
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUTOFORMULATION OF MATHEMATICAL OPTIMIZA-
TION MODELS USING LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Mathematical optimization is fundamental to decision-making across diverse do-
mains, from operations research to healthcare. Yet, translating real-world prob-
lems into optimization models remains a formidable challenge, often demanding
specialized expertise. This paper formally introduces the concept of autoformu-
lation—an automated approach to creating optimization models from natural lan-
guage descriptions for commercial solvers. We identify the three core challenges
of autoformulation: (1) defining the vast, problem-dependent hypothesis space,
(2) efficiently searching this space under uncertainty, and (3) evaluating formu-
lation correctness (ensuring a formulation accurately represents the problem). To
address these challenges, we introduce a novel method leveraging Large Language
Models (LLMs) within a Monte-Carlo Tree Search framework. This approach
systematically explores the space of possible formulations by exploiting the hier-
archical nature of optimization modeling. LLMs serve two key roles: as dynamic
formulation hypothesis generators and as evaluators of formulation correctness.
To enhance search efficiency, we introduce a pruning technique to remove triv-
ially equivalent formulations. Empirical evaluations across benchmarks contain-
ing linear and mixed-integer programming problems demonstrate our method’s
superior performance. Additionally, we observe significant efficiency gains from
employing LLMs for correctness evaluation and from our pruning techniques.

1 INTRODUCTION

Mathematical optimization has long been a cornerstone of decision-making processes across various
domains, from supply chain management (Bramel & Simchi-Levi, 1997) and healthcare resource al-
location (Delgado et al., 2022) to portfolio optimization (Mokhtar et al., 2014). These problems are
characterized by maximizing an objective function subject to constraints (Williams, 2013). Tradi-
tionally, optimization modeling follows a three-step process: ▶ gathering problem requirements,
typically expressed in unstructured formats and domain terminology; ▶ formulating these require-
ments into a formal mathematical model, including variables, constraints, and objective functions;
▶ implementing the model computationally using specialized modeling language for solution using
commercial solvers. These solvers (e.g. Gurobi (Gurobi Optimization, LLC, 2024), CPLEX (Cplex,
2009)), leverage sophisticated algorithms to tractably optimize a wide array of problems to global
optimality, including convex problems, (e.g. linear and quadratic programs), and certain non-convex
problems (e.g. mixed-integer linear programs) (Boyd & Vandenberghe, 2004).

Autoformulation. Despite major advances in solving algorithms over the past decades, the process
of formulating optimization models still relies largely on human expertise (Karmarkar, 1984). Aut-
oformulation aims to address this bottleneck by automating the formulation process, bridging the
gap between problem descriptions and formal mathematical models. This approach enhances time
and cost efficiency while enabling access for users without deep optimization expertise. At its core,
autoformulation can be conceptualized as a search for an optimal formulation within a vast hypothe-
sis space. However, this process is complicated by several challenges. For one, the hypothesis space
is highly problem-dependent, making it difficult to manually specify. Second, efficiently searching
through this hypothesis space requires methods that can balance exploitation and exploration, par-
ticularly given the uncertainty in the optimal formulation. Lastly, the search should be guided by
a signal of formulation correctness, which is itself an ill-posed problem. While solvers can indi-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

cate optimality gap and computational efficiency, evaluating that the formulated model accurately
represents the intended real-world problem remains a distinct challenge.

A keen insight of this work is that recent advances in Large Language Models (LLMs) (Brown,
2020; Chowdhery et al., 2023) have opened new avenues for autoformulation. LLMs contribute
several crucial capabilities to this process: contextual understanding for nuanced interpretation of
problem descriptions, vast domain knowledge to incorporate relevant modeling techniques, and rea-
soning capabilities to support approximate evaluation of formulation correctness. Recent works
(Ramamonjison et al., 2023; Xiao et al., 2023; AhmadiTeshnizi et al., 2024) have demonstrated the
promising potential of LLMs in autoformulation, laying important groundwork in this field. Build-
ing upon these contributions, our work focuses on developing techniques for efficient, systematic
exploration and introducing novel methods for evaluating formulation correctness.

Key considerations. We conceptualize autoformulation as a search problem, leveraging optimiza-
tion modeling’s inherent hierarchical structure to efficiently explore the vast hypothesis space,
guided by feedback on formulation correctness. We decompose optimization modeling into hi-
erarchical components and introduce a Monte-Carlo Tree Search (MCTS) method to incrementally
explore each component’s formulation space (Coulom, 2006). We employ LLMs for two specialized
roles: (1) as context-dependent hypothesis generators to produce component formulations at each
level of the tree search; (2) as evaluators of formulation correctness, which is combined with solver-
returned data to obtain a reward signal to guide exploration. To further improve search efficiency,
we introduce a pruning technique using Satisfiability Modulo Theories solvers, eliminating redun-
dant hypotheses that are syntactically different yet functionally equivalent (Barrett & Tinelli, 2018).
Empirically, we observed that this significantly reduces search efforts expended on equivalent for-
mulations. Our algorithm systematically explores the hypothesis space through multiple iterations,
producing a set of functionally distinct models, each scored using our evaluation function.

Contributions. Our main contributions are: A 1 We formally introduce autoformulation of mathe-
matical optimization models, framing it as a search problem and identifying its core challenges. 2
We propose a novel approach integrating LLMs as hypothesis generators and evaluators within an
MCTS framework, enabling efficient systematic exploration of the optimization model space. 3
Across two benchmarks containing linear and mixed-integer programming problems, we demon-
strate our method’s superior performance in formulating correct models, observing efficiency gains
from pruning and LLM evaluation of formulation correctness.

2 AUTOFORMULATION: TOWARDS AUTOMATED OPTIMIZATION MODELING

Optimization modeling seeks to minimize an objective function subject to specific constraints on
decision variables (Dantzig, 1990). The mathematical model can be expressed in a general form:

Minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . , I,

hj(x) = 0, j = 1, . . . , J.

(1)

Here x ∈ X represents the vector of decision variables, and X ⊆ Rℓ × Zk is the domain
of the problem for which the objective and constraints functions are all defined. Furthermore,
f : X → R is the objective function to be minimized, gi : X → R are inequality constraints,
hj : X → R are equality constraints, and I and J are the numbers of inequality and equality con-
straints respectively. The feasible region is the set of all possible points that satisfy the problem
constraints: {x ∈ X | gi(x) ≤ 0, ∀i ∈ [I], hj(x) = 0, ∀j ∈ [J]}.
Convex problems. An optimization problem is convex if f and gi ∀i ∈ [I] are convex, and
hj ∀ j ∈ [J] are affine. Convexity is significant as any local optimum of a convex problem is
globally optimal, and specialized solvers can efficiently solve convex problems to global optimal-
ity using advanced algorithms (e.g., Gurobi (Gurobi Optimization, LLC, 2024), CVXPY (Diamond
& Boyd, 2016)). For this reason, convexity is the widely accepted watershed between “easy” and
“hard” problems. Before utilizing these solvers, the mathematical models are first represented in
code as computational models, which are then passed to the solvers for optimization.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

A farmer has 10 acres of land and a
$100 budget to plant wheat and corn.
Wheat yields $20/acre with a $2/acre
cost, and corn yields $30/acre with a

$5/acre cost. The farmer seeks to
maximize returns.

Autoformulation

[C2] Efficient search

[C1] Problem-dependent
hypothesis space

[C3] Model evaluation

Optimal objective: 300

Figure 1: Illustration of autoformulation and its challenges. Autoformulation involves translating
a problem description d ∈ D into a mathematical model m ∈ M. This model is then transformed
into a program that can be executed by solvers (e.g., Gurobi).

2.1 AUTOFORMULATION: PROBLEM DEFINITION

Boyd & Vandenberghe (2004) aptly recognized that “the challenge, and art, in using convex op-
timization is in recognizing and formulating the problem. Once this formulation is done, solving
the problem is ... (almost) technology”. While solver technology has significantly matured, the
process of formulating optimization models remains largely human expertise driven. Building on
this insight, we define autoformulation as the automated process of transforming natural language
descriptions of real-world problems into formal optimization models. This process aims to bridge
the gap between human-readable problem statements and computational models suitable for opti-
mization solvers, thus automating the “challenge and art” of problem formulation.

Formal Definition
Let D represent the space of natural language problem descriptions. Additionally, letM and C
represent the space of all possible mathematical formulations and space of all possible computa-
tional models of optimization problems. Specifically, each c ∈ C is a computational representa-
tion (e.g. Python code), which includes choice of solving algorithm and its configurations. Given
a problem d ∈ D, autoformulation involves two transformations:
1. Mathematical Formulation pϕ : D → P (M): Transforming problem description into a

precise mathematical formulation. Here, P (·) represents the space of probability distributions.
2. Computational Representation pψ : M → P (C): Converting the mathematical formula-

tion into computational formats suitable for solvers. This includes encoding the model in a
programming framework and specifying or configuring an appropriate solving algorithm.

Autoformulator. Here, pϕ and pψ are models of each transformation, with ϕ and ψ their respec-
tive parameters. The complete autoformulation process can thus be represented as inferring the
joint distribution pϕ,ψ(m, c | d) = pψ(c |m) · pϕ(m | d). We refer to any algorithm designed for
the autoformulation problem as an autoformulator.
Objective. For a given problem d, autoformulation aims to find optimal mathematical and com-
putational formulations that maximize an evaluation measure Q(·) :

(m∗, c∗) ∈ argmaxm∈M,c∈CQ(m, c; d) (2)
Evaluation criteria. Here, Q assesses the quality of (m, c) relative to d, considering factors such
as correctness, solvability, and efficiency. The quality of a formulation is primarily evaluated
based on formulation correctness—how accurately it reflects the problem description. Given
that a formulation is correct, two additional criteria come into play. Optimality gap: the gap
between the value of the objective function at the solution and the optimal value. For example,
convex problems and certain non-convex problems like mixed-integer linear programs (MILPs)
can be solved efficiently to global optimality (i.e. zero optimality gap). Computational effi-
ciency: evaluating the resource requirements and solution time of a particular model. These latter
two criteria are only meaningful for formulations that correctly capture the problem description.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Challenges. A closer scrutiny of Eq. (2) reveals a few key challenges:
[C1] Problem-dependent hypothesis space: Given a problem d, we define the problem-

dependent hypothesis space of an autoformulator as Hϕ,ψ(d).a This space encompasses
all plausible formulations, including correct, incorrect, or trivially redundant formulations.
Manually specifying this hypothesis is highly challenging, due to complex interdependen-
cies, the vast number of formulations, and the problem-specific nature of the space.

[C2] Efficient search under uncertainty: Efficiently navigating the problem-dependent hypoth-
esis space is challenging, as performant formulations (e.g. efficient and globally optimal)
can be sparse. This search involves managing two key sources of uncertainty: a) modeling
decisions: uncertainty in the optimal way to formulate the problem, b) problem ambigu-
ity: uncertainty due to ambiguous requirements such as implicit or ‘common-sense’ con-
straints (e.g. non-negativity or integer constraints for individual resources). An additional
complexity is trivial model equivalence—formulations that are identical but have minor
syntactic differences (e.g. functions 2x + 3y and 3y + 2x). Note, we term these ‘trivial’
to distinguish this type of equivalence from mathematically equivalent reformulation such
as converting a non-convex constraint to convex. Exploring these trivial variations ineffi-
ciently can lead to overlooking more diverse and potentially valuable formulations.

[C3] Model evaluation: While solvers can assess solvability and computational efficiency, they
cannot evaluate formulation correctness—whether the model accurately represents all re-
quirements in the problem description. This lack of feedback on semantic correctness sig-
nificantly complicates the search process, as an efficient solution to an incorrectly formu-
lated problem is ultimately invalid.

aFor notational simplicity, we omit the subscript (ϕ, ψ), when the meaning is clear.

A few observations. Our definition of both steps as probabilistic distributions includes deterministic
mappings as a special case (i.e. Dirac delta distributions). This formalism recognizes the inherent
uncertainty in autoformulation, stemming from language ambiguity, domain knowledge limitations,
and variability in modeling decisions. Additionally, the second transformation is assumed to be in-
dependent of the problem description d. In general, the first step (formulating mathematical models,
pϕ) presents a significantly greater challenge than the second step (creating computational models,
pψ). The former requires deep domain understanding, the ability to abstract real-world complexities
into mathematical constructs, and creativity in choosing effective problem formulations. In contrast,
formulating computational models often follows more standardized patterns, with several commer-
cial packages already offering automation in translating mathematical models into solver-compatible
code (Fourer et al., 1990). However, the second transformation can present distinct challenges that
introduce uncertainty, most notably through problem-specific choices and configurations for solvers.

Types of optimization problems. Additionally, we note that the challenges faced by an autoformu-
lator fundamentally depends on the nature of the problem d, particularly its their convexity prop-
erties and reformulation possibilities. While some problems are naturally convex and enable direct
solution for global optimality, others begin as non-convex and require the autoformulator to either
identify equivalent convex reformulations or develop appropriate relaxation strategies that balance
optimality with computational efficiency. In the interest of completeness, we provide a detailed
categorization of different challenges presented by different problem types in App. E

3 LLM-ENHANCED MCTS FRAMEWORK FOR AUTOFORMULATION

Building upon our analysis of key challenges in autoformulation, we present a novel approach that
takes initial steps towards addressing them. In the scope of this work, our method primarily focuses
on evaluating formulation correctness—ensuring that autoformulated models accurately represent
the problem description. Moreover, we mainly focus on the first transformation, as we observed
that the second transformation was relatively straightforward for problems in available benchmarks.
Instead, we implement the second transformation using a custom deterministic parser (represented
as parser, and detailed in App. A), which successfully parsed all available problems. By con-
centrating on these fundamental aspects, we aim to catalyze the development of more advanced and
computationally efficient autoformulators that address more challenging problems of each type.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Overview. At a high level, our method integrates Large Language Models (LLMs) within a Monte-
Carlo Tree Search (MCTS) framework, founded on two key insights: 1) leveraging the inherent
hierarchical structure of optimization modeling by decomposing the autoformulation process into
distinct stages, enabling systematic exploration using a tailored MCTS algorithm, and 2) employing
LLMs in two specialized roles: as dynamic hypothesis generators in each formulation stage, and as
approximate evaluators of formulation correctness. This approach harnesses LLMs’ extensive do-
main knowledge and contextual understanding to implicitly create and search a problem-dependent
hypothesis space. This strategy bypasses the need for manual specification of the search space,
which would be intractable due to the vast number of possible formulations. Furthermore, it utilizes
LLMs’ reasoning capability to evaluate formulation correctness against problem descriptions, pro-
viding an approximate yet meaningful signal to guide the search process. Note: In the interest of
space, we present detailed information about all prompts used in the algorithm in App. A, providing
only high-level details in the following subsections.

3.1 STRUCTURED DECOMPOSITION OF AUTOFORMULATION

Optimization modeling is inherently complex, involving multiple interconnected components. To
manage this complexity and improve search efficiency, we propose a decomposition of the formu-
lation process. This approach allows us to sequentially explore each model component rather than
searching for entire formulations at once, potentially leading to more efficient search.

Specifically, we structurally decompose the autoformulation process into four distinct stages, each
represented by mi. The complete mathematical formulation is defined as m = ⊕4

imi, where ⊕
denotes the composition of model components: m1—parameters and decision variables, m2—
objective function, m3—equality constraints, and m4—inequality constraints. Given a problem
description d, the joint distribution pϕ,ψ(c,m | d) is decomposed hierarchically:

pϕ,ψ(c,m | d) = pψ(c |m)
∏4
i=1 pϕ(mi |m<i, d) (3)

Here, pϕ(mi | m<i, d) represents the sequential nature of mathematical formulation, where each
component mi depends on the partial formulation m<i = ⊕i−1

j=0mj (with m0 = ∅) and the problem
description d. Additionally, the term pψ(c |m) represents the computational model’s dependency on
the completed mathematical formulation.

3.2 MCTS-BASED AUTOFORMULATOR

Having established a structured decomposition of the autoformulation process, we now address the
challenge of efficiently navigating this hierarchical space. We employ an MCTS-based algorithm,
which is particularly well-suited for exploring complex, hierarchical search spaces (Coulom, 2006).
Our MCTS constructs a search tree of depth 4 to explore possible formulations, where each of the
four levels corresponds to a component in our structured decomposition (m1 to m4). Nodes in this
tree contain component formulations, and a complete formulation is represented by a path from the
root to a terminal node, with each path yielding a unique formulation.

The MCTS algorithm iteratively builds the search tree through four key steps: ▶ selection, ▶ ex-
pansion, ▶ evaluation, and ▶ backpropagation. For notational clarity, we denote a tree node as n
and any of its child nodes as nchild ∈ Child(n), where Child(n) is the set of all child nodes of n.
We use n⃗ to represent the partial formulation contained in the path from root to node n. For instance,
n⃗ for a node of depth 2 is the partial formulation containing the parameters, decision variables, and
the objective function. Terminal nodes are denoted as nt.

3.2.1 SELECTION

The selection step guides the search towards promising regions of the tree. Starting from the root,
the algorithm recursively selects child nodes using the Upper Confidence Bound for Trees (UCT):

n∗child = argmaxnchild∈Child(n)

(
V (nchild) + ω

√
lnN(n)
N(nchild)

)
(Kocsis & Szepesvári, 2006). This

process continues until reaching an unexpanded node. Here, n∗child is the selected child node,
V (nchild) is its estimated value, N(n) and N(nchild) are visit counts for the parent and child nodes
respectively and ω is an exploration constant. This formula balances exploitation (first term, favoring
high-value nodes) with exploration (second term, favoring less-visited nodes).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2.2 EXPANSION

Upon reaching an unexpanded node n, we generate its child nodes Child(n) through an expansion
process. Unlike traditional MCTS, which typically operates within a predefined space, our expan-
sion step explores an undefined hypothesis space of component formulations. To address this chal-
lenge, we employ LLMs as dynamic hypothesis generators, conditioned on the partial formulation
constructed up to this level, to propose potential formulations for the next component. Our process
involves two key steps: first, generating a diverse set of candidate formulations, and then pruning
this set to remove trivial equivalences, thereby ensuring a manageable and meaningful search space.

Context-aware hypothesis generator. At node n, the LLM generates potential child
nodes (next component formulations) by conditioning on the partial formulation and prob-
lem description: pϕ(nchild | n⃗, d). When expanding nodes at depth i, this is equiv-
alent to pϕ(mi | m<i, d). We represent formulations using JSON format, where
keys are descriptive labels and values are mathematical expressions. For example,
when generating possible inequality constraints, the LLM might return the formulation:
{“material balance”: x1 + x2 ≤ 100, “quality requirement”: 0.8x1 + 0.6x2 ≥ 75} . The LLM is
queried through a structured prompt with three elements: (1) Problem description: the original
natural language problem description d; (2) Partial formulation: the current partial formulation
m<i in JSON format; (3) Level-specific instructions: guidelines for the current modeling stage,
including output format and relevant considerations. Note that we also request the LLM return po-
tential formulations using the same dictionary format. For each node expansion, we sample H ∈ N
hypotheses from the LLM’s distribution: Ĉhild(n) = {ñ(h)child | ñ

(h)
child ∼ pϕ(· | n⃗, d), ∀ h ∈ [H]},

where ñ(h)child represents the h-th candidate component formulation.

Grouping
Equivalent

formulations

Ranking solutions
Figure 2: Expansion and
node evaluation. Expansion
involves generating candidate
formulations, which are then
pruned based on functional-
ity, and remaining formula-
tions are assigned a normal-
ized ranking score.

Approximate pruning. To ensure diversity in our search
space and avoid redundant explorations, we prune candidates
containing trivially equivalent formulations: Child(n) =

pruning(Ĉhild(n)). This process removes formulations with
minor syntactic differences that could lead to inefficient searches,
while preserving meaningful reformulations. For this purpose, we
employ Satisfiability Modulo Theories (SMT) solvers to check pair-
wise equivalence of formulations (Barrett & Tinelli, 2018). SMT
solvers determine the satisfiability of logical formulas with re-
spect to background theories. We represent objective functions and
constraints as systems of equations or inequalities (where objec-
tive functions form a single-equation system). For two such sys-
tems S1 and S2 over variables x, we check the satisfiability of
¬(∀x (S1(x) ⇐⇒ S2(x))), where ¬ denotes negation. Unsat-
isfiability of this formula proves equivalence, as it indicates there
exists no x such that the systems differ. Conversely, satisfiabil-
ity indicates the systems are distinct. We apply this check to each
pair of candidate formulations in Ĉhild(n), pruning those deemed
trivially equivalent. This approach balances maintaining a diverse
search space with computational efficiency. We detail the exact formulae used for SMT equivalence
checks in App. A.

We note that the satisfiability problem in SMT is not universally decidable (Monniaux, 2016). While
linear arithmetic over real and integer domains is generally decidable, mixed-integer domains or
non-linear functions may be undecidable, depending on specific problem properties. When the
solver cannot reach a conclusion, we assume the formulations are distinct. This approach trades
efficiency for thoroughness, potentially exploring some equivalent formulations while avoiding pre-
mature pruning of unique components. Importantly, SMT solvers are only applicable to systems
defined over the same variable domains. Consequently, we employ them solely for pruning re-
dundant nodes in levels m2–m4, where child nodes share decision variables. For level m1, which
involves defining different variable domains, we utilize LLMs as approximate checkers.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.2.3 EVALUATION

After expanding a node, each newly created child node undergoes an initial evaluation to estimate
its value, guiding subsequent selection. This evaluation is non-trivial, as assessing the correctness
of a partial formulation with respect to the original problem description is complex. Our method
employs an LLM-based ranking evaluation for each set of child nodes to provide more informed ini-
tial evaluations. Specifically, we rank the partial formulation from root to each child node, namely
{n⃗child | nchild ∈ Child(n)}. These ranks are then center-normalized to [0, 1], with the middle
rank centered at 0.5. We denote this normalized score s(n⃗child), which is used to initialize the
child node’s value Vprior(nchild)← s(n⃗child). We note that this approach diverges from traditional
MCTS, which often uses uniform priors for expanded nodes. Here, the LLM assesses the formula-
tion based on optimization principles and the specific problem context, potentially capturing aspects
such as formulation correctness, constraint feasibility, and alignment with the problem.

3.2.4 BACKPROPAGATION

Reward. Unlike conventional MCTS, which typically simulates the problem to a terminal state after
expanding a child node, our approach continues expanding until a terminal node nt is reached, where
n⃗t represents a complete formulation. This is computationally feasible due to our tree’s limited depth
of 4 levels, and provides more accurate rewards. We evaluate the complete formulation to obtain a
reward r(n⃗t). We evaluate the complete formulation using a dual approach, combining assessments
of both mathematical correctness and computational model’s performance:

r(n⃗t) = I (Ecsolver(parser(n⃗t)) = 1) · EmLLM(n⃗t; d) (4)

where I is the indicator function. EmLLM(n⃗t; d) is the LLM’s evaluation of the mathematical formu-
lation’s correctness, assessing how well it captures the problem requirements and constraints in d.
Ecsolver(parser(n⃗t)) is the solver’s evaluation of the computational model’s performance, provid-
ing a binary signal of whether the model is solved optimally. Note that Ecsolver(parser(n⃗t)) is an
imperfect signal, as an incorrectly formulated model could be solved to optimality despite not faith-
fully representing the original problem, highlighting the importance of our dual evaluation approach.
The computational model c is derived using our custom deterministic parser: c = parser(n⃗t).

Here, it is inappropriate to use the same evaluation measure (based on ranking) as described be-
fore, as the reward score would need to be comparable across all terminal nodes (across different
subtrees). As such, we introduce a comparative evaluation method to obtain an LLM-evaluated cor-
rectness score. This approach compares each formulation with a baseline, asking the LLM for its
preference. Specifically, the LLM returns a score ∈ [0, 1], where < 0.5 values indicate preference
for the baseline formulation, and value greater than 0.5 favor the formulation in n⃗t. Mathematically,
we represent this as EmLLM(n⃗t; d) ∼ pLLM(· | n⃗t,mb; d), where mb is the baseline formulation for
comparison. This baseline serves as a consistent reference point for all child nodes, enabling more
stationary and comparable evaluations of relative formulation correctness. In our implementation,
we generate the baseline formulation mb through zero-shot prompting of the LLM.

Backpropagation. Following the reward calculation, we backpropagate this value to update the
statistics of all nodes along the trajectory. For each node in this path from root to terminal node nt,
we apply the following updates: Vback(n)← Vback(n)·N(n)+r(n⃗t)

N(n)+1 , N(n)← N(n)+1, ∀n ∈ n⃗t.
Here, we increment the visit count N(n) by 1 and update the value V (n) with a weighted average
of its previous value and the new reward r(n⃗t). This backpropagation process ensures that the tree
gradually accumulates more accurate estimates of node values. These updated statistics then inform
the selection strategy in subsequent iterations. The value of the node used for selection is then
V (n) = λ · Vprior(n) + (1− λ) · Vback(n).
Summary. Our MCTS-based algorithm iterates through the aforementioned steps, progressively
constructing and refining a tree of possible formulations. We execute this process for T ∈ N iter-
ations, thoroughly exploring the space of potential models and identifying promising formulations.
The final output is a set of M ∈ N functionally distinct optimization models, where M ≤ T . Each
model is defined by a unique trajectory through the tree. Formally, we express the overall algo-
rithm as: {(m(i), c(i), r(i))}Mi=1 = MCTSLLM(d). The superscript i indexes the functionally distinct
formulation, and r(i) is the estimated value/reward of the corresponding terminal node.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 RELATED WORK

Advances in LLMs. Recent works have demonstrated the substantial potential of Large Language
Models (LLMs) in solving complex reasoning tasks, including language understanding (Hendrycks
et al., 2021), commonsense reasoning (Brown, 2020), logical reasoning (Wei et al., 2022; Yao et al.,
2024), mathematical problem-solving (Lewkowycz et al., 2022), and coding tasks (Chen et al.,
2021). Of particular relevance are studies employing LLMs in optimization and search tasks, such
as Bayesian Optimization (Liu et al., 2024b), prompt optimization (Guo et al., 2023), evolutionary
optimization (Yang et al., 2024; Liu et al., 2024a), and symbolic program refinement (Madaan et al.,
2024), as well as research exploring the integration of LLMs with planning algorithms (Huang et al.,
2022; Zhao et al., 2024; Hao et al., 2023a; Zhou et al., 2024).

Autoformulation. Ramamonjison et al. (2023) introduced an early competition focused on translat-
ing natural language descriptions of linear programming problems into mathematical formulations.
The competition involved two tasks: tagging problem entities and predicting formulations in prede-
fined formats. Entries primarily used pre-LLM NLP models tailored for these tasks, which lacked
the ability to generalize beyond the given formats. More recently, Xiao et al. (2023) and Ahma-
diTeshnizi et al. (2024) explored multi-agent LLM frameworks for optimization model formulation,
where LLM agents generated complete formulations in each iteration, refining them locally in sub-
sequent steps. Our approach differs by breaking down the formulation process into key stages and
using MCTS to systematically explore the formulation space. Additionally, we guide the search
with a composite reward function that combines solver feedback with LLM evaluation.

5 EXPERIMENTS

The experiments aim to evaluate the performance of the autoformulation model across a diverse set
of problems (Sec. 5.1). In addition, we study two key factors of our framework: (a) the use of LLM-
based evaluation to ensure the correctness of formulations (Sec. 5.2), and (b) enhanced efficiency
by reducing search space in equivalent formulations (Sec. 5.3). Finally, the experiments examine
failure modes to better understand the limitations of the model (Sec. 5.4).

We use NL4OPT (Ramamonjison et al., 2023) and IndustryOR as benchmarks to evaluate our ap-
proach. NL4OPT is a standard dataset for operations research tasks, primarily focusing on linear
programming problems. We used the filtered version presented in (Tang et al., 2024), consisting of
244 problems. IndustryOR, with 100 problems covers linear, integer, mixed-integer, and non-linear
programming across three difficulty levels, offers a more complex challenge. This complexity is cru-
cial for testing the robustness of our method in navigating larger, ambiguous solution spaces. Since
neither benchmark provides enough information to fully evaluate optimization models—lacking
ground truth for decision variables, objectives, and constraints—we adopt an approximately correct
framework, measuring accuracy using a ground truth value found in (Tang et al., 2024), following
the same methodology. All experiments were performed using GPT4o-mini, except for NL4OPT,
where GPT4-1106 was used for fair comparison.

5.1 BENCHMARK COMPARISON

Table 1: Benchmark comparison

Method NL4OPT IndustryOR
Finetuned methods

ORLM-LLaMA-3-8B 85.7% 38.0%

Methods based on GPT-4
Standard 47.3% 28.0%
Reflexion 53.0% -
Chain-of-Experts 64.2% -
OptiMUS 78.8% -

MCTS (iter-1) 85.24% 35.0%
MCTS (iter-3) 92.21% 42.0%
MCTS (All) 92.62% 48.0%

For a comprehensive evaluation, we cover all relevant previous
approaches, including: Reflexion (Shinn et al., 2023), Chain-
of-Experts (Xiao et al., 2023), and OptiMUS (AhmadiTeshnizi
et al., 2024) in Table 1. These approaches employ agents to it-
eratively enhance both the mathematical formulation and the
optimization outcomes, delivering strong results. For consis-
tency, we report the performance of these methods based on
both GPT-4 outputs. We also include methods based on fine-
tuning through large synthetic data such as ORLM (Tang et al.,
2024). Note that our approach is not directly comparable to
previous approaches since it captures all possible interpretations of problems. We report the accu-
racy of the first solution found by MCTS, as well as the accuracy of the first three solutions and
after 16 rollouts. At each step, we limit the number of generated solutions to 10, with a maximum
of three children per node. A higher computational budget could potentially yield more solutions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.2 EVALUATING CRITIC CAPABILITIES OF LLM

We evaluate the critic capabilities of the LLM, which in our method is used to search the for-
mulation space. We study backpropagation (global score) and prior score (local score) inde-
pendently. (1) Getting a global score. The score in Eq. (4) compares complete formula-
tions. Unlike prior scoring, we compare full formulations without sharing partial structures.
To isolate this component, we extract all solutions from IndustryOR that contain correct an-
swers and compare them to wrong answers. Our goal is to show that correct solutions are
generally preferred over incorrect ones when comparing formulations directly. Using this ap-
proach, we obtain a point biserial correlation coefficient of 0.48 with a significant p-value of
2.0681 × 10−3. We also compare this ranking method with a scoring method from the litera-
ture Zhang et al. (2024b), where formulations are scored from 1 to 100, yielding a correlation of
0.2325 with a p-value of 1.1185 × 10−1, which is not significant. (2) Getting a Local Scores.

0 5 10
Minimum leaves contained in the trees

0.1

0.2

0.3

0.4

0.5

0.6

P
er

ce
nt

ag
e

(%
)

LLM Prior - Success Rate

Random - Success Rate

Figure 3: Prior score eval.

To measure prior scores, we use a simple greedy evaluation. To
isolate the effect of the MCTS framework, we first construct a tree
using Depth-First Search (DFS) with up to three children per node,
and assign prior rewards via the LLM. For evaluation, we only
consider trees containing the ground truth and measure the success
rate using a greedy approach. Figure 3 shows the comparison with
random prior scoring, illustrating that the chances of reaching the
ground truth decrease as the number of tree leaves increases.

5.3 EFFICIENCY OF DETECTING FUNCTIONALLY EQUIVALENT FUNCTIONS

We evaluate the efficiency of our framework by analyzing the number of generated for-
mulations at each step and the remaining formulations after two key filtering stages: (1)
grouping equivalent formulations using SMT to eliminate redundancy, and (2) selecting
the top three solutions based on rankings provided by the LLM. The top of Fig. 4
shows the initial number of generated formulations as a percentage (ten per experiment in
practice) and tracks the results of each filtering step across all problems in IndustryOR.

decision variables objective equality const. inequality const.
Formulation Step

0

20

40

60

80

100

P
er

ce
n
ta

ge
(%

)

Generated Nodes by Formulation and Filter steps

Filter step

Generated formulations (1) After equivalence grouping (2) After top-3 ranking

decision variables objective equality const. inequality const.

(1) After equivalence grouping x4.71 x30.03 x107.53 x454.55

(2) After top-3 ranking x5.05 x37.74 x175.44 x1000.00

Estimated efficiency in accumulated generation over formulation steps

Figure 4: (Top) Number of nodes fil-
tered. (Bottom) Estimated efficiency.

The equivalent grouping step is the most impactful, re-
ducing the solutions by a factor of five accross all steps.
The final filtering step, which selects the top-ranked for-
mulations, discards very few solutions—a positive out-
come as we aim to retain viable formulations. Based
on these results, the bottom of the figure contrasts effi-
ciency with a non-hierarchical method, where errors in
earlier stages compound and affect later steps. The re-
sults demonstrate that by the time the formulations reach
the inequality constraint step, efficiency increases a thou-
sandfold. In other words, a non-hierarchical approach
without filtering would have required a thousand more
simulations to arrive at the same number of solutions.

5.4 FAILURE MODES

2 4 6 8 10 12 14 16

Number of Rollouts

36

38

40

42

44

46

48

C
u

m
u

la
ti

ve
C

ou
n
t

of
S

ol
u

ti
on

s
F

ou
n

d

Cumulative Solutions Found Over Rollouts

Cumulative Solutions Found

Total Number of Problems with Solutions

Figure 5: MCTS rollouts

We examine the failure modes of our method by (1) analyzing
its search capabilities for detecting the ground truth and (2)
identifying the problems where the model itself fails. For the
first point, Fig. 5 illustrates the search evolution of our MCTS
relative to the number of rollouts, highlighting our method’s
ability to benefit from additional exploration (more iterations)
to discover more correct solutions. Despite the excellent capa-
bilities of our MCTS in finding novel solution, we notice that
as our MCTS is sensible to recommendation of best candidates
based on greedy approaches as shown in the Figure 8 of Ap-
pendix. This indicates the better critic methods are necessary to improve recommendation of best
candidates.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Analysis by categories

Category Accuracy Entropy
Grouped by Difficulty

Easy 0.6750 1.9638
Medium 0.2895 3.0408
Hard 0.5000 2.7337

Grouped by Type
IP 0.5484 1.6536
LP 0.4167 2.1716
MIP 0.5161 3.3201

We analyze failure modes based on the difficulty and problem character-
istics in IndustryOR. Accuracy is measured by whether the mode finds
the correct solution. In both grouping methods, the model with the high-
est accuracy also produces less entropic (less dense) trees. Similarly,
when grouped by difficulty, the medium category exhibits lower accu-
racy and higher tree entropy. Our method does not show a significant
weakness against any specific type of problems. For example, ORLM
performs well in IPs but is weaker in MIPs (see App. D).

6 DISCUSSIONS

In this paper, we formally define the problem of autoformulation for
mathematical optimization models, establishing objectives, evaluation metrics, and a categoriza-
tion of problem types based on their challenges to autoformulators. We introduce a novel approach
that frames autoformulation as a search problem and effectively leveraging the hierarchical struc-
ture of optimization modeling. Our method integrates LLMs as hypothesis generators and evalua-
tion functions of formulation correctness within an MCTS framework, systematically exploring the
vast hypothesis space of possible formulations. The introduction of hypothesis pruning using SMT
solvers further enhances efficiency by eliminating redundant formulations. Empirical evaluations
across linear and mixed-integer programming benchmarks demonstrate our method’s superior per-
formance in formulating correct models, with notable efficiency gains from pruning and LLM-based
correctness evaluation.

Future works. Looking ahead, we envision autoformulation as an exciting domain where LLMs can
significantly augment human experts. Future research directions include developing collaborative
frameworks to synergize with human expertise, exploring advanced LLM-based methods such as
retrieval-augmented generation (Lewis et al., 2020) and test-time compute (Lightman et al., 2024).
A particularly promising direction lies in fine-tuning models to enhance autoformulator capabilities,
with special emphasis on process-supervised learning for hierarchical modeling steps (Lightman
et al., 2023; Wan et al., 2024), which aligns naturally with the structured decomposition inherent
in optimization formulation. An important consideration for future work is the potential correlation
bias from using the same LLM for both generation and evaluation; while our composite evaluation
strategy helps mitigate this through solver feedback and comparative ranking, developing special-
ized evaluation models or ensemble-based approaches could provide more robust assessment. To
support these advancements, the development of large-scale, diverse benchmarks encompassing var-
ious problem types and complexities, particularly those requiring intricate reformulations, will be
crucial.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. Optimus: Scalable optimization modeling
with (mi) lp solvers and large language models. arXiv preprint arXiv:2402.10172, 2024.

Farid Alizadeh and Donald Goldfarb. Second-order cone programming. Mathematical program-
ming, 95(1):3–51, 2003.

Anastasios G Bakirtzis and Pandelis N Biskas. A decentralized solution to the dc-opf of intercon-
nected power systems. IEEE Transactions on Power Systems, 18(3):1007–1013, 2003.

Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. Handbook of model checking, pp.
305–343, 2018.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In International conference
on machine learning, pp. 531–540. PMLR, 2018.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Julien Bramel and David Simchi-Levi. The Logic of Logistics: Theory, Algorithms, and Applications
for Logistics Management. Springer, 1997.

David Brandfonbrener, Simon Henniger, Sibi Raja, Tarun Prasad, Chloe Loughridge, Federico Cas-
sano, Sabrina Ruixin Hu, Jianang Yang, William E. Byrd, Robert Zinkov, and Nada Amin. Verm-
cts: Synthesizing multi-step programs using a verifier, a large language model, and tree search,
2024. URL https://arxiv.org/abs/2402.08147.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
without process, 2024a. URL https://arxiv.org/abs/2405.03553.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Step-level value preference optimization
for mathematical reasoning, 2024b. URL https://arxiv.org/abs/2406.10858.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation,
46(53):157, 2009.

George B Dantzig. Origins of the simplex method. In A history of scientific computing, pp. 141–151.
1990.

Erwin J Delgado, Xavier Cabezas, Carlos Martin-Barreiro, Vı́ctor Leiva, and Fernando Rojas. An
equity-based optimization model to solve the location problem for healthcare centers applied to
hospital beds and covid-19 vaccination. Mathematics, 10(11):1825, 2022.

Matthew DeLorenzo, Animesh Basak Chowdhury, Vasudev Gohil, Shailja Thakur, Ramesh Karri,
Siddharth Garg, and Jeyavijayan Rajendran. Make every move count: Llm-based high-quality rtl
code generation using mcts. arXiv preprint arXiv:2402.03289, 2024.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

11

https://arxiv.org/abs/2402.08147
https://arxiv.org/abs/2405.03553
https://arxiv.org/abs/2406.10858

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang,
and Jun Wang. Alphazero-like tree-search can guide large language model decoding and train-
ing. arXiv preprint arXiv:2309.17179, Sep 2023a. Available at https://arxiv.org/abs/
2309.17179.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-
like tree-search can guide large language model decoding and training. arXiv preprint
arXiv:2309.17179, 2023b.

Robert Fourer, David M Gay, and Brian W Kernighan. A modeling language for mathematical
programming. Management Science, 36(5):519–554, 1990.

Benjamin Fuchs. Application of convex relaxation to array synthesis problems. IEEE Transactions
on Antennas and Propagation, 62(2):634–640, 2013.

Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):
1115–1145, 1995.

Andrea J Goldsmith and Pravin P Varaiya. Capacity, mutual information, and coding for finite-state
markov channels. IEEE transactions on Information Theory, 42(3):868–886, 1996.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. arXiv preprint arXiv:2309.08532, 2023.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting
Hu. Reasoning with language model is planning with world model. In The 2023 Conference on
Empirical Methods in Natural Language Processing, 2023a.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023b.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, 2021.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118–9147. PMLR, 2022.

Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of
the sixteenth annual ACM symposium on Theory of computing, pp. 302–311, 1984.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Javad Lavaei and Steven H Low. Zero duality gap in optimal power flow problem. IEEE Transactions
on Power systems, 27(1):92–107, 2011.

H. Lebret and S. Boyd. Antenna array pattern synthesis via convex optimization. IEEE Transactions
on Signal Processing, 45(3):526–532, 1997.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

12

https://arxiv.org/abs/2309.17179
https://arxiv.org/abs/2309.17179
https://www.gurobi.com
https://www.gurobi.com

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Qingyao Li, Wei Xia, Kounianhua Du, Xinyi Dai, Ruiming Tang, Yasheng Wang, Yong Yu, and
Weinan Zhang. Rethinkmcts: Refining erroneous thoughts in monte carlo tree search for code
generation. arXiv preprint arXiv:2409.09584, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi.

Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language models as
evolutionary optimizers. In 2024 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8.
IEEE, 2024a.

Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language models
to enhance bayesian optimization. In The Twelfth International Conference on Learning Repre-
sentations, 2024b. URL https://openreview.net/forum?id=OOxotBmGol.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

Zhi-Quan Luo and Shuzhong Zhang. Dynamic spectrum management: Complexity and duality.
IEEE journal of selected topics in signal processing, 2(1):57–73, 2008.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Mazura Mokhtar, A Shuib, and D Mohamad. Mathematical programming models for portfolio opti-
mization problem: A review. International Journal of Mathematical and Computational Sciences,
8(2):428–435, 2014.

David Monniaux. A survey of satisfiability modulo theory. In Computer Algebra in Scientific
Computing: 18th International Workshop, CASC 2016, Bucharest, Romania, September 19-23,
2016, Proceedings 18, pp. 401–425. Springer, 2016.

Rindranirina Ramamonjison, Timothy Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan Ghad-
dar, Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou, et al. Nl4opt com-
petition: Formulating optimization problems based on their natural language descriptions. In
NeurIPS 2022 Competition Track, pp. 189–203. PMLR, 2023.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

Zhengyang Tang, Chenyu Huang, Xin Zheng, Shixi Hu, Zizhuo Wang, Dongdong Ge, and Benyou
Wang. Orlm: Training large language models for optimization modeling. arXiv preprint
arXiv:2405.17743, 2024.

Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and
Jun Wang. Alphazero-like tree-search can guide large language model decoding and training. In
Forty-first International Conference on Machine Learning, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

13

https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=OOxotBmGol

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

H Paul Williams. Model building in mathematical programming. John Wiley & Sons, 2013.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
Fu, Tao Zhong, Jia Zeng, Mingli Song, et al. Chain-of-experts: When llms meet complex opera-
tions research problems. In The Twelfth International Conference on Learning Representations,
2023.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi,
and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
arXiv preprint arXiv:2405.00451, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Roy D. Yates. A framework for uplink power control in cellular radio systems. IEEE Journal on
selected areas in communications, 13(7):1341–1347, 1995.

Wei Yu and Raymond Lui. Dual methods for nonconvex spectrum optimization of multicarrier
systems. IEEE Transactions on communications, 54(7):1310–1322, 2006.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. arXiv preprint arXiv:2406.03816, 2024a.

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level
mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b, 2024b.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Advances in Neural Information Processing Systems, 36, 2024.

Ruizhe Zhong, Xingbo Du, Shixiong Kai, Zhentao Tang, Siyuan Xu, Hui-Ling Zhen, Jianye Hao,
Qiang Xu, Mingxuan Yuan, and Junchi Yan. Llm4eda: Emerging progress in large language
models for electronic design automation. arXiv preprint arXiv:2401.12224, 2023.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models, 2023.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Lan-
guage agent tree search unifies reasoning, acting, and planning in language models. In Forty-first
International Conference on Machine Learning, 2024.

14

https://openreview.net/forum?id=Bb4VGOWELI

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL DETAILS ON METHOD

A.1 FORMULATION EQUIVALENCE CHECKS

SMT solvers offer a powerful approach for verifying equivalence between various components of
optimization models (Barrett & Tinelli, 2018). These tools can rigorously check if different for-
mulations of objective functions, sets of equality constraints, or sets of inequality constraints are
logically equivalent. By encoding the components as logical formulas within appropriate theories
(such as linear arithmetic), SMT solvers can determine if the formulations are satisfiable under the
same conditions. For objective functions, the solver can check if the difference between two func-
tions is always zero across the feasible region. This is formally described in Eq. (5). For constraint
sets, it can verify if they define identical feasible regions by checking that each constraint in one set
is implied by the other set and vice versa, formally described in Eqs. (6) and (7). This approach not
only ensures the correctness of model transformations or reformulations but also aids in identifying
redundant constraints and simplifying complex models. However, the effectiveness of SMT solvers
in this context depends on the nature of the optimization problem, as nonlinear or highly complex
formulations may pose challenges for current solvers.

1. For objective functions f (i) and f (j):

Equivalent(f (i), f (j)) ⇐⇒ ∀x ∈ X , f (i)(x) = f (j)(x) (5)

2. For sets of equality constraints g(i) = {g(i)k }Kk and g(j) = {g(j)l }Ll :

Equivalent(g(i), g(j)) ⇐⇒ ∀x ∈ X , (
∧
k

g
(i)
k (x) = 0) ⇐⇒ (

∧
l

g
(j)
l (x) = 0) (6)

3. For sets of inequality constraints h(i) = {h(i)k }Kk and h(j) = {h(j)l }Ll :

Equivalent(h(i), h(j)) ⇐⇒ ∀x ∈ X , (
∧
k

h
(i)
k (x) ≤ 0) ⇐⇒ (

∧
l

h
(j)
l (x) ≤ 0) (7)

A.2 PROMPT DESIGN

Template instruction

I have a problem in operational research:

###PROBLEM DESCRIPTION###

I have the following formalization:
formalization dict = {"parameters": {}, "decision variables2: {},
"objective": {}, "equality constraints": {}, "inequality constraints":
{}}

Parameters template (root node generation)

You are an optimization modeling expert. Complete
formalization dict based on the problem description, you should
complete the "parameters" field, which consists of assigning
constants to descriptive variable names.
Only complete "parameters" and nothing else. Follow these
guidelines:

1. Your primary responsibility is to define all the parameters
from the problem description that will later be used to define
decision variables, the objective, and constraints (both
equality and inequality).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

2. You may include additional parameters in a format suitable
for facilitating the subsequent tasks of defining decision
variables, the objective function, and constraints.
3. For parameters that involve multiple indices (e.g., x[i] or
x[i,j]), use the most appropriate data structure, such as lists,
dictionaries, or dictionaries with tuple keys, to represent
them.
4. For each parameter, include a clear, descriptive comment
explaining its meaning.
5. Ensure that the parameter names (keys) are descriptive and
intuitive.

Return only the python dictionary update (i.e.,
formalization dict["parameters"] = ...) following the
described requirements.

Decision Variables Template (Depth == 1)

You are an optimization modeling expert. Complete only the
"decision variables" field within the "formalization dict" based
on the provided problem description.
Ensure the decision variables comprehensively cover all
essential elements to accurately model the optimization problem.

Each key-value pair in the dictionary must adhere to the
following structure:

<key>: {
"description": <description>,
"type": <type>,
"iteration_space": <space>

}

The structure should meet these requirements:

1. Each <key> represents a decision variable that will later
be used to implement the objective, equality, and inequality
constraints in a Python program.
2. Replace <key> with a symbolic name representing the decision
variable. Ensure that each <key> represents a distinct decision
variable with a unique symbolic name.
3. Replace <description> with a detailed explanation of the
role of the decision variable in the optimization model.
4. Replace <type> with a string representing the Gurobi
variable type (e.g., GRB.INTEGER), as this will be used to
create the variable via Gurobi’s addVar function.
5. If the decision variable is indexed, replace <space> with a
string representing Python for-loop using list comprehension
syntax to represent the index space. For this, assume
direct access to these parameter variables (i.e., avoid using
parameters[variables] syntax).
6. If the variable is not indexed, set <space> to None.
7. If the variable is indexed, do not write the index in the
symbol (do not put the index when writing <key>).
8. You are encouraged to create decision variables that are
general. If two decision variables represent the same concept
write them as one key, creating an appropriate iteration space.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Return only the Python dictionary update (i.e.,
formalization dict["decision variables"] = ...) following the
described requirements.

Objective Template (Depth == 2)

You are an optimization modeling expert. Complete only the
"objective" field within the "formalization dict" based on the
provided problem description.
Do not complete any other fields. Follow these requirements:

1. Write the objective function mathematically using decision
variables.
2. Preface the key-value pair with a Python comment explaining
the rationale behind the objective. DO NOT make a commentary
inside the mathematical description.
3. Use parameter-defined variables instead of hard-coded
values. Assume direct access to these parameter variables
(i.e., avoid using parameters[variables] syntax).
4. The dictionary key must be ’min’ or ’max’, reflecting the
nature of the objective (minimization or maximization).
5. The dictionary value must be a string representation of the
objective function based on the problem description, written in
valid Python syntax.

Return only the Python dictionary update (i.e.,
formalization dict["objective"] = "max": ... or
formalization dict["objective"] = "min": ...) following the
described requirements.

Equality Constraints Template (Depth == 3)

You are an optimization modeling expert. Complete the
formalization dict by filling in the equality constraints field
based on the problem description and the decision variables
provided.
These constraints include border constraints, initialization,
and equality constraints derived from the problem description.
Do not complete the "inequality constraints" field. Follow
these requirements:

1. Descriptive constraints: Each key in the dictionary should
represent a unique, clearly named constraint, with the value
being a string that describes the corresponding mathematical
equality using "==".
2. Parameter Variables: Use parameter-defined variables
instead of hard-coded values. Assume direct access to these
parameter variables (i.e., avoid using parameters[variables]
syntax).
3. Indexed Variables: For indexed decision variables, indicate
the index within brackets (e.g., x[i]).
4. Handling Multiple Constraints: For similar constraints that
repeat across indices or variables, use Python for loops and
list comprehensions for efficient representation.
5. String mathematical description: Note, the value
(mathematical description) should be a single string. DO NOT
use .join() or anything else. Even if it represents multiple
constraints using a for loop.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

6. No Inequality Constraints: Only define equality
constraints. Inequality constraints will be handled separately
by a subsequent expert.
7. Comments: Include a Python comment before each key-value
pair, explaining the rationale behind the constraint.

Return only the Python dictionary update (i.e.,
formalization dict["equality constraints"] = ...) following
these requirements.
Important: If the problem contains only inequality
constraints and no equality constraints, return:
formalization dict["equality constraints"] = {None: None}.
This will signal the need to focus on inequality constraints
in subsequent modeling steps.

Inequality Constraints Template (Depth == 4)

You are an optimization modeling expert. Complete the
formalization dict by adding the inequality constraints field
based on the problem description. Follow these requirements:

1. Descriptive constraints: Each key in the dictionary should
represent a unique, clearly named constraint, with the value
being a string that describes the corresponding mathematical
inequality.
2. Parameter Variables: Use parameter-defined variables
instead of hard-coded values. Assume direct access to these
parameter variables (i.e., avoid using parameters[variables]
syntax).
3. Indexed Variables: For indexed decision variables, indicate
the index within brackets (e.g., x[i]).
4. Handling Multiple Constraints: For similar constraints that
repeat across indices or variables, use Python for loops and
list comprehensions for efficient representation.
5. String mathematical description: Note, the value
(mathematical description) should be a single string without
using join or anything else. Even if it represents multiple
constraints using a for loop.
6. Inequality Constraints Only: Include only inequality
constraints. Exclude any constraints already covered under
equality constraints.
7. Comments: Include a Python comment before each key-value
pair, explaining the rationale behind the constraint.

Return only the Python dictionary update (i.e.,
formalization dict["inequality constraints"] = ...) following
these requirements.
Important: Think carefully of inequality constraints that
are not explicit in the problem description that should be
considered. If after thinking you conclude the problem contains
only equality constraints and no inequality constraints, return:
formalization dict["inequality constraints"] = {None: None}.

Group Decision Variables template

- Objective:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

As an expert in optimization modeling, your role is to evaluate
multiple sets of decision variables provided for an operations
research problem. You are responsible for determining if two or
more sets of decision variables should be grouped together based
on their equivalency from an optimization perspective.
- Task Breakdown:

Your grouping decision is critical for assisting a subsequent
optimization expert, who will define the objective function,
equality constraints, and inequality constraints for each group.
To facilitate this process, follow these precise guidelines:

- Equivalency Criteria:

1. Same Objectives and Constraints: Two sets of decision
variables should be grouped together if they result in the
definition of the same objective function, equality constraints,
and inequality constraints, even if the variable names differ.
2. Conceptual Equivalency: Variable sets should be grouped
together if, despite having different variable names, they
define the same underlying concepts that ultimately lead
to identical objectives and constraints (both equality and
inequality).
3. Non-Equivalency Conditions: Two sets of decision variables
should not be grouped together if they lead to differences in
any of the following: Objective function, Equality constraints,
Inequality constraints.
4. Naming Convention Irrelevance: The names of the decision
variables are irrelevant for grouping purposes. Only the
functional impact of the variables on the objective function
and constraints should be considered. If two sets of variables
lead to the same results, group them together, even if the names
differ.

By following these guidelines, you will help ensure that
decision variable sets are clearly classified for the next
expert in the process.

Please list your clusters as follows:

###
groups = {
1: group_1,
...,
n: group_n}
###

Where group i is a python list containing the names (string) of
all the set of decision variables that are equivalent. One set
of decision variables can only belong to one group. The list
should consider at least one element.

Important: Think carefully STEP BY STEP about your grouping
decision, then conclude your assessment using the structured
format provided above.

Here are the current solutions:

solutions = {}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Ranking Template to obtain prior rewards

You are an expert in optimization modeling. Using the
formalization dict as your current progress, you are tasked with
selecting the optimal #VARIABLE# from the provided options.

Please follow these steps:

1. Carefully evaluate each potential #VARIABLE#.

2. Rank the variables from best to worst based on their
suitability.

Present your rankings in the following format:

###
rank = {
1: solution_1,
...,
n: solution_n}
###

Where:
- solution 1 represents the best #VARIABLE#.
- solution n represents the least suitable #VARIABLE#.

Important: Think carefully STEP BY STEP about your ranking
decision. Then conclude by listing the solutions in string
format as structured above.

Here are the possible solutions:

solutions = {}

A.3 EVALUATION METRICS

EXPECTED CORRECTNESS

Mathematical Definition: Expected Correctness (EC) quantifies the probability of reaching a cor-
rect leaf node when starting from a given node and following a probabilistic policy based on the node
rankings R. It is computed recursively:

• For a leaf node n:

EC(n) =
{
1, if n is correct
0, if n is incorrect

• For an intermediate node n with children {ci}:

EC(n) =
∑
i

p(ci | n)× EC(ci)

where the probability of choosing child ci is given by:

p(ci | n) =
R(ci)∑
j R(cj)

Intuitive Explanation: Expected Correctness measures the likelihood that, by following the
ranking-based probabilities at each decision point, we will eventually arrive at a correct solution.
It reflects the overall effectiveness of the ranking system in guiding the search process toward cor-
rect outcomes.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

PRECISION AND RECALL

Mathematical Definition:

• Precision at a node is the ratio of relevant children (those leading to correct leaves) to all
retrieved children, averaged over all positions:

Precision =
1

n

n∑
k=1

Relevantk
k

where Relevantk is the number of relevant children in the top k positions.

• Recall at a node is the ratio of relevant children retrieved to the total number of relevant
children, averaged over all positions:

Recall =
1

n

n∑
k=1

Relevantk
Total Relevant

Intuitive Explanation: Precision indicates how well the top-ranked children (based on R) cor-
respond to those that lead to correct solutions. High precision means most top-ranked choices are
relevant. Recall measures the ability of the ranking to capture all relevant children among its se-
lections. High recall implies that the ranking method successfully identifies most of the correct
paths.

NORMALIZED DISCOUNTED CUMULATIVE GAIN (NDCG@K)

Mathematical Definition: NDCG@k evaluates the quality of the ranking up to position k, ac-
counting for the position of relevant items:

1. Compute DCG@k (Discounted Cumulative Gain):

DCG@k =

k∑
i=1

2reli − 1

log2(i+ 1)

where reli is the relevance score at position i (1 if the child leads to a correct leaf, 0 other-
wise).

2. Compute IDCG@k (Ideal DCG) by ordering the children perfectly:

IDCG@k =

k∑
i=1

2rel∗i − 1

log2(i+ 1)

where rel∗i is the ideal ordering of relevance scores.

3. NDCG@k is the ratio:

NDCG@k =
DCG@k

IDCG@k

Intuitive Explanation: NDCG@k assesses not just whether relevant children are present in the
top k positions but also how highly they are ranked. It rewards rankings that place relevant children
earlier, reflecting the practical importance of quickly finding correct solutions.

TOP-RANK SUCCESS RATE

Mathematical Definition: The Top-Rank Success Rate is the probability that always choosing the
top-ranked child (highest R) at each decision point leads to a correct leaf:

Top-Rank Success Rate =
Number of times top-path leads to correct leaf

Total number of root nodes

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Intuitive Explanation: This metric evaluates the effectiveness of a greedy strategy based solely
on the ranking R. A high success rate indicates that the top-ranked paths are reliable guides to
correct solutions, simplifying decision-making in the tree traversal.

B COMPARISON TO RELATED WORKS: MCTS METHODS

Table 3: Comparison of LLM+MCTS variants. This table presents a comparative analysis of LLM+MCTS methods, highlighting the method-
ological innovation of our method. Specifically, we compare (1) expansion mechanisms for generating child nodes; sources of evaluation for
(2) newly expanded nodes; and (3) terminal nodes; whether (4) evaluations employ comparative evaluations; and finally the (5) search
space. V, E,N represent evaluation signals obtained from LLMs, external environments (e.g. test cases in coding tasks), and comparisons
with other solutions, respectively. T ,P,Σ represent space of natural language thoughts, formal programs, and tokens, respectively.

Method Expansion mechanism Initial node
evaluation

Reward used in
backpropagation

Evaluation via
comparisons? Search space

RAP (Hao et al., 2023b) - V V ✗ T
LATS (Zhou et al., 2023) - V V, E ✗ T

MCTSr (Zhang et al., 2024b) Self-refine V V ✗ T
VeriGenMCTS (DeLorenzo et al., 2024) Filter by functionality - E ✗ Σ

RethinkMCTS (Li et al., 2024) Rethink V, E V, E ✗ T
VerMCTS (Brandfonbrener et al., 2024) Joint Expansion-Evaluation E E ✗ P

AlphaZero like MCTS (Feng et al., 2023b; Zhang
et al., 2024a; Chen et al., 2024a; Luo et al., 2024)

- V V, E ✗ T

DPO like MCTS (Xie et al., 2024; Chen et al., 2024b) - V V, E ✗ T
Ours SMT Pruning V, E ,N V, E ,N ✓ M1:4

Recent advancements in MCTS have demonstrated that combining MCTS with LLMs significantly
enhances reasoning capabilities by refining the thinking process (Zhang et al., 2024b). Comple-
mentary improvements have been achieved using Process Reward Models, which further optimize
reasoning using training with step-wise reward information (Feng et al., 2023a). In parallel, the
integration of MCTS and LLMs has been applied to code generation (Zhong et al., 2023; Brandfon-
brener et al., 2024; Li et al., 2024). We present a detailed comparison against these related works in
Tab. 3.

Our MCTS framework introduces three key innovations specifically tailored to autoformulation:

1. Structured hierarchical search: We leverage the inherent structure of optimization modeling
to decompose the search space. Unlike conventional MCTS approaches, which assume fixed
search spaces, our hierarchical organization of search spaces both reduces search complexity and
increases formulation diversity.

2. SMT-based pruning: Our analysis shows that 80% of generated formulations are trivially equiv-
alent (see Fig. 4). By integrating SMT solvers to prune these redundant formulations, we achieve
a 400x improvement in search efficiency, avoiding exponential growth in search complexity.

3. Comparative formulation evaluation: We introduce novel pairwise comparative evaluation for
assessing formulation correctness, which is distinct from the standard approach where LLMs
evaluate solutions in isolation. This comparative framework enables more reliable preference-
based evaluation to improves search efficiency.

C REFORMULATION STRATEGIES

Here, we enumerate commonly used strategies to reformulate the problem. Detailed descriptions
can be found in (Boyd & Vandenberghe, 2004, Chapter 4.1.3).

• Change of variables
• Transformation of functions
• Slack variables
• Eliminating equality constraints
• Adding equality constraints
• Optimizing over some variables
• Epigraph form

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D ADDITIONAL RESULTS

D.1 OBTAINING LOCAL SCORES (PRIOR RANKING).

We evaluated our node ranking method on the IndustryOR dataset, aggregating metrics across all
problems. The assessment used five key metrics: Average Expected Correctness, Average Precision,
Average Recall, NDCG@3, and Top-Rank Success Rate. Average Expected Correctness measures
the likelihood of reaching a correct leaf by following a probabilistic policy based on RR scores. Pre-
cision and Recall assess the accuracy and coverage of ranking correct subtrees. NDCG@3 evaluates
ranking quality within the top three positions, and Top-Rank Success Rate gauges the success of a
greedy strategy that always selects the top-ranked child. Table in Figure 6 presents detailed results,
with the top section showing Precision and Recall by formulation step and the bottom displaying
aggregated results across all nodes.

0.0 0.2 0.4 0.6 0.8 1.0

Decision Variables

Equality Const.

Inequality Const.

Objective

Fo
rm

ul
at

io
n

St
ep

precision recall

Metric Value
Avg. Expected Correctness 0.6692

Avg. Precision 0.8911
Avg. Recall 0.8643

Avg. NDCG@3 0.6776
Top-Rank Success Rate 0.7292

Figure 6

Our results shows an Average Expected Correctness of
0.6692 indicating a significant likelihood of reaching cor-
rect solutions using the probabilistic policy based on R
scores. The high Average Precision (0.8911) and Recall
(0.8643) show that our ranking method effectively priori-
tizes correct subtrees while identifying most of them. The
NDCG@3 of 0.6776 reflects strong ranking performance
within the top three positions, crucial when resources for
exploration are limited. Finally, the Top-Rank Success
Rate that 73% of the time selecting the top-ranked child
leads to correct solutions. These results validate the ro-
bustness of our ranking approach in guiding the search process toward correct solutions.

D.2 ASSESSING THE CRITIC EVALUATION CAPABILITIES OF LLMS

0.4 0.6 0.8 1.0
Normalized accumulated reward

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ob

ab
ilit

y
De

ns
ity

Gaussian Distributions of accumulated rewards (correct vs incorrect cases)

Predicted = Ground Truth
Predicted Ground Truth

t-statistic p-value corr. coeff. corr. p-value

4.8593 2.62e-06 0.3442 2.91e-06

Figure 7: Top. Distribution of accumulated
prior rewards of correct prediction vs failed
prediction. Bottom Statistical test compar-
ing both groups.

Prior rewards. To evaluate whether the prior re-
ward serves as a reliable indicator of a good node
during node selection, we compute the normalized
accumulated prior rewards. This is the sum of all
prior rewards from the visited nodes, normalized by
dividing the total by 4 (corresponding to 4 steps).
Using this metric, we analyze the results across the
IndustryOR dataset, grouping the outcomes based
on whether the formalization produces a score equal
to the ground truth or not. The results of this
study is presented in Figure 7. The mean accumu-
lated reward for successful formalizations (predic-
tion equals ground truth) is 0.744 (σsucc = 0.133),
notably higher than the mean for failed formaliza-
tions, which is 0.651 (σfail = 0.122). An indepen-
dent t-test confirms that this difference is statistically
significant (t = 4.86, p < 0.001), indicating that successful formalizations consistently yield higher
rewards. Additionally, a point-biserial correlation analysis shows a moderate positive correlation
(r = 0.344, p < 0.001) between accumulated rewards and success, suggesting that higher accumu-
lated rewards are associated with an increased likelihood of arriving at the successful formalization.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.3 ADDITIONAL COMPARISONS AGAINST ORLM

Table 4: Comparison between GPT4-omini. For the MCTS approach the accuracy if the ground
truth is found by the MCTS search.

Method Difficulty Question Types
Easy Medium Hard LP NLP IP MIP Others

ORLM-LLaMA-3-8B 57.5% 20.0% 35.0% 36.1% 0.0% 61.2% 19.3% 0.0%
MCTS (ours) 67.50% 28.95% 50.00% 41.67 % 0.0% 54.84% 51.61% 0.0%

D.4 GREEDY SEARCH AFTER 16 ROLLOUTS MCTS

1 2-3 3+
Number of recommnedations

0

5

10

15

20

25

30

Ac
cu

ra
cy

Histogram of Results

(a) λ = 0.0

1 2-3 3+
Number of recommnedations

0

5

10

15

20

25

30
Ac

cu
ra

cy

Histogram of Results

(b) λ = 0.5

1 2-3 3+
Number of recommnedations

0

5

10

15

20

25

Ac
cu

ra
cy

Histogram of Results

(c) λ = 1.0

Figure 8: Initially, we perform MCTS with 16 rollouts. Following this, we apply a greedy search to
determine the number of iterations required to find the ground truth solution.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D.5 ADDITIONAL ANALYSIS ON PARTIAL FORMULATION EVALUATIONS

Formalization Step Correlation p-value
Decision Variables 0.1985 0.1159
Objective 0.2143 0.2470
Equality Constraints 0.3711 0.0004
Inequality Constraints 0.3290 0.0033

Table 5: Spearman’s Correlation and p-values for different formalization steps.

Experimental setup. To analyze partial model evaluation, we compute correlations between inter-
mediate node evaluations in the MCTS and ground-truth correctness scores. For each intermediate
node, we define its ground-truth correctness as the percentage of correct leaf nodes in its subtree.

Observations. Analysis of Spearman’s correlations (Tab. 5) reveals two key patterns:

1. Evaluation robustness increases with depth. Correlation strength improves from decision vari-
ables (r = 0.1985) to inequality constraints (r = 0.3290), with corresponding gains in statistical
significance. This aligns with intuition: deeper nodes contain more complete formulation infor-
mation, enabling more accurate evaluation.

2. Component-specific evaluation challenges. Earlier components show weaker correlations due
to interdependencies between modeling elements. For instance, evaluating decision variables
in isolation is challenging without understanding their role in objectives and constraints. This
increased uncertainty at earlier stages reflects the inherent difficulty in assessing partial formula-
tions without full context.

These findings underscore the importance of hierarchical search strategies that maintain diverse
exploration paths, particularly in early stages where evaluation signals are weaker.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 6: Impact of formulation and solver on optimality gap and computational efficiency.

Factor Optimality gap Computational efficiency
Type I (origi-
nally convex)

Formulation Minimal impact: any correct (equiv-
alent) formulation can achieve global
optimality

Medium impact: choice of variable representation
(e.g. structure-preserving formulations) can improve
solution time

Solver Minimal impact: most commercial
solvers can achieve similar optimality
gaps

Medium impact: specialized solvers for specific
problem structures (LP, QP, SOCP) can be faster

Type II (non-
convex, but con-
vexifiable)

Formulation High impact: correct, convexified re-
formulation enables achievable global
optimality

High impact: reformulation complexity affects solu-
tion time, generally convex reformulations are solved
faster

Solver Medium impact: solver ability to han-
dle reformulated structures affect solu-
tion quality

High impact: solver must efficiently handle the spe-
cific structure of reformulation

Type III (non-
convex, requir-
ing relaxation

Formulation High impact: quality of relaxation
directly affects optimality gap and
bounds tightness

Medium impact: relaxation complexity affects so-
lution time, involving trade-offs between relaxation
tightness and computational efficiency

Solver High impact: solver abilities on re-
laxed problem affects solution quality

Medium impact: solving relaxed problems may re-
quire specialized solvers, although general purpose
solvers are roughly comparable

E CATEGORIZATION OF AUTOFORMULATION CHALLENGES BY
OPTIMIZATION PROBLEM STRUCTURE

The exact challenges faced by an autoformulator depends on the nature of the problem d. Here,
we provide a categorization of optimization problems and their characteristics. To help elucidate
different types of problems, we introduce two concepts. First, we define the set of correct formu-
lations for a problemM(d) ⊂ M as the set of all equivalent formulations that correctly model a
problem d. Second, we introduce the set of original forms Mo(d) ⊆ M(d)—the set containing
the natural representations of the problem, typically the initial models an optimization expert would
create. This is a set, as it can contain trivially equivalent formulations. Finally, we partition the set
M into the set of convex problemsMconv and the set of non-convex problemsMnonc.

1. Type I problems. These are problems where the original form is inherently convex, namely
Mo(d) ⊆ Mconv. Examples include certain resource allocation problems that can be naturally
formulated as linear programs. The challenge of solving Type I problems is to ensure that the
problem is correctly represented (formulation correctness, i.e. H(d) ∩ Mo(d) ̸= ∅), which
would entail that it can be efficiently solved to global optimality.

2. Type II problems. These are problems where the original form is non-convex, but can be refor-
mulated into an equivalent convex problem, namely Mo(d) ⊆ Mnonc but M(d) ∩ Mconv ̸=
∅. In addition to formulation correctness, another challenge of solving Type II problems
is to ensure the autoformulator can identify and apply appropriate reformulation strategies
(e.g. change of variables) to transform the non-convex into an equivalent convex form, namely
H(d)∩(M(d) ∩Mconv) ̸= ∅ (see App. C for discussion). For such problems, evaluation extends
beyond correctness to include the ability to achieve global optimality through reformulation.

3. Type III problems. These are problems where the original form is non-convex and cannot be
reformulated into a convex problem, namely M(d) ⊆ Mnonc. In such cases, there are two
general options: a) solve the non-convex problem using general-purpose algorithms (e.g. gradient
descent), or b) relax into a convex problem that approximates, but is not equivalent to, the original
problem (e.g. semidefinite relaxation of a Max-Cut problem (Goemans & Williamson, 1995)).

A crucial nuance here is that mathematically equivalent models, even when both are convex, can
exhibit vastly different computational complexities. An example of this is quadratic programming
and second-order cone programming (SOCP) reformulations of the same problems (Alizadeh &
Goldfarb, 2003). Although mathematically equivalent, SOCP formulations often allow for more
efficient solution methods. Therefore, computational efficiency is an important evaluation metric
across all three problem types, significantly impacting practical utility of model formulations. In
App. F, we provide concrete examples to illustrate each type of optimization problems.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

F ILLUSTRATIVE EXAMPLES OF PROBLEM CATEGORIZATION

In this section, we provide examples of canonical problems in engineering and machine learing that
belong to each of the identified problem types. Specifically:

• Type I: Problems that have a precise mathematical model, which is convex in its original form.
Examples are provided in App. F.1.

• Type II: Problems that have a precise mathematical model, which is nonconvex in its original
form but can be reformulated as a convex problem (sometimes additional assumptions are needed).
Examples are provided in App. F.2.

• Type III: Problems that have a precise mathematical model, which is nonconvex in its original
form but can be relaxed to a convex problem (sometimes additional assumptions are needed). The
difference from Type II is that the convex relaxation is not equivalent to the original problem.
Examples are provided in App. F.3.

We also provide examples of problems where the problem description is inherently ambiguous in
App. F.4

F.1 EXAMPLES OF TYPE-I PROBLEMS

[P1] Mutual Information Maximization (Mutual-Information)

• Reformulation strategies: None.
• Difficulty in reformulation: Easy.
• Difficulty in solving the reformulated problem: Easy.

Mutual information is a quantity that measures the divergence between two random variables, with
applications in wireless communications (Goldsmith & Varaiya, 1996) and in data science (Belg-
hazi et al., 2018). Here we describe it in the context of maximizing Shannon capacity in wireless
communications.

We consider a discrete memoryless channel with an input random variable X ∈ {1, . . . , ℓ}, an
output random variable Y ∈ {1, . . . , y}, and channel transition matrix P ∈ Ry×ℓ with the element
on the j-th row and the i-th column being pji = prob (Y = j | X = i).

Input X Transition Probability P Output Y

Our goal is to choose the optimal probability distribution of input X , denoted x ∈ Rℓ with xi =
prob (X = i), in order to maximize the mutual information between input X and input Y

I(X;Y) =

ℓ∑
i=1

y∑
j=1

xipji log2
pji∑ℓ

k=1 xkpjk
.

The optimal value of the problem is called Shannon capacity.

This problem is convex in its original form:

Maximize
ℓ∑
i=1

 y∑
j=1

pji log2 pji

xi −
y∑
j=1

(
ℓ∑
i=1

pjixi

)
log2

(
ℓ∑
i=1

pjixi

)
subject to xi ≥ 0, i = 1, . . . , ℓ,

ℓ∑
i=1

xi = 1.

(8)

[P2] Power control for maximum throughput (PC-MaxRate-decoupled)

• Reformulation strategies: None.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

• Difficulty in reformulation: Easy.
• Difficulty in solving the reformulated problem: Easy.

We consider the problem of allocating a unit amount of total power over ℓ independent frequency or
temporal wireless channels (Yu & Lui, 2006; Luo & Zhang, 2008). Each channel has a channel gain
gi and a noise power σi, resulting in a channel gain to noise ratio of αi = gi/σi.

Our goal is to choose the optimal power allocation, denoted x ∈ Rℓ+ with xi being the power
allocated to channel i, in order to maximize the total throughput.

This problem is convex in its original form:

Maximize
ℓ∑
i=1

log2 (1 + αixi)

subject to
ℓ∑
i=1

xi ≤ 1,

xi ≥ 0, i = 1, . . . , n.

(9)

[P3] Power control to satisfy SINR requirements with minimum power (PC-MinPower)

• Reformulation strategies: Transformation of function.
• Difficulty in reformulation: Easy (straightforward observation).
• Difficulty in solving the reformulated problem: Easy (the reformulated problem is LP).

We consider the problem of determine the transmit power of ℓ pairs of transceivers. They operate
in the same frequency at the same time, hence causing interference to each other. The problem data
is a channel gain matrix G ∈ Rℓ×ℓ, where gij is the channel gain from transmitter j to receiver i,
the noise power vector σ ∈ Rℓ with σi as the noise power at receiver i, and the minimum SINR
requirement vector γ ∈ Rℓ with γi as the minimum SINR required by transceiver i.

Our goal is to choose the transmit power, denoted x ∈ Rℓ+ with xi being the power of transmitter
i, in order to minimize the total transmit power while satisfying the SINR requirements of each
transceiver (Yates, 1995).

This problem is non-convex in its original form:

Minimize
ℓ∑
i=1

xi

subject to
giixi∑

j ̸=i gijxj + σi
≥ γi, i = 1, . . . , ℓ.

(10)

But it is not hard to observe that the constraints of SINR requirements can be reformulated as linear
constraints, resulting in a LP:

Minimize
ℓ∑
i=1

xi

subject to giixi ≥ γi

∑
j ̸=i

gijxj + σi

 , i = 1, . . . , ℓ.

(11)

[P4] Beamforming to minimize sidelobes (Beamform-MinSidelobe)

• Reformulation strategies: Transformation of functions, slack variables.
• Difficulty in reformulation: Easy (standard techniques were used).
• Difficulty in solving the reformulated problem: Medium (the reformulated convex problem is

a second-order cone program (SOCP)).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

We consider the problem of an antenna array with ℓ elements in a 2-D space, with the position of kth
element denoted by the coordinate (xk, yk). Given the complex-valued weight wk (i.e., a voltage or
current phasor) of each element, the output of the array at direction θ is

G(w; θ) =

ℓ∑
k=1

wke
i(xk cos θ+yk sin θ),

where i =
√
−1 and G(w; θ) is complex-valued.

Our goal is to achieve certain gain at the target direction θtar, while minimizing the energy radiated
at directions θ1, . . . , θm outside the target area (Lebret & Boyd, 1997).

This problem is convex:
Minimize max

i=1,...,m
|G(w; θi)|

subject to G(w; θtar) = 1.
(12)

It is convex because the objective function is the point-wise maximum of convex functions (i.e.,
norms) and the constraint is linear.

However, the maximum operator makes the objective function non-differentiable. To make it
amenable for standard solvers, we would reformulate it as the following SOCP:

Minimize t

subject to |G(w; θi)| ≤ t, i = 1, . . . ,m,

G(w; θtar) = 1.

(13)

[P5] Optimal power flow in direct current (DC-OPF)

• Reformulation strategies: None.
• Difficulty in reformulation: Easy.
• Difficulty in solving the reformulated problem: Medium (the number of variables is in the order

of hundreds to ten thousands).

We consider the problem of dispatching ℓ electric power generators in a power system. Here we
use the direct current (DC) problem formulation. The decision variables are the power generation of
each generator Pi and the bus angle θi.

Our goal is to minimize the total generation cost, subject to the balance of supply and demand, the
power flow equations, and the power generation limits (Bakirtzis & Biskas, 2003).

This problem is convex: (Bakirtzis & Biskas, 2003)

Minimize max
i=1,...,ℓ

Ci(Pi)

subject to
∣∣∣∣ 1

xij
(θi − θj)

∣∣∣∣ ≤ Fmax
ij , ∀i, j = 1, . . . , ℓ,

Pmin
i ≤ Pi ≤ Pmax

i , i = 1, . . . , ℓ,

B · θ = P−D,

(14)

where Ci(·) is the generation cost function (usually quadratic), xij and Fmax
ij are the admittance and

the power flow limit of the transmission line connecting bus i and bus j, Pmin
i and Pmax

i are the lower
and upper limits of power generator i, B is the admittance matrix, and D is the demand vector.

F.2 EXAMPLES OF TYPE-II PROBLEMS

[P1] PC for maximum throughput with interference (PC-MaxRate-interference)

• Reformulation strategies: Change of variables.
• Difficulty in reformulation: Hard (highly skilled techniques were used).
• Difficulty in solving the reformulated problem: Medium (the reformulated convex problem

may not be recognized by standard solvers as convex).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Transmitter 1 Receiver 1

Transmitter ℓ Receiver ℓ

We consider the problem of determine the transmit power of ℓ pairs of transceivers. They operate in
the same frequency at the same time, hence causing interference to each other. The problem data is
a channel gain matrix G ∈ Rℓ×ℓ, where gij is the channel gain from transmitter j to receiver i, and
the noise power vector σ ∈ Rℓ with σi as the noise power at receiver i.

Our goal is to choose the transmit power, denoted x ∈ Rℓ+ with xi being the power of transmitter i,
in order to maximize the total throughput.

This problem is nonconvex and is proved to be NP-hard in its original form: (Luo & Zhang, 2008)

Maximize
ℓ∑
i=1

log2

(
1 +

giixi∑
j ̸=i gijxj + σi

)

subject to
ℓ∑
i=1

xi ≤ 1,

xi ≥ 0, i = 1, . . . , ℓ.

(15)

Under a “weak interference” assumption, we can reformulate the problem as a convex problem.
Specifically, we define H = G+σ ·1T , namely hij = gij+σi. We assume that H is invertible with
H−1 ≜ I−C and that C is a nonnegative matrix. This assumption holds true when gii >

∑
j ̸=i gij

for all i, namely the interference is weak. Under this assumption, with the change of variables
y = Hx, namely yi =

∑n
j=1 hijxj , the problem can be reformulated as the following convex

problem:

Maximize
n∑
i=1

log2

(
yi
cTi y

)

subject to
n∑
i=1

(
yi − cTi y

)
≤ 1,

yi − cTi y ≥ 0, i = 1, . . . , n.

(16)

We can prove that the objective function is concave by showing that the negative of its Hessian
matrix is positive semidefinite. However, standard solvers such as CVXPY cannot recognize it as a
concave function. Therefore, we need to define a custom objective function in standard solvers or
write custom interior-point methods to solve it.

[P2] Optimal power flow in alternating current and radial networks (AC-OPF-radial)

• Relaxation strategies: Semidefinite relaxation (SDR).
• Difficulty in reformulation: Medium (SDR techniques were used).
• Difficulty in solving the reformulated problem: Hard (the number of variables is in the order of

hundreds to ten thousands).

Please see AC-OPF in App. F.3. It is shown that under certain conditions (e.g., the power network
is a radial network, which is often the case for distribution networks), the convex relaxation of
the problem is exact (Lavaei & Low, 2011). In other words, the non-convex original problem is
equivalent to a convex problem.

F.3 EXAMPLES OF TYPE-III PROBLEMS

[P1] Beamforming with nonconvex problem definitions (Beamform-Nonconvex)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

• Relaxation strategies: Semidefinite relaxation (SDR).
• Difficulty in reformulation: Easy (standard SDR techniques were used).
• Difficulty in solving the reformulated problem: Medium (the relaxed convex problem is a SDP,

and recovery methods are needed).

We consider the same setting as Beamform-MinSidelobe. But here our goal is to maximize the
gain at the target direction θtar, while limiting the ripple effect at directions θ1, . . . , θm outside the
target area.

This problem is non-convex: (Fuchs, 2013)

Maximize
∣∣G(w; θtar)

∣∣
subject to 1/δ ≤ |G(w; θi)| ≤ δ, i = 1, . . . ,m.

(17)

It is non-convex because we maximize a convex function (i.e., norm) and have constraints on convex
functions greater than or equal to a constant.

In this case, the standard semidefinite relaxation technique can be used, which “lifts” the problem to
higher dimensions. Specifically, we define a rank-1 semidefinite matrix W ≜ wwH . Then the gain
at direction θ satisfies

|G(w; θ)|2 = trace (E(θi) ·W) ,

where E(θi) = e(θi)
∗ · e(θi)T ∈ Cn×n with

e(θi) =
[
ei(x1 cos θ+y1 sin θ), . . . , ei(xn cos θ+yn sin θ)

]T
.

With the new matrix variable W, we have the following equivalent problem:

Maximize trace (E(θtar) ·W)

subject to (1/δ)2 ≤ trace (E(θi) ·W) ≤ δ2, i = 1, . . . ,m,

W ⪰ 0,

rank(W) = 1.

(18)

Here, the only nonconvexity comes from the rank constraint. By removing it, we get the following
convex relaxation:

Maximize trace (E(θtar) ·W)

subject to (1/δ)2 ≤ trace (E(θi) ·W) ≤ δ2, i = 1, . . . ,m,

W ⪰ 0.

(19)

In general, we need to recover an approximate solution vector w from the solution matrix W. Under
certain conditions (e.g., uniform linear arrays), we can guarantee to recover the exact solution vector.

[P2] Optimal power flow in alternating current (AC-OPF)

• Relaxation strategies: Semidefinite relaxation (SDR).
• Difficulty in reformulation: Medium (SDR techniques were used).
• Difficulty in solving the reformulated problem: Hard (the number of variables is in the order of

hundreds to ten thousands).

This is the alternating current (AC) version of DC-OPF, and is more accurate in power system
modelling.

A canonical version of AC-OPF is as follows: (Lavaei & Low, 2011)

Minimize max
i=1,...,ℓ

Ci(Vi)

subject to vi ≤ |Vi|2 ≤ v̄i, i = 1, . . . , ℓi, j = 1, . . . , ℓ,

sj ≤
∑

k:(j,k)∈E

yHjkVj
(
V Hj − V Hk

)
≤ s̄j , j ∈ N ,

(20)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

where V ∈ Cℓ is the vector of voltages at each bus, Ci(·) includes the generation cost and the power
loss in transmission lines, the first constraints are voltage magnitude constraints to ensure stability
of transmission lines, and the second constraints are power injection constraints derived from Ohm’s
law and Kirchhoff’s laws.

This problem is non-convex because of the constraints. A common approach is to perform semidef-
inite relaxation and solve the convex relaxation. Please see (Lavaei & Low, 2011) for details.

F.4 EXAMPLES OF AMBIGUOUS PROBLEMS

[P1] Power control for maximum throughput (PC-MaxRate)

This prompt does not provide the context of whether these transceivers cause interference to each
other. If they are using orthogonal frequency-division multiplexing (OFDM), the major multiple-
access protocol in the fourth-generation (4G) and fifth-generation (5G) communications, we can
formulate the problem as the relatively easy PC-MaxRate-decoupled. If they are self-organizing as
a mesh network, we can formulate the problem as the challenging PC-MaxRate-interference. In
this case, the LLM should ask for the specific use case to determine the mathematical model.

[P2] Beamforming (Beamform)

The design specifications are not clear. The user may want to minimize the sidelobe while keeping
certain gain at the target direction, resulting in Beamform-MinSidelobe, or may want to maximize
the gain at the target direction while limiting the sidelobe, resulting in Beamform-Nonconvex. In
this case, the LLM should ask for a clear design specification form the user.

[P3] Optimal power flow (OPF)

The problem statement is not clear about which version of the OPF problem to use. When the power
system is not heavily loaded and when fast solutions are needed, we can use the DC approximation
and formulate the problem as DC-OPF, which is a LP. If we need accurate solutions (e.g., solutions
that inform us of the power loss on the transmission lines), we need to formulate it as AC-OPF,
which is non-convex in general. However, if the underlying network is a distribution grid, which is
a radial network, the resulting AC-OPF-radial has a convex relaxation, which has been proven
to be exact (i.e., equivalent to the original non-convex problem).

F.5 OVERVIEW

In Fig. 9, we visualize the difficulty in solving and reformulating the example problems.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Reformulatingeasy hard

solving

easy

hard

PC-MinPower

PC-MaxRate-decoupled

Mutual-Information

Beamform-MinSidelobe

DC-OPF

Beamform-Nonconvex

PC-MaxRate-interference

AC-OPF-radial

AC-OPF

Figure 9: Example problems in terms of difficulty in reformulating and solving the problem.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

G SOLVER PERFORMANCE COMPARISON

In this section, we present simulation results comparing the performance of various optimization
solvers on the PC MinPower problem, both in its original nonconvex form and in a reformulated
convex form. We consider problem instances with ℓ = 10 and ℓ = 100 users (i.e., ℓ optimization
variables). For each instance, we evaluate the solvers in terms of success rate, optimality gap, and
average solve time over 100 random samples.

G.1 EXPERIMENTAL SETUP

The PC MinPower problem aims to minimize the total power consumption in a system while
satisfying certain constraints. The original formulation of this problem is nonconvex, which can
pose challenges for optimization algorithms. However, by reformulating the problem, it can be
converted into an equivalent convex problem, which is generally easier to solve efficiently.

We evaluated the following solvers:

• General-Purpose Solvers:
– TRCA: Trust-Region Constrained Algorithm
– SLSQP: Sequential Least Squares Programming.
– COBYLA: Constrained Optimization BY Linear Approximations.
– COBYQA: Constrained Optimization BY Quadratic Approximations.

• Convex Program Solvers:
– CLARABEL: A conic optimization solver.
– ECOS: Embedded Conic Solver.
– SCS: Splitting Conic Solver.
– OSQP: Operator Splitting Quadratic Program Solver.

For each solver and problem instance, we recorded:

• Success Rate: The percentage of runs where the solver successfully found a feasible solution.
• Optimality Gap: The difference between the objective value obtained by the solver and the known

optimal value.
• Average Solve Time: The average computation time (in seconds) required by the solver.

G.2 RESULTS

Tables 7 and 8 present the performance of the solvers for problem sizes n = 10 and n = 100,
respectively.

Table 7: Solver Performance for ℓ = 10 Users

Solver Type Original Nonconvex Problem Reformulated Convex Problem
Success Optimality Gap Time (s) Success Optimality Gap Time (s)

General-Purpose Solvers
TRCA General-Purpose 100% 7.31× 10−3 0.0399 100% 1.25× 10−3 0.0420
SLSQP General-Purpose 100% 6.47× 10−7 0.0019 100% 6.48× 10−7 0.0009
COBYLA General-Purpose 67% 2.94× 10−6 0.0073 100% 7.15× 10−6 0.0039
COBYQA General-Purpose 0% — — 6% 9.80 14.4067
Convex Program Solvers
CLARABEL Convex Solver — — — 100% 6.32× 10−7 0.0002
ECOS Convex Solver — — — 100% 6.16× 10−7 0.0001
SCS Convex Solver — — — 100% 4.45× 10−7 0.0002
OSQP Convex Solver — — — 100% 6.48× 10−7 0.0003

G.3 DISCUSSION

The results demonstrate several key observations:

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 8: Solver Performance for ℓ = 100 Users

Solver Type Original Nonconvex Problem Reformulated Convex Problem
Success Optimality Gap Time (s) Success Optimality Gap Time (s)

General-Purpose Solvers
TRCA General-Purpose 100% 7.75× 10−2 0.6628 100% 1.28× 10−2 0.6856
SLSQP General-Purpose 100% 1.04× 10−6 0.0750 100% 1.04× 10−6 0.0298
COBYLA General-Purpose 0% — 6.0764 100% 2.86× 10−5 9.9629
COBYQA General-Purpose 0% — — 0% — —
Convex Program Solvers
CLARABEL Convex Solver — — — 100% 6.22× 10−7 0.0121
ECOS Convex Solver — — — 100% 9.91× 10−7 0.0097
SCS Convex Solver — — — 100% 1.05× 10−6 0.0055
OSQP Convex Solver — — — 100% 1.04× 10−6 0.0110

• Importance of Problem Reformulation: For general-purpose solvers, reformulating the origi-
nal nonconvex problem into an equivalent convex problem significantly improves solution qual-
ity. This improvement is more pronounced for larger problem sizes (ℓ = 100). For instance,
COBYLA’s success rate increased from 0% to 100% when the problem was reformulated.

• Solver Selection Matters: Different general-purpose solvers exhibit varying performance levels.
SLSQP consistently achieves near-zero optimality gaps and high success rates with relatively
low solve times across both problem formulations and sizes. In contrast, COBYQA fails to find
feasible solutions in most cases, highlighting the necessity of careful solver selection.

• Performance of Convex Program Solvers: For the reformulated convex problem, convex pro-
gram solvers (CLARABEL, ECOS, SCS, OSQP) show excellent and consistent performance.
They all achieve 100% success rates, negligible optimality gaps, and minimal solve times. The
differences among these solvers are minimal, suggesting that any of them would be suitable for
solving the convex formulation efficiently.

These findings underscore the importance of problem reformulation and solver selection in opti-
mization tasks. Reformulating a nonconvex problem into a convex one can significantly enhance the
performance of general-purpose solvers. Additionally, selecting the appropriate solver is crucial, as
it can greatly impact the success rate and computational efficiency.

H BROADER PERSPECTIVE ON AUTOFORMULATION AND OPTIMIZATION
MODELING

Our autoformulation framework addresses a specific, yet crucial challenge: translating problem
descriptions into mathematical and computational models. However, it is important to acknowledge
that this represents just one component of the broader modeling process, which typically involves:

1. Information gathering from diverse stakeholders, often requiring multiple iterations and integra-
tion of implicit domain knowledge/conventions (i.e., ’tribal knowledge’);

2. Handling complex problem characteristics such as stochasticity, time-varying dynamics, and
large-scale variables;

3. Rigorous validation against real-world data, including sensitivity analysis of modeling assump-
tions and verification of edge cases;

4. Continuous communication between technical and business stakeholders to ensure practical util-
ity.

Understanding these complexities helps identify which aspects of modeling can be effectively auto-
mated, thereby enabling OR practitioners to focus their expertise on more nuanced challenges such
as stakeholder engagement and validation of modeling assumptions.

35

	Introduction
	Autoformulation: Towards Automated Optimization Modeling
	Autoformulation: Problem Definition

	LLM-Enhanced MCTS Framework for Autoformulation
	Structured Decomposition of Autoformulation
	MCTS-Based Autoformulator
	Selection
	Expansion
	Evaluation
	Backpropagation

	Related Work
	Experiments
	Benchmark comparison
	Evaluating Critic Capabilities of LLM
	Efficiency of Detecting Functionally Equivalent Functions
	Failure modes

	Discussions
	Additional Details on Method
	Formulation Equivalence Checks
	Prompt Design
	Evaluation Metrics

	Comparison to Related Works: MCTS Methods
	Reformulation Strategies
	Additional Results
	Obtaining local scores (prior ranking).
	Assessing the Critic Evaluation Capabilities of LLMs
	Additional Comparisons Against ORLM
	Greedy Search After 16 rollouts MCTS
	Additional Analysis on Partial Formulation Evaluations

	Categorization of Autoformulation Challenges by Optimization Problem Structure
	Illustrative Examples of Problem Categorization
	Examples of Type-I Problems
	Examples of Type-II Problems
	Examples of Type-III Problems
	Examples of Ambiguous Problems
	Overview

	Solver Performance Comparison
	Experimental Setup
	Results
	Discussion

	Broader Perspective on Autoformulation and Optimization Modeling

