+1)|+ |

n∑
i=1

(π− + ci)ℓ(g(xi),−1)|)P(D−
n (g))

≤ sup
Dn∈D−

n (g)

Lf + 1

2n
(

n∑
i=1

|(π+ − ci)ℓ(g(xi),+1)|+
n∑

i=1

|(π− − ci)ℓ(g(x
′
i),−1)|

+

n∑
i=1

|(π+ + ci)ℓ(g(x
′
i),+1)|+

n∑
i=1

|(π− + ci)ℓ(g(xi),−1)|)P(D−
n (g))

= sup
Dn∈D−

n (g)

Lf + 1

2n

n∑
i=1

(|(π+ − ci)ℓ(g(xi),+1)|+ |(π− − ci)ℓ(g(x
′
i),−1)|

+ |(π+ + ci)ℓ(g(x
′
i),+1)|+ |(π− + ci)ℓ(g(xi),−1)|)P(D−

n (g))

≤ sup
Dn∈D−

n (g)

(Lf + 1)Cℓ

2n

n∑
i=1

(|π+ − ci|+ |π− − ci|+ |π+ + ci|+ |π− + ci|)P(D−
n (g)).

Similar to the proof of Theorem 3, we can obtain

|π+ − ci|+ |π− − ci|+ |π+ + ci|+ |π− + ci| ≤ 4.

Therefore, we have
E[R̃CD(g)]−R(g) ≤ 2(Lf + 1)Cℓ∆,

which concludes the proof of the first inequality in Theorem 5. Before giving the proof of the second
inequality, we give the upper bound of |R̃CD(g) − E[R̃CD(g)]|. When exactly one ConfDiff data
pair in Dn is replaced, the change of R̃CD(g) is no more than 2CℓLf/n. By applying McDiarmid’s
inequality, we have the following inequalities with probability at least 1− δ/2:

R̃CD(g)− E[R̃CD(g)] ≤ 2CℓLf

√
ln 2/δ

2n
,

E[R̃CD(g)]− R̃CD(g) ≤ 2CℓLf

√
ln 2/δ

2n
.

Therefore, with probability at least 1− δ, we have

|R̃CD(g)− E[R̃CD(g)]| ≤ 2CℓLf

√
ln 2/δ

2n
.
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Table 3: Characteristics of experimental data sets.
Data Set # Train # Test # Features # Class Labels Model
MNIST 60,000 10,000 784 10 MLP

Kuzushiji 60,000 10,000 784 10 MLP
Fashion 60,000 10,000 784 10 MLP

CIFAR-10 50,000 10,000 3,072 10 ResNet-34
Optdigits 4,495 1,125 62 10 MLP

USPS 7,437 1,861 256 10 MLP
Pendigits 8,793 2,199 16 10 MLP

Letter 16,000 4,000 16 26 MLP

Finally, we have

|R̃CD(g)−R(g)| = |R̃CD(g)− E[R̃CD(g)] + E[R̃CD(g)]−R(g)|
≤ |R̃CD(g)− E[R̃CD(g)]|+ |E[R̃CD(g)]−R(g)|
= |R̃CD(g)− E[R̃CD(g)]|+ E[R̃CD(g)]−R(g)

≤ 2CℓLf

√
ln 2/δ

2n
+ 2(Lf + 1)Cℓ∆, (26)

with probability at least 1− δ, which concludes the proof.

F PROOF OF THEOREM 6

With probability at least 1− δ, we have

R(g̃CD)−R(g∗) =(R(g̃CD)− R̃CD(g̃CD)) + (R̃CD(g̃CD)− R̃CD(ĝCD))

+ (R̃CD(ĝCD)−R(ĝCD)) + (R(ĝCD)−R(g∗))

≤|R(g̃CD)− R̃CD(g̃CD)|+ |R̃CD(ĝCD)−R(ĝCD)|+ (R(ĝCD)−R(g∗))

≤4Cℓ(Lf + 1)

√
ln 2/δ

2n
+ 4(Lf + 1)Cℓ∆+ 8LℓRn(G).

The first inequality is derived because g̃CD is the minimizer of R̃CD(g). The second inequality is
derived from Theorem 5 and Theorem 3. The proof is completed.

G ADDITIONAL INFORMATION ON EXPERIMENTS

In this section, the details of experimental data sets and hyperparameters are provided.

G.1 DETAILS OF EXPERIMENTAL DATA SETS

The detailed statistics and corresponding model architectures are summarized in Table 3 while the
basic information, sources and data split details are elaborated in this subsection.

For the four benchmark data sets,

• MNIST (LeCun et al., 1998): It is a grayscale handwritten digits recognition data set. It is com-
posed of 60,000 training examples and 10,000 test examples. The original feature dimension is
28*28, and the label space is 0-9. The even digits are regarded as the positive class while the odd
digits are regarded as the negative class. We sampled 15,000 unlabeled data pairs as training data.
The data set can be downloaded from http://yann.lecun.com/exdb/mnist/.

• Kuzushiji-MNIST (Clanuwat et al., 2018): It is a grayscale Japanese character recognition data
set. It is composed of 60,000 training examples and 10,000 test examples. The original feature
dimension is 28*28, and the label space is {‘o’, ‘su’,‘na’, ‘ma’, ‘re’, ‘ki’,‘tsu’,‘ha’, ‘ya’,‘wo’}.
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The positive class is composed of ‘o’, ‘su’,‘na’, ‘ma’, and ‘re’ while the negative class is com-
posed of ‘ki’,‘tsu’,‘ha’, ‘ya’, and ‘wo’. We sampled 15,000 unlabeled data pairs as training data.
The data set can be downloaded from https://github.com/rois-codh/kmnist.

• Fashion-MNIST (Xiao et al., 2017): It is a grayscale fashion item recognition data set. It is
composed of 60,000 training examples and 10,000 test examples. The original feature dimension
is 28*28, and the label space is {‘T-shirt’, ‘trouser’, ‘pullover’, ‘dress’, ‘sandal’, ‘coat’, ‘shirt’,
‘sneaker’, ‘bag’, ‘ankle boot’}. The positive class is composed of ‘T-shirt’, ‘pullover’, ‘coat’,
‘shirt’, and ‘bag’ while the negative class is composed of ‘trouser’, ‘dress’, ‘sandal’, ‘sneaker’,
and ‘ankle boot’. We sampled 15,000 unlabeled data pairs as training data. The data set can be
downloaded from https://github.com/zalandoresearch/fashion-mnist.

• CIFAR-10 (Krizhevsky & Hinton, 2009): It is a colorful object recognition data set. It is com-
posed of 50,000 training examples and 10,000 test examples. The original feature dimension
is 32*32*3, and the label space is {‘airplane’, ‘bird’, ‘automobile’, ‘cat’, ‘deer’, ‘dog’, ‘frog’,
‘horse’, ‘ship’, ‘truck’}. The positive class is composed of ‘bird’, ‘deer’, ‘dog’, ‘frog’, ‘cat’,
and ‘horse’ while the negative class is composed of ‘airplane’, ‘automobile’, ‘ship’, and ‘truck’.
We sampled 10,000 unlabeled data pairs as training data. The data set can be downloaded from
https://www.cs.toronto.edu/˜kriz/cifar.html.

For the four UCI data sets, they can be downloaded from Dua & Graff (2017).

• Optdigits, USPS, Pendigits (Dua & Graff, 2017): They are handwritten digit recognition data
set. The train-test split can be found in Table 3. The feature dimensions are 62, 256, and 16
respectively and the label space is 0-9. The even digits are regarded as the positive class while the
odd digits are regarded as the negative class. We sampled 1,200, 2,000, and 2,500 unlabeled data
pairs for training respectively.

• Letter (Dua & Graff, 2017): It is a letter recognition data set. It is composed of 16,000 training
examples and 4,000 test examples. The feature dimension is 16 and the label space is the 26
capital letters in the English alphabet. The positive class is composed of the top 13 letters while
the negative class is composed of the latter 13 letters. We sampled 4,000 unlabeled data pairs for
training.

G.2 DETAILS OF HYPERPARAMETERS

All the methods were implemented in Pytorch (Paszke et al., 2019). We used the Adam optimizer
(Kingma & Ba, 2015). To ensure fair comparisons, We set the same hyperparameter values for all
the comparing approaches.

For MNIST, Kuzushiji-MNIST and Fashion-MNIST, the learning rate was set to 1e-3 and the weight
decay was set to 1e-5. The batch size was set to 256 data pairs. For training the probabilistic classifier
to generate confidence, the batch size was set to 256 and the epoch number was set to 10.

For CIFAR10, the learning rate was set to 5e-4 and the weight decay was set to 1e-5. The batch size
was set to 128 data pairs. For training the probabilistic classifier to generate confidence, the batch
size was set to 128 and the epoch number was set to 10.

For all the UCI data sets, the learning rate was set to 1e-3 and the weight decay was set to 1e-5. The
batch size was set to 128 data pairs. For training the probabilistic classifier to generate confidence,
the batch size was set to 128 and the epoch number was set to 10.

The learning rate and weight decay for training the probabilistic classifier were the same as the
setting for each data set correspondingly.

H MORE EXPERIMENTAL RESULTS WITH FEWER TRAINING DATA
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https://github.com/rois-codh/kmnist
https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/~kriz/cifar.html
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(a) Optdigits
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(b) Pendigits
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(c) MNIST
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(d) CIFAR-10
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(e) Kuzushiji
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(f) Fashion
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(g) USPS
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(h) Letter
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(i) Optdigits
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(j) Pendigits
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(k) MNIST
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(l) CIFAR-10
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(m) Kuzushiji
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(n) Fashion
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(o) USPS
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(p) Letter
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(q) Optdigits
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(r) Pendigits
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(s) MNIST
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(t) CIFAR-10

Figure 3: Classification performance of ConfDiff-ReLU and ConfDiff-ABS given a fraction of
training data as well as Pcomp-Teacher given 100% of training data with different prior settings
(π+ = 0.2 for the first row, π+ = 0.5 for the second and the third row, and π+ = 0.8 for the fourth
and the fifth row).
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