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ABSTRACT

Recent work in black-box adversarial attacks for NLP systems has attracted at-
tention. Prior black-box attacks assume that attackers can observe output labels
from target models based on selected inputs. In this work, inspired by adversarial
transferability, we propose a new type of black-box NLP adversarial attack that
an attacker can choose a similar domain and transfer the adversarial examples to
the target domain and cause poor performance in target model. Based on domain
adaptation theory, we then propose a defensive strategy, called Learn2Weight,
which trains to predict the weight adjustments for target model in order to defense
the attack of similar-domain adversarial examples. Using Amazon multi-domain
sentiment classification dataset, we empirically show that Learn2Weight model
is effective against the attack compared to standard black-box defense methods
such as adversarial training and defense distillation. This work contributes to the
growing literature on machine learning safety.

1 INTRODUCTION

As machine learning models are applied to more and more real-world tasks, addressing machine
learning safety is becoming an increasingly pressing issue. Deep learning algorithms have been
shown to be vulnerable to adversarial examples (Szegedy et al., 2013; Goodfellow et al., 2014;
Papernot et al., 2016a). In particular, prior black-box adversarial attacks assume that the adversary is
not aware of the target model architecture, parameters or training data, but is capable of querying
the target model with supplied inputs and obtaining the output predictions. The phenomenon that
adversarial examples generated from one model may also be adversarial to another model is known
as adversarial transferability (Szegedy et al., 2013).

Motivated by adversarial transferability, we conjecture another black-box attack pipeline where the
adversary does not even need to have access to the target model nor query labels from crafted inputs.
Instead, as long as the adversary knows the task of the target, he can choose a similar domain, to
build a substitute model and then attack the target model with adversarial examples that are generated
from the attack domain.

Figure 1: Diagrammatic representation of the problem

Attack Domain Target Domain

Attack Data

Attack Model

Correctly 
classified 
sentences

Misclassified 
sentences

labelslabels

Adversarial 
attack 

algorithm

1

2

3

Adversarial 
samples

labels

4

Target Data

Target Model

05

Predicted labels 
for adversarial 

samples

6

(a) Generalized architecture of similarity-based at-
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The similar-domain adversarial attack may be more practical than prior blackbox attacks as label
querying from target model is not needed. This attack can be illustrated with the following example
(Figure 1b) in medical insurance fraud (Finlayson et al., 2019). Insurance companies may use
hypothetical opioid risk models to classify the likelihood (high/low) of a patient to abuse the opioids
to be prescribed, based on the patient’s medical history as text input. Physicians can run the original
patient history through the attack pipeline to generate an adversarial patient history, where the original
is more likely to be rejected (”High” risk) and the adversarial is more likely to be accepted (”Low”
risk). Perturbations in patient history could be, for example, a slight perturbation from ”alcohol
abuse” to ”alcohol dependence”, and it may successfully fool the insurance company’s model.

Based on domain adaption theory (Ben-David et al., 2010), we conjecture that it is the domain-variant
features that cause the success of the similar-domain attack. The adversarial examples with domain-
variant features are likely to reside in the low-density regions (far away from decision boundary) of
the empirical distribution of the target training data which could fool the target model (Zhang et al.,
2019b). Literature indicates that worsened generalizability is a tradeoff faced by existing defenses
such as adversarial training (Raghunathan et al., 2019) and domain generalization techniques (Wang
et al., 2019). In trying to increase robustness against adversarial inputs, a model faces a tradeoff of
weakened accuracy towards clean inputs. Given that an adversarial training loss function is composed
of a loss against clean inputs and loss against adversarial inputs, improper optimization where the
latter is highly-optimized and the former weakly-optimized does not improve general performance in
the real-world. To curb this issue, methods have been proposed (Zhang et al., 2019b; Lamb et al.,
2019; Schmidt et al., 2018), such as factoring in under-represented data points in training set.

To defend against this similar-domain adversarial attack, we propose a weight transfer network
approach, Learn2Weight, so that the target model’s decision boundary can adapt to the examples
from low-density regions. Experiments confirm the effectiveness of our approach against the similar-
domain attack over other baseline defense methods. Moreover, our approach is able to improve
robustness accuracy without losing the target model’s standard generalization accuracy.

Our contribution can be summarized as follows:

• We are among the first to propose the similar-domain adversarial attack. This attack pipeline
relaxes the previous black-box attack assumption that the adversary has access to the target
model and can query the model with crafted examples.

• We propose a defensive strategy for this attack based on domain adaptation theory. Experi-
ment results show the effectiveness of our approach over existing defense methods, against
the similar-domain attack.

2 RELATED WORK

Recent work in adversarial attack for NLP systems has attracted attention. See (Zhang et al., 2020)
survey for an overview of the adversarial attack in NLP. Existing research proposes different attack
methods for generating adversarial text examples (Moosavi-Dezfooli et al., 2016; Ebrahimi et al.,
2018; Wallace et al., 2019). The crafted adversarial text examples have been shown to fool the
state-of-the-art NLP systems such as BERT (Jin et al., 2019). A large body of adversarial attack
research focuses on black-box attack where the adversary builds a substitute model by querying the
target model with supplied inputs and obtaining the output predictions. The key idea behind such
black-box attack is that adversarial examples generated from one model may also be mis-classified
by another model, which is known as adversarial transferability (Szegedy et al., 2013; Cheng et al.,
2019). While prior work examines the transferability between different models trained over the same
dataset, or the transferability between the same or different model trained over disjoint subsets of a
dataset, our work examines the adversarial transferability between different domains, which we call
similar-domain attack.
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Attack domain: baby, Target domain: books
Original sentence
(Actual label: Pos)

I purchased this toy for my son when he was 4 months old. At first, he seemed
a little intimidated by the toys. Pos (0.712)

Adversarial sentence I obtained this toys for my children when he was 4 weeks senior. At first, he
hoped a modest harassed by the toy. Neg (0.364)

Original sentence
(Actual label: Pos)

It felt like a big commitment for me to have to run the program 2 times a day,
and near the end of my pregnancy I was annoyed with having anything
strapped across my belly.

Pos (0.825)

Adversarial sentence
It felt like a big committed for me to have to run the program 2 length a day, and
near the end of my pregnancy I was annoyed with takes anything strapped
across my belly.

Neg (0.420)

Attack domain: dvd, Target domain: baby
Original sentence
(Actual label: Pos)

Fast times at ridgemont high is a clever, insightful, and wicked film! It is not
just another teen movie. Pos (0.614)

Adversarial sentence Sooner days at ridgemont high is a sane, thoughtful, and wicked flick! It is not
just another adolescent flick. Neg (0.335)

Original sentence
(Actual label: Pos)

This dvd gives a very good 60 minute workout. As others have pointed out the
cardio is very dancy. The first time I did it, I felt a bit awkward with the steps. Pos (0.647)

Adversarial sentence This dvd gives a awfully okay 60 minute exercise. As others have pointed out the
cardio is very dancy. The first time I did it, I perceived a bit awkward with the steps. Neg (0.258)

Table 1: Comparison of attack domain sentences correctly classified when unperturbed by respective attack
domain models and target domain models, then misclassified after perturbation by target models trained on
books and baby domain. The perturbations are in blue, and prediction confidence in brackets.

3 SIMILAR-DOMAIN ADVERSARIAL ATTACK

3.1 ADVERSARIAL ATTACK BACKGROUND

Adversarial attacks modify inputs to cause errors in machine learning inference (Szegedy et al., 2013).
We utilize the basic gradient-based attack method Fast Gradient Sign Method (FGSM) (Goodfellow
et al., 2014) and its variants, RAND-FGSM (Tramèr et al., 2017) and Basic Iterative Method (BIM)
(Kurakin et al., 2016a;b; Xie et al., 2018). Other NLP adversarial generation algorithms could also be
used, such as DeepFool (Moosavi-Dezfooli et al., 2016), HotFlip (Ebrahimi et al., 2018), universal
adversarial trigger (Wallace et al., 2019), and TextFooler (Jin et al., 2019). To perform gradient-based
perturbations upon discrete space data, we follow (Yang et al., 2018) to generate adversarial text.

Our proposed similar-domain adversarial attack is in-variant to adversarial algorithm, meaning that
the adversarial algorithm used would not affect the attack performance. Without losing generality, we
denote Adv(f, x) as an NLP adversarial text generation method, defined as below.

Definition 1. NLP Adversarial Generation. Given a deep neural network model f built on text
data X , an NLP adversarial generation method produces one adversarial instances x′ ← Adv(f, x) for
x ∈ X , x′ ≈ x. The goal of the adversarial attack is to deviate the label to incorrect one f(x′) 6= f(x).

3.2 SIMILAR-DOMAIN ADVERSARIAL ATTACK

We present the architecture of similar-domain adversarial attack in Figure 1a. The defender, the
target of the attack, constructs a target model trained on domain text data T (0). An attacker, only
having a rough idea about the target’s task but lacking direct access to the target data or target model
parameters, collects attack data from a similar domain S and trains an attack model (1). He runs the
attack model on the test data (2) to obtain correctly-classified instances (3). He chooses an adversarial
attack algorithm and generates a set of adversarial samples A (4). He exposes A to the target model,
hoping A mislead the target model to produce an output of his choice (5). This type of attack works
best as an adversarial attack that compromises systems that base decision-making on one-instance.

Definition 2. Similar-domain Adversarial Attack. A target model f , built on target domain data
T , is a deep neural network model with parameter weights WT that maps a text instance to a label:
y ← f(X,WT ). An adversary chooses a source attack domain S, builds a substitute model fS ,
and generates a set of adversarial examples A from S using Adv(fS , S), so that during an attack
f(A,WT ) = fS(A).

3



Under review as a conference paper at ICLR 2021

Target Domain book magazine baby
Original Accuracy 0.880 0.960 0.890
Intra-attack Accuracy 0.525 0.570 0.632
Attack Domain magazine baby dvd baby dvd book dvd book magazine
Unperturbed Accuracy 0.726 0.646 0.745 0.739 0.663 0.673 0.624 0.652 0.665
After-attack Accuracy 0.398 0.421 0.395 0.381 0.366 0.343 0.365 0.386 0.401
Shared Vocab 0.381 0.255 0.455 0.260 0.345 0.381 0.270 0.255 0.260
Transfer Loss 0.017 0.071 0.000 0.079 0.022 0.010 0.066 0.050 0.069

Table 2: Similar-domain attack performance. Bold indicates the least successful attack domain (i.e.
highest after-attack accuracy) for each target domain, as well as the corresponding transfer loss value.

3.3 DOMAIN SIMILARITY

Here, domain similarity refers to the similarity between attacker’s chosen domain and defender’s
domain. SharedVocab measures the overlap of unique words, in each of the datasets; a higher degree
of overlapping vocabulary implies the two domains are more similar. We also use Transfer Loss, a
standard metric for domain adaptation Blitzer et al. (2007); Glorot et al. (2011), to measure domain
similarity; lower loss indicates higher similarity. The test error from a target model trained on target
domain T and evaluated on attack domain S returns transfer error e(S, T ). The baseline error e(T, T )
term is the test error obtained from target model trained on target domain (train) data T and tested on
target domain (evaluation) data T . This computes the transfer loss, tf(S, T ) = e(S, T )− e(T, T ).

4 IS THE ATTACK EFFECTIVE?

4.1 SETUP

Dataset. We simulate the similar-domain adversarial attack using Amazon’s multi-domain sentiment
classification dataset (Blitzer et al., 2007), a commonly-used dataset in cross-domain sentiment
classification1, with 1,000 positive and 1,000 negative reviews for each of the 25 product categories.

Model. In practice, there could be unlimited choice for the attack model and target model, such as
different deep learning architecture, different training parameters. To simplify the discussion, we
choose Long Short-Term Memory (LSTM) network as a suitable baseline sentiment classification
model (Wang et al., 2018) for our target model and attack model. The architecture consists of 64
LSTM cells, 80% dropout, using a sigmoid activation function.

Metrics. We first report the accuracy of the target models on the target domain test samples before
the attack as the original accuracy. Then we measure the accuracy of the target models against
adversarial samples crafted from the attack domain samples, denoted as the after-attack accuracy.
Intra-attack accuracy denotes the after-attack accuracy where the attack domain is identical to the
target domain. By comparing original and after-attack accuracy, we can evaluate the success of
the attack. The greater the gap between the original and after-attack accuracy, the more successful
the attack. Unperturbed accuracy measures the accuracy of the target model against the complete,
unperturbed test set of the attack domain, to demonstrate that any drop in classification accuracy is
not from domain shift alone but from adversarial transferability.

4.2 RESULTS

The similar-domain adversarial attack results are presented in Table 2. We see a significant gap
between original accuracy and after-attack accuracy indicating that this attack can impose valid threat
to a target NLP system. After the similar-domain adversarial attack, the accuracy drops dramatically
by a large margin. Take the book target domain for example, when the attack domain is magazine,
the after-attack accuracy drops to 0.398, and when the attack domain is baby, the accuracy is 0.421.
Moreover, we observe a positive correlation between transfer loss and after-attack accuracy, and a
negative correlation between shared vocab and after-attack accuracy.

1Data is available from https://www.cs.jhu.edu/˜mdredze/datasets/sentiment/
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5 DEFENDING AGAINST SIMILAR-DOMAIN ADVERSARIAL ATTACK

In order to defend against a similarity based adversarial attack, it is critical to block adversarial
transferability. Adversarial training is the most intuitive yet effective defense strategy for adversarial
attack (Goodfellow et al., 2014; Madry et al., 2017). However, this may not be effective for two
reasons. First, there is no formal guidance for generating similar-domain adversarial examples
because the defender has no idea what the attack data domain is. Second, simple feeding the target
model with adversarial examples may even hurt the generalization of the target model (Raghunathan
et al., 2019; Zhang et al., 2019a; Su et al., 2018), which is also confirmed in our experiments.

5.1 WEIGHT TRANSFER LEARNING

The use of weight transfer networks (Ha et al., 2016; Hu et al., 2018; Kuen et al., 2019) is concerned
with adapting weights from one model into another, and generating/predicting the complete set of
weights for a model given the input samples. In our context, distinctly different weights are produced
for target models trained on inputs of different domains, and feature transferability (Yosinski et al.,
2014) in the input space can be expected to translate to weight transferability in the model weights
space. Rather than completely regenerating classification weights, our model robustification defense,
Learn2Weight L2W predicts the perturbation to existing weights (W ′ = W +∆W) for each new instance.

5.2 LEARN2WEIGHT MODEL

We conjecture that an effective defense strategy is to perturb the target model weights depending
on the feature distribution of the input instance. L2W (Algorithm 1) recalculates the target model
weights depending on the input. L2W (Algorithm 2) trains on sentences from different domains and a
weight differential for that domain (the weight adjustment required to tune the target model’s weights
to adapt to the input’s domain). We obtain the weight differential ∆W by finding the difference
between the weights of f trained on sentence:label pairs from a specific domain WSj

and weights of
f trained on sentence:label pairs from the target domain WT . Other training models may be possible;
here we trained a sequence-to-sequence network (Sutskever et al., 2014) on sentence:∆W pairs.

Algorithm 1:
Learn2Weight: Inference
inference (Xadv

i , L2W (·), f(WT , T ))
Input :Passed arguments include

the adversarial input Xadv ,
the Learn2Weight model
L2W (·), and the target
model f(WT , T )

Output :Target model with weighted
updated by Learn2Weight
f(W ∗, T ) is the expected
output

Pass Xadv
i as in input into the trained

L2W (·) function, and the weight
differential required for the target
model with weights WT is ∆W .

∆Ŵ ← L2W (Xadv
i );

The returned function is the target
model with updated weights
WT + ∆W .

return f(WT + ∆Ŵ , T );

Algorithm 2:
Learn2Weight: Training
train (T,D)

Input :Target domain T = {Ti}Ni=0; Set of M
domains D = {Si,j}N,M

i,j=0; with N sentences,
i indexing specific sentence tensor and
j indexing specific domains

Output :Trained Learn2Weight model L2W (·)

Initialize empty X and Y to store sentences Xi from
each domain j with corresponding weight differential.
X ← ∅; Y ← ∅;

Compute weights of f trained on T .
WT ← f(T );
X ← T ; Y ←WT −WT ;

Train each domain Sj , compute respective weights,
append the differential ∆W to Y and each sentence in
Si,j into X .

foreach domain Sj ∈ D do
WSj ← f(Sj);
∆W ←WSj −WT ;
X ← Sj ; Y ← ∆W ;

Train a sequence model on {X : Y } pairs, and return
the model as Learn2Weight L2W .

return L2W (X,Y );
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Algorithm 3: tf-optimization
tfOptimization (T,M, nmax)

Input :Target domain T = {Ti}Ni=0 to be used in synthesizing M similar domains; with N sentences,
i indexing specific sentence tensor; nmax is the max number of tf-optimization iterations

Output :Set D containing M domains

Initialize empty D to store synthesized domains Sj of index j.
D ← ∅; j ← 0;

while j < M do
Run each iteration until nmax.
for iter ← 0 to nmax do

Apply adversarial perturbations to T .
T adv
iter ← Adv(f, T );

Determine change to Adv(·) or iter depending on computed transfer loss.
if check(tf(T adv

iter , T ))← True then
If low enough, T adv

iter can be added as synthetic domain into D.
D ← T adv

iter ;
break;

else
Adjust perturbation parameters.
Adv(·)← adjust(Adv(·));

j ← j + 1;

Return set of Domains to be used for training by L2W .
return D;

5.3 TRANSFER LOSS OPTIMIZATION

To generate synthetic domains of varying domain similarity so that defenders defend their model using
only target domain data T , the following equation introduces transfer loss optimization (Algorithm
3). The defender iteratively generates adversarial examples Xadv

N while maximizing the transfer loss
function tf ; this produces a substitute attack domain corpora Sj . We iteratively adjust perturbation
parameters Adv(·) and iteration count N to minimize the transfer loss of our generated dataset.

arg min
N,Adv(·)

tfN
(
Xadv

N , T
)

= e
(
Adv(f, T ), T

)
− e

(
T, T

)
5.4 EXPLANATION: BLOCKING TRANSFERABILITY

To facilitate our explanation, we adapt from domain adaptation literature (Ben-David et al., 2010; Liu
et al., 2019; Zhang et al., 2019c):

e(A, T ) ≤ e(T, T ) + dH∆H(A, T ) + λ

whereH is the hypothesis space, h is a hypothesis function that returns labels {0, 1}, and e(T, T )
and e(A, T ) are the generalization errors from passing target domain data T and adversarial data A
through a classifier trained on T . dH∆H(A, T ) is theH∆H-distance between T and A, and measures
the divergence between the feature distributions of A and T . eA(h, h

′
) and eT (h, h

′
) represents the

probability that h disagrees with h
′

on the label of an input in the domain space A and T respectively.
dH∆H(A, T ) = sup

h,h
′∈H
|eA(h, h

′
)− eT (h, h

′
)|

dH∆H(A, T ) = suph,h
′∈H

∣∣∣EX∼S [|(h(x)− h
′
(x)|]

∣∣∣
−

∣∣∣EX∼T [|(h(x)− h
′
(x)|]

∣∣∣
Divergence dH∆H measures the divergence between feature distributions A and T . Higher dH∆H
indicates less shared features between 2 domains. The greater the intersection between feature
distributions, the greater the proportion of domain-variant features; one approach to domain adaptation
is learning domain-invariant features representations (Zhao et al., 2019) to minimize dH∆H.
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Target Domain magazine baby
Attack Domain baby dvd book dvd book magazine
After-attack Accuracy 0.381 0.366 0.343 0.365 0.386 0.401
After-defense Accuracy
Adversarial training 0.639 0.559 0.657 0.558 0.577 0.661
Defensive distillation 0.549 0.561 0.597 0.588 0.629 0.577
SharedVocab defense 0.628 0.653 0.631 0.664 0.668 0.621
Domain-adapted adversarial training 0.608 0.637 0.620 0.604 0.620 0.587
Learn2Weight 0.796 0.842 0.843 0.774 0.751 0.737

Table 3: After-defense accuracy performance of different defensive methods.

Explaining similarity-domain attacks. As demonstrated by empirical results, e(A, T ) increases in
a similarity-based attack setting, and this would arise if dH∆H increases correspondingly. dH∆H
computes inconsistent labels from inconsistent feature distributions, and attributes the success of the
attack to domain-variant features.

FGSM and variants adjust the input data to maximize the loss based on the backpropagated gradients
of a model trained on S. As our pipeline used correctly-labelled sentences before adversarially
perturbing them, we can infer that perturbations applied to S were not class-dependent (i.e. the
success of the attack is not based on the removal of class-specific features), but class-independent
features. It is already difficult for a model trained on S to classify when there is insufficient class-
dependent features (hence a high tf(A, T )); in a cross-domain setting, it must be even more difficult
for a model trained on T to classify given a shortage of domain-invariant, class-dependent features.

dH∆H ≤ e(A, T )− e(T, T )− λ

dH∆H ≤ tf(A, T )− λ

Explaining Learn2Weight. L2W minimizes divergence by training on {dH∆H(Sj , T ) : ∆WA Sj
} pairs,

dH∆H(Sj , T ) being reconstructed from the difference between x
Sj

i and xT
i . L2W is trained on

{d
Sj
H∆H}

N
j=0 : {∆W

Sj }Nj=0 pairs, such that ∆Ŵ
Sj = L2W (d

Sj
H∆H) . Intuitively the target model possesses

a decision boundary (Liu et al., 2019) to classify inputs based on whether they cross the boundary
or not; adversarial inputs have a tendency of being near the boundary and fooling it. Weights
transfer learning applies perturbations to the decision boundary such that the boundary covers certain
adversarial inputs otherwise misclassified, and in this way blocks transferability. The advantage of
training on multiple domains {Sj}Mj=0 is that the after-L2W divergence between A and T is smaller
because L2W ’s weight perturbations render the decision boundary more precise in classifying inputs.

Explaining tf-optimization. We have attributed why adversarial sentences A are computed to be
domain-dissimilar despite originating from S due to insufficient domain-invariant, class-dependent
features resulting in low e(A, T ), i.e. low tf(A, T ). To replicate this phenomenon in natural domains,
we use tf -optimization to iteratively perturb T to increase the proportion of class-independent
features. This approximates the real-world similarity-based attack scenario where class-dependent
features may be limited for inference. By generating the synthetic data, we are feeding L2W attack
data with variations in dH∆H and class-independent feature distributions. This prepares L2W to
robustify weights in f(T ) when such feature distributions are encountered.

6 EXPERIMENTS

6.1 BASELINES

We consider two defense strategies that are empirically effective and are widely used for general
black-box adversarial attacks: adversarial training (Goodfellow et al., 2014; Madry et al., 2017) and
defensive distillation (Papernot et al., 2016b; 2017). In addition we consider two ablation baselines.

Defensive distillation: The high-level implementation of defensive distillation (Papernot et al.,
2016b; 2017) is to first train an initial model against target domain inputs and labels, and retrieve the
raw class probability scores. The predicted probability values would be used as the new labels for the
same target sentences, and we would train a new model based on this new label-sentence pair.

7



Under review as a conference paper at ICLR 2021

Target
Domain

Original
Accuracy

Attack
Domain

Attack Model
After-attack Accuracy After-Defense Accuracy

Target Model: LSTM BERT LSTM GRU CNN LogReg BERT LSTM GRU CNN LogReg

book 0.880
dvd 0.342 0.413 0.477 0.335 0.440 0.786 0.847 0.804 0.816 0.782
kitchenware 0.350 0.372 0.325 0.353 0.425 0.765 0.826 0.795 0.742 0.767
electronics 0.400 0.389 0.416 0.315 0.460 0.792 0.812 0.784 0.770 0.725

dvd 0.920
book 0.326 0.434 0.479 0.383 0.490 0.816 0.795 0.824 0.804 0.794
kitchenware 0.355 0.370 0.379 0.359 0.490 0.728 0.796 0.755 0.735 0.695
electronics 0.387 0.377 0.332 0.348 0.455 0.825 0.836 0.812 0.834 0.796

electronics 0.910
book 0.425 0.394 0.473 0.358 0.474 0.775 0.821 0.795 0.782 0.712
dvd 0.342 0.395 0.452 0.368 0.493 0.784 0.845 0.855 0.842 0.792
kitchenware 0.390 0.384 0.464 0.329 0.432 0.730 0.824 0.753 0.724 0.678

Table 4: Learn2Weight comparison against different attack model architectures.

Adversarial training: It is shown that injecting adversarial examples throughout training increases
the robustness of target neural network models. In this baseline, target model is trained with both
original training data and adversarial examples generated from original training data. However, since
the adversarial examples are still generated from the target domain, it is unlikely that the method can
defend similar-domain attack which is the result of domain-variant features.

SharedVocab defense. Given that it is the domain-variant features that cause the success of similar-
domain attack, a simple baseline is to remove those words that are not in the target domain’s
vocabulary. This tests whether the effect of perturbing target model weights w.r.t domain-variant
features will yield incremental after-attack accuracy in the similar-domain attack setting.

Domain-adapted adversarial training. This ablation baseline tests for incremental performance
to a baseline defense using domain-variant inputs. We adapt adversarial training to be trained on
adversarial sentences from attack domain S, whereas the traditional adversarial training generates
adversarial samples Xadv,T from its training data T , this adapted version uses adversarial samples
Xadv,S generated from S.

6.2 LEARN2WEIGHT PERFORMANCE

Defense performance. We present the results of different defense baselines in Table 3. First, we can
see that Learn2Weight achieves the highest after-defense accuracy against the adversarial attack. Take
the magazine as target domain for example, if the adversary chooses to use book data as the attack
domain, it would reduce the target model accuracy to 0.343. However, the Learn2Weight method
can improve the performance to 0.843, which is a significant and substantial improvement against
the attack. This improvements also exist across different target/attack domain pairs. Second, we see
that all defense methods can improve the accuracy to some extent which indicates the importance
and effectiveness of having robust training for machine learning models. Third, it is interesting to
note that two simple baselines SharedVocab defense and Domain-adapted adversarial training yield
overall better performance compared to adversarial training and defensive distillation.

Attack model architectures. So far, all the results are conducted using the same LSTM as the
target/attack model due to simplicity purpose. Here, we keep the target model unchanged, but vary
the architecture of the attack model for the generation of adversarial examples. A variation of a
Recurrent Neural Network is a Gated Recurrent Unit (GRU) network, with 512 GRU cells, 60%
dropout and tanh activation function. We have also tested other attack model variants that are
commonly-used in sentiment classification, including Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019), Convolutional Neural Network (CNN) (Kim, 2014), and
Logistic Regression (Maas et al., 2011). For both RNN and CNN, we use pre-computed Glove
embeddings2 to encode words. All models are trained with enough epochs after ensuring the model
achieved near state-of-the-art validation accuracy before proceeding to tests of adversarial attacks
and defenses.

We present the results of different attack model architectures in Table 4. First, similar-domain attack
is model-agnostic and it does not require the target and attack model to have identical architectures.

2Embeddings available from https://nlp.stanford.edu/projects/glove/
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We can see that all four attack model architectures are able to reduce the target model accuracy.
Second, the results suggest that Learn2Weight is also model-agnostic as it can substantially improve
the after-defense accuracy regardless which attack model is used.

7 CONCLUSION

In this newly-proposed, empirically-effective similar-domain attack, an adversary can choose a similar
domain to the target task, build a substitute model and produce adversarial examples to fool the target
model. We also propose a defense strategy, Learn2Weight, that learns to adapt the target model’s
weight using crafted adversarial examples. Compared with other adversarial defense strategies,
Learn2Weight can improve the target model robustness against the similar-domain attack. Our
method demonstrates properties of a good adversarial defense, such as adopting defense architectures
that adapt to situations/inputs rather than compromising standard error versus robustness error, to
leverage class-independent properties in domain-variant text, and factoring in domain similarity in
adversarial robustness exercises.
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