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ABSTRACT

Designing novel protein sequences consistent with a desired 3D structure or fold,
often referred to as the inverse protein folding problem, is a central, but non-
trivial, task in protein engineering. It has a wide range of applications in en-
ergy, biomedicine, and materials science. However, challenges exist due to the
complex sequence-fold relationship and difficulties associated with modeling 3D
folds. To overcome these challenges, we propose Fold2Seq, a novel transformer-
based generative framework for designing protein sequences conditioned on a spe-
cific fold. Our model learns a fold embedding from the density of the secondary
structural elements in 3D voxels, and then models the complex sequence-structure
relationship by learning a joint sequence-fold embedding. Experiments on high-
resolution, complete, and single-structure test set demonstrate improved perfor-
mance of Fold2Seq in terms of speed and reliability for sequence design, com-
pared to existing baselines including the state-of-the-art RosettaDesign and other
neural net-based approaches. The unique advantages of fold-based Fold2Seq be-
comes more evident on diverse real-world test sets comprised of low-resolution,
incomplete, or ensemble structures, in comparison to a structure-based model.

1 INTRODUCTION

Computational protein design is the conceptual inverse of the protein structure prediction problem,
and aims to infer an amino acid sequence that will fold into a given 3D structure. Designing protein
sequences that will fold into a desired structure has a broad range of applications, from therapeu-
tics to materials (Kraemer-Pecore et al., 2001). Despite significant advancements in methodologies
as well as in computing power, inverse protein design still remains challenging, primarily due to
the vast size of the sequence space - and the difficulty of learning a function that maps from the
3D structure space to the sequence space. Earlier works rely mostly on energy minimization-based
approaches (Koga et al., 2012; Rocklin et al., 2017; Huang et al., 2011), which follow a scoring
function (force fields, statistical potentials, or machine learning (ML) models,) and sample both
sequence and conformational space. Such methods often suffer from drawbacks such as low accu-
racy of energy functions or force-fields (Khan & Vihinen, 2010) and low efficiency in sequence and
conformational search (Koga et al., 2012).

Recently, as the data on both protein sequences (hundreds of millions) and structures (a few hundreds
of thousands) is quickly accumulating, data-driven approaches for inverse protein design are rapidly
emerging (Greener et al., 2018; Karimi et al., 2020; Ingraham et al., 2019). Generally, data-driven
protein design, attempts to model the probability distribution over sequences conditioned on the
structures: P (x|y), where x and y are protein sequences and structures, respectively. Two key
challenges remain: (1) defining a good representation (y) of the protein structure and (2) modelling
the sequence generation process conditioned on y. Current protein design methods use protein
backbone information from a single protein structure (fixed backbone) or from a set of backbone
structures consistent with a single fold (flexible backbone). In earlier studies, the protein structures
are represented as a 1D string (Greener et al., 2018), a 1D vector (Karimi et al., 2020), a 2D image
(Strokach et al., 2020), or a graph (Ingraham et al., 2019). The sequence generation methods used
in the protein design studies can be classified as non-autoregressive (Karimi et al., 2020; Greener
et al., 2018; Strokach et al., 2020) and autoregeressive (Ingraham et al., 2019; Madani et al., 2020).
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In non-autoregerssive methods, y is usually concatenated with a Gaussian random noise z (which is
the latent vector of the sequence) please check here to be the input to a sequence generator P (x|y) =
fg(y, z), while in autoregressive methods, P (x|y) is decomposed through the chain rule: P (x|y) =∏n

i=1 P (xi|x1, x2, ..., xi−1,y), where x = (x1, x2, ..., xn).

In this paper, we focus on designing sequences conditioned on a protein fold. A protein fold is
defined as the arrangement (or topology) of the secondary structure elements of the protein relative to
each other (Hou et al., 2003). A secondary structural element can be defined as the three dimensional
form of local segments of a protein sequence. Protein folds are therefore necessarily based on
sets of structural elements that distinguish domains. As protein structure is inherently hierarchical,
the complete native structure can have multiple folds and a fold can be present in many protein
structures. A single structure (fixed backbone) or an ensemble of structures (flexible backbone)
can be used as representatives of a fold. The ensemble representation is often a better choice, as it
captures the protein dynamics.

Despite the recent progress in using ML models for protein design, significant gaps still remain in
addressing both aforementioned challenges (fold representation and conditional sequence genera-
tion). First, the current fold representation methods are either hand-designed, or constrained and do
not capture the complete original fold space (See Sec. 2.2 for details), resulting in low generalization
capacity or efficiency. Second, the sequence encoding and the fold encoding are learned separately
in previous methods, which makes two latent domains heterogeneous. Such heterogeneity across
two domains actually increases the difficulty of learning the complex sequence–fold relationship.

To fill the aforementioned gaps, the main contributions of this work are as follows:

• We propose a novel fold representation, through first representing the 3D structure by the voxels
of the density of secondary structures elements (SSEs), and then learning the fold representation
through a transformer-based structure encoder. Compared to previous fold representations, this
representation has several advantages: first, it preserves the entire spatial information of SSEs.
Second, it does not need any pre-defined rules, so that the paramterized fold space is not nei-
ther limited or biased toward any particular fold. Third, the representation can be automatically
extracted from a given protein structure. Lastly, the density model also loosens the rigidity of
structures so that the structural variation and lack of structural information of the protein is better
handled.

• We employ a novel joint sequence-fold embedding learning framework into the transformer-based
auto-encoder model. By learning a joint latent space between sequences and folds, our model,
Fold2Seq, mitigates the heterogeneity between two different domains and is able to better capture
the sequence-fold relationship, as reflected in the results.

• Experiments on standard test sets demonstrate that Fold2Seq has superior performance on per-
plexity, native sequence recovery rate, and native structure recovery accuracy, when compared
to competing methods including the state-of-the-art RosettaDesign and other neural net models.
Ablation study shows that this superior performance is directly attributed to our algorithmic inno-
vations. Experiments on real-world test sets further demonstrates the unique practical utility and
versatility of Fold2Seq compared to the structure-based baselines.

2 RELATED WORK

Data-driven Protein Design A significant surge of protein design studies that deeply exploit the
data through modern artificial intelligence algorithms has been witnessed in the last two years.
Greener et al. (2018) used the conditional variational autoencoder for generating protein sequences
conditioned on a given fold. Karimi et al. (2020) developed a guided conditional Wasserstein Gen-
erative Adversarial Networks (gcWGAN) also for inverse fold design. Madani et al. (2020) trained
an extreme large (1.2B parameters) language model conditioned on taxonomic and keyword tags
such as molecular functions for generating protein sequences. Ingraham et al. (2019) developed a
graph-based transformer for generating protein sequences conditioned on a fixed backbone. Lastly,
Strokach et al. (2020) formulated the inverse protein design as a constraint satisfaction problem
(CSP) and applied the graph neural networks for generating protein sequences conditioned on the
residue-residue distance map that is a static representation of the structure.
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Protein Fold Representation For an extensive overview of molecular representations, including
those of proteins, please see David et al. (2020). Murzin et al. (1995) and Orengo et al. (1997)
manually classified protein structures in a hierarchical manner based on their structural similarity.
These classifications can be regarded as one-hot encoding of the fold representations. Taylor (2002)
represents a protein fold using a “periodic table”. This representation was later used for inverse
fold design (Greener et al., 2018). However, it only considers three pre-defined folds (( layer, layer
and barrel) for a set of structures, which significantly limits the spatial information content of the
fold. Hou et al. (2003) chose hundreds of representative proteins and calculated the similarity scores
among them. This similarity matrix was then used for kernel Principle Component Analysis (kPCA).
A similar idea was used in Karimi et al. (2020) for inverse protein design. This representation needs
a pre-defined set ((alpha only, beta only, and alpha+beta) of structures along with a similarity metric.
Such representation could lead to biased or constrained representations of the fold space and also
may not preserve the detailed spatial information of the fold. Finally, Koga et al. (2012) summarized
three rules that describe the junctions between adjacent secondary structure elements for a specific
fold. Again, these rules are hand designed for a subset of structures, which makes the representation
restricted to a small part of the fold space and offers limited generalizability during conditional
sequence generation.

Joint Embedding Learning Joint embedding learning across multiple different data modalities
was first proposed by Ngiam et al. (2011) on audio and video signals. Since then, such approaches
have been then widely used in cross modal retrieval or captioning tasks (Arandjelovic & Zisserman,
2018; Gu et al., 2018; Peng & Qi, 2019; Chen et al., 2018; Wang et al., 2013; Dognin et al., 2019). In
few/zero-shot learning, joint feature-label embedding was used for predicting the label of instances
belonging to unseen classes (Zhang & Saligrama, 2016; Socher et al., 2013). Several papers have
demonstrated that learning joint embedding is useful for the single modal classification tasks (Ngiam
et al., 2011; Wang et al., 2018; Toutanova et al., 2015). Moreover, Chen et al. (2018) used joint
embedding learning for text to shape generation. Lastly, Joint sequence-label embedding is also
applied for molecular prediction/generation (Cao & Shen, 2020; Das et al., 2018).

3 METHODS

3.1 BACKGROUND AND NOTATION

A protein is formed by a linear chain of amino acids (residues) that defines its 1D sequence. Chemi-
cal nature, as well as physical and chemical interactions with neighboring residues drive the folding
of a sequence into different secondary structure elements or SSEs (helix, beta-sheet, loop, etc., see
Fig 1(a)), that eventually forms a complete native 3D structure. A protein fold captures the topology
and the composition of secondary structure elements, thus serving as an intermediate between the
1D sequence and the full 3D structure.

3.2 STRUCTURE REPRESENTATION THROUGH 3D VOXELS OF THE DENSITY OF SSES

Rescale Discretize Featurization

(a) (b) (c) (d)

Figure 1: (a) The structure of PDB 107L. The secondary structures are colored as: helices in red,
beta sheets in yellow and loops in green. (b) The structure is rescaled to fit the 40Å × 40Å × 40Å
cubic box. (c) The box is discretized into voxels. (d) Features of each voxel are obtained from the
structure content of the voxel (bend/turn in blue).

In this subsection, we describe how we represent the 3D structure to explicitly capture the fold
information. We denote the position(3D coordinate) of each residue by its alpha carbon. For a given
protein with length N , we first translate the structure to match its center of mass with the origin of
the coordinate system. We then rotate the protein around the origin to let the first residue be on the
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negative side of z-axis. We denote the resulting residue coordinates as c1, c2, ..., cN . We assign the
secondary structure label to each residue based on their SSE assignment (Kabsch & Sander, 1983) in
Protein Data Bank (Berman et al., 2000). We consider 4 types of secondary structure labels: helix,
beta strand, loop and bend/turn. In order to consider the distribution of different secondary structure
labels in the 3D space, we discretize the 3D space into voxels, as shown in Fig 1. A technical
challenge here is that the sizes of different proteins vary drastically. As we are only considering
the arrangement of SSEs, not their exact coordinates, we here rescale the original structure, so that
it fits into a fixed-size cubic box. Based on the distribution of sizes of single-chain proteins in the
CATH database (Sillitoe et al., 2019), we choose a 40Å × 40Å × 40Å box with each voxel of size
2Å× 2Å× 2Å. We denote the scaling ratio as r ∈ R3. For voxel i, we denote the coordinates of its
center as vi. We assume that the contribution of residues j to voxel i follows the Gaussian form:

yij = exp(−||cj � r − vi||22
σ2

) · tj , (1)

where tj ∈ {0, 1}4 is the one-hot encoding of the secondary structure label of amino acid j. The
standard deviation is chosen to be 2Å. We sum up all residues together to obtain the final features of
the voxel i: yi =

∑N
j=1 yij . The structure representation y is the vector of yi’s over all voxels. In

the next subsection, we will describe how we encode y into the latent space and how we learn a joint
sequence-fold embedding in order for generating sequences consistent with a desired 3D structure.

3.3 FOLD2SEQ WITH JOINT SEQUENCE-FOLD EMBEDDING
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Figure 2: The architecture of the model during the training and inference stages. (Training
Scheme): During training, the model includes three major components: (top) Sequence Encoder,
(middle) Structure Encoder and (bottom) Sequence Decoder. The dashed arrows represent the pro-
cess for getting cyclic loss. (Inference Scheme): During the inference, the model only needs the
structure encoder and the sequence decoder for decoding sequences. check here and the figure

Model Architecture In the training stage, our model consists of three major components: a se-
quence encoder: hs(·), a structure encoder: hf (·) and a sequence decoder: p(x|h(·)), as shown in
Fig. 2 (Left). Both sequence encoder and decoder are implemented using the vanilla transformer
model (Vaswani et al., 2017). The structure encoder contains 6 residual blocks followed by a 3D
positional encoding. Each residual block has two 3D-convolutional layers (3 × 3 × 3) and batch
normalization layers. The 3D positional encoding is a simple 3D extension of the sinusoidal en-
coding described in the vanilla transformer model, as shown in Appendix A. After the positional
encoding, the 3D vector is flattened to be 1D as the input of a transformer encoder. The length of
the transformer input is fixed to be lf = 53 = 125. The output of the transformer encoder: hf (y) is
the latent fold representation of y.

We propose a simple fold-to-sequence reconstruction loss based on the auto-encoder model: REf =
p(x|hf (y)). However, as mentioned earlier, training based on REf alone suffers due to the het-
erogeneity of x and y. To overcome this challenge, we first encode the sequence x through the
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sequence encoder into the latent space as: hs(x), which could be done through a simple sequence-
to-sequence reconstruction loss: REs = p(x|hs(x)). We then learn a joint latent space between
hf (y) and hs(x) through a novel sequence-fold embedding learning framework.

Joint Embedding Learning Typically, learning a joint embedding across two domains needs two
intra-domain losses and one cross-domain loss (Chen et al., 2018). An intra-domain loss forces two
semantically similar samples from the same domain to be close to each other in the latent space,
while a cross-domain loss forces two semantically similar samples in different domains to be closer.
In our case, the meaning of ‘semantically similar’ is that the proteins should have the same fold(s).
Therefore, we consider a supervised learning task for learning intra-domain similarity: fold classi-
fication. Specifically, the outputs of both encoders: hf (y) ∈ Rlf×d and hs(x) ∈ Rls×d will be
averaged along lf and ls dimensions, followed by a MLP+softmax layer to perform fold classifica-
tion (shown as two blue blocks in Fig. 2), where ls, lf and d are the length of the sequence, the fold
and the latent state, respectively. The two MLP layers’ parameters are shared. The category labels
follow the fold (topology) level of hierarchical protein structure classification in CATH4.2 dataset
(Sillitoe et al., 2019) (see Section 3.4). As a result, we propose the following two intra-domain
losses: FCf and FCs, the cross entropy losses of fold classification from hf (y) and hs(x) respec-
tively. The benefits of these two classification tasks are obvious: First, it will force the structure
encoder to learn the fold representation. Second, as we perform the same supervised learning task
on the latent vectors from two domains, it will not only learn the intra-domain similarity, but also
cross-domain similarity. However, without explicit cross-domain learning, the two latent vectors
hf (y), hs(x) could still have minimal alignment between them. We will describe the cross-domain
loss in the rest of this subsection.

In the transformer decoder, each element in the non-self attention matrix is calculated by the cosine
similarity between the latent vectors from the encoder and the decoder, respectively. Inspired by
this observation, we consider to maximize the cosine similarity (shown as the ‘Cosine Similarity’
pink block in Fig 2) between hf (y) ∈ Rlf×d and hs(x) ∈ Rls×d as the cross-domain loss. We
first calculate the matrix-product between hf (y) and hs(x) as Q = hf (y) · hs(x)T ,Q ∈ Rlf×ls .
The ith row in Q represents the similarity between ith position in the fold and every position of the
sequence. We would like to find the best-matching sequence piece with each position in the fold. To
achieve this, the similarity matrix Q first goes through a row-wise average pooling with kernel size
k, followed by the row-wise max operation:

q = max
row

(AvgPoolkrow(Q)), q ∈ Rlf×1 (2)

where row means the operation is row-wised. We choose k = 3, which means the scores of every
3 continuous positions in the sequence will be averaged. We finally average over all positions in the
fold to get the final similarity score: CS = mean(q). please read this subsection until here. I did
some equation-in-line here.

Besides the cosine similarity loss, inspired from the earlier CycleGAN work (Zhu et al., 2017),
we add a cyclic loss (shown as the ‘Cyclic Loss’ red block in Fig 2.) to be another term of our
cross-domain loss. Specifically, we take the argmax of the output of fold-to-sequence model: x′ =
arg max p(x|hf (y)), and send it back to the sequence encoder for generating the cyclic-seq latent
state: hs(x′) (shown as the dashed line in Fig 2). This cyclic-seq latent state will compare with the
native seq latent state hs(x) through the square of the L2 distance:

CY = ||hs(x′)− hs(x)||22 (3)

To summarize, the complete loss objective is the following:

L = λ1REf + λ2REs + λ3FCf + λ4FCs + λ5(CY− CS) (4)

where λ1 through λ5 are the hyperparameters for controlling the importance of these losses.

Training and Decoding Strategy During experiments we found that, if the sequence encoder and
the structure encoder were trained together, the structure encoder had little parameter improvement
while the sequence encoder dominated the training. To overcome this issue, we consider a two-
stage training strategy. In the first stage, we train the sequence-to-sequence model regularized by
the sequence intra-domain loss: L1 = λ2REs + λ4FCs. After the first stage is finished, we start the
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second training stage. We train the fold-to-sequence model regularized by the fold intra-domain loss
and the cross-domain loss while keeping the sequence encoder frozen: L2 = λ1REf + λ3FCf +
λ5(CY−CS). The comparison between the one-stage training and two-stage training strategies are
described in details in Appendix E.

We implement our model in Pytorch (Paszke et al., 2019). Each transformer block has 4 layers and
d = 256 latent dimensions. In order to increase the robustness of our model for rotated structures,
we augment our training data by right-hand rotating the each structure by 90◦, 180◦ and 270◦ along
each axis (x,y,z). As a result, we augment our training data by 3 × 3 = 9 times. The learning
rate schedule follows the original transformer paper (Vaswani et al., 2017). We use the exponential
decay (Blundell et al., 2015) for λ5 = 1/2#epoch−e in the loss function, while λ1 through λ4 and e
are tuned based on the validation set, resulting λ1 = 1.0, λ2 = 1.0, λ3 = 0.02, λ4 = 1.0, e = 3 .
We train our model on 2 Tesla K80 GPUs, with batch size 128. In every training stage we train up
to 200 epochs with an early stopping strategy based on the loss on the validation set. 1

During inference, we only need the Fold2seq model for decoding sequences (Fig 2 (Right)). Top-k
sampling strategy (Fan et al., 2018) is used for sequence generation, where k is set to be 5 (tuned
based on the validation set).

3.4 BENCHMARK DATASETS

We used the protein structure data from CATH 4.2 (Sillitoe et al., 2019) filtered by 100% sequence
identity. We remove proteins that (1) are multi-chain or non-continuous in sequence; (2) contain
other than 20 natural amino acids; (3) have length longer than 200. We randomly split the dataset
based on the fold-level classification of protein structures into 95%, 2.5%, 2.5% as dataset (a), (b)
and (c), which means that the three datasets have non-overlapping folds. We further randomly split
the dataset (a) into 95%, 2.5% and 2.5% as dataset (a1), (a2) and (a3). Datasets (a1) (a2) (a3) have
overlapping folds. We use dataset (a1) as the training set, (b)+(a2) as the validation set, (a3) as the
In-distribution (ID) test set and (c) as the Out-of-distribution (OD) test set. The folds of the ID test
set overlaps with the training set, whereas the folds of OD test set do not overlap with the training
set. The statistics of these datasets are presented in Appendix B.

In order to quantitatively measure their difficulty levels, we calculate the averaged maximum se-
quence similarity (amsi) between a given test set T and the training set, defined as: amsiT =

1
|DT |

∑
i∈DT

maxj∈Dtrain(SIM(xi,xj)), where Dtrain and DT are the training set and test set T , re-
spectively; SIM(xi,xj)

2 is the sequence similarity between sequence xi and xj . As a result, we
found we have amsiID = 36.3% and amsiOD = 16.3%. This shows that the sequence similarity
between the ID test set and the training set is more than twice that between the OD test set and the
training set. These values clearly demonstrate that the OD test set represents a much more difficult
generalization task compared to the ID test set.

4 EXPERIMENTS ON BENCHMARK TEST SETS.

Ideally, the most appropriate criteria for evaluating inverse design methods is the extent that the
structure of the generated sequence matches the desired fold/structure. However, as protein structure
prediction is very time-consuming, and similar sequences usually indicate similar folds/structures,
many earlier methods report performance in the sequence domain. We hereby perform comprehen-
sive evaluations of Fold2Seq against two data-driven fold design methods: cVAE (Greener et al.,
2018) and gcWGAN (Karimi et al., 2020) as well as the state-of-the-art principle-driven method,
RosettaDesign3 (Huang et al., 2011). For this comparison, we leave out methods that do not focus
on inverse folding problem with a flexible backbone constraint (e.g. (Madani et al., 2020), (Strokach
et al., 2020)). Three evaluation metrics are used: 1) Perplexity: Ability to assign high likelihood to

1We plan to release the code upon acceptance.
2Sequence similarity is measured through the Needleman Wunsch algorithm (Needleman & Wunsch, 1970)

with Blossum62 scoring matrix.
3RosettaDesign is a principle-based method. It uses MCMC sampling and energy calculation to search for

best sequences. The input to RosettaDesign consists of the backbone of the native structure and the SSE of
each residue.
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Table 1: Performance of different methods assessed in the sequence domain.

(a) Per-residue Perplexity.

Model ID Test OD Test
Uniform 20.0 20.0
Natural 18.0 18.0

cVAE 14.8 16.3
gcWGAN 13.5 15.2
Fold2Seq 8.1 11.9

(b) Avg. SeRR ± std. dev. (%).

Model ID Test OD Test
Random across two folds 12.8 ± 7.94 12.8 ± 7.94

cVAE 17.7 ± 7.34 15.3 ± 5.34
gcWGAN 17.5 ± 6.35 14.1 ± 3.45

RosettaDesign 20.3 ± 5.13 20.2 ± 2.98
Fold2Seq 27.1 ± 6.31 24.1 ± 2.64

Random within same fold 39.1 ± 9.35 39.1 ± 9.35

native (ground-truth) sequences; 2) Native sequence recovery rate (SeRR): Ability to recover native
sequences; 3) Native structural recovery accuracy (StRA): Ability to recover native structures.

We note that the Graph trans (Ingraham et al., 2019) model can be applied to a flexible backbone
scenario. However, Graph trans focuses on structure-based sequence design using the detailed back-
bone structure as an input, whereas the fold-based Fold2Seq designs sequences using the high-level
fold information. Therefore, direct comparison between Fold2Seq and Graph trans on the same
train/test data containing full structure information is not fair. To highlight that Fold2Seq better cap-
tures fold information, we first re-train Graph trans on our training set. We use tSNE to visualize the
fold embeddings h after the fold encoder for the proteins in the OD test sets. The results are shown
in Appendix F. It is evident that the embeddings of same-fold proteins from Graph trans are less
clustered than those from Fold2Seq. Later, we will compare Fold2Seq with Graph trans on three
real-world design tasks, which will be described in details in Sec. 5.

Perplexity and Sequence Recovery Comparison. We first compare Fold2Seq against gcWGAN
and cVAE in terms of per-residue Perplexity. Perplexity is a metric widely used in the language mod-
eling and is not applicable to RosettaDesign. For reference, we also show the per-residue perplexity
under the uniform distribution and the frequencies through all natural sequences in UniRef50 (Suzek
et al., 2015). Performance on two test sets is summarized in Table 3a, showing that Fold2Seq has
the smallest per-residue perplexity for both ID and OD test sets. We also note that the performance
of all methods on the OD test set is worse than that on the ID test set, which matches our expectation
of their difficulty levels.

Next, we compare the ability of different methods for recovering the native sequences given a desired
fold. We calculate the averaged sequence similarity between the native sequence and the generated
sequence on two test sets. Also, for comparison, we calculate the expected similarity between
two random sequences in our whole dataset belonging to two different folds and belonging to the
same folds. The results are summarized in Table 1b. In general, Fold2Seq performs significantly
better, when compared to existing methods. Specifically, compared to RosettaDesign (second-best),
Fold2Seq improves the recovery rate by 33.5% and by 19.3% on the ID and OD test set, respectively.

Structural Recovery Comparison with RosettaDesign. Although the comparison in sequence
domain reflects the reliability of generated sequences to some extent, our final goal is to ensure that
the structure of a generated sequence is similar to the native structure. Specifically, we used the
iTasser Suite (Yang et al., 2015), one of the state-of-the-art protein structure prediction software,
to predict the structure of the designed sequences. As iTasser usually takes at least one day for
predicting the structure of a single protein, we only compare Fold2Seq to RosettaDesign in terms
of the structure recovery. The similarity between two 3D protein structures is measured by the
TM-score ∈ [0, 1] (Zhang & Skolnick, 2004), where a higher score implies greater similarity.

For the ith protein in the test set, we compare TM(sFold2Seq
i , sNative

i ) against TM(sRosetta
i , sNative

i ),
where sFold2Seq

i , sRosetta
i and sNative

i are the 3D structures of the generated sequence from Fold2Seq,
the generated sequence from RosettaDesign, and the native sequence, respectively.

We first compare the distributions of TM(sFold2Seq
i , sNative

i ) and TM(sRosetta
i , sNative

i ) on two test
sets (ID and OD). The results are shown in Fig 3(a). For the ID test set, Fold2Seq shows signif-
icant improvement against RosettaDesign, while for the OD test set, Fold2Seq shows slightly better
performance. We then define ∆TMi = TM(sFold2Seq

i , sNative
i ) − TM(sRosetta

i , sNative
i ) and perform
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Figure 3: (a). TM score distributions of RosettaDesign and Fold2Seq. (b). Run time of Fold2Seq
and RosettaDesign for generating one protein sequence: CPU: Intel Xeon E5-2680 v4 2.40GHz,
GPU: Nvidia Tesla K80. (c). Avg. SeRR for the OD test set with a string of missing residues.

one-sided one-sampled t-test over ∆TM, with null hypothesis as ”∆TM ≤ 0.0” on two test sets, re-
vealing P-valueID = 2.14E−60, P-valueOD = 0.019, which demonstrate that Fold2Seq can overall
generate more reliable structures compared to RosettaDesign. The two distributions over ∆TM are
shown in Fig 4 in Appendix C. We also randomly pick some designed structures with ∆TM > 0.0
and ∆TM < 0.0, and visualize them on Fig 5 and Fig 6 in Appendix D, respectively.

The sequence generation efficiency of Fold2Seq against RosettaDesign is shown in Fig 3(b).
Fold2Seq is almost 100 times faster than RosettaDesign when running on CPU, and is 5000 times
faster when running on GPU, while RosettaDesign can only run on CPU.

Ablation Study. In order to rigorously delineate the contributions of each algorithmic innovations,
we perform an ablation study as following:

• cVAE: We use cVAE (Greener et al., 2018) as baseline with 1D string fold representation and
MLP-based VAE.

• Trans string REf : We replace the MLP-based VAE in cVAE with transformer autoencoder model.
The loss is L = REf .

• Trans voxel REf : We replace the 1D string fold representation in “Trans string REf” with 3D
voxel representation. We also add the convolutional residual block and 3D positional encoding.
The loss is L = REf .

• +REs+CS: We add the sequence encoder, together with the reconstruction loss and the cosine
similarity loss to the previous loss: L = λ1REf + λ2REs − λ5CS.

• +2FC: We add the two FC losses. L = λ1REf + λ2REs + λ3FCf + λ4FCs − λ5CS.
• +CY (Fold2Seq): We add the cyclic loss into the former model with the final loss L = λ1REf +
λ2REs + λ3FCf + λ4FCs + λ5(CY− CS).

We use average of native sequence recovery rate (SeRR) as the assessment metric. The performance
on two test sets is summarized in Table 2a. Our key observations are: (i) By changing ‘string’ to
‘voxel’ and adding 2 FC losses, the performance has the largest improvement by 3-4%. (ii) By
adding the cyclic loss (CY), the performance also improves around 2%. (iii) In contrast, by adding
REs and CS, the improvement is trivial. It also shows that including the two FC losses as the intra-
domain loss is crucial for the joint embedding learning. In conclusion, our novel design of the 3D
voxel representation and the joint embedding learning framework, which includes intra-domain and
cyclic losses, results in significant improvement of the performance.

5 EXPERIMENTS ON REAL-WORLD DESIGN TASKS.

In order to further explore the practical utility of our model, we perform three real-world challenging
design tasks: (1) Low-resolution structures; (2) Structure with region of missing residues; and (3)
NMR ensembles. For (1) and (2), we compare with Graph trans with a flexible backbone constraint
which is re-trained on our training set.

Low-Resolution Structures. We first create the low-resolution structure dataset from Protein Data
Bank, which contains 164 low resolution proteins (single-chain), resolution varying from 6Å to
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Table 2: Average sequence recovery rate ±std. dev. (%) for (a) different models in ablation study,
(b) low resolution structures and NMR ensemble.

(a)

Model ID Test OD Test
cVAE 17.7 ± 7.34 15.3 ± 5.34

Trans string REf 18.5 ± 8.26 16.1 ± 3.23
Trans voxel REf 22.3 ± 8.23 19.2 ± 3.46

+REs+CS 22.4 ± 7.54 19.1 ± 2.24
+2FC 25.3 ± 6.24 22.2 ± 2.13

+CY (Fold2Seq) 27.1 ± 6.31 24.1 ± 2.64

(b)

Model Low res Set
Graph trans 19.9 ± 4.8

RosettaDesign 17.2 ± 6.3
Fold2Seq 21.2 ± 3.1

Input ID OD
Single 22.7 ± 3.4 20.9 ± 4.2

Ensemble 24.1 ± 4.6 22.3 ± 3.1

12Å. This set has maximum sequence similarity (MSI) below 30% to the training set. We compare
Fold2Seq’s performance on this set with that of Graph trans and RosettaDesign. As shown in Table
2b, Fold2seq outperforms other baselines, because Fold2Seq only learns from the fold information
by re-scaling the structure, discretizing the space, and smoothing the spatial secondary structure
element information by neighborhood averaging. As Fold2Seq uses the high-level fold information,
the method’s performance is expected to be less sensitive compared to RosettaDesign or Graph trans,
when test structures are of lower resolution.

Structures with missing string of residues. We then perform the design task where the in-
put structures have missing residues. In order to mimic the real-world scenario, for every pro-
tein in our OD test set, we select a stretch of residues at random starting positions with length
p, for which residue information was removed. We compared Fold2Seq with Graph trans at
p = {5%, 10%, 15%, 20%, 25%, 30%}. As shown in Fig. 3c, initially, when p is small, the perfor-
mance of Fold2Seq is on par with Graph trans. As p increases, Fold2Seq outperforms Graph trans
with a consistent margin. This pattern matches our expectation, as Fold2seq is less sensitive to the
availability of complete and detailed backbone structure information.

NMR Structural Ensemble. We finally apply Fold2Seq to a structural ensemble on NMR struc-
tures. We filter the NMR structures from our two test sets and obtain 57 proteins from the ID set
and 10 proteins from the OD set. On average each protein has around 20 structures. Handling NMR
ensembles using Fold2Seq is straightforward, when compared to Graph trans and RosettaDesign:
after we obtain the voxel-based features through Eq 1 for each model (structure) within one NMR
ensemble, we simply average them across all models. Fold2Seq results for NMR ensembles are
shown in Table 2b, along with a single structure baseline. Results show that Fold2Seq performs
better on both ID and OD proteins, when ensemble structure information is available. This is con-
sistent with the fold-based learning framework of Fold2Seq - as fold representation better captures
structural variations present within a single fold.

6 CONCLUSION

In this paper, we design novel neural network model to learn a fold representation from the 3D vox-
els of density of secondary structure elements. In order to mitigate the heterogeneity between the
sequence domain and the fold domain, we learn the joint sequence-fold representation through novel
intra–domain and cross–domain losses. Our model, Fold2Seq outperforms existing data-driven
methods and the state-of-the-art principle-driven method RosettaDesign, in terms of perplexity, se-
quence recovery rate, and structural recovery accuracy. We also show that our method is signifi-
cantly faster compared to RosettaDesign. Ablation study shows that this superior performance can
be directly attributed to our novel algorithmic innovations, including the fold representation, joint
sequence-fold embedding, and various losses. Moreover, we demonstrate the unique practical utility
of Fold2Seq compared to structure-based models in a set of real-world design tasks, including low
resolution structures, structures with region of missing residues, and NMR structural ensembles.
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A 3D EXTENSION OF THE SINUSOIDAL ENCODING

We use a simple extension of the sinusoidal encoding described in the original transformer
model (Vaswani et al., 2017) to encode each position in our Structure Encoder.

PE(x, y, z, 2i) = sin(x/100002i/h) + sin(y/100002i/h) + sin(z/100002i/h)

PE(x, y, z, 2i+ 1) = cos(x/100002i/h) + cos(y/100002i/h) + cos(z/100002i/h)
(5)

B DATASET STATISTICS

The statistics of our various datasets are given below.

• Training set includes 45995 proteins belonging to total 1093 folds.
• Validation set includes 1590 proteins belonging to total 256 folds.
• In-distribution (ID) test set includes 1230 proteins belonging to total 230 folds.
• Out-of-distribution (OD) test set includes 204 proteins belonging to 28 folds.

C DISTRIBUTIONS OVER ∆TM

For the ith protein, we define ∆TMi = TM(sFold2Seq
i , sNative

i )− TM(sRosetta
i , sNative

i ). The distribu-
tions of ∆TM for the ID and OD tests are shown in Figure 4.
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Figure 4: The distributions of ∆TM for two test sets.

D COMPARISON OF FOLDED STRUCTURES

In this section, we show some representative folded structures whose sequences are designed by
RosettaDesign and Fold2Seq. The folded structures were predicted using iTasser, a state of the art
program for protein structure prediction. Figure 5 shows some structures where Fold2Seq performs
better than RosettaDesign and Figure 6 shows some structures where RosettaDesign is better.

1nh0A00-1-99
(In-domain Test Set)

1wd5A02-53-113
(Out-of-domain Test Set)

1oufA00-1-130
(In-domain Test Set)

Ground-truth Structures

Fold2Seq Designed Structures

Rosetta Designed Strutures
TM=0.241

TM=0.972 TM=0.951

TM=0.271

TM=0.449

TM=0.355

2ct2A00-1-88
(Out-of-domain Test Set)

TM=0.324

TM=0.294

Figure 5: The native and designed structures with ∆TMi > 0. The IDs at the bottom are the CATH
domain names of each structure.
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2eifA01-4-73
(In-domain Test Set)

1dbyA00-1-107
(In-domain Test Set)

1w2iA00-2-91
(Out-of-domain Test Set)

2rrnA01-477-559
(Out-of-domain Test Set)

TM=0.384

TM=0.985

TM=0.760

TM=0.838 TM=0.688

TM=0.389

TM=0.592

TM=0.340

Ground-truth Structures

Fold2Seq Designed Structures

Rosetta Designed Strutures

Figure 6: The native and designed structures with ∆TMi < 0. The IDs at the bottom are the CATH
domain names of each structure.

E COMPARISON BETWEEN TWO TRAINING STRATEGIES

In this section, we compare the performance between one-stage training and two-stage training
strategies. In the one-stage strategy, we train our model through the 5 loss terms in Eq (4) together.
While in the two-stage strategy, we train our model through L1 first and then train it through L2.

We first compare in the learning curves. As the REf loss represents the quality of the model, we
plot the REf loss vs epochs on both training and validation sets.
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Figure 7: The fold2seq loss(REf ) curves of two training strategies on training and validation set.
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Table 3: Performance of two training strategies assessed in the sequence domain.

(a) Per-residue Perplexity.

Model ID Test OD Test
Uniform 20.0 20.0
Natural 18.0 18.0

One-stage strategy 14.0 16.2
Two-stage strategy 8.1 11.9

(b) Avg. SeRR ± std. dev. (%).

Model ID Test OD Test
Random across two folds 12.8 ± 7.94 12.8 ± 7.94

One-stage strategy 19.2 ± 7.2 16.7 ± 4.3
Two-stage strategy 27.1 ± 6.31 24.1 ± 2.64

Random within same fold 39.1 ± 9.35 39.1 ± 9.35

As shown in Fig 7, the two-stage strategy significantly outperformed one-stage strategy. To further
demonstrate that, we calculate the per-residue perplexity and the average sequence recovery rate on
the two test sets. As shown in Table 3, the same conclusion can be drawn. Those results validate our
design choice for two-stage strategy.
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Figure 8: The tSNE visualization of the averaged structure(fold) latent embeddings h after the
structure encoder of two methods on OD test set. Each protein is colored by its fold category. Same
color indicates the same fold, except that gray points represent outliers, which is defined by its fold
having < 5 proteins in the test set.
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Figure 9: Avg. SeRR per fold for the ID test set.
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