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Abstract
We discuss different approaches to the challenge
of robust object recognition under distribution
shifts. We advocate a view of this challenge that
is more closely informed by the problem of vi-
sual recognition, and which emphasizes dynamic
model behaviour as opposed to centering the sta-
tistical properties of training and test distributions.
We introduce an experimental setting geared to-
wards developing models that can exhibit robust
behaviour in a reliable and scalable manner. We
refer to this requirement as “systematic robust-
ness”, which involves excluding certain combi-
nations of classes and image attributes systemat-
ically during training. Unlike prior work which
studies systematic generalisation in DNNs or their
susceptibility to spurious correlations, we use syn-
thetic operations and data sampling to scale such
experiments up to large naturalistic datasets.

1. Introduction
Automating visual perception is immensely hard – not least
because the world is complex and ever-changing (Raji et al.,
2020), constantly throwing up new and unlikely objects and
scenes to recognise and handle. The problem of recognising
objects with improbable properties – such as an unusual loca-
tion (Alcorn et al., 2019) or style of appearance (Hendrycks
et al., 2021) – is often subsumed under the more general
problem of making predictive models robust to “distribution
shifts” or to “out-of-distribution” inputs. This framing fore-
grounds the difference in input statistics between a model’s
training and deployment conditions. Variants of this general
problem, such as domain generalisation and subpopulation
shift (Gulrajani & Lopez-Paz, 2021; Santurkar et al., 2021;
Koh et al., 2021), are then distinguished by the difference –
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in statistical terms – that arises after training is completed.

For example, we are faced with a domain generalisation
problem when the respective marginal distributions of some
property measured over training and evaluation sets have
non-overlapping mass. If we consider, say, the property
“depiction style”, objects might be depicted using natural
images or paintings during training, and during evaluation
using line drawings (Peng et al., 2019). The goal is then
to learn representations from the set of training “domains”
or “environments” that are useful in distinct environments
held-out for evaluation.

Often, which property changes from one environment to
the other is of secondary importance; it is merely assumed
that some property changes. Recent benchmarks reflect this
abstract statistical view, collating various datasets that fit
a specific problem template but which target diverse chal-
lenges in visual recognition (Gulrajani & Lopez-Paz, 2021)
and even in other modalities beyond the visual (Koh et al.,
2021). Methods for handling certain types of distribution
shifts are expected to be agnostic to what exactly changes
between environments, whether it’s the viewpoint (Ghifary
et al., 2015), the imaging sensor and illumination condition
(Beery et al., 2018), or the time and location (David et al.,
2020). Accordingly, such methods typically rely on some
general objective or loss function designed to encourage ro-
bustness, e.g. via learning an invariant predictor (Arjovsky
et al., 2019) or via aligning the feature statistics across envi-
ronments (Li et al., 2018).

In this short paper, which describes ongoing work, we seek
to question this problem framing and its underlying assump-
tions: that we should primarily view problems of robust
prediction through an abstract statistical lens, and – in the
case of domain generalisation specifically – that we can
learn representations from arbitrary environments that will
usefully carry over to others. Instead, we propose an al-
ternate view of robust recognition and an accompanying
experimental setting that we believe can help overcome the
limitations of the problem-agnostic approach. We will also
argue that it is not sufficient to merely design methods and
benchmarks that address specific types of robustness, e.g.
to image corruptions (Hendrycks & Dietterich, 2019) or
adversarial perturbations (Croce et al., 2021), but that we
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Figure 1. We show clean (a) and transformed (b-d) versions of four
images from the ImageNet validation set belonging to the class
“indian elephant”, together with the corresponding predictions by a
pre-trained ResNet-50. The model makes incorrect predictions for
the transformed images.

need to rethink current training and evaluation protocols
intended for such purposes to ensure that they result in a
reliable and scalable form of robustness.

2. What Does Robust Recognition Entail?
Before introducing our proposed setting, it is useful to con-
sider the task of recognition in computational terms (Marr
& Poggio, 1976). We can view recognition as requiring us
to establish the similarity between a novel input and past
experience (Ullman, 1996). Given (i) a closed set of classes
C, (ii) a model trained to recognise objects belonging to
any class c ∈ C, and (iii) a novel input image x, said model
needs to extract some representation of x as a first step.
If this representation is “closest” to the stored representa-
tion(s) of some class ck than to those of other classes, then
we assign to x the label c.

Consider the images in Figure 1(a). These are images that
a ResNet-50 model trained on ImageNet has no trouble
recognising as depicting elephants. Rows 1(b)–1(d) contain
mis-classified versions of the same images that are trans-
formed in some manner: by applying Gaussian noise, by
rotating the image, or by distorting the colours of the image.

Evidently, the model extracts a representation from these in-
puts that is more similar to internal representations of other
object classes. What then would we have to change about
our model to obtain correct predictions?

We could simply treat this as a data problem. The training
distribution does not contain images of purple elephants,
or noisy images, and these are transformations that can
be simulated, so why not modify the training distribution?
Many successful approaches to robust recognition in fact
rely on reshaping the training distribution, e.g by including
difficult examples we might encounter during deployment
through augmentation (Madry et al., 2018; Hendrycks et al.,
2020; Cubuk et al., 2020), or by rebalancing the training set
to emphasize under-represented examples (Sagawa et al.,
2020; Idrissi et al., 2021). Is this scalable though? Can
we anticipate every possible test-time image? What about
transformations that cannot be easily simulated, or examples
that are not represented at all in the training data? Further-
more, data augmentation schemes – whether hand-crafted or
learned – are applied with equal probability to every image
and thus every class. There are limitations to how much
robustness this can foster to nuisance factors (Bouchacourt
et al., 2021), but we also can’t balance every relevant fac-
tor in the dataset, and will inevitably have factors that are
spuriously correlated.

We could alternatively focus on learning representations
with desirable properties, e.g. representations that are in-
variant across environments: in this case invariant to noise,
rotations, and colour. Many approaches to domain general-
isation rely on training schemes or loss terms that seek to
encourage such invariances (Li et al., 2018; Arjovsky et al.,
2019). Much work in self-supervised learning also aims to
learn representations invariant to a pre-defined set of image
transformations (Bardes et al., 2021). Is this however a sen-
sible goal? To recognise the images in Figure 1(d) we might
want to ignore the misleading colour, but do we want to dis-
count colour cues in general? What information about shape
would be preserved by a rotation-invariant representation?

Instead, we think it is beneficial to view recognition as a
necessarily dynamic process that is contingent on the char-
acteristics of any given input. For the images in Figure 1(b),
removing the noise would most likely result in correct pre-
dictions. On the other hand, in an image of an old broken
TV set displaying static, Gaussian noise might be useful
signal. To recognise the next set of images (1(c)), we would
benefit from compensating for a specific image rotation
(180◦). This could bring these images into alignment with a
canonical representation of shape, but would be superfluous
or even harmful for the first set of examples. For the images
in Figure 1(d), we would have to correct for the unusual
colours, colours that in other cases might help us distinguish
objects for which colour is the salient feature.



This view of recognition that is centered around how an
input image needs to be processed has a few useful impli-
cations for robustness. First of all, it suggests an approach
to evaluation that focuses on desirable model behaviours:
Can a model learn to compensate reliably for things like
noise, rotation, or colour? Do these behaviours generalise
in a non-trivial manner? Secondly, it suggests a role for
causal inference in recognition – not merely during training
(Zhang et al., 2021) – but at evaluation time: We need to
infer the transformations that would bring some input image
into alignment with its class representation and apply these
transformations accordingly.

In this work, we focus on the first point: How do we ensure
that robust behaviour can generalise reliably in a non-trivial
manner?

3. Systematic Robustness: Problem Setting
There is widespread interest in developing robust recogni-
tion models, that can recognise a variety of object classes
despite the presence of unlikely object, scene, or image
properties. This is reflected by the proliferation of chal-
lenging benchmarks that focus on various kinds of robust
recognition behaviour, e.g. robustness to image corrup-
tions (Hendrycks & Dietterich, 2019), to spatial transfor-
mations (Engstrom et al., 2019), to harsh weather condi-
tions (Sakaridis et al., 2018), to imperceptible perturba-
tions (Gilmer et al., 2018), and to abstract depictions of
objects (Rusak et al., 2021). While it is hard to formulate a
compact definition of robustness that covers these diverse
requirements, we can nonetheless impose a useful meta-
requirement that we should pursue in general: For robust
behaviour to be scalable, it should transfer flexibly across
familiar object classes, and not be separately learned for
every class of interest. We refer to this problem setting as
systematic robustness.

As argued in the previous section, in any realistic training
set, certain scene factors will inevitably be correlated. Some
of these correlations will be salient – e.g. elephants are typi-
cally grey, but some of them will be spurious: We typically
encounter and thus photograph elephants during the day but
they nontheless continue to exist at night. We need models
that can learn from correlated data and ignore correlations
as needed – whether salient or spurious. A self-driving car
for example needs to reliably recognise unlikely obstacles,
independently of their distribution in the training data.

While there is extensive work on related problems, e.g. sys-
tematic generalisation (Bahdanau et al., 2019; Ruis et al.,
2020; Montero et al., 2021; Schott et al., 2021), spurious
correlations (Geirhos et al., 2020), experiments are typically
conducted on small datasets: Either synthetic ones where
we have full control over the data generation process and

can correspondingly work with tightly-controlled train/test
splits, or naturalistic datasets with limited variability but
which nonetheless admit some form of control. Here we
aim to bridge the gap between work on controlled systematic
generalisation and work on large-scale recognition models,
in which models are trained on large naturalistic datasets
with an “almost anything goes” approach. We also depart
from related work on domain generalisation (Arjovsky et al.,
2019; Gulrajani & Lopez-Paz, 2021), by acknowledging the
need to learn specific robust behaviours from data: We are
for example unlikely to be able to learn how to handle blurry
images by only looking at clean and noisy images. These
are perturbations with very different frequency characteris-
tics, and it’s not obvious that this should work without the
appropriate evaluation. Our experiments also complement
work on domain adaptation under label shift (Johansson
et al., 2019; Zhao et al., 2019; Ben-David et al., 2010).

We formulate a variety of challenges probing systematic
robustness w.r.t. (1) photometric transforms, (2) geometric
transforms, (3) rendition styles. Our proposed benchmarks
are a compromise between a tightly-controlled but overly
simplistic setups and large-scale datasets without meaning-
ful experimental controls, and they build on top of existing
data (Russakovsky et al., 2015; Hendrycks & Dietterich,
2019; Peng et al., 2019). See Figure 2 for an example.

We now introduce the general problem setting of systematic
robustness, describe a simple metric for measuring it, and
then describe different instantiations of the problem that we
examine in this paper.

ENVIRONMENT
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Figure 2. Systematic Robustness: We study the task of image
classification in the presence of unlikely image properties, e.g.
image corruptions, but under strict experimental controls: We
systematically exclude certain combinations of class and property
from the training data while ensuring that each is individually
represented. At test time, we consider all possible combinations,
seen and unseen. The goal is to encourage flexible robust behaviour
that transfers in a non-trivial manner.



3.1. Preliminaries

In this paper, we focus on the task of image classifica-
tion. Our goal is to train a classifier to recognise object
classes from some closed set C = {ci}Ni=1 given a train-
ing set of images annotated with class labels. The training
data is drawn from a set of “environments” or “domains”
E = {E0, . . . ,EM}. Each environment Ek = Tk × Ck can
be characterised by a set of classes Ck and some property
Tk that applies only to images from that environment, e.g.
“contain Gaussian noise”, “ are rotated by 90◦ ”, and “ob-
jects are depicted with line drawings”. E0 is the default
environment in which all classes C are present. The remain-
ing training environments are restricted to disjoint subsets
of classes {C1, . . . ,CM}, s.t.: (1)

⋃M
k=1 Ck ⊆ C,

and (2) ∀(i, j) ∈ {1, . . . ,M} : i ̸= j ⇒ Ci ∩ Cj = Ø.

At test time, we consider all possible environments: {T0 ×
C} ∪ {Ti × Cj | i, j ∈ {1, . . . ,M}}. Thus for any valid
i, j, if i ̸= j then Ti × Cj has not been seen during training.
This allows us to contrast performance in seen and unseen
environments, and determine how well robust behaviour
learned for a subset of available classes transfers to the rest.
See Figure 2 for an illustration.

3.2. Measuring Systematic Robustness

To measure systematic robustness of a model f w.r.t. some
scene factor Tk, we first need to measure classification ac-
curacy accf (·) in two environments: (1) the control environ-
ment Tk×Ck, i.e. the set of classes Ck for which robustness
to Tk was learned during training, and (2) the experimental
environment Tk × Ck, i.e. the environment in which the
property Tk holds for classes Ck = C\Ck. We can then sim-
ply normalise the accuracy in the experimental environment
accf (Tk × Ck) by the accuracy in the control environment
accf (Tk × Ck). This represents the degree to which robust
behaviour learned in a seen environment transfers to an un-
seen one. Sometimes it will make sense to compensate for
some baseline robustness, e.g. if we are fine-tuning a pre-
trained model f0 that already shows some degree of robust
accuracy. We simply subtract average robust accuracy of the
baseline model accf0(Tk × C) from the accuracy measured
in both environments. We refer to the resulting quantity as
ρk, i.e. systematic robustness w.r.t. Tscenefac, and compute
it as follows while limiting the range to [0, 1]:

ρk = min(1,
max(0, accf (Tk × Ck)− accf0(Tk × C))
min(1, accf (Tk × Ck)− accf0(Tk × C))

)

(1)
It should be noted that a value of 1 is trivial to achieve if
f is not much more robust than the reference classifier f0.
Thus on its own, this measure of robustness is insufficient
and has to be paired with the other metrics that measure
absolute robust accuracy. A related metric is that of effective
robustness (Taori et al., 2020).

3.3. Problem Instantiations

We opt to study three instantiations of this problem: sys-
tematic robustness w.r.t. (1) image corruptions (e.g. noise,
blur) (Hendrycks & Dietterich, 2019), (2) in-plane image
rotations (Engstrom et al., 2019), and (3) rendition styles
(e.g. natural images, line drawings) (Hendrycks et al., 2021;
Rusak et al., 2021). These represent basic challenges in
recognition that robust models should arguably handle in a
flexible manner. They also differ from one another qualita-
tively: The first are photometric perturbations that can dras-
tically affect image statistics, whereas recognising objects
from different viewpoints can require reasoning of a more
geometric nature. While the way an object is depicted can
also heavily affect the statistics of the corresponding image,
successfully managing this challenge requires non-trivial
abstract reasoning about the essence of an object’s texture
and shape. Most importantly, we can study this problems in
the large-scale setting building on prior efforts to collect and
generate the relevant data. We can study systematic robust-
ness w.r.t. corruptions and rotations by applying selective
data augmentation to ImageNet (Russakovsky et al., 2015;
Hendrycks & Dietterich, 2019), and for rendition styles, we
can sample images from DomainNet (Peng et al., 2019) as
required. For the image corruptions we select four out of
the 19 suggested for the ImageNet-C benchmark, each rep-
resenting one of four categories: noise (N ), blur (B), digital
(D), and (W). More details can be found in the appendix.

4. Summary of Ongoing Experiments
Our findings so far can be summarised as follows (see Ap-
pendix A for selected results): We train a standard CNN
(He et al., 2016) from scratch on ImageNet with the default
“clean” data as well as data that is selectively transformed
to exclude certain combinations of class and image corrup-
tion – or alternatively class and in-plane image rotation.
We find that the network picks up on image corruptions
as a spurious feature resulting in a huge gap between seen
and unseen combinations (Tab. 1). The difference when it
comes to image rotations is much less dramatic (Figure 4).
We find that the learning rate is a critical hyperparameter
for avoiding reliance on spurious correlations, which is why
fine-tuning a network pretrained on clean data results in
more – albeit unstable – systematic robustness (Figure 3).
We find that the class composition of the different envi-
ronments matters for systematic robustness (Tab. 2), i.e.
whether these contain groups of fine-grained classes or not.
We also find that popular domain generalisation methods
result in improved systematic robustness for corruptions
but in limited improvements for rotations (Appendix A.3)
and non-existent improvements for alternate renditions (not
included). Aligning a subset of the available environments
only results in robustness to those environments Tab. 3.
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Training Top-1 Accuracy

Environment (T0 × · ) (TN × · ) (TB × · ) (TW × · ) (TD × · ) (TA × · )
EN EB ED EW C CN CB CW CD C CN CN C CB CB C CW CW C CD CD C

- - - - 76 76 78 76 75 34 - - 41 - - 36 - - 47 - - 38D - - - 77 74 78 77 76 38 79 25 41 - - 33 - - 47 - - 40D D - - 76 75 76 78 77 39 79 25 36 81 21 34 - - 47 - - 39D D D D 76 76 78 76 75 38 80 24 37 82 22 41 82 27 50 85 38 41

Table 1. Top-1 accuracy for four ResNet-50 models trained from scratch on ImageNet-1K with various data augmentation settings. We
split the 1000 classes into four disjoint sets of 250 classes each, that are separately augmented as indicated. We observe that average
robustness to corruptions (indicated by TA × C) tends to increase relative to the baseline, but that the image corruptions are used as a
spurious feature. Average clean performance (T0 × C) remains stable.

A. Appendix
A.1. Motivating Experiment

As a first exploration of this setting we conduct the following experiment: We define five environments
{E0,EN ,EB,ED,EW}. The default environment E0 = T0 × C includes all 1000 ImageNet classes and consists of
the original, untransformed images. All classes are equally distributed among the remaining environments resulting in
class sets {CN ,CB,CW ,CD} and corresponding image corruptions {TN ,TB,TW ,TD}. Images from all environments
additionally undergo simple geometric transformations during training including resizing, cropping, and horizontal flipping

We train ResNet-50 models with cross-entropy loss for 90 epochs with four different configurations: a baseline with data
only from the default environment, and three other models with data from either one, two, or four additional environment(s).
In all cases, we sample data from the default environment with a probability of p = 0.75, and otherwise sample uniformly
from the rest.

This is a simple baseline, often referred to in the domain generalisation literature as ERM (empirical risk minimisation),
where risk is taken to mean the classification loss. Data from all environments is effectively treated as a single unified
training set. This baseline has been shown to be as resilient to domain shifts as most specialised methods (Gulrajani &
Lopez-Paz, 2021; Koh et al., 2021) and thus is a good starting point for our analysis.

We report top-1 accuracy for these different configurations in Tab. 1. We observe the following: Relative to the baseline,
corruption robustness tends to improve on average. However, the large improvement on seen environments (e.g. TN × CN )
comes at the cost of reduced accuracy on unseen environments (e.g. TN × CN ).

Does starting from a pre-trained model help? We start from a ResNet-50 pre-trained on data from the default environment
E0 = T0 × C. We fine-tune this model with cross-entropy loss for 25 epochs using data from two environments: {E0,EN }.
Since the model has already been trained on uncorrupted data, we sample images from the default environment with a
probability of p = 0.5. EN contains data for 25% of the classes and with a probability of p = 0.5 we apply Gaussian noise
at one of five severity levels (Hendrycks & Dietterich, 2019). This is very similar to the Gaussian Noise Training baseline
of (Rusak et al., 2020). During our initial search over the space of hyperparameters, we observed that the learning rate
plays a key role above all others. We report the results of a learning rate sweep in Figure 3 together with two reference
results: [I] the ImageNet-pretrained model, [II] a pre-trained ResNet-50 fine-tuned using unrestricted data augmentation
with all available corruptions. We focus on accuracy on clean and noisy data and observe the following: Robustness to seen
environments is at odds with performance on unseen environments. There is also a trade-off between achieving a small
systematic robustness gap and good robust accuracy that doesn’t exist when we apply noise augmentation to all classes.
We conducted an identical learning rate sweep for the latter case, and found that performance is much less sensitive to the
learning rate and monotonically increases with it for the entirety of the range we examined.

Corrupting an image introduces spurious but salient visual features that can easily be picked up by the model to distinguish
classes from different environments. What happens we consider a transformation that does not affect the image statistics
as dramatically? To this end, we fine-tune pre-trained ResNet-50 models with different learning rates on data from two
environments: {E0,ER}. Images from the second environment are rotated with a probability of p = 0.5 by an angle



Figure 3. Clean and noise-robust accuracy of pre-trained ResNet-50 models after additional fine-tuning with selective Gaussian noise
augmentation. Gaussian noise is applied with p=0.5 to 25% of the available classes. [I] is a reference pre-trained model, and [II] is a model
fine-tuned with noise augmentation applied to every class. This illustrates the trade-off between in-domain and out-of-domain robustness.

sampled from the set {18◦, 36◦, 54◦72◦, 90◦}. Since rotating an image by a right angle does not introduce any artifacts
from interpolation, we measure robustness rotation only for 90◦. We plot the validation accuracy throughout training for
three such models together with three models trained with selective noise augmentation. The results can be seen in Figure 4.
We see a significant difference in behaviour between models trained for noise-robustness vs. models trained for rotation
robustness.

A.2. Comparing across Class Sets

So far we have examined a single model, and split classes randomly among different environments. (1) What happens when
we consider different class splits, especially in light of the numerous fine-grained classes in ImageNet? (2) Do we observe
different behaviour when considering a different class of models?

The size and diversity of ImageNet classes allows us to analyse the behaviour of the ERM baseline under various conditions,
which we summarise in Tab. 2. We both increase and decrease the size of C1 from 25% to 50% and 10% respectively.
We also consider the smaller subsets 200adv and 150det. Finally, we can leverage the class structure of ImageNet,
specifically the availability of a large number of fine-grained classes. This echoes the recommendation of Shankar et al.
(2020), who recommend distinguishing between animate and inanimate objects for evaluation. We go further and examine
the case where the training conditions for (mostly) animate objects depart from other classes. We find that for example when
all the fine-grained classes are in the corruption set, that the robustness gap increases, also w.r.t. to the opposite case: when
no super-classes are in the corruption set. For more details on how we construct these splits please consult the supplementary
material.

A.3. Feature Alignment: Corruptions vs. Rotations

We experimented with several domain adaptation and generalisation methods from the literature, but found that one class
of methods was able to improve over the simple ERM baseline. These methods are based on aligning features across
environments or instances by means of an appropriate loss term. These are also relevant in “self-supervised” learning,
where the goal is to extract representations that are invariant to a predefined set transformations that normally preserve
label semantics, such as changes in scale or illumination. We experiment with three different schemes to construct image
pairs depicted in Appendix A.3: (1) pairview results in pairs that differ only in a single property Tk e.g. clean vs. noisy, (2)
pairinstance samples two different crops from the same image before applying Tk to one of them, and (3) pairclass samples
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Figure 4. Validation accuracy for two sets of models trained either with selective noise (N ) or selective (R) augmentation at different
learning rates. We observe that with the models trained for noise robustness, a quick adaptation occurs in the early iterations, then noise
is used as a spurious feature depending on the learning rate. This is different from the behaviour for the rotation-robust models, where
performance on the unseen environment is largely unaffected by performance on seen ones.

two images from the same class. This give us a more fine-grained picture of any improvements to systematic robustness. In
addition to a simple classification loss (CLS) we consider three different loss terms: (1) COS, a simple cosine similarity
term applied to the final layer embeddings of an image pair, (2) VICReg (Bardes et al., 2021), which is a recent loss term
used for self-supervised learning that adds variance and covariance terms to an invariance loss similar to COS, and (3)
MMD (Li et al., 2018) which is a domain adaptation method for aligning the statistics across different environments. Unlike
the first two, the latter does not require aligned image pairs. The results can be seen in Appendix A.3. What we can observe
is that the different objective functions do not improve significantly over the baseline trained with just classification loss. We
should note that we reduced the learning rate for CLS in keeping with our findings from earlier sections. What also sticks
out is that the alignment losses only improve over CLS in the pairview setting, i.e. when the images are perfectly aligned,
suggesting that the network perhaps is learning to compensate for specific corruptions. To follow up on this, we trained
ResNet-18 models on a subset of ImageNet, applying the cosine similarity loss to certain environments (see Tab. 3). Perhaps
surprisingly, even when we align three out of four environments to the default one, there is no benefit to the remaining one.
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Figure 5. We experiment with three different schemes for constructing image pairs for feature alignment objectives. This shows a simple
dataset with three environments: clean (green), noisy (red), and blurry (blue). In the first setting, we pair copies of the same image from
different environments, in the second we sample a different view of the same instance, and in the third we pair images from the same class.
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Figure 6. Various feature alignment objectives applied to both models trained or corruption robustness (three groups on the left) and
rotation robustness. The alignment objectives improve over the vanilla classification loss only when we have the same view of the same
instance.



Training Settings Performance

Dataset |CN |/|C| (T0 × · ) (TN × · )
C C CN CN ρN

150det
Ø 80 29 29 30 -

0.5 78 61 70 53 0.59
1.0 79 71 71 71 -

200adv
0.0 88 40 40 40 -
0.5 88 73 79 66 0.66
1.0 88 81 81 81 -

1000cls

0.0 76 32 32 32 -
0.1 77 51 69 49 0.46

0.25 76 57 66 54 0.69
0.5 76 61 64 57 0.78

0.5 (all superc.) 76 60 68 52 0.56
0.5 (no superc.) 76 60 57 63 0.81

1.0 76 68 67 68 -

Table 2. Top-1 accuracy measured on the ImageNet and ImageNet-C vali-
dation sets, for different class splits together with combinatorial robustness
measure ρ as applicable. Interestingly, the class split appears to have a
significant effect on transfer ability.

Objective Cosine Similarity

Aligned to C Noise (N ) Blur (B) Digital (D) Weather (W)

N B W D C1 C2 ρN C1 C2 ρB C1 C2 ρD C1 C2 ρW

(pretrained) 29 26 - 43 44 - 32 25 - 32 31 -
- - - - 72 42 0.34 68 45 0.05 76 32 0.10 75 48 0.37DDD D 67 60 0.81 64 57 0.65 72 52 0.56 71 64 0.81

D - - - 70 61 0.80 63 39 0.00 72 24 0.00 69 29 0.00
- D - - 70 37 0.23 66 56 0.54 74 26 0.00 72 35 0.10
- - D - 68 29 0.04 65 39 0.00 76 54 0.56 72 35 0.09
- - - D 70 33 0.13 66 37 0.00 73 27 0.00 76 70 0.87

DDD - 68 60 0.81 64 56 0.61 73 22 0.00 72 64 0.82DD - D 68 59 0.79 63 55 0.61 73 52 0.54 70 31 0.00D - D D 68 60 0.80 64 37 0.00 73 54 0.58 72 65 0.83
- DD D 68 25 0.00 64 56 0.59 74 52 0.54 72 65 0.82

Table 3. We apply an objective function for aligning features across envi-
ronments selectively to different subsets of environments. What we see
is that any improvements to robustness are limited to the the aligned en-
vironments. This suggests that we are learning specific invariances – or
rather learning to compensate for specific corruptions – rather than learning
domain-invariant features.


