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Abstract

Precise image segmentation provides clinical study with instructive information.
Despite the remarkable progress achieved in medical image segmentation, there is
still an absence of a 3D foundation segmentation model that can segment a wide
range of anatomical categories with easy user interaction. In this paper, we propose
a 3D foundation segmentation model, named SegVol, supporting universal and
interactive volumetric medical image segmentation. By scaling up training data to
90K unlabeled Computed Tomography (CT) volumes and 6K labeled CT volumes,
this foundation model supports the segmentation of over 200 anatomical categories
using semantic and spatial prompts. To facilitate efficient and precise inference
on volumetric images, we design a zoom-out-zoom-in mechanism. Extensive
experiments on 22 anatomical segmentation tasks verify that SegVol outperforms
the competitors in 19 tasks, with improvements up to 37.24% compared to the
runner-up methods. We demonstrate the effectiveness and importance of specific
designs by ablation study. We expect this foundation model can promote the
development of volumetric medical image analysis. The model and code are
publicly available at: https://github.com/BAAI-DCAI/SegVol.

1 Introduction

Volumetric medical segmentation, involving extracting 3D regions of interest, such as organs, lesions,
and tissues, plays a pivotal role in medical image analysis by accurately modeling the 3D structural
information of the human body from volumetric medical images such as CT or MRI. The accurate
segmentation can benefit numerous clinical applications including tumors monitoring[1, 2], surgical
planning[3, 4], disease diagnosis[5], therapy optimization[6, 7], etc.

Compared to 2D medical image segmentation[8, 9, 10, 11, 12, 13, 14, 15, 16, 17], volumetric
image segmentation is notably more challenging due to the labor-intensive annotation and resource-
consuming computation. Recently, the research of volumetric medical image segmentation has
garnered substantial attention, leading to a series of advancements[18, 19, 20, 21, 22, 23]. However,
existing volumetric medical segmentation methods have several key limitations which prevent their
application in challenging tasks, e.g., liver tumor or colon cancer segmentation[24, 25, 26, 27], and
real-world tasks, e.g., human-interactive segmentation[28, 29, 30, 31, 32].

Firstly, the publicly available volumetric medical image datasets usually consist of a small number of
mask annotations from a few varying categories. Due to the different label spaces, the traditional
task-specific segmentation models trained on one dataset have difficulty in generalizing to others. For
example, the CT-ORG dataset[33, 34, 24, 35] contains the ‘lungs’ category, while this category is
split into two sub-classes and named ‘left lung’ and ‘right lung’ in the LUNA16 dataset[36]. Hence,
a universal segmentation model has to understand the semantics of anatomical categories. Secondly,
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Figure 1: Overview of SegVol model architecture. SegVol produces precise segmentation of 3D
anatomical structures from volumetric inputs with easy user interactions, including point, bounding
box, and text prompts. Zoom-out-zoom-in mechanism: SegVol initially produces a rough prediction
mask with zoom-out inference, then refines it with zoom-in inference on the identified ROI.

traditional segmentation models have inferior performance when segmenting complex structures,
such as tumors and cysts[37]. This is because these models are trained on insufficient data and are
also not able to leverage the spatial information through user interaction. Thirdly, previous solutions
are computationally expensive in the inference process. They typically employ a sliding window to
infer the whole volumetric input. This strategy is not only time-consuming but also short-sighted, as
the sliding window contains only local information. Recently, there have been some works[29, 38, 39]
that introduce spatial-prompt into medical image segmentation, shown in Table 1. However, most
of them lack the ability to process the 3D input directly and naturally, and none of them is able to
understand the semantics of anatomical categories.

In this paper, we propose the first foundation model for volumetric medical image segmentation –
SegVol. The proposed model enables universal and interactive 3D segmentation of more than 200
anatomical categories, supporting both spatial and semantic prompts. SegVol can also be driven by
the combination of multi-prompt, like ‘bounding box+text’ or ‘point+text’ prompts, achieving high-
precision segmentation and semantic disambiguation. To enable efficient and precise segmentation
of volumetric images, we develop a zoom-out-zoom-in mechanism that enables the model to be
efficient and precise. We evaluate the proposed SegVol on 22 volumetric medical image segmentation
tasks and the results demonstrate our method surpasses other SAM-like interactive segmentation
methods[28, 38, 39, 29] by a large margin. Extensive case studies and ablation experiments are
also carried out to prove the advantages of SegVol and the effectiveness of the zoom-out-zoom-in
mechanism and multi-prompt combination.

We summarize our key contributions as follows:

1. Collect and process 25 public volumetric medical segmentation datasets, encompassing over
200 anatomical categories. The pseudo label is introduced to relieve the spurious correlation
in the training data.
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Table 1: The different settings and functions of SAM-like interactive segmentation methods.
Prompt Type

Method Image Domain Dimension Training Point Bbox Text Inference Input

SAM[28] Natural 2D Full-Param ! ! ! 1024×1024
MedSAM[29] Medical 2D Decoder % ! % 1024×1024
SAM-Med2D[38] Medical 2D Adapter ! ! % 1024×1024
SAM-Med3D[39] Medical 3D Full-Param ! % % 128×128×128
OURS Medical 3D Full-Param ! ! ! Full Resolution

2. Implement massive 3D pre-training on 96K CT volumes and supervised fine-tuning on the
6k labeled datasets.

3. Support spatial-prompt, semantic-prompt, and combined-prompt segmentation, achieving
high-precision segmentation and semantic disambiguation.

4. Design a zoom-out-zoom-in mechanism that significantly reduces the computational cost,
meanwhile preserving precise segmentation.

2 Methodology

2.1 Dataset Construction

One of the main challenges of training a universal volumetric medical segmentation model is the
absence of large-scale publicly available volumetric medical data, especially CTs with segmentation
annotations. Doing our utmost, we collected 25 open-source segmentation CT datasets, including
CHAOS[40, 41, 42], HaN-Seg[43], AMOS22[44], AbdomenCT-1k[45], KiTS23[46], KiPA22[47,
48, 49, 50], KiTS19[51], BTCV[52], Pancreas-CT[53, 54, 35], 3D-IRCADB[55], FLARE22[56, 57],
TotalSegmentator[58], CT-ORG[33, 34, 24, 35], VerSe19, VerSe20[59, 60, 61], SLIVER07[62],
QUBIQ[63], six MSD datasets[56], LUNA16[36], and WORD[64]. Their detailed information
and availability are shown in the Section A. These CTs originate from various medical institutions,
captured by different machines with varying parameter settings and scanning regions. To standardize
these datasets, we use the mean voxel value of each volume to filter the background and then perform
normalization on the foreground voxels.

Volumetric segmentation datasets suffer from the notorious problem of partial labels. Most of these
datasets have annotations of only a few segmentation targets, e.g., several organs. Therefore, the
deep models may learn the spurious correlation between datasets and segmentation targets, and thus
produce inferior results during the inference phase. To relieve this problem, we introduce the pseudo
labels by utilizing the Felzenswalb-Huttenlocher (FH)[65] algorithm to generate pseudo masks for
each CT scan. Pseudo masks can supplement unlabeled categories in a dataset, therefore relieving the
spurious correlation problem. To restrain the noise and numerous tiny masks in pseudo labels, we
employ the following strategies: 1) The pseudo masks are replaced with ground truth masks when
applicable. 2) We filter out tiny structures smaller than 1‰ of the whole volume size. 3) Each mask
is refined by dilation and erosion operations.

2.2 Model Architecture

Motivated by the recent advance in 2D nature image segmentation, Segment Anything (SAM)[28],
we design a novel model for interactive and universal volumetric medical image segmentation, named,
SegVol. The model is illustrated in Figure 1. SegVol supports three types of prompts for interactive
segmentation: ‘bounding box(bbox)’ prompt, including the coordinates of two diagonal vertices;
‘point’ prompt, composed of a set of positive and negative points; and ‘text’ prompt, such as ‘liver’
or ‘cervical spine C2’. The model consists of four modules: image encoder, text encoder, prompt
encoder, and mask decoder.

We employ 3D ViT (Vision Transformer)[66, 67] as the image encoder, which exhibits remarkable
advantages over convolutional models[68] when pre-trained on large-scale datasets. The 3D ViT
structure is designed as follows: patch size=(4, 16, 16), layers number=12, heads number=12, hidden
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size=768. We first pre-train 3D ViT using SimMIM algorithm[69] on the collected 96K CTs, and
then conduct further supervised fine-tuning on the 6K CTs with 150K labeled segmentation masks.

One of the main limitations of traditional segmentation models is that the models learn dataset-specific
labels encoded as integers which cannot generalized to unseen datasets or tasks, preventing their
real-world applications. We enable universal segmentation across datasets by leveraging the text
encoder from CLIP model[70] to encode the input text prompt, as CLIP[70] has been trained to align
image and text embeddings on web-scale image-text pairs. Given a word or phrase as the text prompt,
we complete it using the template ‘A computerized tomography of a [text prompt]’[71] and then
encode it into text embedding. The off-the-shelf text encoder is frozen during training due to the
limited text data in CT datasets. Following SAM[28], we obtain the spatial-prompt embedding using
positional encoding[72] on point and bbox prompt.

After obtaining the image embedding and prompt embedding, we input them into the mask decoder
and predict the mask. We use self-attention and cross-attention in two directions to fuse the image
embedding and prompt embedding, and then employ the transposed convolutions and interpolation
operations to generate masks. Since text embedding is the key to universal segmentation and it is
also challenging to learn the correlation between text and volumetric regions, we enhance the text
information by introducing a parallel text input branch beside the joint prompt embedding.

2.3 Prompt Generation

SegVol accepts multiple types of prompts, including individual point, bbox, and text prompts, and
also their combinations. To make full use of the segmentation training data, we generate kinds of
prompts for each datum and construct kinds of prompt-mask data pairs for training.

The point prompt is built from ground truth or pseudo masks, consisting of three kinds of points,
namely, positive point, negative point, and ignored point. Positive point means that it is within the
target mask region, while negative points are those outside. Ignored points are utilized to ensure
a uniform length of the point prompts for input completion. Notably, these ignored points are not
considered by the model.

The bbox prompt is generated based on the ground truth or pseudo masks, integrated with random
jitter to enhance the model’s robustness. When generating the bbox prompt for some pseudo mask,
the bbox may also cover other masks due to the irregular 3D shapes. To address this problem, we
compute the Intersection over Union (IoU) between the generated bbox and the included pseudo
masks. Any mask with an IoU greater than 0.9 will also be integrated and considered as part of the
target mask corresponding to this bbox prompt.

The text prompts are constructed based on their category names. As pseudo masks produced by the
unsupervised FH algorithm[65] do not have the semantic information, we only use point and bbox
prompts for training on masks of pseudo labels.

2.4 Zoom-out-zoom-in Mechanism

SAM-like interaction with large-volume images is laborious for users, especially in the scene where
the sliding window has to be used due to the limited view of those 3D models. To provide users
with an easy SAM-like interface, we design a zoom-out-zoom-in mechanism, which is efficient and
precise, consisting of zoom-out-zoom-in inference and multi-size training. As demonstrated in Figure
1, the zoom-out process involves resizing a volumetric image, which is input into the model with user
prompts to generate a coarse segmentation mask. Then, the Region of Interest (ROI) from the original
image is cropped for zoom-in analysis. In the zoom-in process, a sliding window is used to perform
precise inference driven by prompts generated from the coarse segmentation mask. After that, the
ROI prediction mask will be back-filled to the coarse segmentation mask to finish the final prediction.
Besides, multi-size training involves augmenting the input data by resizing CTs for the zoom-out
view and cropping them into cubes for the zoom-in view. The zoom-out-zoom-in mechanism realizes
the computational cost reduction meanwhile producing precise segmentation of the ROI.
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2.5 Loss Function

We apply SimMIM algorithm[69] to pre-train the image encoder of SegVol with the masked image
modeling loss Lpre-training(θIE;D1). The loss function is as follows:

Lpre-training(θIE;D1) =
1

Ω(aM)
||bM − aM||1, (1)

where θIE is the parameter set of SegVol’s image encoder. a, b ∈ RD×H×W are the input voxel
values and predicted values, respectively. M denotes the set of masked voxels, Ω(·) is the number of
elements, and D1 is the pre-training dataset.

We combine the Binary Cross-Entropy (BCE) loss and Dice loss as the supervised fine-tuning loss
function Lfine-tuning(θ;D2) to train the model with trainable parameters θ (text encoder frozen). D2 is
the supervised fine-tuning dataset and x,y ∈ RD×H×W are the predicted mask and ground-truth
mask, respectively. F(·,θ) is the forward function of SegVol. The loss function is as follows:

LBCE(θ;D2) = −E(x,y)∼D2
[⟨y, log(F(x,θ))⟩+ ⟨1− y, log(1−F(x,θ))⟩] (2)

LDice(θ;D2) = 1− E(x,y)∼D2
[

2 · ⟨y,F(x,θ)⟩
∥y∥1 + ∥F(x,θ)∥1

] (3)

Lfine-tuning(θ;D2) = LBCE(θ;D2) + LDice(θ;D2) (4)

The detailed fine-tuning algorithm of SegVol is presented in Section B.

3 Experiments

In this section, we conduct extensive experiments on 22 volumetric medical image segmentation
tasks to compare SegVol with other SAM-like medical image segmentation methods[28, 38, 39, 29].
Ablation studies are also carried out to prove the effectiveness of the zoom-out-zoom-in mechanism
and provide more insights about dataset scale and multi-prompt combination. Detailed case studies are
conducted to discuss the disambiguation ability of semantic-prompt and the capability of identifying
the segmentation results with spatial-prompt.

3.1 Experimental Setup

During the pre-training, we follow SimMIM algorithm[69] to train the 3D ViT encoder of SegVol
on the collected 96K CTs for 2000 epochs. In the supervised fine-tuning stage, we train SegVol
(with the text encoder frozen) on the labeled 25 volumetric medical image segmentation datasets
for 270 epochs with batch size 32 and input size (32, 256, 256), using AdamW optimizer[73].
SimMIM pre-training takes about 20× 8 GPU hours, while fine-tuning takes about 300× 8 GPU
hours. All the above training process is implemented on 8 NVIDIA A100-SXM4-40GB. Three
external datasets[44, 74, 75] and 20% testing data preserved from 25 collected datasets are used in
the following experiments.

3.2 Compared with SAM-like Interactive Methods

Several efforts have been made to construct a SAM-like interactive medical image segmentation
model. However, some of these works, such as MedSAM[29] and SAM-MED2D[38], focus on 2D
tasks and cannot process 3D input directly. The other 3D-based methods, such as SAM-MED3D[39],
only support small cropped input and do not support semantic-prompt segmentation, which are still
far from building a comprehensive foundation model for volumetric medical image analysis.

Competitors and configures. In this experiment, MedSAM[29] and SAM(bounding box)[28] use
bounding box prompts. SAM(5 clicks)[28], SAM-MED2D[38] and SAM-MED3D[39] use point
prompts and a five-step correction procedure, which means that the point prompt in each step will
be given according to the previous-step output and ground truth, rather than giving all at once. In
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Table 2: Quantitative comparative experiment results for SegVol and other 5 SAM-like interactive
segmentation methods settings in terms of the median value of Dice score.

Dataset Category SAM(Point)
[28]

SAM(Bbox)
[28]

SAM-MED2D
[38]

SAM-MED3D
[39]

MedSAM
[29] OURS

AMOS22
[44]

Aorta 0.7267 0.4362 0.8704 0.8102 0.3387 0.9273
Bladder 0.4162 0.6281 0.8417 0.4338 0.6799 0.9120
Duodenum 0.1554 0.3192 0.5066 0.3820 0.3066 0.7402
Esophagus 0.2917 0.3541 0.5500 0.5174 0.3610 0.7460
Gallbladder 0.2831 0.6161 0.7999 0.5643 0.6609 0.8763
Adrenal gland(L) 0.0555 0.4222 0.5068 0.4584 0.3766 0.7295
Left kidney 0.8405 0.8274 0.9325 0.8723 0.7909 0.9489
Liver 0.7477 0.5124 0.6904 0.8801 0.6137 0.9641
Pancreas 0.2127 0.3392 0.5656 0.5391 0.3217 0.8295
Postcava 0.2042 0.5251 0.4436 0.6683 0.5211 0.8384
Prostate uterus 0.2344 0.6986 0.7518 0.6231 0.7739 0.8557
Adrenal gland(R) 0.0452 0.3642 0.1681 0.3708 0.3855 0.6994
Right kidney 0.8459 0.8215 0.9077 0.8632 0.7851 0.9505
Spleen 0.5936 0.6536 0.9267 0.8591 0.7038 0.9589
Stomach 0.4229 0.3883 0.5399 0.4576 0.4378 0.9123
Average 0.4050 0.5271 0.6668 0.6200 0.5371 0.8593

ULS23
[74]

DeepLesion3D 0.3686 0.7473 0.3258 0.2386 0.7680 0.7065
BoneLesion 0.4461 0.6671 0.1947 0.4447 0.6896 0.6920
PancreasLesion 0.0675 0.5579 0.5548 0.5526 0.6561 0.7265
Average 0.2941 0.6574 0.3584 0.4120 0.7046 0.7046

SegTHOR
[75]

Aorta 0.2744 0.3894 0.8077 0.7703 0.3278 0.8439
Esophagus 0.0348 0.2046 0.3578 0.6394 0.2196 0.7201
Heart 0.6695 0.8876 0.6012 0.8325 0.8924 0.8172
Trachea 0.9147 0.1611 0.8306 0.8485 0.1261 0.8807
Average 0.4734 0.4107 0.6493 0.7727 0.3915 0.8155
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Aorta Esophagus Heart Trachea
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Figure 2: Violin plots for quantitative comparison experiment results of SegVol and SAM-like
interactive methods[28, 38, 39, 29]. The vertical axis represents the Dice score.

this experiment, SegVol uses bounding box and text prompt which performs better than other kinds
of prompt combinations. Detailed ablation study on prompt combination is demonstrated in Figure
3 (b). In addition, we compare SegVol with traditional task-specific segmentation models, e.g.,
3DUX-NET[23], SwinUNETR[20], and nnU-Net[22], in Section C, though the direct comparison is
unsuitable due to the different settings and objectives.

Testing data. To compare with these SAM-like interactive segmentation models, we evaluate the
models on 1,778 cases from the validation set of AMOS22[44], the whole novel annotated set of Uni-
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Table 3: Ablation experiment on the zoom-out-zoom-in mechanism.
Mechanism Dice Score Avg. ↑ Time Per Case Avg. ↓
Resize 0.4509 65 ms
Sliding window 0.6529 3331 ms
Zoom-out-zoom-in 0.7298 190 ms

CT number
Mask number

1 2 8 25
0
101
102
103
104
105
106

Dataset Number

Text Bbox Text+bbox

0

20

40

60

80 D
ice Score(%

)39
0 10
40

95
71 14
91
99

30

80

18
06 57

72

(a)

Dice Score(%)

Point+text
Point
Bbox+text
Bbox
Text

Spleen
Trachea
Aorta

Liver
Kidney

Clavicula
Lung

Stomach
Scapula

Average
Pancreas

Hip
Esophagus

Heart
Humerus

Vertebrae
Duodenum

Rib
Colon

Adrenal

Prompt Dice(%)

Text 77.17

Point 73.67

Point+text 78.29

Bbox 79.69

Bbox+text 83.02

(b)

Figure 3: (a) The performance of SegVol improves as the training data scales up. (b) The quantitative
experimental results on 19 anatomical segmentation tasks of split 20% test data demonstrate that
using the combination of semantic and spatial prompts can achieve better performances.

versal Lesion Segmentation Challenge 23(ULS23)[74], and the released labeled set of SegTHOR[75].
The validation set of AMOS22 contains 120 cases annotated with 15 major organs. The novel
annotated ULS23 dataset is composed of three subsets, namely, DeepLesion3D, Radboudumc Bone,
and Radboudumc Pancreas. The DeepLesion3D subset contains 200 abdominal lesions, 100 bone
lesions, 50 kidney lesions, 50 liver lesions, 100 lung lesions, 100 mediastinal lesions, and 150 assorted
lesions cases. There are 744 bone lesion cases in the Radboudumc Bone subset and 124 pancreas
lesion cases in the Radboudumc Pancreas subset. The 40 cases from SegTHOR, which are contoured
manually by an experienced radiotherapist, focus on the heart, trachea, aorta, and esophagus that
surround the tumor and must be preserved from irradiations during radiotherapy.

Quantitative results. The quantitative results of comparative experiments are shown in Table 2,
which verify our method is the best in most of the tasks including both lesions and organs, compared
to other SAM-like interactive models[28, 38, 39, 29]. Specifically, our method outperforms the
second-ranked SAM-MED2D on the AMOS22 dataset by a significant improvement of 19.25%
(average Dice score). On the SegTHOR dataset, our method surpasses the runner-up – SAM-MED3D
by an average Dice score improvement of 4.28%. The ULS23 dataset, characterized by small patch-
like masks, presents a unique challenge. In this scenario, SegVol still exhibits good performance,
comparable to MedSAM, which excels in using bbox prompts for segmenting small objects. We
visualize the Dice score distributions of all methods in all the tasks as violin plots, depicted in Figure
2. More detailed results and visualization are present in Section C.

3.3 Ablation Studies

Zoom-out-zoom-in mechanism. One of the key designs of SegVol is the zoom-out-zoom-in
mechanism. We compare it with the intuitive resize strategy and the popular sliding window algorithm
on the split 20% test data, 48 cases covering 15 major organs with a variety of sizes, belonging to
the AMOS22[44] dataset. Two evaluation dimensions, i.e., performance (Dice score) and inference
time cost (per case), are compared, as shown in Table 3. The zoom-out-zoom-in mechanism achieves
the best average Dice score and a very competitive inference speed compared to the simple resize
strategy. The reason for computational cost reduction is that the traditional sliding window method
requires scanning the entire 3D CT and processing thousands of windows. In contrast, the proposed
zoom-out-zoom-in mechanism only requires one global inference of 3D CT and then scanning the
ROI with dozens of windows. Detailed experiment results are shown in Section C.
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Scaling up training data. The success of scaling up training data has been witnessed in multiple
computer vision tasks [28, 70]. We conduct an ablation study to investigate the importance of scaling
up training images and masks. The split 20% test data of BTCV dataset[52], which includes 13
main organs, is set as an anchor to evaluate the model trained separately on 1, 2, and 8 datasets
for 500 epochs, as well as the final model trained on 25 datasets. The detailed results are shown in
Figure 3 (a). As a lightweight model, the performance of SegVol is weak when only one dataset is
used. However, with the increase of training data, the Dice score increases rapidly, especially in the
text prompt setting. The results indicate that our method is scalable and better performance can be
achieved if more training data is available.

Multi-prompt combination. As a universal model, our approach achieves precise segmentation
for over 200 organs, tissues, and lesions using both spatial and semantic prompts. In Figure 3
(b), we quantitatively analyze the mutually supportive relationship between semantic-prompt and
spatial-prompt in 19 segmentation tasks of the 20% split test data. On the one hand, spatial-prompt
allows the model to locate the specific part in the 3D space. According to Figure 3 (b), the average
Dice score of the ‘bbox+text’ prompt is boosted by 5.85% compared to the ‘text’ prompt on average.
On the other hand, semantic-prompt clarifies the reference to the anatomical structure, eliminating
the ambiguity of spatial-prompt and the plausible masks of multiple categories. This is reflected in
Figure 3 (b) as the average Dice score of ‘point+text’ prompts is 4.62% higher than using ‘point’
prompts alone. Spatial and semantic prompts mutually support each other, ultimately endowing the
model with powerful segmentation capabilities.

3.4 Case Studies

Disambiguation via semantic-prompt. It is a notorious problem in interactive segmentation that
one spatial-prompt may correspond to multiple plausible outputs [28]. As illustrated in the images on
the top left in Figure 4, three of them correspond to three anatomical concepts, namely, kidney tumor,
left kidney, and the whole kidneys, while they are all plausible to the same point prompt. Similarly, in
the bottom left three images, the bounding box selects the region of the liver. However, liver tumors,
hepatic vessels, and the liver itself are also plausible target structures. In these cases, SAM chooses
to return multiple masks to match different levels of plausible results. Unlike SAM’s solution, we
use semantic-prompt to clarify the targets. As shown in Figure 4, the captions below the images
are the text prompts, and the masks in the images are the predictions of SegVol, which show that
semantic-prompt can effectively disambiguate the spatial-prompt.

Identifying the spatial-prompt segmentation. Furthermore, we study the capability of SegVol to
identify the semantic category of the spatial-prompt results. Figure 5 reveals that SegVol can give
accurate semantic categories based on the spatial-prompt results. In the top left image in Figure 5,
the spatial-prompt on the liver results in a 0.997 prediction score for the liver. The top right image in
the sub-figure shows if the spatial-prompt is the point on the liver tumor, SegVol will output a 0.619
prediction score for the tumor category and a 0.339 prediction score for the liver based on the spatial
relationship of liver tumor and liver. We implement this identification experiment by decoding the
semantic prompts from a category set. The softmax function is applied to the decoding results to get
the prediction probabilities of different categories. The probabilities on the initial predicted mask,
driven by the spatial-prompt, are used to calculate the final classification result.

4 Discussion

Scalability. The scaling law of foundation models has been verified in multiple CV and NLP tasks.
Since SegVol uses a transformer-based architecture and self-supervised pre-training algorithm, it
has strong data and architecture scalability. In this work, we achieve the success of scaling law in
3D medical segmentation by the design of universal prompts and pseudo masks for joint learning
on datasets with inconsistent annotations. The ablation study of scaling up training data shows that
1) the performance improves significantly with more training data in the 3D segmentation task, 2)
SegVol has not yet reached its ceiling if more training data is provided. We believe the performance
of SegVol can be continuously improved when more data and computational resources are used.
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Figure 4: The four cases demonstrate that semantic-prompt can clarify the ambiguity of spatial-
prompt and avoid multi-plausible outputs. Each image shows the segmentation result of SegVol using
the spatial-prompt, i.e. point or bounding box, and semantic-prompt, i.e. the caption below the image.
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Figure 5: We identify the semantic categories of the spatial-prompt segmentation results. Each image
shows the spatial-prompt and the mask prediction. The bar charts rank the top 8 semantic categories
with the highest classification probabilities. The results show that SegVol is capable of identifying
the anatomical category of the segmentation mask using spatial prompts.

Generalizability to unseen modality. Although we develop SegVol on Computed Tomography
(CT) data due to its advantages of easy acquisition, wide usage, and high resolution, we find that
SegVol can generalize to other medical image modality, like MRI. Namely, the SegVol model trained
only on CT data can be used to segment MRI with semantic and spatial prompts. This emerging
ability demonstrates that our foundation model understands the anatomical structure of human body.
We provide detailed experiments and analysis of this generalizability in Section C. The impressive
generalizability makes SegVol a versatile tool in medical image analysis. We leave the joint training
of SegVol on multi-modality data as the future work.

Limitations. Although SegVol shows remarkable semantic-prompt segmentation performance,
there still remains gap between it and the referring volumetric segmentation. A promising solution is
to construct the referring segmentation data with diverse semantic and spatial prompts, and then train
SegVol on it. We leave it as the future work. More discussions can be found in Section E.
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Broader impact. We contribute a foundation model for universal and interactive volumetric medical
image segmentation, which can benefit numerous clinical study and applications. As a foundational
research work, we do not see any obvious negative societal impact of the proposed method and model.

5 Conclusion

In this paper, we propose SegVol, a universal and interactive volumetric medical image segmenta-
tion model, supporting both spatial-prompt and semantic-prompt segmentation of more than 200
anatomical categories. We construct a large-scale dataset, which consists of 90K unlabeled CTs and
25 open-source medical datasets, to train the foundation model. We design the zoom-out-zoom-in
mechanism to facilitate efficient and precise inference in the region of interest. Extensive experiments
on 22 segmentation tasks demonstrate the outstanding performance of our method. Detailed ablation
studies are also carried out to prove the effectiveness of the zoom-out-zoom-in mechanism, dataset
scale, and multi-prompt combination strategy. As a foundation model, we believe that SegVol will
advance the volumetric medical segmentation and benefit numerous downstream tasks.
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A Dataset Details and Availability

In this work, we collect 25 open-source datasets for supervised fine-tuning SegVol and some external
open-source datasets specifically for comparative experiments. The detailed information on anatomi-
cal categories and dataset scales of these open-source datasets is shown in Table 4. The availability of
these datasets is demonstrated in Table 5. Additionally, to avoid privacy concerns, we collect 90K
unlabeled CTs from publicly accessible professional medical websites: https://radiopaedia.org/.

The collected segmentation datasets include major regions of the human body, i.e., the head, neck,
thorax, abdomen, and pelvis, comprising over 200 categories of organs and tissues, and 28 lesion
tasks from different benchmarks. The detailed categories information are shown in Figure 6 and some
representative samples are shown in Figure 7.

Table 4: Information of datasets involved in supervised fine-tuning and experiments.

Dataset Anatomical Targets Category
Number

Trainset
Volumes

3D-IRCADB[55] Liver and liver tumor 47 20
AbdomenCT-1k[45] Liver, kidney, spleen, and pancreas 4 1000
AMOS22[44] Abdominal organs 15 240
BTCV[52] Abdominal organs 13 30
CHAOS[40, 41, 42] Abdominal organs 1 20
CT-ORG[33, 34, 24, 35] Brain, lung, bones, liver, kidney, and bladder 6 140
FLARE22[56, 57] Thoracic and abdominal organs 13 50
HaN-Seg[43] Organs of the head and neck 30 42
KiPA22[47, 48, 49, 50] Kidney, renal tumor, artery, and vein 4 70
KiTS19[51] Kidney and kidney tumor 2 210
KiTS23[46] Kidney, kidney tumor, and kidney cyst 3 489
LUNA16[36] Left lung, right lung, and trachea 3 888
MSD-Colon[56] Colon tumor 1 126
MSD-HepaticVessel[56] Hepatic vessel and liver tumor 2 303
MSD-Liver[56] Liver and liver tumor 2 131
MSD-lung[56] Lung tumor 1 63
MSD-pancreas[56] Pancreas and pancreas tumor 2 281
MSD-spleen[56] Spleen 1 41
Pancreas-CT[53, 54, 35] Pancreas 1 82
QUBIQ[63] Kidney, pancreas, and pancreas lesion 3 82
SegTHOR[75] Heart, trachea, aorta, and esophagus 4 40
SLIVER07[62] Liver 1 20
TotalSegmentator[58] Organs of the whole body 104 1203
ULS23(novel annotated set)[74] Various lesions - 1618
VerSe19[59, 60, 61] Vertebrae 28 80
VerSe20[59, 60, 61] vertebrae 28 61
WORD[64] Thoracic and abdominal organs 16 100

B Training Algorithm

Due to the complexity of the training steps, which include decoder reuse, the combination of different
datasets, and cooperative training of ground-truth and pseudo labels, we abstract the core training
code as Algorithm 1 and Figure 8 to clarify the training process of SegVol. As shown in Figure 8,
each case (training sample) consists of an Image x, a Ground Truth(GT) Mask Set Y , and a Pseudo
Mask Set Z. The training loss of each sample consists of the ground-truth loss and the pseudo loss.
The ground-truth loss is computed by inputting the image, the ground-truth mask (label), and the
sampled prompt into the model, while the pseudo loss is computed by inputting the image, the pseudo
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§ Represents the presence of lesions

Body part Sub-region Anatomical structure

Head and Neck

Ear Cochlea(L,R)

Eye Eye(AL,AR,PL,PR),  
Opticchiasm, Opticnrv(L,R)

Lacrimal Glnd lacrimal(L,R)

Parotid gland Parotid(L,R)

Pituitary Pituitary

Face Face

Subglottic Arytenoid, Cricopharyngeus, 
Esophagus

Oral Bone mandible, Buccalmucosa, 
Cavity Oral, Lips

Submandibular Glnd submand(L,R)

Thyroid Glnd thyroid

Glottis Glottis, Larynx SG

Spinal cord Spinalcord

Carotid artery Carotid(L,R)

Cervical spine Cervical spine(C1-C7)

Body part Sub-region Anatomical structure

Thorax

Lung
Lung lower lobe(left,right), Lung 
middle lobe right, Lung upper 
lobe(left,right),Lung tumor§

Heart
Heart atrium(left,right), Heart 
myocardium, Heart 
ventricle(left,right)

Pulmonary artery Pulmonary artery

Scapula Scapula(left,right)
Humerus Humerus(left,right)

Aorta Aorta

Trachea Trachea

Thoracic spine
Thoracic spine(T1-T12),
Additional 13th thoracic 
vertebra T13

Rib Rib left(1-12), Rib right(1-12)

Clavicula Clavicula

Body part Sub-region Anatomical structure

Abdomen

Duodenum Duodenum

Colon Colon, Colon cancer§

Kidney
Kidney(left,right), Kidney cyst§, 
Kidney tumor§, Renal vein, 
Renal artery, Adrenal gland(left,right)

Aorta Arota

Liver Liver, Liver cyst/kyste§, 
Liver tumor§, Hepatic vessels

Pancreas Pancreas, Pancreatic lesion§

Spleen Spleen

Stomach Stomach

Esophagus Esophagus

Lumbar spine Lumbar spine L1, L3, L4, L5, L6

Small intestine Small intestine

Postcava Postcava

Inferior vena cava Inferior vena cava

Vertebrae Vertebrae C1-C7, Vertebrae L1-L5, 
Vertebrae T1-T12

Rectum Rectum

Gallbladder Gallbladder

Portal vein Portal vein

Body part Sub-region Anatomical structure

Pelvis

Hip

Hip(left,right), 
Gluteus maximus(left,right), 
Gluteus medius(left,right), 
Gluteus minimus(left,right)

Femur Femur(left,right), 
Head of femur(left,right)

Iliac
Iliac artery(left,right), 
Iliac vena(left,right), 
Iliopsoas(left,right)

Bladder Bladder

Sacrum Sacrum

Prostate/Uterus Prostate/Uterus

Figure 6: Overview of the collected datasets for supervised fine-tuning. The joint dataset comprises
47 important regions, with each region containing one or multiple significant anatomical structures
within that spatial area. Image of the human body by brgfx on Freepik[76].

Figure 7: The joint dataset encompasses various anatomical structures in major regions of the
human body. Several volume examples are demonstrated as 2D slices and 3D shapes in the images
respectively.
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Table 5: Availability of datasets involved in supervised fine-tuning and experiments.

Dataset Link

3D-IRCADB[55] https://www.kaggle.com/datasets/nguyenhoainam27/3dircadb
AbdomenCT-1k[45] https://github.com/JunMa11/AbdomenCT-1K
AMOS22[44] https://amos22.grand-challenge.org/
BTCV[52] https://www.synapse.org/#!Synapse:syn3193805/wiki/217752
CHAOS[40, 41, 42] https://chaos.grand-challenge.org/

CT-ORG[33, 34, 24, 35] https://wiki.cancerimagingarchive.net/
pages/viewpage.action?pageId=61080890

FLARE22[56, 57] https://flare22.grand-challenge.org/
HaN-Seg[43] https://han-seg2023.grand-challenge.org/
KiPA22[47, 48, 49, 50] https://kipa22.grand-challenge.org/
KiTS19[51] https://kits19.grand-challenge.org/
KiTS23[46] https://kits-challenge.org/kits23/
LUNA16[36] https://luna16.grand-challenge.org/Data/
MSD-Colon[56] http://medicaldecathlon.com/
MSD-HepaticVessel[56] http://medicaldecathlon.com/
MSD-Liver[56] http://medicaldecathlon.com/
MSD-lung[56] http://medicaldecathlon.com/
MSD-pancreas[56] http://medicaldecathlon.com/
MSD-spleen[56] http://medicaldecathlon.com/
Pancreas-CT[53, 54, 35] https://wiki.cancerimagingarchive.net/display/public/pancreas-ct
QUBIQ[63] https://qubiq.grand-challenge.org/
SegTHOR[75] https://competitions.codalab.org/competitions/21145
SLIVER07[62] https://sliver07.grand-challenge.org/
TotalSegmentator[58] https://github.com/wasserth/TotalSegmentator
ULS23[74] https://uls23.grand-challenge.org/
VerSe19[59, 60, 61] https://osf.io/nqjyw/
VerSe20[59, 60, 61] https://osf.io/t98fz/
WORD[64] https://paperswithcode.com/dataset/word

Table 6: Complexity comparison of popular methods.

Method Total Avg. Avg. Avg.
Parameters MACs Per Case↓ Time Per Case(s)↓ Dice Score↑

SAM[28] 94M 1.3e+13 2.1764 0.5271
MedSAM[29] 94M 1.3e+13 2.1886 0.5371
SAM-MED2D[38] 271M 2.3e+12 3.5547 0.6668
SAM-MED3D[39] 101M 1.0e+11 0.1768 0.6200
SegVol 181M 6.7e+11 0.3283 0.8593

label, and the pre-designed prompt into the model. Finally, the model is optimized by minimizing the
weighted sum of the two losses.

Besides, we add a reinforcement branch for semantic-prompt in the mask decoder. We further
compute a similarity matrix between the up-scaled embedding from the transposed convolution
output and the text embedding. The element-wise multiplication of the similarity matrix with the
mask prediction is applied before interpolation, after which the model outputs the masks.
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Algorithm 1 SegVol training loop

Input: SegVol model, training image x, ground truth mask set Yx = {yi}ni=1, pseudo mask set
Zx = {zi}mi=1

Output: SegVol model parameters
1: n ⇐ 6 # Number of combinations of 3 prompt types: text, point, and bbox.
2: α ⇐ 0.1 # Pseudo loss weight.
3: # Loop for each category of this case.
4: for i ⇐ 1 to n do
5: fimg ⇐ model.ImageEncoder(x)
6: ptspatial, ptsemantic, ⇐ prompt_generate(yi)
7: lgt ⇐ 0
8: # Loop for possible prompt combination types of ground truth mask.
9: for p ⇐ 1 to n do

10: # Choose prompt combination type.
11: pt′spatial, pt

′
semantic ⇐ PromptStrategy(ptspatial, ptsemantic)

12: ftext ⇐ model.TextEncoder(pt′semantic)
13: fprompt ⇐ model.PromptEncoder(pt′spatial, ftext)
14: predgt ⇐ model.Decoder(fimg, fprompt, ftext)
15: lgt ⇐ lgt + DiceLoss(predgt, yi) + BCELoss(predgt, yi)
16: end for
17: lpseudo ⇐ 0
18: # Loop for several pseudo masks.
19: for p ⇐ 1 to n do
20: # Random select a pseudo mask of this case for training.
21: zp ⇐ RandomSelect(Zx, [1,m])
22: ptspatial ⇐ prompt_generate(zp)
23: fprompt ⇐ model.PromptEncoder(ptspatial)
24: predpseudo ⇐ model.Decoder(fimg, fprompt)
25: lpseudo ⇐ lpseudo + DiceLoss(predpseudo, zp) + BCELoss(predpseudo, zp)
26: end for
27: l ⇐ lgt + α× lpseudo
28: update(model, l)
29: end for
30: return model

C Additional Experimental Analysis

Comparative experiments to compare with task-specific segmentation models. Task-specific
segmentation models mainly fall into two architectures, CNN-based models and Transformer-based
models. We conduct comparative experiments with representative CNN-based models i.e. 3DUX-
Net[23] and nnU-Net[22], and representative Transformer-based models i.e. SwinUNETR[20]. We
conduct additional comparative experiments on the split 20% test set of the datasets. 10 segmentation
tasks are selected from BTCV[52] and MSD-spleen[56] datasets, which focus on organ segmentation,
and from MSD-lung, MSD-colon, and MSD-liver datasets, which focus on lesion segmentation. We
train task-specific segmentation models on each dataset individually for each method.

The quantitative experimental results are summarized in Figure 9. Generally speaking, SegVol,
jointly trained on 25 datasets, outperforms traditional task-specific segmentation models trained on
a single dataset. Compared to these strong baselines, SegVol exhibits a narrower distribution of
Dice scores across the eight tasks, indicating its robustness and good generalization ability. This
mainly owes to the massive knowledge learned from diverse samples of the same categories but
different datasets. SegVol depicts excellent performance on lesion tasks which are more challenging
in semantic understanding and spatial locating. We present a detailed comparison to nnU-Net[22] on
lesion tasks. As shown in Table 7, the average Dice score of SegVol is 14.76% higher than that of
nnU-Net for lesion tasks. We visualize the prediction results of the two methods in Figure 10, which
intuitively show that SegVol performs more precise segmentation of the tumors than nnU-Net. The
detailed scores and visualization results are presented in Table 9 and Figure 11 12, and 13.

18



GT Mask yi

 Training Algorithm

Image x

GT Mask Set Y

Case

Prompt Types

Fixed Prompt

Pseudo Mask 
Set Z

Pseudo Mask 
Set Z

GT Mask Set Y

Image x

GT Loss
①

Pseudo Loss
②

Loop

Loop

Figure 8: The demonstration of the training algorithm. Specifically, each case (training sample)
consists of an Image x, a Ground Truth(GT) Mask Set Y, and a Pseudo Mask Set Z. The training
loss of each sample consists of the ground-truth loss and the pseudo loss. The ground-truth loss is
computed by inputting the image, the ground-truth mask (label), and the sampled prompt into the
model, while the pseudo loss is computed by inputting the image, the pseudo label, and the fixed
prompt into the model. Finally, the model is updated by minimizing the weighted sum of the two
losses.

Ours nnU-Net 3DUX-NET SwinUNETR

Colon cancerLung tumorLiver tumorLeft kidneyGallbladder

EsophagusPancreasSpleenStomachLiver

Figure 9: Violin plots for comparing experiment results of SegVol and task-specific methods. The
vertical axis is the Dice score.

We analyze that there are mainly three factors that make SegVol more powerful than traditional task-
specific models: 1) Massive generative pre-training on unlabeled data endows SegVol with a complete
understanding of the volumetric structures and the discriminative feature representations, which is
much superior to learning from a small number of samples. 2) Learning from joint datasets with
semantic-prompt makes SegVol generalize better to unseen data and categories. For instance, SegVol
can learn from both the ‘left kidney’ and ‘kidney’ categories based on their semantic correlation,
while traditional task-specific models treat the two categories independently. 3) SegVol can be
prompted with (spatial) points/bboxes, which provide a precise spatial reference, and (semantic) texts,
which disambiguate the overlap of multiple categories in the same space. In contrast, traditional
methods are not able to understand semantics. This ability enables SegVol to perform better than
traditional methods in challenging tasks, e.g., segmenting lesions.

19



Table 7: The comparison of the average Dice score of SegVol and nnU-Net[22] across 3 lesion
segmentation tasks.

Method Lung Tumor Colon Cancer Liver Tumor

nnU-Net[22] 0.5963 0.3769 0.3606
OURS 0.7122 0.6965 0.7825

Ground Truth

Li
ve

r 
tu

m
or

Co
lo

n 
tu

m
or

Lu
ng

 t
um

or

nnU-Net Ours Ground Truth nnU-Net Ours

Figure 10: Visualization results of SegVol and nnU-Net across 3 lesion segmentation tasks.

Supplement results for comparative experiments on SAM-like interactive segmentation methods.
In this work, we compare SegVol with 5 SAM-like interactive segmentation methods on AMOS22[44],
ULS23[74], and SegTHOR[75] datasets. The detailed records of Dice score are demonstrated in
Table 10. The visualization results are shown in Figure 14, Figure 15, Figure 16. In this experiment,
SegVol is driven by ‘bbox+text’ prompt. We demonstrate the consistency results among different
prompt settings of SegVol in Figure 17, which is also conducted on AMOS22[44] and ULS23[74].
Relatively poor text prompt results in ULS23 are due to the unclear category of the dataset.

We also compare the Total Parameters, the average Multiply-Accumulates(MACs), and the average
Time required to process a case of the different SAM-like methods, as shown in Table6. The
comparison indicates that our method takes less computational cost while achieving much better
performance. Note that when calculating MACs Per Case and Time Per Case, the slice-by-slice
calculation of the 2D method and the scanning process of the 3D method are accumulated respectively.
SAM-MED3D[39] only processes volume with a size of 128 × 128 × 128. The experiments are
implemented on the validation set of AMOS22[44], and the setting is the same as that in Sec. 3.2

Supplement results for ablation studies on zoom-out-zoom-in mechanism. We conduct ablation
study on zoom-out-zoom-in mechanism on the split 20% test data of AMOS22[44] dataset. As
shown in Table 11, the zoom-out-zoom-in mechanism achieves higher Dice scores compared to the

Table 8: Few-shot fine-tuning experiment on FLARE22[56, 57] and MSD-spleen[56]. SegVol*
represents the model fine-tuned on all datasets.

Avg. Dice Score 100 epochs 200 epochs 300 epochs 400 epochs 500 epochs SegVol*

FLARE22[56, 57] 0.0463 0.4028 0.4926 0.5617 0.5567 0.8822
MSD-spleen[56] 0.7566 0.7866 0.9433 0.9454 0.9471 0.9597
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Figure 11: Visualized aorta and left kidney prediction results of 3DUX-NET[23], SwinUNETR[20],
nnU-Net[22] and SegVol on 4 cases from the split test set. For the integrality of aorta and left
kidney structure modeling, SegVol significantly outperforms 3DUX-NET and SwinUNETR and is
comparable to nnU-Net.
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Figure 12: Visualized liver and pancreas prediction results of 3DUX-NET[23], SwinUNETR[20],
nnU-Net[22] and SegVol on 4 cases from the split test set. For the modeling of pancreas, SegVol is
significantly superior to other baseline methods.
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Figure 13: Visualized spleen and stomach prediction results of 3DUX-NET[23], SwinUNETR[20],
nnU-Net[22] and SegVol on 4 cases from the split test set. For the consistency and stability of
stomach modeling, SegVol is significantly better than other methods.
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Figure 14: Visualized aorta and bladder prediction results of MedSAM[29], SAM(bbox)[28], SAM-
MED2D[38], SAM-MED3D[39], SAM(points)[28] and SegVol on 4 cases from split test data.
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Figure 15: Visualized gall bladder and left kidney prediction results of MedSAM[29],
SAM(bbox)[28], SAM-MED2D[38], SAM-MED3D[39], SAM(points)[28] and SegVol on 4 cases
from split test data.
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Figure 16: Visualized liver and prostate/uterus prediction results of MedSAM[29], SAM(bbox)[28],
SAM-MED2D[38], SAM-MED3D[39], SAM(points)[28] and SegVol on 4 cases from split test data.
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Table 9: Comparative experiment results of 3DUX-NET, SwinUNETR, nnU-Net, and SegVol on
the test set of supervised fine-tuning datasets in terms of Dice score. Dice scores are displayed as
‘Median values (First quartile, Third quartile)’.
Category 3DUX-NET[23] SwinUNETR[20] nnU-Net[22] SegVol

Aorta 0.9122 (0.8852, 0.9292) 0.8870 (0.8619, 0.8964) 0.9155 (0.8790, 0.9431) 0.9179 (0.8850, 0.9256)
Colon cancer 0.0773 (0.0000, 0.2931) 0.0270 (0.0003, 0.2908) 0.3610 (0.0000, 0.6961) 0.7582 (0.6749, 0.7903)
Esophagus 0.7136 (0.6617, 0.7718) 0.6063 (0.5508, 0.6353) 0.7407 (0.6563, 0.8313) 0.7373 (0.7205, 0.8062)
Gallbladder 0.4916 (0.1875, 0.6926) 0.2714 (0.1421, 0.5671) 0.8555 (0.5267, 0.8633) 0.8560 (0.7036, 0.8968)
Inferior vena cava 0.7673 (0.6740, 0.8465) 0.7368 (0.6376, 0.8376) 0.8138 (0.7580, 0.8487) 0.8267 (0.8044, 0.8418)
Left adrenal gland 0.5788 (0.3238, 0.6038) 0.5658 (0.4380, 0.6147) 0.7915 (0.6888, 0.8231) 0.7643 (0.6525, 0.7880)
Left kidney 0.9072 (0.8692, 0.9438) 0.9070 (0.8829, 0.9203) 0.9395 (0.9050, 0.9518) 0.9296 (0.9228, 0.9321)
Liver 0.9316 (0.9074, 0.9462) 0.9374 (0.9110, 0.9531) 0.9276 (0.8614, 0.9597) 0.9560 (0.9437, 0.9685)
Liver tumor 0.7131 (0.5159, 0.8457) 0.6479 (0.2756, 0.7853) 0.7495 (0.6243, 0.8228) 0.7801 (0.7558, 0.8440)
Lung tumor 0.5628 (0.4375, 0.7021) 0.4043 (0.2159, 0.6910) 0.7294 (0.4814, 0.8210) 0.7250 (0.6026, 0.8154)
Pancreas 0.5820 (0.4748, 0.7069) 0.6352 (0.5586, 0.6894) 0.8248 (0.8169, 0.8665) 0.8464 (0.8248, 0.8578)
Portal vein & splenic vein 0.7207 (0.6211, 0.7588) 0.6656 (0.5888, 0.6982) 0.7964 (0.7524, 0.8582) 0.7188 (0.7128, 0.7569)
Right adrenal gland 0.5785 (0.5099, 0.6302) 0.5026 (0.2730, 0.5963) 0.7137 (0.7067, 0.7326) 0.6579 (0.6372, 0.7008)
Right kidney 0.9177 (0.8877, 0.9417) 0.9065 (0.9011, 0.9289) 0.9432 (0.9207, 0.9504) 0.9227 (0.9157, 0.9295)
Spleen 0.8913 (0.7726, 0.9492) 0.9147 (0.8255, 0.9456) 0.9681 (0.9596, 0.9766) 0.9642 (0.9558, 0.9664)
Stomach 0.7627 (0.6655, 0.8424) 0.7147 (0.6470, 0.8231) 0.8374 (0.6339, 0.9391) 0.9177 (0.9035, 0.9260)
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Figure 17: The bar chart illustrates the consistency of SegVol’s performance across different prompt
types on the validation set of AMOS22[44] and ULS23[74].

resize and sliding window strategies in 15 organ categories. In the aspect of inference efficiency, the
zoom-out-zoom-in mechanism is also very competitive and quite close to the simple resize method.

Generalization performance of SegVol on MRI. We discuss the generalization performance of
SegVol on an external MRI dataset. We collect 60 MRI scans annotated with 4 key organ categories
from CHAOS[40, 41, 42] dataset and evaluate the generalization ability to unseen modality of SegVol.
It achieves median Dice scores of 85.70%, 80.09%, 80.04%, and 81.46% for liver, spleen, left kidney,
and right kidney, respectively. This generalization result demonstrates the robustness of SegVol in the
face of completely unseen modality data. The detailed scores and visualization results are presented
in Table 12 and Figure 18.

Few-shot fine-tuning experiment on small datasets. To evaluate the few-shot learning ability of
our model, we conduct the few-shot fine-tuning experiment on small datasets, FLARE22[56, 57] (40
training cases) and MSD-spleen[56] (32 training cases). Table 8 demonstrates that 1) fine-tuning
SegVol on dozens of samples works well on easy datasets such as MSD-spleen, in which the few-shot
learning performance is close to the joint fine-tuning on all datasets; 2) for challenging datasets such
as FLARE22, fine-tuning on all datasets can achieve much better performance.
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Table 11: Dice score and inference time results of ablation study on zoom-out-zoom-in mechanism.
Category Mechanism Dice Score Avg.↑ Time Per Case Avg.↓

Arota
Resize 0.6375 64 ms
Zoom-out-zoom-in 0.8853 341 ms
Sliding window 0.8715 3452 ms

Bladder
Resize 0.3229 65 ms
Zoom-out-zoom-in 0.6530 135 ms
Sliding window 0.5146 3098 ms

Duodenum
Resize 0.2821 64 ms
Zoom-out-zoom-in 0.6414 168 ms
Sliding window 0.5013 3442 ms

Esophagus
Resize 0.1778 62 ms
Zoom-out-zoom-in 0.4530 180 ms
Sliding window 0.3372 3186 ms

Gall bladder
Resize 0.3558 63 ms
Zoom-out-zoom-in 0.6830 140 ms
Sliding window 0.5758 3220 ms

Left adrenal gland
Resize 0.0937 64 ms
Zoom-out-zoom-in 0.4542 134 ms
Sliding window 0.2080 2935 ms

Left kidney
Resize 0.6472 64 ms
Zoom-out-zoom-in 0.9362 177 ms
Sliding window 0.9046 3440 ms

Liver
Resize 0.8252 62 ms
Zoom-out-zoom-in 0.9593 287 ms
Sliding window 0.9516 3450 ms

Pancreas
Resize 0.3444 65 ms
Zoom-out-zoom-in 0.7292 159 ms
Sliding window 0.6206 3447 ms

Postcava
Resize 0.5882 63 ms
Zoom-out-zoom-in 0.7901 296 ms
Sliding window 0.7769 3453 ms

Prostate/uterus
Resize 0.4072 65 ms
Zoom-out-zoom-in 0.6380 136 ms
Sliding window 0.5500 3034 ms

Right adrenal gland
Resize 0.1660 64 ms
Zoom-out-zoom-in 0.5260 141 ms
Sliding window 0.3624 3442 ms

Right kidney
Resize 0.6570 64 ms
Zoom-out-zoom-in 0.8909 175 ms
Sliding window 0.9017 3441 ms

Spleen
Resize 0.6827 89 ms
Zoom-out-zoom-in 0.8942 199 ms
Sliding window 0.8941 3481 ms

Stomach
Resize 0.5752 63 ms
Zoom-out-zoom-in 0.8136 181 ms
Sliding window 0.8238 3446 ms
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Table 12: Generalization experiment results of SegVol on the MRI set of CHAOS[40, 41, 42] dataset
in term of Dice score. Dice scores are displayed as ‘Median values (First quartile, Third quartile)’.
Method Liver Spleen Left Kidney Right Kidney

SegVol(5 Points) 0.8091 (0.7376, 0.8554) 0.7496 (0.6990, 0.7872) 0.7216 (0.6125, 0.7869) 0.7174 (0.6052, 0.8090)
SegVol(Bbox) 0.8570 (0.8319, 0.8819) 0.8009 (0.7702, 0.8256) 0.8004 (0.7265, 0.8452) 0.8146 (0.7593, 0.8620)

Li
ve
r

Image Ground	Truth SegVol Image Ground	Truth SegVol

Sp
le
en

K
id
ne
ys

Figure 18: Visualized liver, spleen, and kidney prediction results of SegVol on 12 cases from MRI set
of CHAOS[40, 41, 42]. For unseen MRI modality, SegVol is still able to segment these four organs
relatively accurately.

D Evaluation Metrics

Each subset of the joint dataset is split into 80% training data and 20% test data. To ensure the
absence of any data leaks, the hash value is utilized to compare the test set and training set. And in
the comparative experiments, the model’s parameters are all frozen.

We use the Dice Similarity Coefficient (Dice score) as a metric to evaluate the model, which is defined
as DSC = 2|X∩Y |

|X|+|Y | . |X ∩ Y | is the cardinality of the intersection of the predicted segmentation sets
X and the ground truth sets Y . |X| and |Y | are the cardinalities of sets X and Y respectively. Dice
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score is a commonly used metric for evaluating image segmentation tasks. It measures the degree of
similarity between predicted segmentation and true segmentation, making it particularly suitable for
evaluating the overlap degree of binary segmentation results.

E Additional Discussion

We present SegVol, a 3D foundational model for interactive and universal volumetric medical image
segmentation. This method has been developed using 90K unlabeled CTs and 25 open-source medical
datasets. This results in a universal segmentation tool capable of generating accurate responses
for over 200 anatomical targets. Furthermore, SegVol demonstrates state-of-the-art volumetric
segmentation performance when compared with both traditional task-specific methods[20, 21, 22, 23]
and the recent SAM-like interactive methods[29, 38, 39, 28] in several comparative experiments.
Despite its universality and high precision, SegVol maintains a simple architecture compared to other
volumetric segmentation methods.

SegVol’s capability of interactive and precise segmentation makes it a promising clinical aid tool. It
can assist clinicians in identifying and quantifying tumor location, size, and shape changes within a
patient’s body[1] more accurately and rapidly. This precise monitoring aids clinicians in detecting
tumor growth trends, assessing treatment effectiveness, and adjusting treatment plans as needed.
Additionally, clinicians can use SegVol to accurately identify and segment important structures within
a patient’s body, such as organs, blood vessels, or the precise location of tumors and surrounding
tissues, using high-resolution 3D images such as CT volumes. These precise segmentation results
help clinicians better understand the patient’s anatomical structures, plan surgical pathways, reduce
surgical risks, and improve the accuracy and success rate of surgeries[3].

While SegVol is capable of understanding semantic-prompt composed of sentences, there remains a
gap between it and the referring expression segmentation that involves complex semantic information
and logical relationships. The establishment of a referring expression segmentation model needs
more curated data with spatial annotations with text. Our SegVol provides a foundation for realizing
referring segmentation of medical images, and we leave it as future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of the work in Section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All of the datasets involved in this work are open-source and accessible, which
have been summarized in Section A. The proposed model is described in Section 2.2. The
detailed training algorithm is present in Section B. The experimental setup is given in Section
3.1. The trained model and code will be released after the review period.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open Access to Data and Code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All of the datasets involved in this work are open-source and accessible, which
have been summarized in Section A. The construction process of data is described in Section
2.1. The trained model and code will be released after the review period.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The detailed experiment setting and information on testing data is described in
Section 3.1. The trained model and code will be released after the review period.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All experiments are conducted for multiple times. The violin plots of 32
segmentation tasks are provided in Figure 2 and in Figure 9. Median values, first quartiles,
and third quartiles of comparative experiments are present in Table 9 and Table 10.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information on computer resources is provided in Section 3.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Research conducted in the paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We contribute a foundation model for universal and interactive volumetric
medical image segmentation, which can benefit numerous clinical study and applications.
We do not see any obvious negative societal impact of the proposed method and model.
Detailed discussion is provided in the Section 4 and Section E.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No model in this paper is with a high risk for misuse. The collected datasets
are all open-source and accessible.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets, used in the paper, are all properly
credited. The license and terms of use are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All of the datasets involved in this work are open-source and accessible, which
have been summarized in Section A. The trained model will be released after reviewing.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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