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Abstract

Recent advancements have brought generated music closer to human-created
compositions, yet evaluating these models remains challenging. While human
preference is the gold standard for assessing quality, translating these subjective
judgments into objective metrics, particularly for text-audio alignment and music
quality, has proven difficult. In this work, we generate 6k songs using 12 state-
of-the-art models and conduct a survey of 15k pairwise audio comparisons with
2.5k human participants to evaluate the correlation between human preferences
and widely used metrics. To the best of our knowledge, this work is the first to
rank current state-of-the-art music generation models and metrics based on human
preference. To further the field of subjective metric evaluation, we provide open
access to our dataset of generated music and human evaluationsﬂ

1 Introduction

The field of Al-generated music has witnessed
unprecedented progress, with recent models pro-
ducing compositions that are becoming increas-
ingly indistinguishable from those created by
humans. As these advancements continue, the
evaluation of Al-generated music becomes even
more relevant. While human preference remains
the gold standard for assessing the quality and
effectiveness of these models, translating these
subjective judgments into reliable, objective met-
rics remains an open challenge. Efforts to bridge
this gap have largely focused on two key aspects:
(1) The quality of alignment between the text
prompt and the audio and (2) the overall quality
of the generated music. Despite the develop-
ment of various objective metrics to evaluate
these aspects, their effectiveness in capturing
human preferences remains uncertain. In this
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Figure 1: Elo ratings for all music generation mod-
els in the music preference and text-audio align-
ment human evaluation experiments. The refer-
ence dataset is shown in red.
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Figure 2: Overview of the tag selection, music generation, and study. We extract common and diverse
tag combinations from MTG-Jamendo and use them to generate 6k music snippets with a series of
models. We sample from this corpus to generate a survey dataset and let human evaluators compare
the samples based on text-audio alignment and music quality.

context, our study seeks to assess the correlation between human evaluations and widely used
objective metrics in music generation.

We generate 6,000 songs using 12 state-of-the-art music generative models and conduct a large-scale
survey involving 15,600 pairwise audio comparisons with more than 2,500 human participants. These
comparisons were designed to evaluate text-audio alignment and music preference from a human
perspective and to compare these evaluations with existing objective metrics. Our results show that
certain metrics align better with human judgment than others, allowing us to create a comprehensive
ranking.

To facilitate further research in this area, we make both the generated music dataset and the human
evaluation dataset publicly available as the AT Music Evaluation (AIME) dataset. Our contributions
provide a foundation for future work aimed at improving the evaluation of Al-generated music and
offer a testing ground and benchmark for new metrics that align more closely with human perception.

Our contributions can be summarized as follows:

* We conduct a large-scale survey of over 15k audio comparisons with 2.5k human participants
to understand human preference for text-audio alignment and overall music preference. To
this end, we create a dataset of 6k generated songs using 12 state-of-the-art music generation
models.

* We analyze the relationship between human preference and existing metrics used in the
domain of music generation. We find significant differences in their alignment and identify
the metrics that reflect human perception the best.

* We open-source the tags, prompts, and generated songs, as well as the human responses to
the survey, to enable further testing with new metrics and models.

2 Related Work

The Frechet Audio Distance (FAD) [Kilgour et al.| 2018]] metric serves as a quantitative measure of
the perceptual quality of generated audio. FAD is computed on audio embeddings and measures the
distribution similarity between a set of generated audio and ground-truth audio. FAD is commonly
used on audio embeddings generated with VGGish [Hershey et al., [ 2017]. MusicLM [Agostinelli
et al., [2023]], utilized the FAD metric to demonstrate superior audio and music quality in comparison
with previous models [Forsgren and Martiros), 2022]. Although FAD is a key metric for evaluating
the perceptual quality of Al-generated music, the CLAP model [Elizalde et al.| {2023} 2024} Wu et al.,
2023]] is widely used to measure the alignment between generated audio and text prompt.

Given the variety of objective metrics available, there have been efforts to assess their reliability and
effectiveness, particularly in evaluating perceptual qualities such as audio and music quality. There
has also been work done comparing the scores produced by objective metrics with those obtained
from listening studies involving neural network-generated audio [[Vinay and Lerch| [2022]]. Those
findings suggested that current objective metrics might not fully capture the perceptual quality of
audio. More recent research has explored variations of FAD, proposing that certain embedding
models provide results that correlate well on a per-song basis with subjective evaluation criteria for
audio and music quality [Gui et al., 2024].



In addition to the existing objective metrics, previous approaches use a range of subjective metrics for
evaluation, two prominent metrics being Mean Opinion Score (MOS) and head-to-head comparisons
(HTH). MOS is a commonly used metric in which listeners rate audio samples on a scale of 1 to 5
based on specific criteria. HTH comparisons of models are used to determine the winner based on
specific criteria such as text alignment or music quality [Agostinelli et al.} 2023 |Huang et al., [2023].

3 Dataset

A high-quality reference dataset is essential for evaluating music preference and text-audio alignment.
This dataset should provide realistic music descriptions paired with corresponding audio tracks,
enabling music generation with various models and serving as a reliable benchmark for both human
and objective evaluation. We selected the MTG-Jamendo dataset [Bogdanov et al.,[2019], which
contains 55k tracks. The dataset is annotated with 195 distinct tags across genre, instrument, and
mood/theme categories.

Tag Selection. To ensure effective tag-based music descriptions based on the reference dataset, we
select tags that are commonly used in practice and combinations of tags that have an appropriate
length for describing the generated music. Additionally, we ensure that the tags offer sufficient
diversity to allow for a meaningful comparison of the models’ capabilities, particularly in terms of
text-audio alignment. We remove tags that are not commonly used in practice by filtering out all
tags that do not appear in the FMA [Defferrard et al.||2016] or MagnaTagATune [Law et al., [2009]
datasets. Additionally, we choose tag combinations of length three to ensure a consistent length that is
descriptive enough and has enough unique tag combinations of that exact length in the MTG-Jamendo
dataset. After these steps we are left with 1,248 unique tag combinations with at least one track in
the reference dataset. To ensure a diverse set of tag-based music descriptions, we ensure that no two
tag-combinations have a CLAP embedding [Elizalde et al.||2024]] with a cosine similarity value above
a threshold of 0.1382. The threshold is selected such that the final set of tag-based music descriptions
is 500.

Music Generation. For each one of 12 music generation models we generate 500 music tracks
with the selected prompts to create a dataset of 6,000 Al-generated music tracks. The models
cover a diverse range of capabilities, enabling a comprehensive comparison between human and
objective evaluations. For MusicGen [Copet et al., 2024], a transformer-based music generation
model, we generate clips from the three checkpoints “musicgen-small”, “musicgen-medium”, and
“musicgen-large”. Additionally, we generate music with diffusion-based models Riffusion [Forsgren
and Martiros, 2022, AudioLDM 2 [Liu et al., 2023|] (“audioldm2-music” and “audioldm2-large”
checkpoints), Mustango [Melechovsky et al.[2023]] and Stable Audio [Evans et al.| [2024]] (“Stable
Audio AudioSparx 1.0” and “Stable Audio AudioSparx 2.0”"). Furthermore, we evaluate two state-of-
the-art commercial music generation models, Suno [Suno|] (Suno v3 and Suno v3.5) and Udio [Udio],
which have recently gained attention for their ability to generate high-quality audio across a wide
range of music styles and genres.

Given that many of these models were designed to generate shorter music clips without vocals or
lyrics, we limit the generated track duration to 10 seconds and instrumental versions only. For models
such as Suno-v3, Suno-v3.5, and Udio, as well as tracks from the MTG-Jamendo dataset that tend to
exceed 10 seconds, we select a 10-second segment that contains the highest average energy. This was
done to ensure that we do not randomly select sections with silence.

4 Human Evaluation

We focus on two key metrics: text-audio alignment and human music preference. Text-audio
alignment assesses how accurately a model can generate music that abides by a given textual input.
In addition, we measure human music preference to determine which music generation methods yield
the subjectively best results. We take inspiration from human evaluations of LLM chatbots [[Chiang
et al.} 2024 and use a similar methodology and evaluation technique in our study. To evaluate music
preference and text-audio alignment, we design a survey using pairwise comparisons with binary
preference choices between two music clips. Each survey question presents participants with two
music tracks, each clipped to 10 seconds. For the evaluation of music preferences, participants were
asked “What music clip do you prefer?”. For text-audio alignment, participants were asked “Which
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music clip is better described by” followed by the combination of tags used to generate the track
(in the case of the reference dataset, the original tagging was used). Respondents were limited to a
binary selection of either “Music Clip 17 or “Music Clip 2.”

For the human evaluation, we randomly select 100 tag combinations and the corresponding generated
music for each music generation model, along with the baseline tracks from MTG-Jamendo. As each
track for each text description is compared with every other track with that same description, the
resulting survey comprises a total of 7,800 music preference and 7,800 text alignment questions. We
use the Prolific platform to run the survey [Prolific]. Although previous music evaluation studies
have often relied on Amazon Mechanical Turk, [Turk] recent research suggests that Prolific produces
higher quality responses [Douglas et al., [2023]]. We pre-filter the survey audience to include only
fluent English speakers within the age range of 18 to 34 years who reported using music streaming
services. Each participant completed a survey consisting of three music preference questions and
three text alignment questions. The order of the questions was randomly shuffled for each participant.
Additionally, we include an attention check in the form of a text alignment question featuring a
high-quality track from MTG-Jamendo paired with static white noise. We present bootstrapped Elo
ratings for the music preference and text-audio alignment survey results in fig. [T} Details of our
calculation of the Elo ratings can be found in appendix appendix [B]

For music preference, commercial models like Suno v3.5, Suno v3, and Udio all outperformed
MTG-Jamendo. Notably, Suno v3.5 achieved a significantly higher Elo than all other models. As
expected, newer and larger versions of models generally performed better. For instance, Stable Audio
v2 exhibited nearly a 5 percentage point increase over Stable Audio v1. Similarly, MusicGen Large
outperformed MusicGen Medium and MusicGen Small. Suno v3.5 also obtained the best rating for
the text-audio alignment rating with a considerable margin over the other models.

S Metric Comparison

To compare subjective and objective metrics and thus measure how well the tested metrics align
with human perception, we compute the Bradley-Terry parameters [Maystre and Grossglauser, 2013
[Bradley and Terry, [1952] to indicate the “strength” of the music generation models for both the
pairwise comparisons of music preference and text-audio alignment. We report the results for the
objective metrics in fig. [3|and fig. ]and the correlation of the objective metrics with the Bradley-Terry
parameters of the subjective evaluation in fig.[5] where we compute the Pearson correlation coefficient
and Spearman’s rank correlation coefficient. We use FAD with different embedding models to evaluate
how objective metrics can approximate human music preference. We employ VGGish
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Figure 5: Pearson correlation coefficient (PCC) and Spearman’s rank correlation coefficient (SRC)
between objective metrics and Bradley-Terry parameters of the human evaluation results. (Left) Music
preference metric correlations (lower is better). (Right) Text-audio alignment metric correlations
(higher is better).

2017] (FAD-VGG), and PANN [Kong et al.| [2020] (FAD-PANN), which are audio classification
models. For CLAP, we use the audioset (FAD-CLAP-Audio) and music-audioset (FAD-CLAP-MA)
checkpoints. Additionally, we use the 24 kHz mono version of EnCodec [[Défossez et al., 2022]]
(FAD-EnCodec), an audio compression model. The MS-CLAP [Elizalde et al.l 2023} [2024] and
LAION-CLAP|Wu et al|[2023]] models are used to evaluate text-audio alignment. Specifically, for
LAION-CLAP, we analyze various checkpoints (LAION, LAION-Audio, LAION-MA, LAION-MS,
and LAION-MSA). For the MS-CLAP models, we consider the “2022” (MS 2022) and “2023”
(MS 2023) versions. The exact checkpoint names can be found in appendix |Al For all CLAP and
LAION-CLAP models we compute the mean cosine-similarity between the audio embeddings and
the tag-based descriptions for each music generation model.

FAD-CLAP-MA demonstrates the best correlation with human perception of music quality in terms
of both linear and rank correlation with human evaluation. This finding aligns with prior FAD
results [|Gui et al., [2024]], computed per song on a smaller set of music generation models. We can
also observe that all models tend to rate Riffusion worse than our human preference study suggests
and usually rank it at the last place (except for FAD-CLAP-MA). For text-audio alignment, CLAP
models trained on music data (LAION-MA, LAION-MS, and LAION-MSA) exhibit the highest
correlation with human ratings. Additionally, the strong correlations observed in Pearson’s correlation
coefficient, as well as Spearman’s rank correlation coefficients, indicate that the cosine similarity
values from those models demonstrate substantial linear and rank correlation with human judgments.
Overall, the rankings for both music quality perception and text-audio alignment suggest that the
LAION-MA checkpoint aligns best with human preferences and consistently outperforms others.

6 Conclusions

We present a comprehensive human study on the performance of current generative music models, an
emerging field that lacked a comprehensive benchmark until now. We produce a corpus of music
by selecting common tag combinations from MTG-Jamendo [Bogdanov et al.,[2019] and utilizing a
diverse range of both open-source and commercial music generation models. Through a large-scale
human survey, we collect detailed feedback on human music preference and text-audio alignment,
providing an unbiased ranking of the models. We find that the commercial model Suno [Suno] aligns
exceptionally well with human evaluation, outperforming even the reference dataset MTG-Jamendo
by considerable margins. Further, it enables us to benchmark and access the alignment of existing
metrics with human perception. Among the metrics we tested, CLAP models [Wu et al., 2023]
trained on music data most accurately approximate human preferences, both when employed as
embedding models for computing FAD scores and for approximating text-audio alignment. We make
all associated artifacts publicly available (including human evaluations) to support future research
and the development of better metrics.
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A CLAP checkpoints

We use the following checkpoints for LAION-CLAP:

* FAD-CLAP-Audio: 630k-audioset-best

* FAD-CLAP-MA: music_audioset_epoch_15_esc_90.14

* LAION: 630k-best

* LAION-Audio: 630k-audioset-best

* LAION-MA: music_audioset_epoch_15_esc_90.14

* LAION-MS: music_speech_epoch_15_esc_89.25

* LAION-MSA: music_speech_audioset_epoch_15_esc_89.98

B Elo Ratings Calculation

The Elo ratings were initialized with a base rating of 1,000 and a K-factor of 8. With R4 and Ry as
the current Elo ratings of model A and B and R/, and R’; the updated ratings, the Elo ratings update
formula, for each pairwise comparison of two models, is computed as follows:

1

r_
Ry=Ra+ K- (54~ 1+ 1O(RB—RA)/400)

ey

We set S4 = 1 if model A wins and S4 = 0 if model A loses. The same formula applies to model
B, with the variables of A and B switched. We randomly shuffle the pairwise comparisons 10k times
and report the mean Elo rating across the bootstrapping procedure for each model.



	Introduction
	Related Work
	Dataset
	Human Evaluation
	Metric Comparison
	Conclusions
	CLAP checkpoints
	Elo Ratings Calculation

