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Abstract

Bayesian inference is intractable for most practical problems and requires approximation
schemes with several trade-offs. Variational inference provides one of such approximations
which, while powerful, has thus far seen limited use in high-dimensional applications due
to its complexity and computational cost. This paper introduces a scalable, theoretically-
grounded, and simple-to-implement algorithm for approximate inference with a variational
Gaussian distribution. Specifically, we establish a practical particle-based algorithm to
perform variational Gaussian inference that scales linearly in the problem dimensionality.
We show that our approach performs on par with the state of the art on a set of challenging
high-dimensional problems.

1. Introduction

Computing posterior distributions is intractable for many problems of interest. Markov
chain Monte Carlo methods struggle to scale up to large datasets (Bardenet et al., 2017) and
convergence is hard to diagnose (Cowles and Carlin, 1996). On the other hand, Variational
Inference (VI) methods can rely on well-understood optimization techniques and scale well
to large datasets, but the quality of the approximation depends heavily on the assump-
tions made. As most interesting real-world problems are typically high-dimensional, VI
techniques either make crude approximations regarding the posterior distribution, such as
mean-field (Hinton and van Camp, 1993) (every variable is assumed to be independent), or
do not scale well with the number of dimensions. An increasingly popular class of solvers
are particle-based variational methods (Gershman et al., 2012; Liu and Wang, 2016; Liu
et al., 2016; Saeedi et al., 2017). Lying at the intersection of sampling and variational in-
ference, these methods represent the variational distribution as an empirical distribution.
They then optimize the particles positions instead of the distribution parameters.

In this work we introduce Gaussian Particle Flow (GPF), a general-purpose algo-
rithm to approximate a Gaussian variational distribution with particles. GPF leverages
the Gaussian Variational Approximation (GVA) (Opper and Archambeau, 2009), a pow-
erful tool to approximate intractable posterior distributions with multivariate Gaussians.
Gaussian Particle Flow (GPF) is free of matrix inversions and second derivatives, scaling
linearly with the dimensionality of the problem. We show that, under some conditions, the
fixed-point solutions for Gaussians are exact and we have linear convergence. Finally, we
provide empirical results both in fully-controlled synthetic settings and on a set of challeng-
ing real-world problems, demonstrating that our approach easily scales to high dimensions
and achieves state-of-the-art performance.

© T. Galy-Fajou, V. Perrone & M. Opper.



Gaussian Density Parametrization Flow:Particle and Stochastic Approaches

2. Gaussian Particle Flow

2.1. Particle-Based Variational Inference

Bayesian inference aims to find the posterior distribution of a latent variable x given some
observations y: p(x|y) = p(y|x)p(x)

p(y) . Even if the likelihood p(y|x) and the prior p(x) are known

analytically, marginalizing out high-dimensional variables to compute p(y) is typically in-
tractable. VI approximates the posterior by the closest distribution within a tractable
family, with closeness being measured by the Kullback-Leibler (KL) divergence. Denoting
by Q a family of distributions, we look for arg minq∈QKL [q(x)||p(x|y)]. Since p(y) is not
known, we equivalently minimize the upper bound F :

KL [q(x)||p(x|y)] ≤ F = Eq [p(y|x)p(x)]−Hq, , (1)

where Hq is the entropy of q. Note that F is known as the variational free energy and −F
is known as the ELBO.

Stochastic gradient descent methods compute expectations (and gradients) with Monte
Carlo samples from the current approximation of the variational density independently at
each time step. Particle based methods for variational inference (ParVI) draw samples once
at the beginning of the algorithm instead. They iteratively construct a transformation on
an initial random variable (with a simple tractable density) leading to the minimization of
the variational free energy. The iterative approach induces a deterministic temporal flow
of random variables which depends on the current density of the variable itself. Using an
approximation by the empirical density (which is represented by a the positions of a set
of “particles”) one obtains an interacting particle flow which converges asymptotically to
an empirical approximation of the desired optimal variational density. A review of related
work in VI and ParVI is given in Appendix A.

2.2. Gaussian density parametrization

We want to optimize the parameters θ of a Gaussian variational distribution qθ(x) to
closely approximate the target density p(x) ∝ exp(−ϕ(x)), where x ∈ RD. For example,
for Bayesian inference, ϕ(x) = − log(p(y|x))− log(p(x)). To this end, we minimize the free
energy F described in Equation (1).

Gradient based minimization is facilitated by the so–called reparametrization trick. This
replaces the expectation over the parameter dependent variational density qθ by an expec-
tation over a fixed density q0 instead. In this way, unwanted derivatives of the type ∇θqθ(x)
are avoided. Any D dimensional random variable x ∼ qθ(x) can be constructed by a linear
parametrization of a D-dimensional Gaussian random variable x0 ∼ q0 = N (m0, C0):

x = Γ(x0 −m0) +m, (2)

where Γ ∈ RD×D and m ∈ RD are the variational parameters. The free energy is easily
obtained as a function of the variational parameters:

F(Γ,m) = − log |Γ|+ Eq0
[
ϕ(Γ(x0 −m0) +m)

]
. (3)

To minimize F(Γ,m) with respect to its parameters, we define a gradient flow Γ(t), m(t)
for t ≥ 0 in parameter space. For the matrix valued parameter Γ, we apply a natural
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gradient learning approach. This was introduced by S. Amari (1998, 7.6) as an efficient
technique for learning the mixing matrix in models of blind source separation. We give a
more detailed description on natural gradient theory in Appendix B. A combination of the
natural gradient for Γ and an ordinary gradient for m leads to the following flow:

dm

dt
= −∂F

∂m
,

dΓ

dt
= −∂F

∂Γ
Γ>Γ, (4)

where we have omitted the time dependency of the parameters. One can easily verify that
the flow guarantees a decrease of F over time. The explicit form of the flows is given by

dm

dt
=− Eq0 [∇xϕ(x)] ,

dΓ

dt
= −AΓ, (5)

where A =
(
Eq0

[
∇xϕ(x)(x−m)>

]
− I
)
. Using Stein’s lemma (Ingersoll, 1987), we can

show that the fixed-point solution of Equations (5) equal the conditions for the optimal
variational Gaussian distribution solution given in Opper and Archambeau (2009).

A standard algorithmic approach to deal with the flow equations would be to discretize
Equations (5) in time, and estimate expectations by drawing independent samples from
the fixed Gaussian q0 at each time step. A stochastic gradient version of this algorithm
would combine a small number of samples with a decreasing learning rate, we refer later
to this approach as GDP and describe all algorithms steps in Algorithm 2 in Appendix D.
Remarkably, this scheme is different from previous algorithms for Gaussian variational in-
ference (e.g., see Opper and Archambeau (2009); Titsias and Lázaro-Gredilla (2014)) as
no matrix inversions or second derivatives of the function ϕ are required. We will next
introduce a particle based algorithm as an approximation of the flow instead.

2.3. Particle dynamics

The dynamics of the parameters m and Γ induces a corresponding flow for the random
variable x via (2). Applying Equations (5) on Equation (2) we obtain:

dx

dt
=
dΓ

dt
(x0 −m0) +

dm

dt
= −A(x−m)− Eq0 [∇xϕ(x)] . (6)

Note that at each time t, A, m and Eq0 [∇xϕ(x)] still depend on the parameters Γ(t) and
m(t). In Appendix C, we also give an alternative approach solely based on linear dynamics to
obtain Equation (6), without considering parameters like m and Γ. This dependency can be
removed by undoing the reparametrization and re-introducing expectations over the induced
density qtθ of x(t) itself. The main idea of the particle approach is to approximate this
Gaussian density by the empirical distribution q̂t computed fromN samples xti, i = 1, . . . , N .
These are sampled initially from from the density q0 at time t = 0 and are then propagated
using the discretized dynamics (6):

xt+1
i = xti − ηt1Eq̂t [∇xϕ(x)]− ηt2At(xti −mt), (7)

where ηt1 and ηt2 are learning rates to avoid unstable steps and mt = 1
N

∑N
i=1 x

t
i. We give

further comments on the use of different optimization schemes in Section 3. It is easy to see
that the particle dynamics also minimizes the empirical approximation of the free energy
(3) obtained by replacing the expectation over q0 with its empirical counterpart q̂0.
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2.4. Algorithm

The algorithm we propose is to sample N particles {x0
1, . . . , x

0
N} where x0

i ∈ RD from q0

(which can be centered around the MAP), and iteratively optimize their positions using
Equation (7). Once convergence is reached, i.e., dF

dt = 0, we can easily work with the

obtained empirical distribution q̂(x) = 1
N

∑N
i=1 δx,xi or alternatively the Gaussian density it

represents, namely q(x) = N (m,C), where m = 1
N

∑N
i=1 xi and C = 1

N

∑N
i=1(xi −m)(xi −

m)>. To draw samples from q, the empirical covariance C does not need to be computed,
as we can obtain new samples by computing:

x =
1√
N

N∑
i=1

(xi −m)ξi +m, (8)

where ξi are i.i.d. normal variables: ξi ∼ N (0, 1).
All the inference steps are summarized in Algorithm 1 in Appendix D. Our algorithm

does not require computing second order derivatives and, more crucially, it also does not
involve matrix inversions (unlike GVA) and thus scales well with the dimensionality of the
problem. The complexity of the method compares favorably to GVA. In GVA we would
need to perform matrix inversions of complexity O(D3), which we avoid. The computational
bottleneck now lies in the gradients g(xi), adding a storing complexity of O(ND), and in the
matrix multiplication of A(x−m), which has a total computational complexity of O(N2D).
The direct consequence is that, for fewer particles than dimensions (N ≤ D+1), we improve
speed through a low-rank approximation of the covariance matrix.

Dynamics and fixed points for Gaussian targets We can obtain some exact theo-
retical results for the dynamics and the fixed points of our algorithm when the target is
a multivariate Gaussian density. While such targets may seem like a trivial application,
our analysis might still give some intuition about the performance for more complicated
densities.

Theorem 1 If the target density p(x) is a D-dimensional multivariate Gaussian, only D+1
particles are needed for Algorithm 1 to converge to the exact target parameters.

Proof: The proof is given in Appendix E.

Theorem 2 For a target p(x) = N (x | µ,Λ−1), where x ∈ RD, and N ≥ D + 1 particles,
the continuous time limit of Algorithm 1 will converge linearly for both the mean and the
trace of the precision matrix:

‖mt − µ‖ =e−Λt‖m0 − µ‖,

tr(
(
Ct
)−1 − Λ) =e−2ttr(

(
C0
)−1 − Λ),

where mt and Ct are the empirical mean and covariance matrix at time t and exp(−Λt) is
the matrix exponential.

Proof: The proof is given in Appendix F.
Our result shows that convergence of the mean mt depends on the eigenvalues of Λ.

From our partial result for the covariance Ct we might conjecture that convergence of Ct

could be (asymptotically) independent of the target parameters. We confirm this behaviour
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Figure 1: Inference on a multivariate Gaussian target distribution with random mean and
a) isotropic covariance b) full-rank covariance. We compare GPF and GDP with
SVGD and GVA in terms of one standard deviation around wall-clock time, dis-
tance to the true mean and the covariance matrix (y-axis) as the dimensionality
(x-axis) of the Gaussian target increases. We use D + 1 particles/samples.

a) Isotropic covariance Σ = I. b) Σ = UΛU> where U is unitary and Λii = 10
3i−1
D .

for Gaussian targets in the experiments in Section 3. We also show that good approximation
can be obtained for a moderate number of particles. If the number of particles is in fact
equal or smaller than the dimension, i.e. N < D + 1, we can show the following result for
the fixed points:

Theorem 3 Given a D-dimensional multivariate Gaussian target density p(x) = N (x|µ,Σ),
using Algorithm 1 with N < D + 1 particles, the empirical mean converges to the exact mean
µ. The N − 1 non-zero eigenvalues of Ct converge to a subset of the spectrum of the target
covariance Σ.

Proof: The proof is given in Appendix G. Supported by simulations, we conjecture that
we recover in fact the largest eigenvalues of Σ in this way. This results suggests that it
makes sense to apply our algorithm to high–dimensional problems even when the number
of particles is not large. If the target density has significant support in a low dimensional
sub–manifold only, we might still get a reasonable approximation.

3. Experiments

We now demonstrate empirically the benefits of GPF. First, we explore how the different
algorithm hyperparameters affect inference. Second, we compare the ability of GPF to
recover the target posterior distribution with popular VI methods, including SVGD ands
GVA. In particular, we work fully-controlled synthetic examples based on Gaussian tar-
get distributions with an increasing number of dimensions as well as highly non-Gaussian
posteriors. We evaluate the ability of GPF to recover the ground truth as the number of
particles increases and compare it to competing VI approaches. We use standard gradient
descent with η = 0.1 as well as a clipping on the gradient norm with a threshold ε = 10
in all our experiments. We run each experiment for 2000 iterations and aggregate results
over 10 independent runs. We also evaluate the efficiency of our algorithm on Gaussian
Processes (GP)s and Bayesian Neural Networks (BNN)s in Appendix H.
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Figure 2: Two-dimensional Banana distribution. GPF with an increasing number of parti-
cles compared to a different optimizer (ADAM) and standard GVA.

Gaussian Targets Consider aD-dimensional Gaussian target. The mean is sampled from
a normal Gaussian µ ∼ N (0, ID) and we consider two different cases for the covariance:
isotropic Σ = ID and full-rank covariance Σ = UΛU>, where U is a unitary matrix and Λ

is a diagonal matrix where Λii = 10
3i−1
D
−1. We compare GPF and GDP to two state-of-the

art methods described in Appendix A, namely SVGD and GVA. We vary the number of
dimensions D and set the number of particles or alternatively the number of samples for
GVA to D + 1. Figure 2.4 reports the L2 norm on the difference of mean and covariance
with the true posterior, and the inference time required by the competing methods. GPF
recovers the true mean and covariance at a fraction of the time required by SVGD and
GVA. The gap is more pronounced as the target dimensionality increases.

Non-Gaussian target distributions and optimizers We investigate non-Gaussian
and multi-modal target distributions. We compare different optimizers on the 2D banana
distribution: p(x) ∝ exp

(
−0.5(0.01x2

1 + 0.1(x2 + 0.1x2
1 − 10)2)

)
. We vary the number of

particles used for inference in {3, 5, 10, 20, 50} and compare GPF with the standard GVA
approach. We also show the impact of replacing SGD with Adam (Kingma and Ba, 2014)
for 50 particles. The results are shown in Figure 3. As expected, increasing the number of
particles makes the distribution obtained via GPF increasingly closer to the one obtained by
the standard GVA at much lower computational cost. Using a momentum based optimizer
such as Adam breaks the Gaussian distribution and particles concentrate on two modes.
This is caused by momentum-based optimizers breaking the linearity of Equation (6), which
could studied as a desirable property to fit multi-modal distributions in future work.

4. Conclusion

We introduced GPF and GDP, general-purpose, scalable, and theoretically-grounded ap-
proaches to perform VI. The key contribution is to leverage deterministic dynamics to
perform tractable GVA in high dimensions, making it applicable to a broad set of chal-
lenging, real-world high-dimensional problems. We also derived theoretical performance
guarantees for Gaussian targets.We studied the methods on synthetic data as well as more
challenging problems. Investigations are still needed to evaluate the effect of the empirical
estimate for the free energy, especially in the regime of a small number of particles. An-
other promising direction is the effect of momentum-based optimizers to obtain multi-modal
variational distributions.
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Appendix A. Related Work

A diverse set of approaches to perform VI have been developed in the literature, which we
review here.

High-dimensional VI The most popular approach to solve high-dimensional problems
via variational inference is (structured) Mean-Field (MF) (Hinton and van Camp, 1993;
Blei et al., 2017). By imposing independence between variables in the variational distribu-
tion, the computational complexity decreases at the cost of the approximation quality. For
Gaussian distributions the most common approach is to leverage the Gaussian Variational
Approximation (GVA) (Opper and Archambeau, 2009), where the expectation gradients
given the variational parameters can be obtained directly with a Monte-Carlo estimation.
More recently Titsias and Lázaro-Gredilla (2014) avoid the need for integrals by proceeding
to stochastic updates based on the idea of Stochastic Gradient Descent (SGD). The most
generic technique is Black-Box Variational Inference (Ranganath et al., 2014; Blei et al.,
2017), which is based on the reparametrization trick. This avoids unwanted dependencies of
the sampling distribution on parameters and yields unbiased estimates of parameter gradi-
ents. However, it is nontrivial to apply this idea to a full rank D-dimensional multivariate
variational Gaussian density. One possibility would be to resort to Cholesky factorizations
of the covariance matrix in the parametrisation. This would scale with a prohibitive O(D3)
complexity. In addition, efficient updates based on natural gradient descent methods (Khan
and Nielsen, 2018; Lin et al., 2019) require extra second derivatives of log–posteriors. These
derivatives may not be always available in a black-box scenario. Hence, extra approxima-
tions using outer products of gradients are used instead.

Particle-Based VI Stochastic gradient descent methods compute expectations (and gra-
dients) with Monte Carlo samples from the current approximation of the variational den-
sity independently at each time step. Particle based methods for variational inference draw
samples once at the beginning of the algorithm instead. They iteratively construct a trans-
formation on an initial random variable (with a simple tractable density) leading to the
minimization of the variational free energy. The iterative approach induces a deterministic
temporal flow of random variables which depends on the current density of the variable
itself. Using an approximation by the empirical density (which is represented by a the
positions of a set of “particles”) one obtains an interacting particle flow which converges
asymptotically to an empirical approximation of the desired optimal variational density.

The most popular approach is SVGD (Liu and Wang, 2016), which finds a nonpara-
metric transport map transforming a collection of particles into samples from the target
distribution based on the kernelized Stein discrepancy (Liu et al., 2016). SVGD has the
advantage of not being restricted to a parametric form of the variational distribution. On
the other hand, useful features such as an explicit expression for the variational free energy
or structured approximations, such as a mean-field method, are not yet available. A mean
field approximation could have a regularising effect for finite sample sizes in high dimen-
sions. Other limitations of SVGD are the quadratic scaling with the number of samples and
the approximation of the kernelized Stein discrepancy. This is known to not perform well
in high dimensions (Zhuo et al., 2018).
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Non-parametric Variational Inference presents a different approach where each particle
represents a Gaussian (similarly to Kernel Density Estimation in Fix and Hodges (1951)
and Cacoullos (1964) with a Gaussian kernel) and the KL-divergence between the mixture
of Gaussians and the target posterior is minimized (Gershman et al., 2012). However, due
to the complicated behavior of Gaussian densities in high-dimensions, this method does not
scale well. Variational Particle Approximation (Saeedi et al., 2017) also use particles to
represent a variational distribution, but the method is only applicable to discrete variables.

Related approaches The closest approach to our proposed method is Ensemble Kalman
Filter (Evensen, 1994), where a Gaussian distribution is repeatedly approximated by a set
of particles, iteratively moved following the Kalman filter updates. However, this method
is typically applied to an online context, which poses problems that do not hold in our vari-
ational setting (Ehrendorfer, 2007). A related method recently introduced in the context of
BNN models is Stochastic Weight Averaging - Gaussian (SWAG) (Maddox et al., 2019),
in which a set of particles obtained via stochastic gradient descent represent a low-rank
Gaussian distribution, approximating the true posterior with a prior produced by the net-
work’s regularization. While easy to implement, SWAG does not allow for incorporating
an explicit prior. Finally, we mention Normalizing Flows (NF) (Rezende and Mohamed,
2015), where bijections are sequentially stacked on top of a fixed initial distribution. The
repeated transformations on an initial distribution can be viewed as a discrete flow. This
is orthogonal to our approach and could be combined with GPF by applying NF on the
variational distribution. For instance, this makes it possible to work with different domains
than R.

Appendix B. Natural gradient for matrix parameter Γ

The natural gradient is defined as the parameter change dΓ = Γ(t + dt) − Γ(t) over a
small time interval dt which yields the direction of steepest descent of the free energy. As
an extra condition one keeps the length of dΓ (measured by a ’natural’ metric which has
specific invariance properties) fixed. The metric is defined by an inner product (the squared
length) 〈dΓ, dΓ〉Γ in the tangent space of small deviations dΓ from the matrix Γ. Hence, dΓ
is found by minimising F(Γ(t) +dΓ,m) (for small dΓ) under the condition that 〈dΓ, dΓ〉Γ(t)

is fixed. Following Amari (1998, 7.6) a natural metric in the space of symmetric nonsingular
matrices can be defined as

〈dΓ, dΓ〉Γ
.
= tr

(
(dΓ Γ−1)>dΓ Γ−1

)
.

This metric is invariant against multiplications of Γ and dΓ by matrices Y , i.e. 〈dΓ, dΓ〉Γ =
〈dΓ Y, dΓ Y 〉ΓY and reduces to the Euclidian metric at the unit matrix Γ = I.

The direction of the natural gradient is obtained by expanding the free energy for small
dΓ and introducing a Lagrange–multiplier λ for the constraint. One ends up with the
quadratic form

tr

(
∂F
∂Γ

>
dΓ

)
+ λtr

(
(dΓ Γ−1)>dΓ Γ−1

)

11
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to be minimised by dΓ. By taking the derivative with respect to dΓ one finds that the
direction of dΓ agrees with the right equation of the flow (4).

Appendix C. Free Energy as a function of particles

In Equation (3) we have the free energy F as a function of parameters Γ and m. Here
instead, we only consider the random variable x ∼ q(x), as well as its mean m = Eq [x] and
its covariance C = Eq

[
(x−m)(x−m)>

]
. The free energy as a function of x is given by

F(x) = Eq [ϕ(x)]− 1

2
log |C|.

Similarly to the derivations in Section 2, q(x) is either a Gaussian distribution q(x) ∼
N (m,C) or an empirical distribution q̂(x) = 1

N

∑N
i=1 δx,xi with a finite number of particles.

We now consider time dynamics on x, i.e. x = x(t). The induced dynamics of F are:

dF
dt

= Eq
[
∇xϕ(x)>

dx

dt

]
− 1

2
tr(C−1dC

dt
)

For notation simplicity we define g(x) = ∇xϕ(x) and ẋ = dx
dt (similarly ṁ = dm

dt ).

dC

dt
=
d

dt
Eq
[
(x−m)(x−m)>

]
=Eq

[
(ẋ− ṁ)(x−m)>

]
+ Eq

[
(x−m)(ẋ− ṁ)>

]
=Eq

[
ẋx>xẋ> − ṁm> −mṁ>

]
=Eq

[
ẋ(x−m)>

]
+ Eq

[
(x−m)ẋ>

]
dF
dt

=Eq
[
g(x)>ẋ

]
−

1

2
Eq
[
tr(C−1ẋ(x−m)>) + tr(C−1(x−m)>ẋ>)

]
=Eq

[
ẋ>
(
g(x)− C−1(x−m)

)]
(9)

where we used the permutation properties of the trace. We now study the effect of linear
dynamics on x, i.e.:

ẋ = b+A(x−m).

Plugging those dynamics into Equation (9), we get:

dF
dt

=b>Eq [g(x)] + Eq
[
(x−m)>A>g(x)

]
− Eq

[
(x−m)>A>C−1(x−m)

] (10)

where we ignored the term b>C−1Eq [x−m] as it is naturally equal to 0.

12
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We now find terms for b and A such that dF
dt < 0, i.e. the dynamics will lead to a

decrease of the free energy. We pick b = −β1Eq [g(x)], where β1 > 0, and obtain a negative
first term:

−β1‖Eq [g(x)] ‖2 ≤ 0.

For A let’s first define ψ = Eq
[
g(x)(x−m)>

]
and rewrite the second and last term of

the Equation 10 as:

Eq
[
(x−m)>A>g(x)

]
=tr

(
Eq
[
A>g(x)(x−m)>

])
=tr

(
A>ψ

)
Eq
[
(x−m)>A>C−1(x−m)

]
=tr

(
A>C−1C

)
=tr(A)

Combining both we get: tr
(
A>(ψ − I)

)
. Similarly to the previous step we pick A =

−β2 (ψ − I), where β2 ≥ 0, which leads to another negative term:

−β2tr((ψ − I)>(ψ − I)) ≤ 0,

where we use the fact that X>X is a positive semi-definite matrix for any real valued X
and that its eigenvalues are all greater or equal to 0.

Note that a different A could be used as long as the trace of the product stays positive.
Replacing b and A, the free energy dynamics become:

dF
dt

=− β1‖Eq [g(x)] ‖2 − β2tr((ψ − I)>(ψ − I))

And the variable dynamics are:

dx

dt
=− β1Eq [g(x)]− β2 (ψ − I) (x−m)

=− β1Eq [g(x)]

− β2

(
Eq
[
g(x)(x−m)>

]
− I
)

(x−m),

which is equivalent to Equation (6), for β1 = β2 = 1. As in Equation (7), when considering
a finite number of samples, we use instead an empirical approximation of the free energy
and replace the expectations by empirical estimates.

Appendix D. Algorithms

Appendix E. Fixed points for a Gaussian model (N > d)

The general fixed-point condition for the dynamics (7) of the position xi for particle i is
given by

(I − Eq̂
[
g(x)(x−m)>

]
)(xi −m)− Eq̂ [g(x)] = 0.

13
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Input: Number of particles N , initial distribution q0, target p(x), learning rates η1, η2

Output: Empirical dist. q(x) = 1
N

∑N
i=1 δx,xi

Init: Sample N particles from q0: {xi}Ni=1

for j in 1 : T do
Compute gradients gi = ∇x log p(xi), ∀i
Compute means m = 1

N

∑
i xi, ḡ = 1

N

∑
i gi

Compute matrix A = 1
N

∑
i gi(xi −m)> − I

Update particles xi = −η1ḡ − η2A(xi −m), ∀i
end

Algorithm 1: Gaussian Particle Flow (GPF)

Input: Number of samples N , initial parameters m,Γ, target p(x), learning rates η1, η2

Output: Gaussian distribution q(x) = N
(
m,ΓΓ>

)
for j in 1 : T do

Sample N samples from q0: {x0
i }Ni=1

Project the samples using m and Γ: xi = m+ Γ(x0
i −m0)

Compute gradients gi = ∇x log p(xi), ∀i
Compute means m = 1

N

∑
i xi, ḡ = 1

N

∑
i gi

Compute matrix A = 1
N

∑
i gi(xi −m)> − I

Update parameters m← m− η1ḡ, Γ← Γ− η2AΓ, ∀i
end

Algorithm 2: Gaussian Density Parametrization (GDP)

for i = 1, . . . , N . By taking the expectation over all particles we get:

Eq̂ [g(x)] = 0, (11)

where q̂ is the empirical distributions of particles at the the fixed point. Note that this
result is independent of N , i.e. it is also valid for N = 1.

For a D-dimensional Gaussian target, i.e. p(x) = N (µ,Σ), we will show that empirical
mean and covariance given by the particle algorithm converge to the true mean and covari-
ance matrix of the Gaussian when we use N ≥ D + 1 particles. In this setting we have
ϕ(x) = 1

2x
>Σ−1x− x>Σ−1µ. For simplification we use natural parameters η1 = Σ−1µ and

η2 = −1
2Σ−1 and get

ϕ(x) = −x>η2x− x>η1.

The gradient g(x) becomes:

g(x) = −2η2x− η1

14
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At the fixed points we have that dm
dt and dΓ

dt are equal to 0. For the mean m:

dm

dt
= −Eq̂ [g(x)] =0

2η2Eq̂ [x] + η1 =0

2η2m+ η1 =0

m =− 1

2
η−1

2 η1

m =µ

For the matrix Γ:

dΓ

dt
= −AΓ =0

Γ− Eq0
[
g(x)(x−m)>

]
Γ =0

Eq0
[
−(2η2x+ η1)(x−m)>

]
Γ =Γ

Eq0
[
−2(η2x− η2m)(x−m)>

]
Γ =Γ

−2η2Eq0
[
(x−m)(x−m)>

]
Γ =Γ

−2η2CΓ =Γ

−2η2C
2 =C

Where we replaced η1 by −2η2m given the previous result and right multiplied by Γ> as
C = ΓΓ>. Now we can only simplify as C = −1

2η
−1
2 = Σ iff C is not singular. Which is

true only if its rank is equal to D, needing D + 1 particles.

Appendix F. Rates of Convergence for Gaussian model

F.1. Convergence of the mean

Given a Gaussian target p(x) = N (x|µ,Σ), as described in Appendix E, we have g(x) =
−2η2x− η1, where η1 = Σ−1µ and η2 = −1

2Σ−1. This transform the of Equations (5) into:

dm

dt
=− 2η2Eq̂ [x]− η1

=− 2η2m− η1

15
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If now consider the error on m: δm = m− µ we get:

dδm

dt
=
dm

dt
= −2η2m− η1

=− 2η2(δm+ µ)− η1

=− 2η2(δm− 1

2
η−1

2 η1)

=− 2η2δm

=Σ−1δm.

Therefore we have a linear convergence which is asymptotically governed by the largest
eigenvalue of Σ−1, i.e. the inverse of the smallest eigenvalue of Σ, λmin.

F.2. Convergence of the covariance matrix

For the convergence of the covariance we focus once more on the Gaussian case. Let
z = x−m, we have that from Equation (6):

dz

dt
= −Az

where A = Eq0
[
g(x)z>

]
− I. This expectation can further simplified as:

Eq̂
[
(−2η2x− η1)z>

]
=− 2η2Eq̂

[
xz>

]
=− 2η2Eq̂

[
(x−m)z>

]
− 2η2mEq̂ [z]︸ ︷︷ ︸

:=0

(12)

=− 2η2C,

where q ∼ N (m,C). Hence we have the exact result:

dC

dt
= (2η2C + I)C + C(2Cη2 + I). (13)

We know that the optimal target is C = −1
2η
−1
2 . Therefore we define the error δC =

C + 1
2η
−1
2 . Linearizing Equation (13) gives us:

dδC

dt
=
dC

dt
+

1

2

dη−1
2

dt︸ ︷︷ ︸
:=0

=(2η2(δC − 1

2
η−1

2 ) + I)(δC − 1

2
η−1

2 )

+ (δC − 1

2
η−1

2 )(2(δC − 1

2
η−1

2 )η2 + I)

=2η2δC(δC − 1

2
η−1

2 ) + 2(δC − 1

2
η−1

2 )δCη2

≈− η2δCη
−1
2 − η

−1
2 δCη2
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We were not yet able to find a general solution of this equation, but we can obtain a simple
result for the trace yt

.
= tr(δC) at time t:

dyt

dt
' −2yt

We therefore have a asymptotic linear convergence: yt ∝ e−2ty0 which is independent of the
parameters of the Gaussian model.

We can also get an non-asymptotic estimate of a specific error measure for the precision
matrix. Using equation (13), we have the following dynamics for the precision C−1:

dC−1

dt
=− C−1dC

dt
C−1

=− C−1(I + 2η2C)− (I + 2η2C)C−1

Taking the trace

dtr(C−1)

dt
=− 2tr(C−1)− 4tr(η2)

=− 2tr(C−1)− 2tr(Σ−1)

dtr(C−1 − Σ−1)

dt
=− 2tr(C−1 − Σ−1)

Hence we get the following exact result:

tr((Ct)−1 − Σ−1) = e−2ttr((C0)−1 − Σ−1)

which is again independent of the parameters of the Gaussian model.
Additionally this tells us that if the covariance C is non-singular at time t = 0, it will

remain non-singular for all t (tr(C−1) would be infinite). Hence if we start with N > d
particles with a proper empirical covariance, they cannot collapse to make C singular

Appendix G. Fixed-points for Gaussian model (N ≤ D)

Applying equation (11) to our fixed point equation we get

(I − Eq̂
[
g(x)(x−m)>

]
)(xi −m) = 0, ∀i = 1, . . . , N

Hence, the set of centered positions of the particles S = {xi −m}Ni=1, are all eigenvectors
of the matrix Eq̂

[
g(x)(x−m)>

]
with eigenvalue 1. S spans a N − 1 dimensional space (we

have
∑N

i=1(xi −m) = 0).
If we specialise to a Gaussian target p(x) = N (x | µ,Σ), we have g(x) = −2η2x − η1

and can reuse the result from Equation (12):

Eq̂
[
g(x)(x−m)>

]
= −2η2Eq̂

[
(x−m)(x−m)>

]
=− 2η2C

Σ−1C(xi −m) =(xi −m)

C(xi −m) =Σ(xi −m)
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which shows that the obtained low-rank covariance C and the target covariance Σ have
N − 1 eigenvectors and eigenvalues in common.

Appendix H. Additional experiments

H.1. Gaussian Process Classification

We turn to estimating the quality of the variational distribution given a varying number
of particles for a non-Gaussian posterior. Specifically, we consider a GP classifier: y ∼
Bernoulli(σ(f)), where σ is the logistic function on the Ionosphere dataset (Sigillito et al.,
1989) from the UCI repository (Dua and Graff, 2017). This dataset contains 351 instances
and 34 features and is split into a train/test set with 231/120 instances. The dimensionality
of a GP is equal to the number of training instances. However, our method does not decrease
the cubic complexity, as the GP prior computations are still the bottleneck. We sample from
the posterior using the Gibbs sampling approach from Wenzel et al. (2019) and train a VI
model using the method described in Hensman et al. (2015). For all experiments the kernel
parameters are fixed during training. We train GPF starting with a MAP estimation and we
estimate the predictions on a test . To compare the accuracy of the results, we compute the
Wasserstein distance with the L2 norm, using the stochastic approach from Genevay et al.
(2016). The Wasserstein metric has the advantage of allowing us to compare both particle-
based method and parameter-based methods. Figure H.1 compares accuracy, negative log-
likelihood and the Wasserstein metrics of GPF with Markov chain Monte Carlo (MCMC)
(used as the ground truth). The results show that GPF is able to match the accuracy results
of VI for a sufficiently large number of particles. As expected, with a number of particles
that closely matches the problem dimensionality (i.e. 231 the training set size), GPF closely
matches the performance of VI. Moreover we see that an increasing number of particles
progressively reduces the Wasserstein distance between our variational distribution and the
ground truth.

H.2. Bayesian Neural Networks

Finally, we evaluate our method on the challenging problem of inference with high-dimensional
Bayesian Neural Networks (BNN). We consider the LeNet convolutional neural net-
work (LeCun et al., 1998) trained on MNIST (LeCun and Cortes, 2010) implemented in
Flux.jl Innes (2018). We first train LeNet until we get the maximum likelihood (ML) es-
timate; from there, we fix the weights of the convolutional layers and focus on estimating
the weights of the dense layers (the weights of the convolutional layers are notoriously dif-
ficult to infer; see Gal and Ghahramani (2015) and Shridhar et al. (2019)). The problem
is thus very high-dimensional, with 41,854 parameters (i.e., the number of weights in the
dense layers). We compare GPF to SWAG (Maddox et al., 2019) and GVA. For SWAG we
do not place a prior on the weights, use the momentum optimizer with constant learning
rate (η = 0.05) and use the last 50 samples taken every 4th of an epoch. For GPF we
use 50 particles and consider two MF variants: Structured MF by assuming independence
between layers and MF by assuming independence between each weight. For GVA we use
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Figure 3: Gaussian Process Classification. We compute the average test accuracy and neg-
ative log-likelihood of GPF for a varying number of particles, as well as the train
Wasserstein distance W2 (mean and one standard deviation over 10 runs). We
compare it with the true posterior computed via sampling (MCMC) and the
optimal VI result. Increasing the number of particles to match the problem di-
mensionality (vertical black line) progressively allows GPF to reach the optimal
value of the standard VI approach.

Figure 4: Bayesian neural network (LeNet) trained on MNIST. Comparison of GPF (both
with full MF and structureed MF) with SWAG and the GVA in terms of the
calibration of the predictions.
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Figure 5: Accuracy and negative Log-Likelihood as a function of α, the standard deviation
of the weights prior. We compare GPF with GVA and SWAG.

50 samples for each expectation estimation and assume independence between weights, as
even a structured approach would be prohibitively expensive.

We compare different models in terms of standard performance metrics, namely negative
log-likelihood and accuracy, as well as in terms of calibration. To compute the calibration
we use the technique from Guo et al. (2017): we take the maximum probability among all
classes and split them into 20 bins of equal frequency. We then compute the accuracy of
the samples contained in each bin. In a perfectly calibrated model, the obtained probability
and the accuracy should be the same. Figure H.1 compares the competing approaches in
terms of the calibration of the predictions, showing that GPF achieves considerably better
performance than GVA, and perform similarly to ML and SWAG. Figure H.1 compares
the averaged negative log-likelihood and the accuracy when varying the value of the prior
standard deviation α. We can also observe that having a structured MF approach (even
low-rank) improves both on the calibration and on the quality of the obtained posterior.
SWAG generally outperforms competitors but is also less flexible and less principled. Unlike
GPF, it can only be used in the context of SGD and cannot be applied to tackle general
Bayesian inference problems. Interestingly, despite being a general purpose method GPF is
able to achieve on par calibration with specialized techniques.
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