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ABSTRACT

Mathematical optimization is fundamental to decision-making across diverse do-
mains, from operations research to healthcare. Yet, translating real-world prob-
lems into optimization models remains a formidable challenge, often demanding
specialized expertise. This paper formally introduces the concept of autoformu-
lation—an automated approach to creating optimization models from natural lan-
guage descriptions for commercial solvers. We identify the three core challenges
of autoformulation: (1) defining the vast, problem-dependent hypothesis space,
(2) efficiently searching this space under uncertainty, and (3) evaluating formu-
lation correctness (ensuring a formulation accurately represents the problem). To
address these challenges, we introduce a novel method leveraging Large Language
Models (LLMs) within a Monte-Carlo Tree Search framework. This approach
systematically explores the space of possible formulations by exploiting the hier-
archical nature of optimization modeling. LLMs serve two key roles: as dynamic
formulation hypothesis generators and as evaluators of formulation correctness.
To enhance search efficiency, we introduce a pruning technique to remove triv-
ially equivalent formulations. Empirical evaluations across benchmarks contain-
ing linear and mixed-integer programming problems demonstrate our method’s
superior performance. Additionally, we observe significant efficiency gains from
employing LLMs for correctness evaluation and from our pruning techniques.

1 INTRODUCTION

Mathematical optimization has long been a cornerstone of decision-making processes across various
domains, from supply chain management (Bramel & Simchi-Levi, 1997) and healthcare resource al-
location (Delgado et al., 2022) to portfolio optimization (Mokhtar et al., 2014). These problems are
characterized by maximizing an objective function subject to constraints (Williams, 2013). Tradi-
tionally, optimization modeling follows a three-step process: » gathering problem requirements,
typically expressed in unstructured formats and domain terminology; » formulating these require-
ments into a formal mathematical model, including variables, constraints, and objective functions;
» implementing the model computationally using specialized modeling language for solution using
commercial solvers. These solvers (e.g. Gurobi (Gurobi Optimization, LLC, 2024), CPLEX (Cplex,
2009)), leverage sophisticated algorithms to tractably optimize a wide array of problems to global
optimality, including convex problems, (e.g. linear and quadratic programs), and certain non-convex
problems (e.g. mixed-integer linear programs) (Boyd & Vandenberghe, 2004).

Autoformulation. Despite major advances in solving algorithms over the past decades, the process
of formulating optimization models still relies largely on human expertise (Karmarkar, 1984). Aut-
oformulation aims to address this bottleneck by automating the formulation process, bridging the
gap between problem descriptions and formal mathematical models. This approach enhances time
and cost efficiency while enabling access for users without deep optimization expertise. At its core,
autoformulation can be conceptualized as a search for an optimal formulation within a vast hypothe-
sis space. However, this process is complicated by several challenges. For one, the hypothesis space
is highly problem-dependent, making it difficult to manually specify. Second, efficiently searching
through this hypothesis space requires methods that can balance exploitation and exploration, par-
ticularly given the uncertainty in the optimal formulation. Lastly, the search should be guided by
a signal of formulation correctness, which is itself an ill-posed problem. While solvers can indi-
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cate optimality gap and computational efficiency, evaluating that the formulated model accurately
represents the intended real-world problem remains a distinct challenge.

A keen insight of this work is that recent advances in Large Language Models (LLMs) (Brown,
2020; Chowdhery et al., 2023) have opened new avenues for autoformulation. LLMs contribute
several crucial capabilities to this process: contextual understanding for nuanced interpretation of
problem descriptions, vast domain knowledge to incorporate relevant modeling techniques, and rea-
soning capabilities to support approximate evaluation of formulation correctness. Recent works
(Ramamonjison et al., 2023; Xiao et al., 2023; AhmadiTeshnizi et al., 2024) have demonstrated the
promising potential of LLMs in autoformulation, laying important groundwork in this field. Build-
ing upon these contributions, our work focuses on developing techniques for efficient, systematic
exploration and introducing novel methods for evaluating formulation correctness.

Key considerations. We conceptualize autoformulation as a search problem, leveraging optimiza-
tion modeling’s inherent hierarchical structure to efficiently explore the vast hypothesis space,
guided by feedback on formulation correctness. We decompose optimization modeling into hi-
erarchical components and introduce a Monte-Carlo Tree Search (MCTS) method to incrementally
explore each component’s formulation space (Coulom, 2006). We employ LLM:s for two specialized
roles: (1) as context-dependent hypothesis generators to produce component formulations at each
level of the tree search; (2) as evaluators of formulation correctness, which is combined with solver-
returned data to obtain a reward signal to guide exploration. To further improve search efficiency,
we introduce a pruning technique using Satisfiability Modulo Theories solvers, eliminating redun-
dant hypotheses that are syntactically different yet functionally equivalent (Barrett & Tinelli, 2018).
Empirically, we observed that this significantly reduces search efforts expended on equivalent for-
mulations. Our algorithm systematically explores the hypothesis space through multiple iterations,
producing a set of functionally distinct models, each scored using our evaluation function.

Contributions. Our main contributions are: A@ We formally introduce autoformulation of mathe-
matical optimization models, framing it as a search problem and identifying its core challenges. (2)
We propose a novel approach integrating LLMs as hypothesis generators and evaluators within an
MCTS framework, enabling efficient systematic exploration of the optimization model space. (2)
Across two benchmarks containing linear and mixed-integer programming problems, we demon-
strate our method’s superior performance in formulating correct models, observing efficiency gains
from pruning and LLM evaluation of formulation correctness.

2 AUTOFORMULATION: TOWARDS AUTOMATED OPTIMIZATION MODELING

Optimization modeling seeks to minimize an objective function subject to specific constraints on
decision variables (Dantzig, 1990). The mathematical model can be expressed in a general form:

Minimize f(x)
subjectto  g¢;(x) <0, i=1,...,1, (1)
hi(x)=0, j=1,...,J

Here x € X represents the vector of decision variables, and X C RY x ZF* is the domain
of the problem for which the objective and constraints functions are all defined. Furthermore,
f :+ X — R is the objective function to be minimized, ¢g; : X — R are inequality constraints,
h; : X — R are equality constraints, and I and J are the numbers of inequality and equality con-
straints respectively. The feasible region is the set of all possible points that satisfy the problem
constraints: {x € X | g;(x) <0, Vi € [I], h;(x) =0, Vj € [J]}.

Convex problems. An optimization problem is convex if f and g; Vi € [I] are convex, and
h; ¥ j € [J] are affine. Convexity is significant as any local optimum of a convex problem is
globally optimal, and specialized solvers can efficiently solve convex problems to global optimal-
ity using advanced algorithms (e.g., Gurobi (Gurobi Optimization, LLC, 2024), CVXPY (Diamond
& Boyd, 2016)). For this reason, convexity is the widely accepted watershed between “easy” and
“hard” problems. Before utilizing these solvers, the mathematical models are first represented in
code as computational models, which are then passed to the solvers for optimization.
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Autoformulation
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Figure 1: Illustration of autoformulation and its challenges. Autoformulation involves translating
a problem description d € D into a mathematical model m € M. This model is then transformed
into a program that can be executed by solvers (e.g., Gurobi).

2.1 AUTOFORMULATION: PROBLEM DEFINITION

Boyd & Vandenberghe (2004) aptly recognized that “the challenge, and art, in using convex op-
timization is in recognizing and formulating the problem. Once this formulation is done, solving
the problem is ... (almost) technology”. While solver technology has significantly matured, the
process of formulating optimization models remains largely human expertise driven. Building on
this insight, we define autoformulation as the automated process of transforming natural language
descriptions of real-world problems into formal optimization models. This process aims to bridge
the gap between human-readable problem statements and computational models suitable for opti-
mization solvers, thus automating the “challenge and art” of problem formulation.

Formal Definition ~
Let D represent the space of natural language problem descriptions. Additionally, let M and C

represent the space of all possible mathematical formulations and space of all possible computa-
tional models of optimization problems. Specifically, each ¢ € C is a computational representa-
tion (e.g. Python code), which includes choice of solving algorithm and its configurations. Given
a problem d € D, autoformulation involves two transformations:

1. Mathematical Formulation p; : D — P(M): Transforming problem description into a
precise mathematical formulation. Here, P(-) represents the space of probability distributions.

2. Computational Representation p,, : M — P(C): Converting the mathematical formula-
tion into computational formats suitable for solvers. This includes encoding the model in a
programming framework and specifying or configuring an appropriate solving algorithm.

Autoformulator. Here, py and p,, are models of each transformation, with ¢ and 1) their respec-
tive parameters. The complete autoformulation process can thus be represented as inferring the
joint distribution py 4 (m, ¢ | d) = py(c | m) - pg(m | d). We refer to any algorithm designed for
the autoformulation problem as an autoformulator.

Objective. For a given problem d, autoformulation aims to find optimal mathematical and com-
putational formulations that maximize an evaluation measure Q(-) :

(m*,c*) € argmaxyem,cec@(m, ¢; d) 2)

Evaluation criteria. Here, @ assesses the quality of (m, c¢) relative to d, considering factors such
as correctness, solvability, and efficiency. The quality of a formulation is primarily evaluated
based on formulation correctness—how accurately it reflects the problem description. Given
that a formulation is correct, two additional criteria come into play. Optimality gap: the gap
between the value of the objective function at the solution and the optimal value. For example,
convex problems and certain non-convex problems like mixed-integer linear programs (MILPs)
can be solved efficiently to global optimality (i.e. zero optimality gap). Computational effi-
ciency: evaluating the resource requirements and solution time of a particular model. These latter
two criteria are only meaningful for formulations that correctly capture the problem description.
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Challenges. A closer scrutiny of Eq. (2) reveals a few key challenges:

[C1] Problem-dependent hypothesis space: Given a problem d, we define the problem-
dependent hypothesis space of an autoformulator as H, . (d).” This space encompasses
all plausible formulations, including correct, incorrect, or trivially redundant formulations.
Manually specifying this hypothesis is highly challenging, due to complex interdependen-
cies, the vast number of formulations, and the problem-specific nature of the space.

[C2] Efficient search under uncertainty: Efficiently navigating the problem-dependent hypoth-
esis space is challenging, as performant formulations (e.g. efficient and globally optimal)
can be sparse. This search involves managing two key sources of uncertainty: a) modeling
decisions: uncertainty in the optimal way to formulate the problem, b) problem ambigu-
ity: uncertainty due to ambiguous requirements such as implicit or ‘common-sense’ con-
straints (e.g. non-negativity or integer constraints for individual resources). An additional
complexity is trivial model equivalence—formulations that are identical but have minor
syntactic differences (e.g. functions 2z + 3y and 3y + 2x). Note, we term these ‘trivial’
to distinguish this type of equivalence from mathematically equivalent reformulation such
as converting a non-convex constraint to convex. Exploring these trivial variations ineffi-
ciently can lead to overlooking more diverse and potentially valuable formulations.

[C3] Model evaluation: While solvers can assess solvability and computational efficiency, they
cannot evaluate formulation correctness—whether the model accurately represents all re-
quirements in the problem description. This lack of feedback on semantic correctness sig-
nificantly complicates the search process, as an efficient solution to an incorrectly formu-
lated problem is ultimately invalid.

“For notational simplicity, we omit the subscript (¢, ), when the meaning is clear.

J

A few observations. Our definition of both steps as probabilistic distributions includes deterministic
mappings as a special case (i.e. Dirac delta distributions). This formalism recognizes the inherent
uncertainty in autoformulation, stemming from language ambiguity, domain knowledge limitations,
and variability in modeling decisions. Additionally, the second transformation is assumed to be in-
dependent of the problem description d. In general, the first step (formulating mathematical models,
Dg) presents a significantly greater challenge than the second step (creating computational models,
Dy ). The former requires deep domain understanding, the ability to abstract real-world complexities
into mathematical constructs, and creativity in choosing effective problem formulations. In contrast,
formulating computational models often follows more standardized patterns, with several commer-
cial packages already offering automation in translating mathematical models into solver-compatible
code (Fourer et al., 1990). However, the second transformation can present distinct challenges that
introduce uncertainty, most notably through problem-specific choices and configurations for solvers.

Types of optimization problems. Additionally, we note that the challenges faced by an autoformu-
lator fundamentally depends on the nature of the problem d, particularly its their convexity prop-
erties and reformulation possibilities. While some problems are naturally convex and enable direct
solution for global optimality, others begin as non-convex and require the autoformulator to either
identify equivalent convex reformulations or develop appropriate relaxation strategies that balance
optimality with computational efficiency. In the interest of completeness, we provide a detailed
categorization of different challenges presented by different problem types in App.

3 LLM-ENHANCED MCTS FRAMEWORK FOR AUTOFORMULATION

Building upon our analysis of key challenges in autoformulation, we present a novel approach that
takes initial steps towards addressing them. In the scope of this work, our method primarily focuses
on evaluating formulation correctness—ensuring that autoformulated models accurately represent
the problem description. Moreover, we mainly focus on the first transformation, as we observed
that the second transformation was relatively straightforward for problems in available benchmarks.
Instead, we implement the second transformation using a custom deterministic parser (represented
as parser, and detailed in App. A), which successfully parsed all available problems. By con-
centrating on these fundamental aspects, we aim to catalyze the development of more advanced and
computationally efficient autoformulators that address more challenging problems of each type.



Under review as a conference paper at ICLR 2025

Overview. At a high level, our method integrates Large Language Models (LLMs) within a Monte-
Carlo Tree Search (MCTS) framework, founded on two key insights: 1) leveraging the inherent
hierarchical structure of optimization modeling by decomposing the autoformulation process into
distinct stages, enabling systematic exploration using a tailored MCTS algorithm, and 2) employing
LLMs in two specialized roles: as dynamic hypothesis generators in each formulation stage, and as
approximate evaluators of formulation correctness. This approach harnesses LLMs’ extensive do-
main knowledge and contextual understanding to implicitly create and search a problem-dependent
hypothesis space. This strategy bypasses the need for manual specification of the search space,
which would be intractable due to the vast number of possible formulations. Furthermore, it utilizes
LLMs’ reasoning capability to evaluate formulation correctness against problem descriptions, pro-
viding an approximate yet meaningful signal to guide the search process. Note: In the interest of
space, we present detailed information about all prompts used in the algorithm in App. A, providing
only high-level details in the following subsections.

3.1 STRUCTURED DECOMPOSITION OF AUTOFORMULATION

Optimization modeling is inherently complex, involving multiple interconnected components. To
manage this complexity and improve search efficiency, we propose a decomposition of the formu-
lation process. This approach allows us to sequentially explore each model component rather than
searching for entire formulations at once, potentially leading to more efficient search.

Specifically, we structurally decompose the autoformulation process into four distinct stages, each
represented by m;. The complete mathematical formulation is defined as m = @®?}m;, where @
denotes the composition of model components: m;—parameters and decision variables, m,—
objective function, ms;—equality constraints, and m,—inequality constraints. Given a problem
description d, the joint distribution pg (¢, m | d) is decomposed hierarchically:

Py (c;m | d) = py(c| m) L=y ps(mi | m<i, d) 3)
Here, py(m; | m<;,d) represents the sequential nature of mathematical formulation, where each
component m; depends on the partial formulation m; = @é;})mj (with mg = ) and the problem
description d. Additionally, the term py; (c | m) represents the computational model’s dependency on
the completed mathematical formulation.

3.2 MCTS-BASED AUTOFORMULATOR

Having established a structured decomposition of the autoformulation process, we now address the
challenge of efficiently navigating this hierarchical space. We employ an MCTS-based algorithm,
which is particularly well-suited for exploring complex, hierarchical search spaces (Coulom, 2006).
Our MCTS constructs a search tree of depth 4 to explore possible formulations, where each of the
four levels corresponds to a component in our structured decomposition (m; to m,4). Nodes in this
tree contain component formulations, and a complete formulation is represented by a path from the
root to a terminal node, with each path yielding a unique formulation.

The MCTS algorithm iteratively builds the search tree through four key steps: » selection, » ex-
pansion, » evaluation, and » backpropagation. For notational clarity, we denote a tree node as n
and any of its child nodes as ncpiig € Child(n), where Child(n) is the set of all child nodes of n.
We use 77 to represent the partial formulation contained in the path from root to node n. For instance,
71 for a node of depth 2 is the partial formulation containing the parameters, decision variables, and
the objective function. Terminal nodes are denoted as n;.

3.2.1 SELECTION

The selection step guides the search towards promising regions of the tree. Starting from the root,
the algorithm recursively selects child nodes using the Upper Confidence Bound for Trees (UCT):

o = ATEMAX, | CCnitd(n) (V(nchﬂd) +w1/N“g+§Zi)) (Kocsis & Szepesviri, 2006). This

process continues until reaching an unexpanded node. Here, n; ., is the selected child node,
V (nenira) is its estimated value, N (n) and N (n.pq4) are visit counts for the parent and child nodes
respectively and w is an exploration constant. This formula balances exploitation (first term, favoring
high-value nodes) with exploration (second term, favoring less-visited nodes).
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3.2.2 EXPANSION

Upon reaching an unexpanded node n, we generate its child nodes C'hild(n) through an expansion
process. Unlike traditional MCTS, which typically operates within a predefined space, our expan-
sion step explores an undefined hypothesis space of component formulations. To address this chal-
lenge, we employ LLMs as dynamic hypothesis generators, conditioned on the partial formulation
constructed up to this level, to propose potential formulations for the next component. Our process
involves two key steps: first, generating a diverse set of candidate formulations, and then pruning
this set to remove trivial equivalences, thereby ensuring a manageable and meaningful search space.

Context-aware hypothesis generator. At node n, the LLM generates potential child
nodes (next component formulations) by conditioning on the partial formulation and prob-
lem description: pgy(ncnia | @,d). When expanding nodes at depth ¢, this is equiv-
alent to pg(m; | me;,d). We represent formulations using JSON format, where
keys are descriptive labels and values are mathematical expressions. For example,
when generating possible inequality constraints, the LLM might return the formulation:
{“material_balance”: 1 + x2 < 100, “quality_requirement”: 0.8x; + 0.6z2 > 75}. The LLM is
queried through a structured prompt with three elements: (1) Problem description: the original
natural language problem description d; (2) Partial formulation: the current partial formulation
m«; in JSON format; (3) Level-specific instructions: guidelines for the current modeling stage,
including output format and relevant considerations. Note that we also request the LLM return po-
tential formulations using the same dictionary format. For each node expansion, we sample H € N

hypotheses from the LLM’s distribution: ml(n) = {fzggld | ﬁg}?ild ~ py(-|7,d), V h € [H]},
where ﬁg,gl 4 represents the h-th candidate component formulation.

Approximate pruning. To ensure diversity in our search
space and avoid redundant explorations, we prune candidates

containing trivially equivalent formulations: Child(n) = §: §: §:
pruning(Child(n)). This process removes formulations with ) J

minor syntactic differences that could lead to inefficient searches, —
while preserving meaningful reformulations. For this purpose, we =
employ Satisfiability Modulo Theories (SMT) solvers to check pair- Epiee =
wise equivalence of formulations (Barrett & Tinelli, 2018). SMT ™ v
solvers determine the satisfiability of logical formulas with re-
spect to background theories. We represent objective functions and
constraints as systems of equations or inequalities (where objec- Ranking solutions

tive functions form a single-equation system). For two such sys- Figure 2:  Expansion and
tems S; and Sy over variables z, we check the satisfiability of Node evaluation. Expansion
—(Vz (S1(z) <= Sa(x))), where - denotes negation. Unsat- involves generating candidate
isfiability of this formula proves equivalence, as it indicates there formulations, which are then
exists no z such that the systems differ. Conversely, satisfiabil- Pruned based on functional-

ity indicates the systems are distinct. We apply this check to each iFY’ and feff{aining formula-
T tions are assigned a normal-

ized ranking score.

pair of candidate formulations in C'hild(n), pruning those deemed
trivially equivalent. This approach balances maintaining a diverse
search space with computational efficiency. We detail the exact formulae used for SMT equivalence
checks in App.

We note that the satisfiability problem in SMT is not universally decidable (Monniaux, 2016). While
linear arithmetic over real and integer domains is generally decidable, mixed-integer domains or
non-linear functions may be undecidable, depending on specific problem properties. When the
solver cannot reach a conclusion, we assume the formulations are distinct. This approach trades
efficiency for thoroughness, potentially exploring some equivalent formulations while avoiding pre-
mature pruning of unique components. Importantly, SMT solvers are only applicable to systems
defined over the same variable domains. Consequently, we employ them solely for pruning re-
dundant nodes in levels mo—my4, where child nodes share decision variables. For level my, which
involves defining different variable domains, we utilize LLMs as approximate checkers.
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3.2.3 EVALUATION

After expanding a node, each newly created child node undergoes an initial evaluation to estimate
its value, guiding subsequent selection. This evaluation is non-trivial, as assessing the correctness
of a partial formulation with respect to the original problem description is complex. Our method
employs an LLM-based ranking evaluation for each set of child nodes to provide more informed ini-
tial evaluations. Specifically, we rank the partial formulation from root to each child node, namely
{Tlchitd | nenita € Child(n)}. These ranks are then center-normalized to [0, 1], with the middle
rank centered at 0.5. We denote this normalized score $(7lcp;1q), Which is used to initialize the
child node’s value Vyyior (Nchita) < $(ficnita). We note that this approach diverges from traditional
MCTS, which often uses uniform priors for expanded nodes. Here, the LLM assesses the formula-
tion based on optimization principles and the specific problem context, potentially capturing aspects
such as formulation correctness, constraint feasibility, and alignment with the problem.

3.2.4 BACKPROPAGATION

Reward. Unlike conventional MCTS, which typically simulates the problem to a terminal state after
expanding a child node, our approach continues expanding until a terminal node n, is reached, where
71¢ represents a complete formulation. This is computationally feasible due to our tree’s limited depth
of 4 levels, and provides more accurate rewards. We evaluate the complete formulation to obtain a
reward r(7i;). We evaluate the complete formulation using a dual approach, combining assessments
of both mathematical correctness and computational model’s performance:

r(iiy) = I(EZ ) ver (Parser(iy)) = 1) - BTy, (y; d) )
where I is the indicator function. E?,(7;; d) is the LLM’s evaluation of the mathematical formu-
lation’s correctness, assessing how well it captures the problem requirements and constraints in d.
E¢. .. (parser(i)) is the solver’s evaluation of the computational model’s performance, provid-
ing a binary signal of whether the model is solved optimally. Note that E¢_, ., (parser(7i;)) is an
imperfect signal, as an incorrectly formulated model could be solved to optimality despite not faith-
fully representing the original problem, highlighting the importance of our dual evaluation approach.
The computational model ¢ is derived using our custom deterministic parser: ¢ = parser(7;).

Here, it is inappropriate to use the same evaluation measure (based on ranking) as described be-
fore, as the reward score would need to be comparable across all terminal nodes (across different
subtrees). As such, we introduce a comparative evaluation method to obtain an LLM-evaluated cor-
rectness score. This approach compares each formulation with a baseline, asking the LLM for its
preference. Specifically, the LLM returns a score € [0, 1], where < 0.5 values indicate preference
for the baseline formulation, and value greater than 0.5 favor the formulation in 77;. Mathematically,
we represent this as ET7,,(7:;d) ~ pruu(- | fit, mp; d), where my, is the baseline formulation for
comparison. This baseline serves as a consistent reference point for all child nodes, enabling more
stationary and comparable evaluations of relative formulation correctness. In our implementation,
we generate the baseline formulation m,, through zero-shot prompting of the LLM.

Backpropagation. Following the reward calculation, we backpropagate this value to update the
statistics of all nodes along the trajectory. For each node in this path from root to terminal node n,

we apply the following updates: Vygcr(n) < Vb“""(’}\;'(g)(?;”(ﬁt), N(n) < N(n)+1, Vn €.
Here, we increment the visit count N (n) by 1 and update the value V' (n) with a weighted average
of its previous value and the new reward 7 (7). This backpropagation process ensures that the tree
gradually accumulates more accurate estimates of node values. These updated statistics then inform
the selection strategy in subsequent iterations. The value of the node used for selection is then

V(n) =X Vorior(n) + (1 = A) - Vpger(n).

Summary. Our MCTS-based algorithm iterates through the aforementioned steps, progressively
constructing and refining a tree of possible formulations. We execute this process for T € N iter-
ations, thoroughly exploring the space of potential models and identifying promising formulations.
The final output is a set of M € N functionally distinct optimization models, where M < T'. Each
model is defined by a unique trajectory through the tree. Formally, we express the overall algo-
rithm as: {(m®, ¢® rONM - — MCcTS;14(d). The superscript i indexes the functionally distinct
formulation, and (%) is the estimated value/reward of the corresponding terminal node.
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4 RELATED WORK

Advances in LLMs. Recent works have demonstrated the substantial potential of Large Language
Models (LLMs) in solving complex reasoning tasks, including language understanding (Hendrycks
et al., 2021), commonsense reasoning (Brown, 2020), logical reasoning (Wei et al., 2022; Yao et al.,
2024), mathematical problem-solving (Lewkowycz et al., 2022), and coding tasks (Chen et al.,
2021). Of particular relevance are studies employing LLMs in optimization and search tasks, such
as Bayesian Optimization (Liu et al., 2024b), prompt optimization (Guo et al., 2023), evolutionary
optimization (Yang et al., 2024; Liu et al., 2024a), and symbolic program refinement (Madaan et al.,
2024), as well as research exploring the integration of LLMs with planning algorithms (Huang et al.,
2022; Zhao et al., 2024; Hao et al., 2023a; Zhou et al., 2024).

Autoformulation. Ramamonjison et al. (2023) introduced an early competition focused on translat-
ing natural language descriptions of linear programming problems into mathematical formulations.
The competition involved two tasks: tagging problem entities and predicting formulations in prede-
fined formats. Entries primarily used pre-LLM NLP models tailored for these tasks, which lacked
the ability to generalize beyond the given formats. More recently, Xiao et al. (2023) and Ahma-
diTeshnizi et al. (2024) explored multi-agent LLM frameworks for optimization model formulation,
where LLM agents generated complete formulations in each iteration, refining them locally in sub-
sequent steps. Our approach differs by breaking down the formulation process into key stages and
using MCTS to systematically explore the formulation space. Additionally, we guide the search
with a composite reward function that combines solver feedback with LLM evaluation.

5 EXPERIMENTS

The experiments aim to evaluate the performance of the autoformulation model across a diverse set
of problems (Sec. 5.1). In addition, we study two key factors of our framework: (a) the use of LLM-
based evaluation to ensure the correctness of formulations (Sec. 5.2), and (b) enhanced efficiency
by reducing search space in equivalent formulations (Sec. 5.3). Finally, the experiments examine
failure modes to better understand the limitations of the model (Sec. 5.4).

We use NLAOPT (Ramamonjison et al., 2023) and IndustryOR as benchmarks to evaluate our ap-
proach. NL4OPT is a standard dataset for operations research tasks, primarily focusing on linear
programming problems. We used the filtered version presented in (Tang et al., 2024), consisting of
244 problems. IndustryOR, with 100 problems covers linear, integer, mixed-integer, and non-linear
programming across three difficulty levels, offers a more complex challenge. This complexity is cru-
cial for testing the robustness of our method in navigating larger, ambiguous solution spaces. Since
neither benchmark provides enough information to fully evaluate optimization models—lacking
ground truth for decision variables, objectives, and constraints—we adopt an approximately correct
framework, measuring accuracy using a ground truth value found in (Tang et al., 2024), following
the same methodology. All experiments were performed using GPT40-mini, except for NL4OPT,
where GPT4-1106 was used for fair comparison.

5.1 BENCHMARK COMPARISON

For a comprehensive evaluation, we cover all relevant previous Table 1: Benchmark comparison
approaches, including: Reflexion (Shinn et al., 2023), Chain- Method NL4OPT  IndustryOR
of-Experts (Xiao et al., 2023), and OptiMUS (AhmadiTeshnizi Finetuned methods
. . ORLM-LLaMA-3-8B 85.7% 38.0%

et al., 2024) in Table |. These approaches employ agents to it- T

. . . ethods based on -
eratively enhance both the mathematical formulation and the Standard 47.3% 28.0%
optimization outcomes, delivering strong results. For consis- Reflexion 33.0% -

Chain-of-Experts 64.2%

tency, we report the performance of these methods based on OptiMUS 78.8% .
both GPT-4 outputs. We also include methods based on fine- MCTS (iter-1) 85.24% 35.0%
tuning through large synthetic data such as ORLM (Tang et al., MCTS (iter-3) 9221%  42.0%

MCTS (All) 92.62% 48.0%

2024). Note that our approach is not directly comparable to
previous approaches since it captures all possible interpretations of problems. We report the accu-
racy of the first solution found by MCTS, as well as the accuracy of the first three solutions and
after 16 rollouts. At each step, we limit the number of generated solutions to 10, with a maximum
of three children per node. A higher computational budget could potentially yield more solutions.
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5.2 EVALUATING CRITIC CAPABILITIES OF LLM

We evaluate the critic capabilities of the LLM, which in our method is used to search the for-
mulation space. We study backpropagation (global score) and prior score (local score) inde-
pendently. (1) Getting a global score. The score in Eq. (4) compares complete formula-
tions. Unlike prior scoring, we compare full formulations without sharing partial structures.
To isolate this component, we extract all solutions from IndustryOR that contain correct an-
swers and compare them to wrong answers. Our goal is to show that correct solutions are
generally preferred over incorrect ones when comparing formulations directly. Using this ap-
proach, we obtain a point biserial correlation coefficient of 0.48 with a significant p-value of
2.0681 x 1073. We also compare this ranking method with a scoring method from the litera-
ture Zhang et al. (2024b), where formulations are scored from 1 to 100, yielding a correlation of
0.2325 with a p-value of 1.1185 x 10!, which is not significant. (2) Getting a Local Scores.
To measure prior scores, we use a simple greedy evaluation. To ” —— LM Prior - Succes Rate
isolate the effect of the MCTS framework, we first construct a tree
using Depth-First Search (DFS) with up to three children per node,
and assign prior rewards via the LLM. For evaluation, we only
consider trees containing the ground truth and measure the success
rate using a greedy approach. Figure 3 shows the comparison with
random prior scoring, illustrating that the chances of reaching the ‘ P ——

ground truth decrease as the number of tree leaves increases. Figure 3: Prior score eval.

—— Random - Success Rate
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5.3 EFFICIENCY OF DETECTING FUNCTIONALLY EQUIVALENT FUNCTIONS

We evaluate the efficiency of our framework by analyzing the number of generated for-
mulations at each step and the remaining formulations after two key filtering stages: (1)
grouping equivalent formulations using SMT to eliminate redundancy, and (2) selecting
the top three solutions based on rankings provided by the LLM. The top of Fig.
shows the initial number of generated formulations as a percentage (ten per experiment in
practice) and tracks the results of each filtering step across all problems in IndustryOR.
The equivalent grouping step is the most impactful, re- et Nodes by Fosmmltion o P s
ducing the solutions by a factor of five accross all steps. l l l l
The final filtering step, which selects the top-ranked for- l l
mulations, discards very few solutions—a positive out-
come as we aim to retain viable formulations. Based
on these results, the bottom of the figure contrasts effi-
ciency with a non-hierarchical method, where errors in
earlier stages compound and affect later steps. The re-
sults demonstrate that by the time the formulations reach
the inequality constraint step, efficiency increases a thou-
sandfold. In other words, a non-hierarchical approach ;
without filtering would have required a thousand more
simulations to arrive at the same number of solutions.

FRE T |

Figure 4: (Top) Number of nodes fil-
tered. (Bottom) Estimated efficiency.

5.4 FAILURE MODES

We examine the failure modes of our method by (1) analyzing ‘ Cumulatve Soluions Found Over Rallous
its search capabilities for detecting the ground truth and (2)
identifying the problems where the model itself fails. For the
first point, Fig. 5 illustrates the search evolution of our MCTS
relative to the number of rollouts, highlighting our method’s
ability to benefit from additional exploration (more iterations)

to discover more correct solutions. Despite the excellent capa- Mt s o
bilities of our MCTS in finding novel solution, we notice that S SR I
as our MCTS is sensible to recommendation of best candidates Figure 5: MCTS rollouts

based on greedy approaches as shown in the Figure & of Ap-
pendix. This indicates the better critic methods are necessary to improve recommendation of best
candidates.
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We analyze failure modes based on the difficulty and problem character-  Table 2: Analysis by categories
istics in IndustryOR. Accuracy is measured by whether the mode findS  “Category Accuracy Entropy

the correct solution. In both grouping methods, the model with the high- Grouped by Difficulty

est accuracy also produces less entropic (less dense) trees. Similarly, [ = 06750 19638
when grouped by difficulty, the medium category exhibits lower accu-  Hard 05000 27337
racy and higher tree entropy. Our method does not show a significant Grouped by Type
weakness against any specific type of problems. For example, ORLM ", FRPAR
performs well in IPs but is weaker in MIPs (see App. D). MIP 05161 33201

6 DISCUSSIONS

In this paper, we formally define the problem of autoformulation for

mathematical optimization models, establishing objectives, evaluation metrics, and a categoriza-
tion of problem types based on their challenges to autoformulators. We introduce a novel approach
that frames autoformulation as a search problem and effectively leveraging the hierarchical struc-
ture of optimization modeling. Our method integrates LLMs as hypothesis generators and evalua-
tion functions of formulation correctness within an MCTS framework, systematically exploring the
vast hypothesis space of possible formulations. The introduction of hypothesis pruning using SMT
solvers further enhances efficiency by eliminating redundant formulations. Empirical evaluations
across linear and mixed-integer programming benchmarks demonstrate our method’s superior per-
formance in formulating correct models, with notable efficiency gains from pruning and LLM-based
correctness evaluation.

Future works. Looking ahead, we envision autoformulation as an exciting domain where LLMs can
significantly augment human experts. Future research directions include developing collaborative
frameworks to synergize with human expertise, exploring advanced LLM-based methods such as
retrieval-augmented generation (Lewis et al., 2020) and test-time compute (Lightman et al., 2024).
A particularly promising direction lies in fine-tuning models to enhance autoformulator capabilities,
with special emphasis on process-supervised learning for hierarchical modeling steps (Lightman
et al., 2023; Wan et al., 2024), which aligns naturally with the structured decomposition inherent
in optimization formulation. An important consideration for future work is the potential correlation
bias from using the same LLM for both generation and evaluation; while our composite evaluation
strategy helps mitigate this through solver feedback and comparative ranking, developing special-
ized evaluation models or ensemble-based approaches could provide more robust assessment. To
support these advancements, the development of large-scale, diverse benchmarks encompassing var-
ious problem types and complexities, particularly those requiring intricate reformulations, will be
crucial.

10
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A  ADDITIONAL DETAILS ON METHOD

A.1 FORMULATION EQUIVALENCE CHECKS

SMT solvers offer a powerful approach for verifying equivalence between various components of
optimization models (Barrett & Tinelli, 2018). These tools can rigorously check if different for-
mulations of objective functions, sets of equality constraints, or sets of inequality constraints are
logically equivalent. By encoding the components as logical formulas within appropriate theories
(such as linear arithmetic), SMT solvers can determine if the formulations are satisfiable under the
same conditions. For objective functions, the solver can check if the difference between two func-
tions is always zero across the feasible region. This is formally described in Eq. (5). For constraint
sets, it can verify if they define identical feasible regions by checking that each constraint in one set
is implied by the other set and vice versa, formally described in Eqs. (6) and (7). This approach not
only ensures the correctness of model transformations or reformulations but also aids in identifying
redundant constraints and simplifying complex models. However, the effectiveness of SMT solvers
in this context depends on the nature of the optimization problem, as nonlinear or highly complex
formulations may pose challenges for current solvers.

1. For objective functions f(*) and f():
Equivalent(f¥, f0)) «—= vx e X, fD(x) = f¥)(x) ®)
2. For sets of equality constraints g(*) = {g,(:)},f and gU) = {gl(j)}lL:

Equivalent(¢\), 1)) «—= vx e X, (/\ g,(ci)(x) =0) < (/\ gl(j)(x) =0) (6)
k !

3. For sets of inequality constraints () = {h{"}X and h0) = {n)}L:

Equivalent(h(?, n0) <= vx e X, (\hy(x) <0) <= (ArPx) <0) @
k l

A.2 PROMPT DESIGN

Template instruction

I have a problem in operational research:

I have the following formalization:

formalization dict = {"parameters": {}, "decision_variables2: {},
"objective": {}, "equality._constraints": {}, "inequality_constraints":

Parameters template (root node generation)

You are an optimization modeling expert. Complete
formalization_dict based on the problem description, you should
complete the "parameters" field, which consists of assigning
constants to descriptive variable names.

Only complete "parameters" and nothing else. Follow these
guidelines:

1. Your primary responsibility is to define all the parameters
from the problem description that will later be used to define
decision variables, the objective, and constraints (both
equality and inequality) .
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2. You may include additional parameters in a format suitable
for facilitating the subsequent tasks of defining decision
variables, the objective function, and constraints.

3. For parameters that involve multiple indices (e.g., x[i] or
x[1i,J]), use the most appropriate data structure, such as lists,
dictionaries, or dictionaries with tuple keys, to represent
them.

4. For each parameter, include a clear, descriptive comment
explaining its meaning.

5. Ensure that the parameter names (keys) are descriptive and
intuitive.

Return only the python dictionary update (i.e.,
formalization_dict ["parameters"] = ... ) following the
described requirements.

Decision Variables Template (Depth == 1)

You are an optimization modeling expert. Complete only the
"decision_variables" field within the "formalization_dict" based
on the provided problem description.

Ensure the decision_variables comprehensively cover all
essential elements to accurately model the optimization problem.

Each key-value pair in the dictionary must adhere to the
following structure:

<key>: {
"description": <description>,
"type": <type>,
"iteration_space": <space>

}

The structure should meet these requirements:

1. Each <key> represents a decision variable that will later
be used to implement the objective, equality, and inequality
constraints in a Python program.

2. Replace <key> with a symbolic name representing the decision
variable. Ensure that each <key> represents a distinct decision
variable with a unique symbolic name.

3. Replace <description> with a detailed explanation of the
role of the decision variable in the optimization model.

4. Replace <type> with a string representing the Gurobi

variable type (e.g., GRB.INTEGER), as this will be used to
create the variable via Gurobi’s addvar function.

5. If the decision variable is indexed, replace <space> with a
string representing Python for-loop using list comprehension
syntax to represent the index space. For this, assume

direct access to these parameter variables (i.e., avoid using
parameters[variables] syntax).

6. If the variable is not indexed, set <space> to None.

7. If the variable is indexed, do not write the index in the
symbol (do not put the index when writing <key>).

8. You are encouraged to create decision variables that are
general. If two decision variables represent the same concept
write them as one key, creating an appropriate iteration space.
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Return only the Python dictionary update (i.e.,
formalization dict["decision_variables"] = ...) following the
described requirements.

Objective Template (Depth == 2)

You are an optimization modeling expert. Complete only the
"objective" field within the "formalization dict" based on the
provided problem description.

Do not complete any other fields. Follow these requirements:

1. Write the objective function mathematically using decision
variables.

2. Preface the key-value pair with a Python comment explaining
the rationale behind the objective. DO NOT make a commentary
inside the mathematical description.

3. Use parameter-defined variables instead of hard-coded
values. Assume direct access to these parameter variables
(i.e., avoid using parameters[variables] syntax).

4. The dictionary key must be 'min’ or ’'max’, reflecting the
nature of the objective (minimization or maximization).

5. The dictionary value must be a string representation of the
objective function based on the problem description, written in
valid Python syntax.

Return only the Python dictionary update (i.e.,
formalization_dict["objective"] = "max": ... or
formalization_dict["objective"] = "min": ...) following the
described requirements.

Equality Constraints Template (Depth == 3)

You are an optimization modeling expert. Complete the
formalization.dict by filling in the equality_constraints field
based on the problem description and the decision variables
provided.

These constraints include border constraints, initialization,
and equality constraints derived from the problem description.
Do not complete the "inequality.constraints" field. Follow
these requirements:

1. Descriptive constraints: Each key in the dictionary should
represent a unique, clearly named constraint, with the value
being a string that describes the corresponding mathematical
equality using "==".

2. Parameter Variables: Use parameter-defined variables
instead of hard-coded values. Assume direct access to these
parameter variables (i.e., avoid using parameters[variables]
syntax) .

3. Indexed Variables: For indexed decision variables, indicate
the index within brackets (e.g., x[1]).

4. Handling Multiple Constraints: For similar constraints that
repeat across indices or variables, use Python for loops and
list comprehensions for efficient representation.

5. String mathematical description: Note, the value
(mathematical description) should be a single string. DO NOT
use .join() or anything else. Even if it represents multiple
constraints using a for loop.
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6. No Inequality Constraints: Only define equality

constraints. Inequality constraints will be handled separately
by a subsequent expert.
7. Comments: Include a Python comment before each key-value

pair, explaining the rationale behind the constraint.

Return only the Python dictionary update (i.e.,

formalization dict["equality_constraints"] = ...) following
these requirements.

Important: If the problem contains only inequality
constraints and no equality constraints, return:
formalization.dict["equality_constraints"] = {None: None}.

This will signal the need to focus on inequality constraints
in subsequent modeling steps.

Inequality Constraints Template (Depth == 4)

You are an optimization modeling expert. Complete the
formalization_dict by adding the inequality._constraints field
based on the problem description. Follow these requirements:

1. Descriptive constraints: Each key in the dictionary should
represent a unique, clearly named constraint, with the value
being a string that describes the corresponding mathematical
inequality.

2. Parameter Variables: Use parameter-defined variables
instead of hard-coded values. Assume direct access to these
parameter variables (i.e., avoid using parameters[variables]
syntax) .

3. Indexed Variables: For indexed decision variables, indicate
the index within brackets (e.g., x[1]).

4. Handling Multiple Constraints: For similar constraints that
repeat across indices or variables, use Python for loops and
list comprehensions for efficient representation.

5. String mathematical description: Note, the value
(mathematical description) should be a single string without
using Jjoin or anything else. Even if it represents multiple
constraints using a for loop.

6. Inequality Constraints Only: Include only inequality

constraints. Exclude any constraints already covered under
equality_constraints.
7. Comments: Include a Python comment before each key-value

pair, explaining the rationale behind the constraint.

Return only the Python dictionary update (i.e.,

formalization dict["inequality_constraints"] = ...) following
these requirements.

Important: Think carefully of inequality constraints that

are not explicit in the problem description that should be
considered. If after thinking you conclude the problem contains
only equality constraints and no inequality constraints, return:
formalization dict["inequality constraints"] = {None: None}.

Group Decision Variables template

— Objective:

18



Under review as a conference paper at ICLR 2025

As an expert in optimization modeling, your role is to evaluate
multiple sets of decision variables provided for an operations
research problem. You are responsible for determining if two or
more sets of decision variables should be grouped together based
on their equivalency from an optimization perspective.

— Task Breakdown:

Your grouping decision is critical for assisting a subsequent
optimization expert, who will define the objective function,
equality constraints, and inequality constraints for each group.
To facilitate this process, follow these precise guidelines:

— Equivalency Criteria:

1. Same Objectives and Constraints: Two sets of decision
variables should be grouped together if they result in the
definition of the same objective function, equality constraints,
and inequality constraints, even if the variable names differ.
2. Conceptual Equivalency: Variable sets should be grouped
together if, despite having different variable names, they
define the same underlying concepts that ultimately lead

to identical objectives and constraints (both equality and
inequality) .

3. DNon-Equivalency Conditions: Two sets of decision variables
should not be grouped together if they lead to differences in
any of the following: Objective function, Equality constraints,
Inequality constraints.

4. Naming Convention Irrelevance: The names of the decision
variables are irrelevant for grouping purposes. Only the
functional impact of the variables on the objective function
and constraints should be considered. If two sets of variables
lead to the same results, group them together, even if the names
differ.

By following these guidelines, you will help ensure that
decision variable sets are clearly classified for the next
expert in the process.

Please list your clusters as follows:
#H4

groups = {
1: group_1,
500

n: group_n}

#H4
Where group-i is a python list containing the names (string) of
all the set of decision variables that are equivalent. One set

of decision variables can only belong to one group. The list
should consider at least one element.

Important: Think carefully STEP BY STEP about your grouping
decision, then conclude your assessment using the structured

format provided above.

Here are the current solutions:

solutions = {}
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Ranking Template to obtain prior rewards

You are an expert in optimization modeling. Using the
formalization_dict as your current progress, you are tasked with
selecting the optimal #VARIABLE# from the provided options.

Please follow these steps:
1. Carefully evaluate each potential #VARIABLE#.

2. Rank the variables from best to worst based on their
suitability.

Present your rankings in the following format:
###

rank = {

1: solution_1,
.7

n: solution_n}

#H##

Where:
- solution_.1 represents the best #VARIABLE#.
- solution.n represents the least suitable #VARIABLE#.

Important: Think carefully STEP BY STEP about your ranking
decision. Then conclude by listing the solutions in string
format as structured above.

Here are the possible solutions:

solutions = {}

A.3 EVALUATION METRICS
EXPECTED CORRECTNESS

Mathematical Definition: Expected Correctness (EC) quantifies the probability of reaching a cor-
rect leaf node when starting from a given node and following a probabilistic policy based on the node
rankings R. It is computed recursively:

* For a leaf node n:
1, if nis correct

EC(n) = {0,

if n is incorrect

* For an intermediate node n with children {c;}:
EC(n) = ) plei | n) x EC(c;)
where the probability of choosing child ¢; is given by:
R(ci)
plei|n) = =—FHis
2. Bley)

Intuitive Explanation: Expected Correctness measures the likelihood that, by following the
ranking-based probabilities at each decision point, we will eventually arrive at a correct solution.
It reflects the overall effectiveness of the ranking system in guiding the search process toward cor-
rect outcomes.
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PRECISION AND RECALL

Mathematical Definition:

* Precision at a node is the ratio of relevant children (those leading to correct leaves) to all
retrieved children, averaged over all positions:

n

1 Relevant;,
Precision = — _
n ; k

where Relevanty, is the number of relevant children in the top & positions.

¢ Recall at a node is the ratio of relevant children retrieved to the total number of relevant
children, averaged over all positions:

Recall — Relevanty,
B / Total Relevant

Intuitive Explanation: Precision indicates how well the top-ranked children (based on R) cor-
respond to those that lead to correct solutions. High precision means most top-ranked choices are
relevant. Recall measures the ability of the ranking to capture all relevant children among its se-
lections. High recall implies that the ranking method successfully identifies most of the correct
paths.

NORMALIZED DISCOUNTED CUMULATIVE GAIN (NDCG @K)

Mathematical Definition: NDCG@k evaluates the quality of the ranking up to position k, ac-
counting for the position of relevant items:

1. Compute DCG@k (Discounted Cumulative Gain):

k

2rel,; -1
DCG@k = g —_—
— log,(i +1)

where rel; is the relevance score at position % (1 if the child leads to a correct leaf, O other-
wise).

2. Compute IDCG@k (Ideal DCG) by ordering the children perfectly:

k

2relf -1
IDCG@k = —_—
; log, (i + 1)

where rel is the ideal ordering of relevance scores.

3. NDCG@Xk is the ratio:
DCG@k
NDCG@Rk = ———
IDCG@k

Intuitive Explanation: NDCG@k assesses not just whether relevant children are present in the
top k positions but also how highly they are ranked. It rewards rankings that place relevant children
earlier, reflecting the practical importance of quickly finding correct solutions.

ToOP-RANK SUCCESS RATE

Mathematical Definition: The Top-Rank Success Rate is the probability that always choosing the
top-ranked child (highest R) at each decision point leads to a correct leaf:

Top-Rank Success Rate — Number of times top-path leads to correct leaf

Total number of root nodes
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Intuitive Explanation: This metric evaluates the effectiveness of a greedy strategy based solely
on the ranking R. A high success rate indicates that the top-ranked paths are reliable guides to
correct solutions, simplifying decision-making in the tree traversal.

B COMPARISON TO RELATED WORKS: MCTS METHODS

Table 3: Comparison of LLM+MCTS variants. This table presents a comparative analysis of LLM+MCTS methods, highlighting the method-
ological innovation of our method. Specifically, we compare (1) expansion mechanisms for generating child nodes; sources of evaluation for
(2) newly expanded nodes; and (3) terminal nodes; whether (4) evaluations employ comparative evaluations; and finally the (5) search
space. V, £, N represent evaluation signals obtained from LLMs, external environments (e.g. test cases in coding tasks), and comparisons
with other solutions, respectively. 7, P, X represent space of natural language thoughts, formal programs, and tokens, respectively.

Method Expansion mechanism Initial o de lRe‘ward used'in Evaluati'on Vi,? Search space
backpr comparisons?

RAP (Hao et al., 2023b) - v v T

LATS (Zhou et al., 2023) - v V,E T

MCTSr (Zhang et al., 2024b) Self-refine 4 4 T

VeriGenMCTS (DeLorenzo et al., 2024) Filter by functionality - & p

RethinkMCTS (Li et al., 2024) Rethink V,E v, T

VerMCTS (Brandfonbrener et al., 2024) Joint Expansion-Evaluation & & P

AlphaZero like MCTS (Feng et al., 2023b; Zhang - 4 V€ T
et al., 2024a; Chen et al., 2024a; Luo et al., 2024)

DPO like MCTS (Xie et al., 2024; Chen et al., 2024b) - v v, T

Ours | SMT Pruning | V.EN | V,EN | v | My

Recent advancements in MCTS have demonstrated that combining MCTS with LLMs significantly
enhances reasoning capabilities by refining the thinking process (Zhang et al., 2024b). Comple-
mentary improvements have been achieved using Process Reward Models, which further optimize
reasoning using training with step-wise reward information (Feng et al., 2023a). In parallel, the
integration of MCTS and LLMs has been applied to code generation (Zhong et al., 2023; Brandfon-
brener et al., 2024; Li et al., 2024). We present a detailed comparison against these related works in
Tab. 3.

Our MCTS framework introduces three key innovations specifically tailored to autoformulation:

1. Structured hierarchical search: We leverage the inherent structure of optimization modeling
to decompose the search space. Unlike conventional MCTS approaches, which assume fixed
search spaces, our hierarchical organization of search spaces both reduces search complexity and
increases formulation diversity.

2. SMT-based pruning: Our analysis shows that 80% of generated formulations are trivially equiv-
alent (see Fig. 4). By integrating SMT solvers to prune these redundant formulations, we achieve
a 400x improvement in search efficiency, avoiding exponential growth in search complexity.

3. Comparative formulation evaluation: We introduce novel pairwise comparative evaluation for
assessing formulation correctness, which is distinct from the standard approach where LLMs
evaluate solutions in isolation. This comparative framework enables more reliable preference-
based evaluation to improves search efficiency.

C REFORMULATION STRATEGIES

Here, we enumerate commonly used strategies to reformulate the problem. Detailed descriptions
can be found in (Boyd & Vandenberghe, 2004, Chapter 4.1.3).

* Change of variables

* Transformation of functions

* Slack variables

* Eliminating equality constraints
* Adding equality constraints

* Optimizing over some variables
» Epigraph form
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D ADDITIONAL RESULTS

D.1 OBTAINING LOCAL SCORES (PRIOR RANKING).

We evaluated our node ranking method on the IndustryOR dataset, aggregating metrics across all
problems. The assessment used five key metrics: Average Expected Correctness, Average Precision,
Average Recall, NDCG@3, and Top-Rank Success Rate. Average Expected Correctness measures
the likelihood of reaching a correct leaf by following a probabilistic policy based on RR scores. Pre-
cision and Recall assess the accuracy and coverage of ranking correct subtrees. NDCG @3 evaluates
ranking quality within the top three positions, and Top-Rank Success Rate gauges the success of a
greedy strategy that always selects the top-ranked child. Table in Figure 6 presents detailed results,
with the top section showing Precision and Recall by formulation step and the bottom displaying
aggregated results across all nodes.

== precision  mmm recall

Our results shows an Average Expected Correctness of
0.6692 indicating a significant likelihood of reaching cor-

o

ision Variables

rect solutions using the probabilistic policy based on R
scores. The high Average Precision (0.8911) and Recall
(0.8643) show that our ranking method effectively priori-
tizes correct subtrees while identifying most of them. The
NDCG@3 of 0.6776 reflects strong ranking performance
within the top three positions, crucial when resources for
exploration are limited. Finally, the Top-Rank Success
Rate that 73% of the time selecting the top-ranked child
leads to correct solutions. These results validate the ro-

- Equality Const.

- Inequality Const

Formulation Step

- Objective

°
°
°
=
°
S
°

10

Value
0.6692
0.8911
0.8643
0.6776
0.7292

Metric
AVg. Expected Correctness
Avg. Precision
Avg. Recall
Avg. NDCG@3
Top-Rank Success Rate

Figure 6

bustness of our ranking approach in guiding the search process toward correct solutions.

D.2 ASSESSING THE CRITIC EVALUATION CAPABILITIES OF LLMS

Prior rewards. To evaluate whether the prior re-
ward serves as a reliable indicator of a good node

Gaussian Distributions of accumulated rewards (correct vs incorrect cases)

during node selection, we compute the normalized
accumulated prior rewards. This is the sum of all
prior rewards from the visited nodes, normalized by
dividing the total by 4 (corresponding to 4 steps).
Using this metric, we analyze the results across the
IndustryOR dataset, grouping the outcomes based

boNoN W

Probability Density

—— Predicted = Ground Truth
—— Predicted # Ground Truth

on whether the formalization produces a score equal

0.4 0.6 0.8 10

Normalized accumulated reward

to the ground truth or not. The results of this ‘

t-statistic ‘ p-value ‘ corr. coeff. ‘ corr. p-value

study is presented in Figure 7. The mean accumu- \

4.8593 ‘ 2.62e-06 ‘ 0.3442 ‘ 2.91e-06

lated reward for successful formalizations (predic-
tion equals ground truth) is 0.744 (syce = 0.133),
notably higher than the mean for failed formaliza-
tions, which is 0.651 (0744 = 0.122). An indepen-
dent t-test confirms that this difference is statistically

Figure 7: Top. Distribution of accumulated
prior rewards of correct prediction vs failed
prediction. Bottom Statistical test compar-
ing both groups.

significant (t = 4.86, p < 0.001), indicating that successful formalizations consistently yield higher
rewards. Additionally, a point-biserial correlation analysis shows a moderate positive correlation
(r = 0.344,p < 0.001) between accumulated rewards and success, suggesting that higher accumu-
lated rewards are associated with an increased likelihood of arriving at the successful formalization.
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D.3 ADDITIONAL COMPARISONS AGAINST ORLM

Table 4: Comparison between GPT4-omini. For the MCTS approach the accuracy if the ground
truth is found by the MCTS search.

Method Difficulty Question Types

| Easy Medium Hard | LP NLP 1P MIP Others

57.5% 20.0% 35.0% 36.1% 0.0% 61.2% 19.3% 0.0%
67.50% 28.95% 50.00% | 41.67% 0.0% 54.84% 51.61% 0.0%

ORLM-LLaMA-3-8B
MCTS (ours)

D.4 GREEDY SEARCH AFTER 16 ROLLOUTS MCTS

Histogram of Results Histogram of Results Histogram of Results

30

254

N
S

H
G
Accuracy

Accuracy
-
G
Accuracy

10

1 23 3+ 1 23 3+ 1 23 3+
Number of recommnedations Number of recommnedations Number of recommnedations

(@A=0.0 (b)y A =0.5 ©A=1.0

Figure 8: Initially, we perform MCTS with 16 rollouts. Following this, we apply a greedy search to
determine the number of iterations required to find the ground truth solution.
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D.5 ADDITIONAL ANALYSIS ON PARTIAL FORMULATION EVALUATIONS

Formalization Step Correlation p-value

Decision Variables 0.1985 0.1159
Objective 0.2143 0.2470
Equality Constraints 0.3711 0.0004

Inequality Constraints 0.3290 0.0033

Table 5: Spearman’s Correlation and p-values for different formalization steps.

Experimental setup. To analyze partial model evaluation, we compute correlations between inter-
mediate node evaluations in the MCTS and ground-truth correctness scores. For each intermediate
node, we define its ground-truth correctness as the percentage of correct leaf nodes in its subtree.

Observations. Analysis of Spearman’s correlations (Tab. 5) reveals two key patterns:

1. Evaluation robustness increases with depth. Correlation strength improves from decision vari-
ables (r = 0.1985) to inequality constraints (r = 0.3290), with corresponding gains in statistical
significance. This aligns with intuition: deeper nodes contain more complete formulation infor-
mation, enabling more accurate evaluation.

2. Component-specific evaluation challenges. Earlier components show weaker correlations due
to interdependencies between modeling elements. For instance, evaluating decision variables
in isolation is challenging without understanding their role in objectives and constraints. This
increased uncertainty at earlier stages reflects the inherent difficulty in assessing partial formula-
tions without full context.

These findings underscore the importance of hierarchical search strategies that maintain diverse
exploration paths, particularly in early stages where evaluation signals are weaker.
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Table 6: Impact of formulation and solver on optimality gap and computational efficiency.

Factor

Optimality gap

Computational efficiency

nally convex)

Type I (origi-

Formulation

Minimal impact: any correct (equiv-
alent) formulation can achieve global
optimality

Medium impact: choice of variable representation
(e.g. structure-preserving formulations) can improve
solution time

Solver

Minimal impact: most commercial
solvers can achieve similar optimality
gaps

Medium impact: specialized solvers for specific
problem structures (LP, QP, SOCP) can be faster

vexifiable)

Type II (non-
convex, but con-

Formulation

High impact: correct, convexified re-
formulation enables achievable global
optimality

High impact: reformulation complexity affects solu-
tion time, generally convex reformulations are solved
faster

laxed problem affects solution quality

Solver Medium impact: solver ability to han- | High impact: solver must efficiently handle the spe-
dle reformulated structures affect solu- | cific structure of reformulation
tion quality
Type III (non- | Formulation| High impact: quality of relaxation | Medium impact: relaxation complexity affects so-
convex, requir- directly affects optimality gap and | lution time, involving trade-offs between relaxation
ing relaxation bounds tightness tightness and computational efficiency
Solver High impact: solver abilities on re- | Medium impact: solving relaxed problems may re-

quire specialized solvers, although general purpose

solvers are roughly comparable

E CATEGORIZATION OF AUTOFORMULATION CHALLENGES BY
OPTIMIZATION PROBLEM STRUCTURE

The exact challenges faced by an autoformulator depends on the nature of the problem d. Here,
we provide a categorization of optimization problems and their characteristics. To help elucidate
different types of problems, we introduce two concepts. First, we define the set of correct formu-
lations for a problem M (d) C M as the set of all equivalent formulations that correctly model a
problem d. Second, we introduce the set of original forms M, (d) C M/d)—the set containing
the natural representations of the problem, typically the initial models an optimization expert would
create. This is a set, as it can contain trivially equivalent formulations. Finally, we partition the set
M into the set of convex problems M.,y and the set of non-convex problems M oc.

1. Type I problems. These are problems where the original form is inherently convex, namely
M,y (d) € Mcony- Examples include certain resource allocation problems that can be naturally
formulated as linear programs. The challenge of solving Type I problems is to ensure that the
problem is correctly represented (formulation correctness, i.e. #(d) N M,(d) # (), which
would entail that it can be efficiently solved to global optimality.

2. Type II problems. These are problems where the original form is non-convex, but can be refor-
mulated into an equivalent convex problem, namely M, (d) C Mo but M(d) N Meony #
(. 1In addition to formulation correctness, another challenge of solving Type II problems
is to ensure the autoformulator can identify and apply appropriate reformulation strategies
(e.g. change of variables) to transform the non-convex into an equivalent convex form, namely
H(d)N(M(d) N Meony) # @ (see App. C for discussion). For such problems, evaluation extends
beyond correctness to include the ability to achieve global optimality through reformulation.

3. Type III problems. These are problems where the original form is non-convex and cannot be
reformulated into a convex problem, namely M(d) C Mo . In such cases, there are two
general options: a) solve the non-convex problem using general-purpose algorithms (e.g. gradient
descent), or b) relax into a convex problem that approximates, but is not equivalent to, the original
problem (e.g. semidefinite relaxation of a Max-Cut problem (Goemans & Williamson, 1995)).

A crucial nuance here is that mathematically equivalent models, even when both are convex, can
exhibit vastly different computational complexities. An example of this is quadratic programming
and second-order cone programming (SOCP) reformulations of the same problems (Alizadeh &
Goldfarb, 2003). Although mathematically equivalent, SOCP formulations often allow for more
efficient solution methods. Therefore, computational efficiency is an important evaluation metric
across all three problem types, significantly impacting practical utility of model formulations. In
App. F, we provide concrete examples to illustrate each type of optimization problems.
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F ILLUSTRATIVE EXAMPLES OF PROBLEM CATEGORIZATION

In this section, we provide examples of canonical problems in engineering and machine learing that
belong to each of the identified problem types. Specifically:

* Type I: Problems that have a precise mathematical model, which is convex in its original form.
Examples are provided in App.

* Type II: Problems that have a precise mathematical model, which is nonconvex in its original
form but can be reformulated as a convex problem (sometimes additional assumptions are needed).
Examples are provided in App.

» Type III: Problems that have a precise mathematical model, which is nonconvex in its original
form but can be relaxed to a convex problem (sometimes additional assumptions are needed). The
difference from Type II is that the convex relaxation is not equivalent to the original problem.
Examples are provided in App.

We also provide examples of problems where the problem description is inherently ambiguous in
App.

F.1 EXAMPLES OF TYPE-I PROBLEMS

[P1] Mutual Information Maximization (Mutual-Information)

* Reformulation strategies: None.
* Difficulty in reformulation: Easy.
* Difficulty in solving the reformulated problem: Easy.

Mutual information is a quantity that measures the divergence between two random variables, with
applications in wireless communications (Goldsmith & Varaiya, 1996) and in data science (Belg-
hazi et al., 2018). Here we describe it in the context of maximizing Shannon capacity in wireless
communications.

We consider a discrete memoryless channel with an input random variable X € {1,...,/¢}, an
output random variable Y € {1, ...y}, and channel transition matrix P € RY** with the element
on the j-th row and the -th column being p;; = prob (Y = j | X = ).

Input X —){ Transition Probability P }—> Output Y

Our goal is to choose the optimal probability distribution of input X, denoted z € R with z; =
prob (X = i), in order to maximize the mutual information between input X and input Y’

Ly
Pji
I(X;Y> = Z Zmipji log, %.
i=1 j=1 Zk:l TrPjk
The optimal value of the problem is called Shannon capacity.

This problem is convex in its original form:

¢ [y
Maximize Z ijilOgQPji T —

i=1 \j=1 j
subjectto  x; >0, i=1,...,4, (8)

)4
ZI,’ =1.
i=1

Y

14 ¢
<Z Pji%‘) log, <Z sz‘%)
1 i=1

=1

[P2] Power control for maximum throughput (PC-MaxRate—decoupled)

* Reformulation strategies: None.
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* Difficulty in reformulation: Easy.
* Difficulty in solving the reformulated problem: Easy.

We consider the problem of allocating a unit amount of total power over ¢ independent frequency or
temporal wireless channels (Yu & Lui, 2006; Luo & Zhang, 2008). Each channel has a channel gain
¢; and a noise power o;, resulting in a channel gain to noise ratio of «; = g;/0;.

Our goal is to choose the optimal power allocation, denoted = € Rﬁ with x; being the power
allocated to channel ¢, in order to maximize the total throughput.

This problem is convex in its original form:

¢
Maximize Z log, (1 + ;)
i=1

¢ 9
subject to in <1,
i=1

z; >0, 1=1,...,n.

[P3] Power control to satisfy SINR requirements with minimum power (PC-MinPower)

* Reformulation strategies: Transformation of function.
* Difficulty in reformulation: Easy (straightforward observation).
* Difficulty in solving the reformulated problem: Easy (the reformulated problem is LP).

We consider the problem of determine the transmit power of ¢ pairs of transceivers. They operate
in the same frequency at the same time, hence causing interference to each other. The problem data
is a channel gain matrix G € R**, where gi; is the channel gain from transmitter j to receiver i,
the noise power vector 0 € R’ with o; as the noise power at receiver 4, and the minimum SINR
requirement vector v € R’ with +; as the minimum SINR required by transceiver i.

Our goal is to choose the transmit power, denoted x € Rﬂ with x; being the power of transmitter
i, in order to minimize the total transmit power while satisfying the SINR requirements of each
transceiver (Yates, 1995).

This problem is non-convex in its original form:

¢
Minimize Z x;
i=1 (10

Yuii > i=1,... 0

subjectto ——"———
> i 9ii T + O

But it is not hard to observe that the constraints of SINR requirements can be reformulated as linear
constraints, resulting in a LP:
¢
Minimize Z T;
i=1
1D
subjectto  g;;x; > Vi Zgijxj +o; |, i=1,...,¢
J#i

[P4] Beamforming to minimize sidelobes (Beamform-MinSidelobe)

* Reformulation strategies: Transformation of functions, slack variables.

* Difficulty in reformulation: Easy (standard techniques were used).

* Difficulty in solving the reformulated problem: Medium (the reformulated convex problem is
a second-order cone program (SOCP)).
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We consider the problem of an antenna array with ¢ elements in a 2-D space, with the position of kth
element denoted by the coordinate (2, yx). Given the complex-valued weight wy, (i.e., a voltage or
current phasor) of each element, the output of the array at direction 6 is

14
G(W, 9) _ E wkel(xk cos 0+yj, sin 9)’
k=1

where i = 1/—1 and G(w; 6) is complex-valued.

Our goal is to achieve certain gain at the target direction 6y, while minimizing the energy radiated
at directions 64, . . ., 8,, outside the target area (Lebret & Boyd, 1997).

This problem is convex:
Minimize = max |G(w;6;)]
1=1,....m (12)
subject to  G(w; ™) = 1.

It is convex because the objective function is the point-wise maximum of convex functions (i.e.,
norms) and the constraint is linear.

However, the maximum operator makes the objective function non-differentiable. To make it
amenable for standard solvers, we would reformulate it as the following SOCP:

Minimize ¢
subjectto  |G(w;6;)| <t, i=1,...,m, (13)
G(w;0") = 1.

[P5] Optimal power flow in direct current (DC-OPF)

* Reformulation strategies: None.
* Difficulty in reformulation: Easy.

* Difficulty in solving the reformulated problem: Medium (the number of variables is in the order
of hundreds to ten thousands).

We consider the problem of dispatching ¢ electric power generators in a power system. Here we
use the direct current (DC) problem formulation. The decision variables are the power generation of
each generator P; and the bus angle 6;.

Our goal is to minimize the total generation cost, subject to the balance of supply and demand, the
power flow equations, and the power generation limits (Bakirtzis & Biskas, 2003).

This problem is convex: (Bakirtzis & Biskas, 2003)

.....

. o max .
subject to x—ij(@ 0;)| < Fi5™, Yi,j=1,...,¢, (14)
PRt < P < PP =14,
B-§=P_-D,

where C;(+) is the generation cost function (usually quadratic), x; ; and Fi'?a" are the admittance and

the power flow limit of the transmission line connecting bus i and bus j, P™" and P are the lower
and upper limits of power generator ¢, B is the admittance matrix, and D is the demand vector.

F.2 EXAMPLES OF TYPE-II PROBLEMS
[P1] PC for maximum throughput with interference (PC-MaxRate—interference)

* Reformulation strategies: Change of variables.

* Difficulty in reformulation: Hard (highly skilled techniques were used).

* Difficulty in solving the reformulated problem: Medium (the reformulated convex problem
may not be recognized by standard solvers as convex).
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Transmitter 1 Receiver 1

Transmitter ¢ Receiver ¢

We consider the problem of determine the transmit power of £ pairs of transceivers. They operate in
the same frequency at the same time, hence causing interference to each other. The problem data is
a channel gain matrix G € R**¢, where g; ; 18 the channel gain from transmitter j to receiver ¢, and

the noise power vector ¢ € R? with o; as the noise power at receiver i.

Our goal is to choose the transmit power, denoted = € Rﬂ_ with z; being the power of transmitter z,
in order to maximize the total throughput.

This problem is nonconvex and is proved to be NP-hard in its original form: (Luo & Zhang, 2008)
¢
. GiiTq
Maximize logy (1 + =———
; ( 2 i 9i5%5 + Ui)

¢ 15)
subject to Zml <1,
i=1

l‘iZO, ’L'Zl,...,g.

Under a “weak interference” assumption, we can reformulate the problem as a convex problem.
Specifically, we define H = G+ 017, namely h;; = gi; + 0;. We assume that H is invertible with
H'2I-CandthatCisa nonnegative matrix. This assumption holds true when g;; > > i 9i
for all 4, namely the interference is weak. Under this assumption, with the change of variables
y = Hx, namely y; = Z?zl h;jx;, the problem can be reformulated as the following convex

problem:
Maximize E lo
g2<cTy)

i=1 g

n 16
subject to Z (yi —cly) <1, (e
i=1

yi—cly>0,i=1,...,n.

We can prove that the objective function is concave by showing that the negative of its Hessian
matrix is positive semidefinite. However, standard solvers such as CVXPY cannot recognize it as a
concave function. Therefore, we need to define a custom objective function in standard solvers or
write custom interior-point methods to solve it.

[P2] Optimal power flow in alternating current and radial networks (AC-OPF-radial)

* Relaxation strategies: Semidefinite relaxation (SDR).
* Difficulty in reformulation: Medium (SDR techniques were used).

* Difficulty in solving the reformulated problem: Hard (the number of variables is in the order of
hundreds to ten thousands).

Please see AC—-OPF in App. F.3. It is shown that under certain conditions (e.g., the power network
is a radial network, which is often the case for distribution networks), the convex relaxation of
the problem is exact (Lavaei & Low, 2011). In other words, the non-convex original problem is
equivalent to a convex problem.

F.3 EXAMPLES OF TYPE-III PROBLEMS

[P1] Beamforming with nonconvex problem definitions (Beamform-Nonconvex)
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* Relaxation strategies: Semidefinite relaxation (SDR).

* Difficulty in reformulation: Easy (standard SDR techniques were used).

* Difficulty in solving the reformulated problem: Medium (the relaxed convex problem is a SDP,
and recovery methods are needed).

We consider the same setting as Beamform-MinSidelobe. But here our goal is to maximize the
gain at the target direction 6y,,, while limiting the ripple effect at directions 61, ..., 6, outside the
target area.

This problem is non-convex: (Fuchs, 2013)
Maximize |G(w;6")| (a7
subjectto  1/0 < |G(w;6;)] <6, i=1,...,m.

It is non-convex because we maximize a convex function (i.e., norm) and have constraints on convex
functions greater than or equal to a constant.

In this case, the standard semidefinite relaxation technique can be used, which “lifts” the problem to
higher dimensions. Specifically, we define a rank-1 semidefinite matrix W £ ww!. Then the gain
at direction 6 satisfies

(G(w30)* = trace (E(6;) - W),

where E(6;) = e(0;)* - e(#;)T € C"*" with

e(@i) — 61(£1 cos 0+y1 sin 9)7 s el(xn cos 0+y,, sin 0)

With the new matrix variable W, we have the following equivalent problem:
Maximize trace (E(6u) - W)
subject to  (1/6)? < trace (E(6;) - W) <6, i=1,...,m,
W >0,
rank(W) = 1.

(18)

Here, the only nonconvexity comes from the rank constraint. By removing it, we get the following
convex relaxation:

Maximize trace (E(0y,) - W)
subjectto  (1/6)? < trace (E(;) - W) < 8%, i=1,...,m, (19)
W > 0.

In general, we need to recover an approximate solution vector w from the solution matrix W. Under
certain conditions (e.g., uniform linear arrays), we can guarantee to recover the exact solution vector.
[P2] Optimal power flow in alternating current (AC-OPF)
* Relaxation strategies: Semidefinite relaxation (SDR).
* Difficulty in reformulation: Medium (SDR techniques were used).

* Difficulty in solving the reformulated problem: Hard (the number of variables is in the order of
hundreds to ten thousands).

This is the alternating current (AC) version of DC—OPF, and is more accurate in power system
modelling.

A canonical version of AC—-OPF is as follows: (Lavaei & Low, 2011)

Minimize  max , Ci(Vy)

i=1,...,

subjectto v, < |Vil* <oy, di=1,.... 00,5 =1,...,¢, (20)
;< > YRV (VP -V <5 5eN,
k:(j,k)EE
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where V' € C' is the vector of voltages at each bus, C;(+) includes the generation cost and the power
loss in transmission lines, the first constraints are voltage magnitude constraints to ensure stability
of transmission lines, and the second constraints are power injection constraints derived from Ohm’s
law and Kirchhoff’s laws.

This problem is non-convex because of the constraints. A common approach is to perform semidef-
inite relaxation and solve the convex relaxation. Please see (Lavaei & Low, 2011) for details.

F.4 EXAMPLES OF AMBIGUOUS PROBLEMS

[P1] Power control for maximum throughput (PC-MaxRate)

This prompt does not provide the context of whether these transceivers cause interference to each
other. If they are using orthogonal frequency-division multiplexing (OFDM), the major multiple-
access protocol in the fourth-generation (4G) and fifth-generation (5G) communications, we can
formulate the problem as the relatively easy PC-MaxRate-decoupled. If they are self-organizing as
a mesh network, we can formulate the problem as the challenging PC-MaxRate-interference. In
this case, the LLM should ask for the specific use case to determine the mathematical model.

[P2] Beamforming (Beamform)

The design specifications are not clear. The user may want to minimize the sidelobe while keeping
certain gain at the target direction, resulting in Beamform-MinSidelobe, or may want to maximize
the gain at the target direction while limiting the sidelobe, resulting in Beamform-Nonconvex. In
this case, the LLM should ask for a clear design specification form the user.

[P3] Optimal power flow (OPF)

The problem statement is not clear about which version of the OPF problem to use. When the power
system is not heavily loaded and when fast solutions are needed, we can use the DC approximation
and formulate the problem as DC-OPF, which is a LP. If we need accurate solutions (e.g., solutions
that inform us of the power loss on the transmission lines), we need to formulate it as AC-OPF,
which is non-convex in general. However, if the underlying network is a distribution grid, which is
a radial network, the resulting AC-OPF-radial has a convex relaxation, which has been proven
to be exact (i.e., equivalent to the original non-convex problem).

F.5 OVERVIEW

In Fig. 9, we visualize the difficulty in solving and reformulating the example problems.
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Mutual-Information
PC-MaxRate—-decoupled

PC-MinPower

easy

hard  Reformulating

Figure 9: Example problems in terms of difficulty in reformulating and solving the problem.
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G SOLVER PERFORMANCE COMPARISON

In this section, we present simulation results comparing the performance of various optimization
solvers on the PC_MinPower problem, both in its original nonconvex form and in a reformulated
convex form. We consider problem instances with ¢ = 10 and ¢ = 100 users (i.e., £ optimization
variables). For each instance, we evaluate the solvers in terms of success rate, optimality gap, and
average solve time over 100 random samples.

G.1 EXPERIMENTAL SETUP

The PC_MinPower problem aims to minimize the total power consumption in a system while
satisfying certain constraints. The original formulation of this problem is nonconvex, which can
pose challenges for optimization algorithms. However, by reformulating the problem, it can be
converted into an equivalent convex problem, which is generally easier to solve efficiently.

We evaluated the following solvers:

* General-Purpose Solvers:
— TRCA: Trust-Region Constrained Algorithm
SLSQP: Sequential Least Squares Programming.
COBYLA: Constrained Optimization BY Linear Approximations.
COBYQA: Constrained Optimization BY Quadratic Approximations.
e Convex Program Solvers:
CLARABEL: A conic optimization solver.
ECOS: Embedded Conic Solver.
SCS: Splitting Conic Solver.
OSQP: Operator Splitting Quadratic Program Solver.

For each solver and problem instance, we recorded:

* Success Rate: The percentage of runs where the solver successfully found a feasible solution.

» Optimality Gap: The difference between the objective value obtained by the solver and the known
optimal value.

» Average Solve Time: The average computation time (in seconds) required by the solver.

G.2 RESULTS

Tables 7 and 8 present the performance of the solvers for problem sizes n = 10 and n = 100,
respectively.

Table 7: Solver Performance for £ = 10 Users

Original Nonconvex Problem Reformulated Convex Problem
Success  Optimality Gap Time (s) Success Optimality Gap Time (s)

Solver Type

General-Purpose Solvers

TRCA General-Purpose ~ 100% 7.31 x 1073 0.0399  100% 1.25 x 1073 0.0420
SLSQP General-Purpose  100% 6.47 x 10=7  0.0019  100% 6.48 x 1077 0.0009
COBYLA General-Purpose ~ 67% 2.94 x 1076 0.0073  100% 7.15 x 1076 0.0039
COBYQA General-Purpose 0% — — 6% 9.80 14.4067
Convex Program Solvers

CLARABEL Convex Solver — — — 100% 6.32 x 1077 0.0002
ECOS Convex Solver — — — 100% 6.16 x 107 0.0001
SCS Convex Solver — — — 100% 4.45 x 1077 0.0002
OSQP Convex Solver — — — 100% 6.48 x 1077 0.0003

G.3 DISCUSSION

The results demonstrate several key observations:
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Table 8: Solver Performance for £ = 100 Users

Solver Type Original Nonconvex Problem Reformulated Convex Problem
Success Optimality Gap Time (s) Success Optimality Gap Time (s)
General-Purpose Solvers
TRCA General-Purpose ~ 100% 7.75 x 1072 0.6628 100% 1.28 x 1072 0.6856
SLSQP General-Purpose ~ 100% 1.04 x 1076 0.0750 100% 1.04 x 1076 0.0298
COBYLA General-Purpose 0% — 6.0764 100% 2.86 x 1075 9.9629
COBYQA General-Purpose 0% — — 0% — —
Convex Program Solvers
CLARABEL Convex Solver — — — 100% 6.22 x 1077 0.0121
ECOS Convex Solver — — — 100% 9.91 x 1077 0.0097
SCS Convex Solver — — — 100% 1.05 x 1076 0.0055
OSQpP Convex Solver — — — 100% 1.04 x 106 0.0110

e Importance of Problem Reformulation: For general-purpose solvers, reformulating the origi-
nal nonconvex problem into an equivalent convex problem significantly improves solution qual-
ity. This improvement is more pronounced for larger problem sizes (¢ = 100). For instance,
COBYLA's success rate increased from 0% to 100% when the problem was reformulated.

* Solver Selection Matters: Different general-purpose solvers exhibit varying performance levels.
SLSQP consistently achieves near-zero optimality gaps and high success rates with relatively
low solve times across both problem formulations and sizes. In contrast, COBYQA fails to find
feasible solutions in most cases, highlighting the necessity of careful solver selection.

* Performance of Convex Program Solvers: For the reformulated convex problem, convex pro-
gram solvers (CLARABEL, ECOS, SCS, OSQP) show excellent and consistent performance.
They all achieve 100% success rates, negligible optimality gaps, and minimal solve times. The
differences among these solvers are minimal, suggesting that any of them would be suitable for
solving the convex formulation efficiently.

These findings underscore the importance of problem reformulation and solver selection in opti-
mization tasks. Reformulating a nonconvex problem into a convex one can significantly enhance the
performance of general-purpose solvers. Additionally, selecting the appropriate solver is crucial, as
it can greatly impact the success rate and computational efficiency.

H BROADER PERSPECTIVE ON AUTOFORMULATION AND OPTIMIZATION
MODELING

Our autoformulation framework addresses a specific, yet crucial challenge: translating problem
descriptions into mathematical and computational models. However, it is important to acknowledge
that this represents just one component of the broader modeling process, which typically involves:

1. Information gathering from diverse stakeholders, often requiring multiple iterations and integra-
tion of implicit domain knowledge/conventions (i.e., ’tribal knowledge’);

2. Handling complex problem characteristics such as stochasticity, time-varying dynamics, and
large-scale variables;

3. Rigorous validation against real-world data, including sensitivity analysis of modeling assump-
tions and verification of edge cases;

4. Continuous communication between technical and business stakeholders to ensure practical util-
ity.

Understanding these complexities helps identify which aspects of modeling can be effectively auto-
mated, thereby enabling OR practitioners to focus their expertise on more nuanced challenges such
as stakeholder engagement and validation of modeling assumptions.
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