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Abstract

Existing studies on semantic parsing focus on001
mapping a natural-language utterance to a log-002
ical form (LF) in one turn. However, because003
natural language may contain ambiguity and004
variability, this is a difficult challenge. In this005
work, we investigate an interactive semantic006
parsing framework that explains the predicted007
LF step by step in natural language and enables008
the user to make corrections through natural-009
language feedback for individual steps. We010
focus on question answering over knowledge011
bases (KBQA) as an instantiation of our frame-012
work, aiming to increase the transparency of013
the parsing process and help the user trust014
the final answer. We construct INSPIRED,015
a crowdsourced dialogue dataset derived from016
the COMPLEXWEBQUESTIONS dataset. Our017
experiments show that this framework has the018
potential to greatly improve overall parse accu-019
racy. Furthermore, we develop a pipeline for020
dialogue simulation to evaluate our framework021
w.r.t. a variety of state-of-the-art KBQA models022
without further crowdsourcing effort. The re-023
sults demonstrate that our framework promises024
to be effective across such models.1025

1 Introduction026

Semantic parsing aims to map natural language to027

formal meaning representations, such as λ-DCS,028

API calls, SQL and SPARQL queries. As seen in029

previous work (Liang et al., 2013; Yih et al., 2014,030

2015; Talmor and Berant, 2018b; Chen et al., 2019;031

Lan and Jiang, 2020a; Gu et al., 2021), parsers still032

face major challenges: (1) the accuracy of state-of-033

the-art parsers is not high enough for real use, given034

that natural language questions can be ambiguous035

or highly variable with many possible paraphrases,036

and (2) it is hard for users to understand the parsing037

process and validate the results.038

In response to the challenges above, recent039

work (Li and Jagadish, 2014; He et al., 2016;040

1Our code and dataset will be released upon acceptance.

 What is the official language of the country that contains Al Sharqia
Governorate?

 Not quite. Replace question 2 with "What is the official language
spoken in the above-named nation?"

Yep!

 Here's how I understood your question: 
1. In what nation can you find the Al Sharqia Governorate? 
 ANSWER: Egypt 
2. What is the capital of the above-named nation? 
 ANSWER: Cairo
 Is this what you were looking for?

 Sorry about that! How's this: 
1. In what nation can you find the Al Sharqia Governorate? 
 ANSWER: Egypt 
2. What is the official language spoken in the above-named nation? 
 ANSWER: Modern Standard Arabic 
 Is this correct now?

User Agent

U1

A1

U2

U3

A2

Figure 1: Example dialogue from our dataset (dubbed
INSPIRED). The agent turns (Ai’s) illustrate our em-
phasis on transparency by explaining the predicted log-
ical form step by step in natural language, along with
intermediate answers, to the user for feedback.

Chaurasia and Mooney, 2017; Su et al., 2018; Gur 041

et al., 2018; Yao et al., 2019a; Elgohary et al., 2020) 042

explores interactive semantic parsing, which in- 043

volves human users to provide feedback and boost 044

system accuracy. For example, Su et al. (2018) con- 045

duct a study showing that fine-grained user inter- 046

action can greatly improve the usability of natural 047

language interfaces to Web APIs. Yao et al. (2019a) 048

allow their semantic parser to ask users clarifica- 049

tion questions when generating an If-Then program. 050

And recently, Elgohary et al. (2020) crowdsources 051

the SPLASH dataset for correcting SQL queries 052

using natural language feedback. 053

Compared with these approaches, we aim to en- 054

hance the transparency of the parsing process and 055

increase user confidence in the final answer. Fig- 056

ure 1 shows a desired dialogue between user and 057

agent. Towards that end, we design an interactive 058

framework for semantic parse correction that can 059

explain the predicted complex logical form (LF) in 060

a step-by-step manner and enable the user to make 061
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Initial Question: What is the official language of the country that contains Al Sharqia Governorate?
Gold Parse: ?c ns:location.country.administrative_divisions #entity1# . ?c ns:location.country.official_language ?x .

Initial Parse: ?c ns:location.country.administrative_divisions #entity1# . ?c ns:location.country.capital ?x .
Sub-LF1 Sub-LF2

Sub-LF1* Sub-LF2*

8

Figure 2: Illustration of our interactive semantic parsing framework for KBQA. The box on the top lists a running
example. The prefix of a SPARQL query (i.e., LF used for KBQA in this paper) in this example is omitted for
brevity. The figure on the bottom shows the entire workflow of our framework using the example above.

corrections to individual steps in natural language.062

To demonstrate the advantages of our interactive063

framework, we propose an instantiation of it for064

complex question answering over knowledge bases065

(KBQA), where interactive semantic parsing has066

remained largely unexplored.067

Figure 2 illustrates our framework with a con-068

crete example: once the initial parse for a given069

question is predicted by a base parser, we decom-070

pose it into sub-LFs and translate each sub-LF to a071

natural-language question (i.e., Sub-Question Gen-072

eration). This illustrates the steps of answering the073

question, allowing the user to see exactly how a074

final answer is found and either be confident that it075

is correct or provide feedback in natural language076

to correct individual steps. If any user feedback is077

given, our framework will use it to correct errors078

in the current parse (i.e., Parse Correction).079

To build models for Sub-Question Generation080

and Parse Correction in our framework, we con-081

struct a dataset via crowdsourcing, based on ques-082

tions from the COMPLEXWEBQUESTIONS (CWQ)083

dataset (Talmor and Berant, 2018b), a widely used084

dataset for complex QA. To make LFs understand-085

able to crowdworkers, we create a templated sub-086

question using a rule-based translation method for087

each sub-LF. During crowdsourcing, we ask work-088

ers to paraphrase the templated question into a nat- 089

ural one. In the end, we create a dialogue for each 090

complex question, an example of which is shown 091

in Figure 1. Our dataset, dubbed INSPIRED 092

(INteractive Semantic ParsIng for CorREction 093

with Decomposition), will facilitate further explo- 094

ration of interactive semantic parsing for KBQA. 095

Our main contributions are as follows: (1) We 096

design a more transparent interactive semantic pars- 097

ing framework that explains to the user how a com- 098

plex question is answered step by step and enables 099

them to make corrections to each step in natural 100

language and trust the final answer. (2) To sup- 101

port more research on interactive semantic parsing 102

for KBQA, we curate and release a high-quality 103

dialogue dataset using our framework. (3) We es- 104

tablish several baseline models for two core sub- 105

tasks in this framework: Sub-Question Generation 106

and Parse Correction. (4) Although INSPIRED is 107

constructed based on a selected base parser, it en- 108

ables us to train models to simulate user feedback. 109

This is important because it allows us to study the 110

promise of our framework for correcting errors pro- 111

duced by other semantic parsers without involving 112

more annotation effort. With these contributions, 113

we hope to inspire many directions of future work, 114

which we discuss in the end. 115
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2 Dataset Construction116

In this section, we describe the workflow for dataset117

construction following the design of our framework118

(Figure 2). We prepare pairs of complex questions119

and SPARQL parses predicted by a base semantic120

parser (Section 2.1.1). Then, we decompose the121

gold and predicted parses and determine correction122

operations (Section 2.1.2). The sub-LFs are trans-123

lated to questions using templates (Section 2.1.3)124

and we employ crowdworkers to paraphrase these125

questions using natural language (Section 2.2).126

2.1 Dialogue Preparation for Crowdsourcing127

2.1.1 Preparing Questions and SPARQL128

We start with the COMPLEXWEBQUESTIONS 1.1129

(CWQ) dataset (Talmor and Berant, 2018a,b),130

which contains complex questions paired with gold131

SPARQL queries for Freebase (Bollacker et al.,132

2008). We adopt a transformer-based seq2seq133

model (Vaswani et al., 2017) as the base seman-134

tic parser to prepare a predicted SPARQL query for135

each complex question (see the second and third136

paragraphs in Section 4 for our rationale).137

As a simplifying assumption, we take gold138

named entities mentioned in a question as given.139

Specifically, we replace named entities in a140

SPARQL query with special tokens such as #enti-141

tyX#, where X is a number corresponding to the142

order in which the entity appears. After parsing,143

we replace these tokens with the gold entities. The144

challenge of addressing errors caused by named en-145

tity recognition and linking in a real KBQA system146

is left as an important piece of future work.147

In order to reduce the data collection cost, we148

select a subset of questions in the original training149

data of CWQ to create dialogues in INSPIRED’s150

training set. To this end, we conduct an analysis of151

repeated predicates and question types, and ensure152

that each predicate occurs at least three times in IN-153

SPIRED’s training set when possible. (For those154

predicates that occur once or twice in the original155

training set, we include all the questions they ap-156

pear in.) We include every question where the base157

parser makes an error and ensure adequate cover-158

age of the four multi-hop reasoning types (Talmor159

and Berant, 2018b). Questions of different rea-160

soning types would require different translation161

strategies in order to represent their logical forms162

in English (see Section 2.1.3 and Appendix A.3).163

We create 10,374 dialogues in total, based on 3,492164

questions from the training set, 3,441 from the vali-165

Number of Train Dev Test Overall

Complex Questions 3,492 3,441 3,441 10,374
- Composition 1,196 1,532 1,490 4,218
- Conjunction 1,796 1,503 1,553 4,852
- Comparative 253 217 207 677
- Superlative 247 189 191 627
Average number of edits 1.4
Dialogues with 0 edits 5,016

Table 1: Statistics for our INSPIRED dataset: the num-
ber of complex questions for each reasoning type, the
average number of edit operations in a dialogue (exclud-
ing those that do not have edits).

dation set, and 3,441 from the test set of CWQ. We 166

omit a small set of questions from the original vali- 167

dation and test sets that are consistently confusing 168

to crowdworkers. Table 1 shows a breakdown of 169

the CWQ question types in the INSPIRED dataset, 170

along with the average number of corrections. 171

2.1.2 Logical Form Decomposition 172

An important goal of creating INSPIRED is to 173

make the process of question answering transparent 174

to the user. Each dialogue features a decomposition 175

process by which our framework transforms the 176

complex question into an initial parse, breaks it 177

into sub-LFs, retrieves answers, and presents this 178

whole process to the user for correction. 179

The overarching strategy of the decomposition 180

process is to identify the predicates that express dis- 181

tinct components in the LF of the complex question, 182

which correspond to individual sub-questions. Typ- 183

ically, these components appear as a triple in the 184

logical form such as Sub-LF1 in Figure 2, which 185

is comprised of a head entity, a predicate, and a 186

tail entity. Logical forms in CWQ typically contain 187

two or three of these components. There can be 188

multiple predicates that group together to express 189

one component, for example those connected by a 190

CVT (Compound Value Type) node, in which case 191

the two predicates and their two entities will form 192

one component. Within these, there can be filters 193

and/or restrictions, which provide additional infor- 194

mation about entities of the main predicate and are 195

typically merged to the corresponding component. 196

Using the decomposition strategy above, we 197

decompose both the parser’s predicted SPARQL 198

query and the gold one into sub-LFs, and compare 199

those sub-LFs to determine the sequence of op- 200

erations needed to transform the predicted parse 201

into the gold parse, including inserting, deleting, 202

or replacing a sub-LF, which is to be paraphrased 203

by crowdworkers (Section 2.2) based on our tem- 204

3



plated sub-question. These operations determine205

the “correction” steps in each dialogue, where the206

agent asks the user if any corrections are needed207

(Figure 1, turn A1), and the user either confirms208

that the initial parse is correct or provides correc-209

tions (turn U2). Though any new sub-questions210

that are introduced use natural and varied language,211

the correction operations are given using templates212

(i.e., replace question #X with Y, delete question213

#X, insert question Y). More details about how dia-214

logues are formed around complex questions can215

be found in Appendix A.1.216

2.1.3 Explaining SPARQL217

After the LF decomposition, we then develop a218

strategy for how to represent those sub SPARQL219

queries in a more comprehensible form that humans220

can understand. Thus we create a template corpus221

and develop a rule-based translation method to do222

so. The corpus consists of 772 different predicates223

that appear in the CWQ dataset and translations224

of each into a basic template that conveys the con-225

tent. More details about how LFs with different226

reasoning types and features are translated into sub-227

questions can be found in Appendix A.2 and A.3.228

2.2 Crowdsourcing229

To make SPARQL queries understandable for an230

average user, as in Figure 1, we first translate the231

decomposed LFs into English questions using tem-232

plates as mentioned in Section 2.1.3. To obtain233

natural sounding questions, we conduct a crowd-234

sourcing task on Amazon Mechanical Turk (AMT),235

in which crowdworkers are employed to rephrase236

sub-questions from the clunky, templated form into237

more concise and natural English in the context238

of a dialogue. The task is conducted using Par-239

lAI (Miller et al., 2017), which allows us to set up240

a versatile dialogue interface.241

In each dialogue, every turn of the interlocutors242

has prescribed content. A total of 14 crowdwork-243

ers are employed to express the content in natural244

language and complete a maximum of 1,800 dia-245

logues. Because the crowdsourcing task for this246

dataset requires extensive, detailed instructions, we247

design the task quite carefully with multiple stages248

of checkpoints to ensure quality of data collection.249

An overview of these phases can be seen in Table 2250

and other details are presented in Appendix A.4.251

We recruit and retain a small set of exemplary work-252

ers for this task (see item 4 in General Principles253

in Table 2). This phased strategy, while requiring254

Phased Crowdsourcing Protocol
Phase 1: Tutorial
1. Worker reads examples and explanations of the task.
2. Worker receives specific instructions for how to rephrase questions of
different types.
Phase II: Qualification Quiz
1. Worker completes an 8-question multiple choice quiz. Quiz questions
are based on the tutorial content.
2. Worker must achieve at least 7 out of 8 to pass. They may take the quiz
more than once, but there is a ten minute wait period between attempts.
Phase III: Trial Period
1. Worker completes 10 predetermined tasks which were chosen as
representative examples for all the tasks.
2. Tasks are manually graded. If the work is overall good, the worker receives
specific feedback on anything that was done incorrectly.
3. If quality is not good, worker is eliminated.
4. Workers get paid the regular rate for each task and upon completing the 10
tasks, receive a bonus for the time spent on the tutorial and qualification quiz.
Phase IV: Batches of Tasks
1. Worker is given access to a batch of 100 tasks, which are spot-checked for
quality. A bonus is given as the worker passes each set of 100 tasks.
2. If quality is good, workers are given a second batch of 100 questions, also
spot checked.
3. Batch size increases based on worker quality and speed.
4. Worker completes up to 1800 tasks.
General Principles
1. Prompt feedback, payment, and release of new batches
2. Provide a link to the tutorial so that it can be accessed at any time.
3. Higher than average payment.
4. Keep pool of workers small for better communication and quality control.
5. Verify that workers are native English speakers.

Table 2: The phased crowdsourcing protocol for our
Amazon Mechanical Turk task.

more effort, proves to be effective in ensuring over- 255

all data quality which will be shown in Section 3. 256

3 Dataset Analysis 257

In this section, we conduct a thorough quality anal- 258

ysis of INSPIRED dataset and highlight aspects 259

that contribute to overall quality, including para- 260

phrasing characteristics and contextual awareness. 261

Overall Data Quality. In each dialogue, the 262

crowdworker is required to rephrase the original 263

complex question and each templated sub-question. 264

Overall, we believe the quality of the data to be 265

high for a few reasons. In the collection process, 266

our crowdworkers read a detailed tutorial, pass 267

two qualification tasks, and have their work spot- 268

checked at each stage of collection. Because we 269

keep our pool of workers small, we are able to main- 270

tain frequent communication with them throughout 271

the process, giving feedback in an ongoing fashion. 272

Furthermore, a semi-automatic data cleaning 273

method is employed to identify inaccurate para- 274

phrases, which are manually repaired. This method 275

results in edits to 325 sub-questions. Based on 276

observation on a held-out subset of the data, we 277

estimate that only 3.1% of sub-questions still have 278

inaccuracies, after cleaning. More details about 279

this are in Appendix B.1. 280

Paraphrasing Characteristics. Table 3 shows 281

the difference between the vocabularies (unique 282

words) of all the templates in INSPIRED and the 283
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Template Corpus Rephrased Corpus
Avg Length 17.3 10.7
Unigrams 8,465 9,864
Bigrams 21,072 44,085
Trigrams 31,838 81,479

Table 3: Comparison of average length (in words) of
templated and rephrased questions as well as the size of
vocabulary for 1-, 2-, and 3-grams across all templates
and rephrased questions, demonstrating the increased
diversity of rephrased questions.

ROUGE-1 ROUGE-2

Random Context 22.8 3.4
Actual Context 27.7 6.2

Table 4: Comparison of the n-gram overlap between
the paraphrase and the context for a sub-LF vs. other
randomly chosen context for the same sub-LF.

rephrased versions of sub-questions, which are cal-284

culated using GEM evaluation scripts (Gehrmann285

et al., 2021). Further, the mean length of the tem-286

plated questions is 17.3 words, while the mean287

length of the rephrased questions is 10.7 words.288

These comparisons demonstrate that the rephrased289

questions show much more diversity in phrasings290

and lexical choices, but are also more concise.291

More GEM metrics can be seen in Appendix B.2.292

In order to better understand how crowdworkers293

rephrased templates, 100 randomly selected sub-294

questions are studied in terms of lexical relation-295

ships between the template and rephrased versions.296

We find that they are using synonmy, hypernymy297

and hyponymy in rephrasings of the templates, in298

addition to changing word order. This analysis can299

be found in Appendix B.3.300

Contextual Awareness. Additionally, crowd-301

workers are encouraged to incorporate contextual302

information of a given sub-question into their303

rephrasings, thus improving the contextual richness304

of the dataset. In order to demonstrate contextual305

awareness, Table 4 shows the average ROUGE-1306

and ROUGE-2 scores of all sub-questions in their307

actual contexts (the complex question and any pre-308

ceding sub-questions), in comparison to the same309

sub-questions in a randomly assigned context that310

utilizes the same sub-logical form. Entities are311

masked with #entity# tokens to prevent the actual312

context from being advantaged by overlap in entity313

names. The higher scores for the actual context314

indicate that the wording of sub-questions reflect315

the context from which they are derived. Appendix316

B.4 provides more details on this aspect.317

Models EM F1

*Transformer (Vaswani et al., 2017) 52.3 58.6
BART-large (Lewis et al., 2020) 60.9 65.8
QGG (Lan and Jiang, 2020b) - 49.0

Table 5: Performance of different semantic parsers on
CWQ test set.3 The asterisk (*) denotes the initial se-
mantic parser we choose for constructing INSPIRED.

4 Experiments 318

In this section, we explore several base semantic 319

parsers and show how we choose one as the initial 320

parser to construct INSPIRED. Then, we conduct 321

extensive experiments on those two core sub-tasks 322

(i.e., sub-question generation and parse correction) 323

in our framework. Finally, in order to study the 324

promise of our framework for other parsers (be- 325

yond the one used to construct INSPIRED) with- 326

out introducing extra crowdsourcing effort, we sim- 327

ulate dialogues based on our trained models for 328

sub-question generation and parse correction. 329

Firstly, we explore Transformer (Vaswani et al., 330

2017), BART-large (Lewis et al., 2020) and 331

QGG (Lan and Jiang, 2020b) as base parsers. In 332

the official leaderboard2 of CWQ, QGG is the best- 333

performing method in the line of query graph gen- 334

eration approaches. Models like NSM+h (He et al., 335

2021) and PullNet (Sun et al., 2019) directly output 336

final answers without LFs, which cannot be made 337

more transparent or interactive with our framework. 338

CBR-KBQA (Das et al., 2021) is the SOTA model 339

on this dataset as of the submission time, but as its 340

code is not available, we choose Transformer and 341

BART-large as the two candidate parsers. We input 342

the complex question to these two seq2seq models 343

and output the LF. Since entities are masked in the 344

LFs for these models, we provide QGG with gold 345

entities for fair comparison. We report their LF 346

exact match (EM) and F1 scores in Table 5. 347

We finally select Transformer as the initial parser 348

because it is neither state-of-the-art nor has overly 349

poor performance. As the intention is to create 350

a dataset that represents a wide range of parsing 351

errors and correction strategies, a “middle-of-the- 352

road” parser is best for achieving good coverage 353

but also being of decent quality. We report the 354

characteristics of errors made by Transformer in 355

2https://www.tau-nlp.org/
compwebq-leaderboard

3Since INSPIRED excluded a small set of questions from
CWQ, for fair comparison, scores here are calculated using
questions in CWQ test set which are included in INSPIRED.

5

https://www.tau-nlp.org/compwebq-leaderboard
https://www.tau-nlp.org/compwebq-leaderboard


Correction Models Turn-level EM Dialog-level EM

w/o Correction - 52.3

Seq2Seq(LSTM) 78.9 65.0
Transformers 81.2 68.0
BART-base 82.3 70.3
BART-large 82.9 71.3

Table 6: Turn-level and Dialogue-level accuracy of dif-
ferent models after incorporating feedback.

Appendix B.5. We will explore the other two356

models in Table 5 through simulation (Section 4.3).357

In the following two sections, we explore358

two sub-tasks under our framework. We treat359

both of them as seq2seq tasks, then present360

and evaluate several baseline models including361

Seq2Seq (Sutskever et al., 2014), Transform-362

ers (Vaswani et al., 2017), BART-base and BART-363

large (Lewis et al., 2020) for each task, in which364

we use INSPIRED for training and testing. After365

that, we conduct error analysis for both sub-tasks366

by examining 100 examples respectively. Details367

of the analysis can be found in Appendix C.368

4.1 Parse Correction with NL Feedback369

Given a sub-question q, parse correction task is370

to convert it into a new sub-LF p. By parsing the371

templates used by correction operations as men-372

tioned in Section 2.1.2, we extract the operation373

(i.e., replace, delete, or insert a sub-question) and374

apply it to the appropriate step. Then, sub-LFs375

will be compiled accordingly to form a correction376

parse P for the entire question. We predict the sub-377

LF based on q without considering contexts, and378

present the results of four baselines in Table 6. We379

report both the turn-level accuracy—the accuracy380

of sub-LFs in correction turns—and the dialog-381

level accuracy—the end-to-end accuracy of the en-382

tire LFs after correction—on our test set.383

Since models like BART adopt the subword tok-384

enization scheme, the validness of predicates gen-385

erated by concatenating a bunch of subwords can386

not always be guaranteed. We use beam search387

of size 10 to generate LFs as candidates, filtering388

those with invalid predicates and excluding erro-389

neous predictions previously made by the parser.390

Results in Table 6 suggest: (1) incorporating hu-391

man feedback can substantially improve the parse392

accuracy. (2) using BART-large with pretraining393

as the correction model achieves the best perfor-394

mance, achieving 19.0 points higher than the initial395

parser in terms of the dialog-level EM score.396

Then, using BART-large as the correction model,397

Context Dialog-level
EM

Turn-1
(3441)

Turn-2
(3441)

Turn-3
(345)

Turn-4
(56)

w/o Correction 52.3 - - - -

BART-large
w/o Context 71.3 84.6 81.5 85.5 53.6
+ hq 72.2 84.7 82.2 89.3 100.0
+ hlf 72.0 84.3 82.1 89.3 100.0
+ hq & hlf 73.5 86.4 83.2 91.0 100.0

Table 7: Comparison of parse correction performance
when considering different contexts. hlf and hq de-
note the dialogue history of sub-logical forms and sub-
questions respectively.

we further study the correction process by concate- 398

nating different contexts to the input, including the 399

history of sub-questions hq and sub-LFs hlf . We 400

report both the accuracy for each turn of correction 401

and the end-to-end accuracy. As shown in Table 7, 402

we find that: (1) Adding contexts into the input 403

can further improve the correction accuracy. (2) As 404

the number of turns goes up, context contributes 405

more to the correction process, which indicates 406

that including the full dialogue history in the in- 407

put leads to the best results. (3) The BART-large 408

model with inputs that leverage hq and hlf achieves 409

the best performance, with a 21.2 increase under 410

dialog-level EM compared to the initial parser. 411

4.2 Sub-Question Generation 412

Sub-question generation aims to translate a sub-LF 413

p into a natural sub-question q. Table 8 lists gener- 414

ation performance from four baselines without con- 415

sidering contexts. For each model, we explore two 416

scenarios with different inputs: (1) sub-LF p only 417

and (2) a concatenation of p and the corresponding 418

templated sub-question qt. We report BLEU scores 419

based on n-grams overlap and BERTScores mea- 420

suring semantic similarity. The results in Table 8 421

suggest that: (1) Using BART-large as the gener- 422

ation model achieves the best performance. (2) 423

Incorporating the templated sub-questions into the 424

model input can improve performance on all base- 425

lines, which makes sense because some tokens in 426

qt can be directly copied into the output question. 427

Furthermore, we use the best-performing model 428

(i.e. BART-large with both p and qt as the input) in 429

Table 8 as the basic setting to explore the modeling 430

of different contexts including the complex ques- 431

tion Q and the history of templated sub-questions 432

hqt . As shown in Table 9, we find that (1) adding 433

context into the model’s input can obtain higher 434

metric scores, which suggests that context can help 435

in a dialogue. (2) Those settings that incorporate 436

the original complex question Q generally perform 437
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Generation Models BLEU-2 BLEU-4 BERTScore

Seq2Seq(LSTM) 17.8 6.4 90.8
Seq2Seq(LSTM)t 18.7 6.7 91.3

Transformers 21.1 8.4 91.7
Transformerst 23.4 9.1 92.6

BART-base 30.7 15.0 93.8
BART-baset 32.0 15.9 94.1

BART-large 31.5 15.4 94.0
BART-larget 32.4 16.2 94.2

Table 8: Question generation performance of different
models. t denotes that the input incorporates templated
sub-question, as well as the current sub-logical form.

Context BLEU-2 BLEU-4 BERTScore

BART-larget
w/o Context 32.4 16.2 94.2
+ hqt 33.3 16.5 94.6
+ Q 33.4 16.6 94.6
+ Q & hqt 34.1 17.1 94.8

Table 9: Comparison of question generation perfor-
mance when considering different contexts in the input.

better than the others, since the complex question438

contains the semantics of the sub-question to be439

generated. (3) The BART-large model with the440

input containing both the complex question and441

the history of templated sub-questions achieves the442

best performance. We also tried incorporating the443

history of sub-LFs hlf , but it does not help further444

improve the performance.445

Because automatic metrics like BLEU scores do446

not necessarily paint a full picture of the model447

performance, we manually check 100 generated448

questions. They are indeed of high quality and449

semantically similar to the human-written ones,450

see details in the second part of Appendix C.451

4.3 Simulation452

In this section, we demonstrate that our framework453

can pair with other KBQA parsers and use sim-454

ulated user feedback to correct their errors. To455

simulate a dialogue, we develop a pipeline: (1) au-456

tomatically translate a parser’s predicted LFs into457

natural questions using the sub-question generation458

model equipped with the best-performing setting459

in Table 9, (2) use oracle error detection and train460

a generator to simulate a human user’s corrections461

for these dialogues. This generator is a BART-large462

model that leverages the complex question and tem-463

plated sub-questions as input to generate human464

feedback, (3) correct erroneous parses using the465

previously trained parse correction model under466

the best-performing setting in Table 7.467

BART-large QGG

EM 60.9 -
EM* 75.1 -

F1 65.8 49.0
F1* 75.7 56.5

Attempt EM F1

BART-large
1 75.1 75.7
2 78.7 79.9
3 79.0 80.1

Table 10: The left table shows the performance of
two types of semantic parsers after correction through
simulation process, BART-large (Lewis et al., 2020),
QGG (Lan and Jiang, 2020b). * denotes the result after
correction. The right table shows BART-large’s perfor-
mance after multiple attempts of parse correction.

We conduct simulation experiments on BART- 468

large (Lewis et al., 2020) and QGG (Lan and Jiang, 469

2020b) respectively from two mainstream method- 470

ologies for KBQA as mentioned. We report both 471

F1 and EM for BART-large before and after the cor- 472

rection process using the simulation pipeline. For 473

QGG, since its generated query graphs do not take 474

exactly the same format as SPARQL queries, we 475

report F1 score only. As shown in the left part of 476

Table 10, BART-large achieves a 14.2 EM and 9.9 477

F1 score gain after correction. Meanwhile, the cor- 478

rection process brings 7.5 F1 score improvement 479

for QGG model. The results show that INSPIRED 480

can help train effective sub-question generation and 481

parse correction models, which makes our frame- 482

work applicable to KBQA parsers beyond the one 483

used for constructing INSPIRED. Simulating user 484

feedback makes it easy and far less costly to under- 485

stand the potential of any base parser (as long as it 486

outputs LFs) under our framework. 487

Moreover, we expand the simulation experiment 488

to include multiple attempts of correction to simu- 489

late situations in which the model does not repair 490

the parse correctly on the first attempt. We use the 491

same human feedback generator to decode several 492

of the highest scoring sequences as candidates for 493

different attempts at correction. We evaluate this 494

strategy after a maximum of three attempts. 495

Given that sequences decoded by plain beam 496

search (Sutskever et al., 2014) often differ only 497

slightly from each other, we adopt diverse beam 498

search (Vijayakumar et al., 2018) instead to decode 499

more diverse feedback. As shown in the right part 500

of Table 10, F1 scores are up to 80.1 after three 501

attempts of correction. We expect CBR-KBQA 502

(the SOTA model mentioned earlier) to do even bet- 503

ter given the advantages it has over plain seq2seq 504

models. For example, their retrieve module can 505

alleviate errors caused by sparse predicates. We 506

envision the combination of our framework and 507

theirs as interesting future work. 508
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5 Related Work509

Conversational Semantic Parsing. Conversa-510

tional semantic parsing (CSP) is the task of con-511

verting a sequence of natural language utterances512

into LFs through conversational interactions. It has513

been studied in different settings including task-514

oriented dialogues, question answering and text-to-515

SQL. In task-oriented dialogue systems, datasets516

like MWoZ (Budzianowski et al., 2018; Eric et al.,517

2020) and SMCalFlow (Andreas et al., 2020) help518

users accomplish a specific task (e.g., booking a519

hotel, checking the weather). CSQA (Saha et al.,520

2018), and CoQA (Reddy et al., 2019) are built521

for conversational systems to answer sequences522

of inter-related simple questions. Meanwhile,523

ATIS (Hemphill et al., 1990; Dahl et al., 1994),524

SPARC (Yu et al., 2019) and CoSQL (Yu et al.,525

2020) are constructed for conversational text-to-526

SQL tasks. Our work shares a similar objective527

with these settings, i.e., how to represent natural528

language utterances while considering the multi-529

turn dynamics of the dialogue. We differ from them530

in that our task aims at soliciting and applying hu-531

man feedback to correct generated initial parses.532

Interactive Semantic Parsing. Multiple works533

have studied involving human feedback in the pars-534

ing process itself. Gur et al. (2018) ask multiple535

choice questions about a limited set of predefined536

errors. Yao et al. (2019b) ask yes/no questions537

about the presence of SQL components when gener-538

ating one SQL component at a time. Elgohary et al.539

(2020) introduce SPLASH, a dataset for correcting540

parses with free-form natural language feedback.541

Using natural language as a medium for providing542

feedback makes it easy for the user to specify what543

is wrong and how it should be corrected. Com-544

pared with SPLASH for text-to-SQL, we focus on545

KBQA with various reasoning types. Moreover,546

unlike SPLASH that makes one-time correction547

to the entire generated parse, we propose to break548

down the parse into a sequence of sub-LFs, and549

enable the user to correct each sub-LF in natural550

language step by step.551

Question Decomposition. Question decomposi-552

tion has been successfully used in complex ques-553

tion answering. Iyyer et al. (2016) propose to an-554

swer complex questions based on tables by decom-555

posing them into several inter-related simple ques-556

tions. Talmor and Berant (2018b) and Min et al.557

(2019) focus on training a model directly to pro-558

duce sub-questions using question spans. Recent559

works (Wang et al., 2020; Wolfson et al., 2020) 560

introduce explicit annotation for the decomposition 561

of multi-hop reasoning questions into a sequence 562

of atomic operations. Wolfson et al. (2020) con- 563

struct the BREAK dataset and propose QDMR, 564

where complex questions are decomposed into a 565

sequence of simpler atomic textual steps. QDMR 566

is an intermediate representation between natural 567

language and LFs, and is not executable on knowl- 568

edge bases. All these works above decompose the 569

natural language questions to facilitate question 570

answering. In our work, we decompose the LF of 571

the complex question into sub-queries, which can 572

be directly executed on KB and retrieve answers. 573

Moreover, we utilize decomposition to edit and 574

correct the initial parse at a finer-grained level. 575

6 Conclusion and Future Work 576

In this work, we propose an interactive semantic 577

parsing framework and instantiate it with the task 578

of KBQA. Using this framework, we crowdsource 579

a novel dataset, dubbed INSPIRED, based on the 580

COMPLEXWEBQUESTIONS dataset, and experi- 581

mentally show that it can greatly increase the parse 582

accuracy of an initial parser. Moreover, we design 583

a simulation pipeline to explore the potential of 584

our framework for a variety of semantic parsers, 585

without further annotation effort. The performance 586

improvement shows interactive semantic parsing is 587

promising for further improving KBQA in general. 588

The INSPIRED dataset and experiments de- 589

scribed here provide a foundation for many direc- 590

tions of future work. For example, this could take 591

the shape of gains in accuracy as well as improve- 592

ments to the correction strategy through decompo- 593

sition. The simulation pipeline provided can also 594

be used for further experimentation. 595

We plan to conduct a user study in which our 596

framework is utilized by human users to query a 597

knowledge base, in order to validate its viability 598

for real use. At the moment, users are required 599

to insert, delete, or replace whole sub-questions. 600

A useful addition would be modification of text 601

spans within a given sub-question, which requires 602

a more fine-grained approach to connect SPARQL 603

query components to natural language. Other com- 604

plementary work could include handling errors in- 605

troduced by named entity recognition and linking. 606

Lastly, applying our framework to other query lan- 607

guages like SQL could be an exciting expansion. 608
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7 Ethical Considerations609

IRB Approval. Prior to collection of the IN-610

SPIRED dataset, we obtain IRB (Institutional Re-611

view Board) approval at our institution. This data612

collection is considered Exempt Research, mean-613

ing that our human subjects are presented with no614

greater than minimal risk by their participation.615

Participants’ personal information is not collected,616

aside from minimal demographic information in-617

cluding their native language, which is used to en-618

sure native-speaker level proficiency in the dataset.619

No identifying information is included. Further, all620

participants are required to read and agree to an621

informed consent form before proceeding with the622

task. AMT automatically anonymizes crowdwork-623

ers’ identities as well.624

Compensation to Crowdworkers. In order to en-625

sure both quality data collection and fair treatment626

of our crowdworkers, we carefully review our pay-627

ment plan for the AMT task. After a pilot study628

we gauge the average amount of time we expect629

a task to require and adjust the payment amount630

per task according to the minimum wage amount631

in our state, resulting in a 70 cent payment per task.632

Further, we ensure compensation for the time spent633

on the tutorial and qualification task by awarding634

$10 bonuses after completion of their first 10 tasks.635

They also receive $10 bonuses upon every 100636

tasks they complete. In total, the cost of creating637

the INSPIRED dataset is approximately $13,300.638
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A Dataset Creation Details 920

The creation of the INSPIRED dataset requires 921

careful selection of questions, design of a decom- 922

positional approach, and a translation strategy be- 923

tween logical forms and human-readable language. 924

Further, we carefully design a crowdsourcing task 925

to gather more natural-sounding questions to en- 926

hance the quality and versatility of our framework. 927

A.1 Forming Dialogues from CWQ 928

We utilize the COMPLEXWEBQUESTIONS 1.1 929

(CWQ) dataset (Talmor and Berant, 2018a,b), as 930

this is a common dataset used for complex question- 931

answering over knowledge bases. This dataset 932

is formed by combining questions from the WE- 933

BQUESTIONSSP dataset (Yih et al., 2016) to form 934

multi-hop complex questions, meaning that they re- 935

quire more than one step to answer. Each question 936

has an associated SPARQL query that functions as 937
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Question
What is the official language of the country

that contains Al Sharqia Governorate?
SPARQL Query

<sparql-header-1> ?c ns:location.country.
administrative_divisions #entity1# . ?c

ns:location.country.official_language ?x .
Answer

Modern Standard Arabic

Table 11: Example question from the CWQ dataset. The
entity “Al Sharqia Governorate” is replaced with “#en-
tity1#”. Entities are delexicalized in order to increase
generalizability across questions in training.

a meaning representation of the question. Table938

11 shows an example of a complex question, its939

associated SPARQL query, and its answer.940

We envision that a human user will ask a com-941

plex question, the system will predict a SPARQL942

query for that question, decompose it into pieces,943

translate those pieces into English to show to the944

user to solicit feedback. The system will then use945

that feedback to correct the initial parse, if neces-946

sary. Figure 1 shows illustrations of this process.947

In order to model this type of dialogue, we uti-948

lize a transformer-based seq2seq model (Vaswani949

et al., 2017) to predict a SPARQL query for each950

complex question and decompose the predicted and951

gold query into pieces, then use these pieces as ed-952

itable chunks which can be deleted, replaced, or953

inserted to transform the predicted query into the954

gold. This process is the framework around which955

each dialogue is constructed. We translate each956

step from SPARQL into English to be comprehen-957

sible to a human user, thus resulting in dialogues958

like the one shown in Figure 1, all stemming from959

questions that occur in the CWQ dataset. Note that960

the parser used for this purpose is not state-of-the-961

art, as part of the goal is to have a broad coverage962

of error types for correction.963

A.2 Translation of SPARQL Using Templates964

As this dataset leverages SPARQL queries, we965

then develop a strategy for how to represent these966

queries in a more comprehensible form that humans967

can understand. Thus we create a template corpus968

and develop a rule-based translation method to do969

so. The corpus consists of 772 different predicates970

that appear in the CWQ dataset and translations of971

each into a basic template that conveys the content.972

Composition

Question
What is the mascot of the team that has
Nicholas S. Zeppos as its leader?

SPARQL

<sparql-header-1> ?c ns:organization.
organization.leadership ?k . ?k
ns:organization.leadership.person
#entity1# . ?c ns:education.educational
_institution.mascot ?x .

Templates
1. the organization whose leadership
includes a person named <PH>
2. the educational institution with
the mascot <PH>

Translation
1. What is/are the organization whose
leadership includes a person named
Nicholas S. Zeppos?
2. That entity is/are the educational
institution with the mascot what?

Conjunction

Question
What country with the capital of
Hagåtña is where Sam Shepard lives?

SPARQL

<sparql-header-2> #entity1#
ns:people.person.places_lived ?y . ?y
ns:people.place_lived.location ?x . ?x
ns:location.country.capital #entity2# .

Templates 1. the person(s) who lived in <PH>
2. the location with the capital city
named <PH>

Translation
1. Sam Shepard is/are the person(s)
who lived in what?
2.Of which, what is/are the location
with the capital city named Hagåtña?

Comparative

Question
What country is in the Caribbean with a
country calling code higher than 590?

SPARQL

<sparql-header-2> #entity1#
ns:location.location.contains ?x . ?x
ns:common.topic.notable_types #entity2#
. ?x ns:location.country.calling_code
?num . filter ( xsd:integer ( ?num ) > 590 ) .

Templates 1. the location(s) containing <PH> (<RSTR>)
2. the country/countries whose calling
code is/are <PH>

Translation
1. Caribbean is/are the location(s)
containing what (country)?
2. Of which, what is/are the country/
countries whose calling code is/are
greater than 590?

Superlative

Question
Which pro athlete started his career earliest
and was drafted by the Cleveland Browns?

SPARQL

<sparql-header-2> #entity1#ns:sports.
professional_sports_team.draft_picks
?y . ?y ns:sports.sports_league_draft_pick.
player ?x . ?x ns:sports.pro_athlete.
career_start ?num . } order by ?num limit 1

Templates 1. the team(s) that drafted the athlete(s) <PH>
2. the pro athlete(s) who started their career(s) in
<NUM>

Translation
1. Cleveland Browns is/are the team(s) that
drafted the athlete(s) what?
2. These entities are the pro athlete(s) who
started their career(s) in what?
3. Of these, which is the entity associated
with the earliest date?

Table 12: Question types from the CWQ dataset and the
translation process to templated sub-questions.
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The strategy of using templates to make content973

more human-friendly has a long history, both uti-974

lizing handcrafted templates (Kukich, 1983; McK-975

eown, 1985; McRoy et al., 2000) and rule-based976

template formation (Angeli et al., 2010; Kondadadi977

et al., 2013). We use a blend of both approaches978

to create templates to represent logical forms in a979

way that is understandable to our crowdworkers.980

As can be seen in Table 11, SPARQL queries con-981

tain predicates that appear in the form of triples982

with each component separated by periods, such983

as location.country.administrative_divisions and984

location.country.official_language. These triples985

consist of a domain (location), a type (coun-986

try) that represents a class within the domain,987

and a property (administrative_divisions and offi-988

cial_language) that specify more granular infor-989

mation. These predicates represent content in-990

formation about the question and can appear in991

multiple, different questions. For example, the lo-992

cation.country.administrative_divisions predicate993

maps to the template the country/countries that con-994

tain(s) <PH>, where <PH> (“placeholder”) gets995

replaced with a specific entity.996

In the parsing process, we delexicalize these spe-997

cific entities in order to make questions more gen-998

eralizable and reduce noise during training. For999

example, in the SPARQL query in Table 11, the1000

replacement token #entity1# appears, which we1001

replace with Al Sharqia Governorate when the tem-1002

plate is invoked.1003

The remaining components of the SPARQL1004

query specify the question type and any additional1005

components, which we leverage to transform the1006

template into a full sentence. The components will1007

be discussed more fully in A.3. Thus, this par-1008

ticular SPARQL query translates to the following1009

sub-questions:1010

1. What is/are the country/countries that con-1011

tain(s) [Al Sharqia Governorate]?1012

ANSWER: Egypt1013

2. That entity is/are the country/countries whose1014

official language is what?1015

ANSWER: Modern Standard Arabic1016

A.3 Question Types1017

Each of the questions in CWQ can be categorized1018

into one of four major reasoning types: compo-1019

sition, conjunction, comparative, and superlative1020

(Talmor and Berant, 2018b). Each type can be1021

identified by the SPARQL query and translated ac- 1022

cordingly. Table 12 shows the translation process 1023

of the four types with examples of each. The gen- 1024

eral strategy is to append content to the beginning 1025

of the template and replace the <PH> token to form 1026

a complete question and express the appropriate 1027

question type. As seen in Table 12, this is quite 1028

straightforward for composition- and conjunction- 1029

type questions. 1030

Composition questions are composed of two 1031

simple questions, where the answer to the first is 1032

used to form the second question. As an exam- 1033

ple, in order to answer the question What is the 1034

mascot of the team that has Nicholas S. Zeppos as 1035

its leader?, one must first answer In which orga- 1036

nization is Nicholas S. Zeppos a leader? to have 1037

all the content necessary to answer What is the 1038

mascot of that organization?. To translate these 1039

question types to templated sub-questions, we sim- 1040

ply append What is/are before the first template 1041

and insert the named entity where the <PH> token 1042

appears in the template. Then, That entity is/are 1043

is appended to the beginning of the second tem- 1044

plate and what replaces the placeholder. Note that 1045

these positions can be reversed depending on what 1046

content is provided in the question. For example, 1047

a question could be either of the two options, de- 1048

pending on the goal of the target question: 1049

1. What is/are the organization whose leader- 1050

ship includes a person named Nicholas S. 1051

Zeppos? 1052

2. Vanderbilt University is/are the organization 1053

whose leadership includes a person named 1054

what? 1055

Conjunction questions follow a very similar 1056

process, though because their goal is to find the 1057

intersection of two categories, the first question 1058

returns a list of answers. To account for this, we 1059

simply append Of which to the second question 1060

before following the same set of rules as the com- 1061

position questions. 1062

Comparative questions generally have a com- 1063

parative operator (<, >) and a number contained in 1064

their SPARQL query, which we translate simply to 1065

less than X or greater than X, as appropriate. Note 1066

that the comparative example in Table 12 contains 1067

a “restriction predicate”, marked by the <RSTR> 1068

token. This will be discussed in Section A.3.1. 1069

Superlative questions require a slightly more 1070

complicated strategy. The first sub-question of a su- 1071
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perlative type question always generates a list of an-1072

swer options, while the second sub-question must1073

pair those answer options with numerical informa-1074

tion, such as dates or integers. Then, these numbers1075

are ordered, either from smallest-to-largest or vice1076

versa, and the first is returned as the final answer.1077

To account for this, we append These entities are to1078

front of the second template, to make it clear that1079

multiple entities are involved, and return a paired1080

list of entities and their corresponding values as an1081

answer. Then we append a third sub-question that1082

specifies how the questions are sorted and returns1083

a single answer.1084

A.3.1 Logical Form Features1085

Within the four main types of questions (compo-1086

sition, conjunction, comparative, and superlative),1087

there are a variety of features that appear. These1088

features include filters, restriction predicates, and1089

union predicates.1090

Filters act to restrict a list of entities in some1091

fashion by assigning numerical boundaries. An1092

example of this can be seen in Table 12 in the1093

comparative question’s SPARQL query, starting1094

with the word filter. This sequence limits the list1095

of entities by ones whose calling codes are larger1096

than 590.1097

Restriction predicates can appear as auxil-1098

iary pieces to regular predicates and typically1099

provide categorical information about an en-1100

tity. For example, in Table 12, the comparative-1101

type question What country is in the Caribbean1102

with a country calling code higher than 590?1103

has two entities in its SPARQL query, though1104

Caribbean is the only entity that seems to ap-1105

pear in the original question. The two main1106

predicates are location.location.contains and lo-1107

cation.country.calling_code, but a third predicate,1108

common.topic.notable_types appears in between1109

them. This predicate acts as a restriction upon the1110

first main predicate; in this case #entity2# corre-1111

sponds to country and restricts the locations that1112

can appear as answers to the category of countries.1113

Because restriction predicates are not stand-1114

alone pieces that could be translated into their own1115

sub-questions, we develop a strategy for incorpo-1116

rating them into the templates of the predicates1117

they restrict. First, we create a corpus of “mini-1118

templates” that correspond to all the restriction1119

predicates that could appear. Much of the time,1120

these mini-templates simply place the entity (like1121

country in the previous example) into parentheses,1122

Composition

Question
Who is both a member of the Kennedy
family and the Order of the British Empire?

SPARQL

filter ( ?x != #entity1# ) { # parents #entity2# ns:
people.person.parents ?x . } union { # children
#entity3# ns:people.person.children ?x .
} union { # siblings #entity4# ns:people.person.
sibling_s ?y . ?y ns:people.sibling_relationship.
sibling ?x . } union { #spouse #entity5# ns:
people.person.spouse_s ?y . ?y ns:people.
marriage.spouse ?x . ?y ns:people.marriage.
type_of_union #entity6# . filter ( not exists { ?y
ns:people.marriage.to []}) }
?x ns:royalty.chivalric_order_member.belongs_
to_order ?c . ?c ns:royalty.chivalric_order_
membership.order #entity7# .

Templates 1. the family of <PH>
2. the member(s) of the order of <PH>

Translation 1. Who is/was the family of John F. Kennedy?
2. Of which, what is/are the member(s) of the
order of Order of the British Empire?

Table 13: Example of a question whose SPARQL query
includes a union predicate.

though in some cases they situate the entity into a 1123

prepositional phrase. 1124

Meanwhile, the main template corpus has to- 1125

kens in place to define where the mini-template 1126

should be placed in the main template. One can 1127

see in the comparative example of Table 12 that 1128

there is an <RSTR> token in the template of the 1129

first sub-question. Every main template that can 1130

appear with a restriction predicate has this token 1131

in its template; though it needs not always appear 1132

with one. Consequently, if the restriction token 1133

does not get replaced, it simply gets deleted. If 1134

the location.location.contains predicate appeared 1135

without a restriction predicate, it would simply read 1136

Caribbean is/are the location(s) containing what? 1137

Union predicates are a bit of a misnomer, as 1138

they are actually a group of predicates that function 1139

as though they are a single predicate, and thus cor- 1140

respond to a single template. In Table 13, one can 1141

see that the SPARQL query is quite long, with all 1142

of the content in bold corresponding to the first sub- 1143

question and the remainder corresponding to the 1144

second. Within this first sub-LF, there are several 1145

predicates that are joined together by } union {. Col- 1146

lectively, these templates encompass the concept of 1147

family by defining all the various relationship roles 1148

that are involved in that concept. Theoretically, 1149

we could enumerate all of these in template form, 1150

separated by or (the brother of John F. Kennedy 1151

or the mother of John F. Kennedy or the child of 1152

John F. Kennedy...) but this seems to be an unnec- 1153

essarily complicated and inconcise way of repre- 1154
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senting these. Instead, we enumerate the various1155

types of union predicates that could appear and1156

create a small corpus of templates that express the1157

overall concept represented by each collection of1158

predicates, thus crowdworkers will see questions1159

with this feature in the same format as a regular1160

question.1161

A.4 Crowdsourced Data Collection1162

As mentioned in Section 2.2, the crowdsourcing1163

task for this dataset is primarily a paraphrasing task1164

in which crowdworkers work through a structured1165

dialogue, rephrasing templated sub-questions at1166

each step.1167

Each task takes the form of a dialogue involving1168

three entities: the “user”, which is an automated di-1169

alogue partner, an automated “director” that guides1170

the dialogue and provides detailed instructions, and1171

the “agent”, which is the role performed by the1172

crowdworker. Upon entering a task, the worker is1173

shown the “target question”, or the original ques-1174

tion from CWQ, and asked if the question was1175

sensible to them. If so, they are asked to rephrase1176

it using different language. If not, they proceed1177

with the dialogue in the hopes that the decomposi-1178

tion process will make the meaning of the question1179

clear. In these cases, the crowdworker is asked1180

to rephrase the target question at the end of the1181

dialogue. This process is included to encourage1182

better understanding of the target question and to1183

help us recognize confusing questions in the orig-1184

inal dataset and replace them with higher-quality1185

questions when appropriate.1186

Next, the target question is automatically de-1187

composed into templated sub-questions which are1188

displayed to the worker, who rephrases them into1189

English. These rephrased questions are sent to the1190

automated user, who provides corrections as neces-1191

sary. The worker rephrases any new questions and1192

the edits are automatically made. At the end of the1193

dialogue, the worker is asked for any feedback re-1194

garding the dialogue. This feedback is later used to1195

make corrections and flag any problems that might1196

have arisen. Screenshots of the dialogue interface1197

can be seen in Figure 3.1198

B Dataset Analysis1199

B.1 Cleaning the Dataset1200

As mentioned in Section 3, we employ a semi-1201

automatic data cleaning method to reduce the er-1202

ror rate in the INSPIRED dataset. Because data1203

cleaning can be an expensive and time-consuming 1204

process, the goal is to develop a method that would 1205

reduce the number of items in the dataset that need 1206

to be manually reviewed. Thus we use an auto- 1207

matic method to identify a small subset of the entire 1208

dataset that contain as many errors as possible to 1209

then manually review. To this end, we utilize a pre- 1210

trained sequence-to-sequence model that employs 1211

the idea of cycle consistency (Zhu et al., 2017), to 1212

identify poor paraphrases by retrieving meaning 1213

representations (MRs) from questions rephrased 1214

by the workers. Then these MRs are used to com- 1215

pare against the original MRs and evaluated for 1216

similarity. 1217

In order to evaluate the effectiveness of the strat- 1218

egy, a random 5% subset of the entire dataset is se- 1219

lected for annotation, using a binary classification 1220

of whether or not the rephrased question was an 1221

accurate paraphrase of the original templated ques- 1222

tion (and by extension, its original logical form). 1223

This annotation effort revealed that 4.4% of the 1224

rephrased questions contain errors, which we ex- 1225

pect is representative of the entire dataset. 1226

We then fine-tune Hugging Face’s implementa- 1227

tion of T5 in a seq2seq model to generate MRs, in 1228

this case templated sub-questions, to compare to 1229

the original MRs (Wolf et al., 2020; Raffel et al., 1230

2020). These pairs of MRs then need to be sorted 1231

in a ranked list that filters paraphrases that are more 1232

likely to contain errors to the top of the list. This 1233

allows us to use a precision at K measure, which, 1234

given a rank K, the precision is calculated over the 1235

set of retrieved items with a rank of K or less. For 1236

the annotated test set, K equals 75, the number 1237

of observed errors. After ranking the list, we can 1238

evaluate the quality of the method by looking at the 1239

top K data points and checking to find how many 1240

errors appear in that set, compared to a random 1241

baseline of 4.4% (the observed error rate), or about 1242

3 errors. 1243

We employ two ranking methods to sort the pairs. 1244

First, we calculate the negative log-likelihood of 1245

the target MRs relative to the model and then do 1246

the same for the generated MRs. 1247

S(y) = −
∑
yi∈Y

log p(yi|y<i, x; θ) (1) 1248

y = ⟨y1, ..., y|y|⟩ 1249

y<i = ⟨y1, ..., yi−1⟩ 1250

In Equation 1, S(y) refers to the score of a given 1251

output sequence y, which is the sum of the negative 1252
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Figure 3: Data collection interface on AMT, using the ParlAI framework (Miller et al., 2017).

log-likelihood of each yi given the sequence of y1253

tokens that come before. θ refers to the model1254

parameters.1255

Once the negative log-likelihoods are determined1256

for each candidate y, the best candidate is deter-1257

mined based on the lowest score.1258

y∗ = argmin(S(y|x)) (2)1259

Here, y∗ refers to the best generated output se-1260

quence, and x is a given input sequence. A score1261

for output sequence y∗ is determined, as well as a1262

score for the target sequence t.1263

D = |S(y∗)− S(t)| (3)1264

While these two scores are comparable to each 1265

other, they are not comparable across other item 1266

pairs. In order to assign a ranking for every item in 1267

the dataset, we calculate the difference D between 1268

the negative log-likelihoods of the target MR and 1269

generated MR for each question in the dataset and 1270

sort them based on the largest difference score, as 1271

shown in Equation 3. 1272

Second, we calculate an edit distance score be- 1273

tween the target MR and generated MR and sort 1274

based on the largest score. If the model has pre- 1275

dicted an MR that is substantially far from the tar- 1276

get MR in its phrasing, it likely has a different 1277

meaning. 1278
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Using the first ranking method, 17.3% of the1279

errors are recovered, while the second recovers 32%1280

of the errors. However, because the two ranking1281

methods appear to be identifying different errors1282

with little overlap, both are used to identify the final1283

set of questions for manual review, drawing from1284

the methods equally.1285

Then the method is applied to the entire IN-1286

SPIRED dataset, using cross-validation with a se-1287

ries of 90% training, 10% testing splits to generate1288

MRs for every rephrased question. Then, because1289

the annotated dataset has a 4.4% error rate which1290

we expect to be representative of all the data, the1291

top-ranked 4.4% of data is selected for manual1292

review. This review results in 17.7% of items being1293

revised, meaning that authors change the rephras-1294

ing to more accurately reflect the original meaning.1295

B.2 GEM Metrics1296

Template Corpus Rephrased Corpus
Unigrams
Vocab Size 8,465 9,864

Distinct 0.012 0.022
Unique 1,003 1,258

Entropy 6.532 8.090
Bigrams
Vocab Size 21,072 44,085

Distinct 0.031 0.109
Unique 2,949 8,723

Entropy 8.976 12.484
Cond Entropy 2.295 3.918

Trigrams
Vocab Size 31,838 81,479

Distinct 0.050 0.224
Unique 5,332 20,971

Entropy 10.291 14.529
Cond Entropy 1.250 1.986

Table 14: GEM n-gram metrics for the template corpus
and rephrased question corpus.

Table 14 shows the N-gram statistics of all the1297

templates in the dataset (template corpus) and all1298

the rephrased questions (rephrased corpus). These1299

metrics are calculated using the GEM evaluation1300

scripts (Gehrmann et al., 2021). In this table, Vo-1301

cab Size refers to the total number of distinct N-1302

grams, while Distinct refers to the ratio of distinct1303

N-grams divided by the total number of N-grams1304

in the dataset. Unique specifies the number of1305

N-grams that occur only once in the dataset, En-1306

tropy is the Shannon entropy over N-grams, and1307

Cond(itional) Entropy is the entropy conditioned1308

on N−1-grams.1309

Lexical Relationship Percentage(%)

Lexical Match 58

Synonymy 31
Hypernymy 5
Hyponymy 20

Table 15: Lexical analysis of 100 randomly sampled sub-
questions and their templates. Note that Lexical Match
refers to the percentage of words in all sub-questions
that appear in their corresponding templated question.

B.3 Lexical Analysis 1310

In order to better understand the methods by which 1311

crowdworkers rephrased templates, 100 randomly 1312

selected sub-questions are studied in terms of the 1313

lexical relationships between the template and 1314

rephrased versions. Table 15 shows the results of 1315

this analysis. “Lexical match” refers to the average 1316

proportion of words in the rephrased version that 1317

also appear in the template, relative to the total num- 1318

ber of words in the rephrased version. Synonymy, 1319

hypernymy, and hyponymy refer to the number of 1320

questions in the 100 selected items that contain 1321

an instance of one of these lexical relations. It is 1322

clear, therefore, that crowdworkers are using these 1323

strategies in their rephrasings of the templates, in 1324

addition to simply changing word order. On aver- 1325

age, a bit less than half the words in a rephrased 1326

question are newly introduced by the crowdworker, 1327

and 56% of the time they are using synonmy, hy- 1328

pernymy, hyponymy, or some combination of these 1329

to rephrase the templated question. 1330

B.4 Contextual Awareness 1331

In a given dialogue, we provide answers to the 1332

sub-questions when possible, making the dialogue 1333

context-rich and providing the user with as much 1334

information as possible to help them understand 1335

the decomposition process of their original query. 1336

This context-awareness can also be seen in the 1337

sub-question paraphrases. Our crowdworkers are 1338

encouraged to paraphrase questions in a manner 1339

that accounts for the overall context of the ques- 1340

tion, particularly with regard to named entities. For 1341

example, when a second sub-question references 1342

the answer of the first sub-question, we ask the 1343

Turkers to reference that entity without naming it 1344

explicitly, but also using a more specific phrase 1345

than entity. An example of this can be seen in Fig- 1346

ure 1, where instead of directly incorporating the 1347
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Sub-question predicate Actual Context Random Context

film.film_subject.films

Complex Question: Who was the wife of the subject of
the film #entity#?

Sub-Questions:
*1. Who was the subject of the movie #entity#?
2. Who was that person married to?

Complex Question: Where did the topic of the film #entity#
pass away at?

Sub-Questions:
*1. Who was the main focus in the movie called #entity#?
2. Where did this individual die?

influence.influence_node.
influenced_by

Complex Question: Which peer of #entity# inspired
the work of #entity#?

Sub-Questions:
*1. Who inspired the work of #entity#?
2. Of the above named people, which had a peer

relationship with #entity#?

Complex Question: What person who influenced #entity# ’s
work was born on #entity#?

Sub-Questions:
*1. #entity# inspired which people’s work?
2. Which of these people were born on #entity#?

Table 16: Examples of sub-questions in their actual context vs. a random context that utilizes the same predicate
in its logical form. The sub-question was substituted for the one that used the same logical form (marked with *)
in the random context when calculating ROUGE scores. Lexical overlap of the sub-question with each context is
represented by bold text. Entities have been replaced with #entity# tokens in order to avoid disadvantaging the
random context due to overlap in named entities.

answer of the first question (Egypt) into the sec-1348

ond question, they reference it using the phrase the1349

above-named nation. The goal of this strategy is to1350

create a dataset of dialogues that are context-aware1351

and grounded, on which generation models can be1352

trained to mirror this behavior. By using less spe-1353

cific phrases than entity names, our model is better1354

able to generalize across examples during training.1355

However, one can envision that in a real-use situ-1356

ation, it might be more natural for a user to simply1357

use Egypt instead of the above-named nation when1358

correcting sub-question 2. While our current frame-1359

work is not able to accommodate this behavior, a1360

simple data augmentation procedure in which re-1361

ferring expressions are replaced with the named1362

entities should allow our system to accommodate1363

this. We leave this data augmentation for future1364

work, but plan to implement it upon conducting a1365

study with real users.1366

In order to demonstrate contextual awareness,1367

Table 4 in Section 3 shows the average ROUGE-1368

1 and ROUGE-2 scores of all sub-questions in1369

their actual contexts compared with the same sub-1370

questions in a randomly assigned context that uti-1371

lizes the same sub-logical form. The higher scores1372

for the actual context indicate that the wording of1373

sub-questions reflect the context from which they1374

are derived. Moreover, Table 16 shows examples1375

of sub-question with these context comparisons.1376

B.5 Error Characteristics of Initial Parser1377

It is important to note that our initial parser is pur-1378

posefully not state-of-the-art, as we want to have a1379

wide distribution of errors around which we could1380

create dialogues. (See Section 4 for details about1381

the initial parser.) Similar to other interactive se-1382

Conjunction Composition Comparative Superlative Total
Delete 49 94 9 3 155
Insert 1835 765 208 208 3016

Replace 2207 1757 341 393 4698
No Action 2172 2240 301 310 5023

Table 17: Distribution of error types within the sub-
questions of the four main question types.

mantic parsing work, we envision that the user will 1383

provide corrections to the sub-questions, though 1384

we at this stage require the user to use the three 1385

operations of deleting, replacing, or inserting a 1386

whole sub-question. Table 17 shows the distribu- 1387

tion of sub-questions whose original complex ques- 1388

tion is of each of the four main types. Within these 1389

types, the distribution of edit operations per sub- 1390

question is shown. Though many of sub-questions 1391

do not need any edits, the replace operation is most 1392

frequent of edit operations, appearing in roughly 1393

36.5% of each type, while insert is roughly 23.3% 1394

and delete is around 1.2%, with no action making 1395

up the remaining 39%. These distributions indicate 1396

the parser is more likely to predict something incor- 1397

rect or leave out a sub-question, rather than predict 1398

a sub-question that is not present in the gold. 1399

C Sub-Task Error Analyses 1400

Parse Correction. We sample 100 erroneous pre- 1401

dictions of BART-large under the best-performing 1402

setting in Table 7. In this analysis, it becomes clear 1403

that longer, more complicated logical forms are 1404

more likely to be mispredicted. Only 21 of the er- 1405

rors involve single predicates, while 54 erroneous 1406

parses occur with CVT (Compound Value Type) 1407

predicates, which are essentially two predicates 1408

combined together via CVT nodes (for example 1409
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Sub-Q:
What tourist attractions are by the grand canyon?
Gold Sub-LF:
#entity1# ns:travel.tourist_attraction.near_travel_destination ?x .
Generated Sub-LF:
#entity1# ns:travel.travel_destination.tourist_attractions ?x .
Sub-Q:
What is that country’s national anthem?
Gold Sub-LF:
?c ns:location.country.national_anthem ?y . ?y
ns:government.national_anthem_of_a_country.anthem ?x .
Generated Sub-LF:
?c ns:location.country.national_anthem ?x .

Table 18: Two error cases about wrongly generated
predicates in an analysis of 100 generated sub logical
forms. ?y in the logical form is an example of CVT
node which connects two predicates that operate as a
single, compound predicate.

Human-Written Which of the above named people did the voice of toki?

Machine-Generated Which of these people played the role of toki?

Error Explanation Generated question does not specify that
the role was a voice acting one.

Human-Written What famous person has addison’s disease?

Machine-Generated who has suffer from addison’s disease?

Error Explanation Grammatical error
Human-Written What district does that politician represent?

Machine-Generated What district does that person represent?

Error Explanation Generated question is slightly less specific

Table 19: Three instances of errors in an analysis of 100
generated sub-questions compared to human-written
versions.

?y in Table 18) that function as a single predicate.1410

13 errors occur on restriction predicates, which1411

co-occur with single or CVT predicates to further1412

limit the entity type. For example, predicates of the1413

location domain might occur with a restriction that1414

limits that predicate to locations of the type country.1415

The remaining 12 errors all occur due to only par-1416

tially generating a long logical form that contains1417

filters. Details regarding restriction predicates and1418

filters can be found in A.3.1.1419

Sub-Question Generation. We conduct an anal-1420

ysis on 100 randomly selected pairs of human-1421

written question and machine-generated question1422

that correspond to the same logical form. We1423

first examine questions from the best-performing1424

model in Table 9 according to BLEU scores and1425

BERTScores, which use the current sub-logical1426

form, the current templated sub-question, the com-1427

plex question and the history of templated sub-1428

questions from previous steps as context. Ques-1429

tions in which the machine-generated and human-1430

Better Model Neither Model 1 Model 2

Number 74 20 6

EXAMPLES

Human-
Written

who were walt
disney’s kids?

kevin hart went to
what schools?

what is the name of
the currency used in
that country?

Model 1
(w/context)

who are the children
of walt disney?

what schools did
kevin hart go to?

what kind of currency
do they use?

Model 2
(w/o context)

what are the names
of walt disney’s
children?

what did kevin
hart go to?

what is the currency
used in that country?

Table 20: Comparison of 100 generated sub-questions
from models with and without context in their inputs.
The bolded text in columns 2 and 3 highlight what en-
hanced the quality of the generation in comparison to
its counterpart. Model 1 refers to the model that used
the complex question and previous templated questions
as context (row 4 in Table 9) and Model 2 refers to the
model that did not use context at all (row 1 in Table 9).

written versions exactly match each other were 1431

excluded. This analysis reveals that only three 1432

generated questions (3%) are of perceptibly worse 1433

quality than the human-written questions, as can 1434

be seen in Table 19. Further, there are four cases in 1435

which the human-written questions contain gram- 1436

matical errors, whereas the machine-generated 1437

ones do not. An analysis of all generated questions 1438

which do not exactly match their human-written 1439

counterpart reveals that 64% of the generated ques- 1440

tions are shorter in terms of number of words. 1441

Because BLEU scores do not necessarily paint 1442

a full picture of the model performance, we then 1443

examine the generated responses from the model 1444

that produced the lowest BLEU scores, which is 1445

the model with no context. By examining the same 1446

100 samples as in the previous analysis, we note 1447

twenty cases in which the best-performing model 1448

that leverages context better reflects that context in 1449

its rephrasing than the model that does not leverage 1450

context. There are, however, 6 cases in which the 1451

model without context does this better and in the 1452

remaining cases there is no discernible difference 1453

between the quality of the generations from the two 1454

models. Table 20 shows examples of each of these 1455

cases, for illustration. 1456

While these results are based our observations 1457

and certainly require further future investigation 1458

and human annotation by people other than the 1459

authors, these preliminary results show that the 1460

generated questions can be more concise and of 1461

comparable quality. 1462
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