
FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding
with Adaptive Feed Forward Skipping

Anonymous ACL submission

Abstract001

Autoregressive Large Language Models (e.g.,002
LLaMa, GPTs) are omnipresent achieving re-003
markable success in language understanding004
and generation. However, such impressive005
capability typically comes with a substantial006
model size, which presents significant chal-007
lenges for autoregressive token-by-token gen-008
eration. To mitigate computation overload in-009
curred during generation, several early-exit and010
layer-dropping strategies have been proposed.011
Despite some promising success due to the012
redundancy across LLMs layers on metrics013
like Rough-L/BLUE, our careful knowledge-014
intensive evaluation unveils issues such as gen-015
eration collapse, hallucination, and noticeable016
performance drop even at the trivial exit ra-017
tio of ∼ 10-15% of layers. We attribute these018
errors primarily to ineffective handling of the019
KV cache through state copying during early020
exit. In this work, we observe the saturation of021
computationally expensive feed-forward blocks022
of LLM layers and propose FFN-SkipLLM,023
which is a novel fine-grained skip strategy for024
autoregressive LLMs. FFN-SkipLLM lever-025
ages an input-adaptive feed-forward skipping026
approach that can skip ∼ 25-30% of FFN027
blocks of LLMs with marginal change in per-028
formance on knowledge-intensive generation029
tasks without any requirement to handle the030
KV cache. Our extensive experiments and abla-031
tion studies across benchmarks like MT-Bench,032
Factoid-QA, and variable-length text summa-033
rization illustrate how our simple and easy-to-034
use method can facilitate faster autoregressive035
decoding. Related codes will be open-sourced.036

1 Introduction037

stealers, profoundly influencing not only the land-038

scape of NLP (Ram et al., 2023; Liu et al., 2023a;039

Sawada et al., 2023; Jaiswal et al., 2021; Qin et al.,040

2023; Zhuo, 2023; Lee et al., 2023), but also re-041

cently buttressing numerous computer vision (Lian042

et al., 2023; Wang et al., 2023; Lai et al., 2023; 043

Lu et al., 2023; Li et al., 2024) and graph neural 044

networks (Ye et al., 2023; Chen et al., 2023c; Qian 045

et al., 2023; Duan et al., 2023; Chen et al., 2024) al- 046

gorithms, achieving stellar performance across var- 047

ious task benchmarks. However, their widespread 048

adoption is hindered by their massive scale, charac- 049

terized by billions of parameters, which demand ex- 050

ceedingly high computational resources and mem- 051

ory capacities. For instance, the GPT-175B model 052

necessitates 325 GB of GPU memory for loading 053

its weights and relies on a minimum of five A100 054

(80GB) GPUs employing sophisticated parallelism 055

techniques (Sheng et al., 2023). This imposing 056

computational and memory requirement presents 057

a challenge to the broader accessibility of these 058

models. 059

To alleviate the demanding hardware require- 060

ments for deploying massive trained models, con- 061

siderable efforts have been devoted to mitigating 062

their high computational inference cost resulting 063

from token-by-token generation. Among several 064

model compression techniques such as quantiza- 065

tion (Liu et al., 2023c; Kim et al., 2023; Dettmers 066

et al., 2023a; Frantar et al., 2022; Lin et al., 2023; 067

Dettmers et al., 2023b), and sparse neural net- 068

works (Frankle and Carbin, 2019; Chen et al., 2020; 069

Jaiswal et al., 2022; Lee et al., 2019; Zhangheng 070

et al., 2023; Jaiswal et al., 2023b,a; Liu et al., 071

2023b; Yin et al., 2023a,b) which require addi- 072

tional hardware support for speedup, token-level 073

early exit or layer-skip has emerged as a promising 074

technique to alleviate these limitations by allowing 075

tokens to cease computation as soon as their hidden 076

states reach saturation (Sun et al., 2022; Del Corro 077

et al., 2023; Schuster et al., 2022; Men et al., 2024). 078

These methods exploit existing redundancy across 079

LLMs’ layers which can be ignored during token- 080

by-token generation significantly saving massive 081

computation involved within a layer (e.g., ∼ 200- 082

300 million parameters in a single LLaMa layer). 083

1



PROMPT >> Please provide answer to the following. Question: Who is the prime minister of India?

SkipDecode
Assistant

~25%

Hello! India currently does not have a prime minister since India abolished its cabinet posts
including Prime Minister Narendra Mod Mod Prime Minister Mod Mod resigned as Prime

Minister of India effective immediately after his party losts seats in parliamentary
elections held earlier this month. India now transitioning into transition mode transition

mode transition mode transition mode transition mode ... ... ... ...

ShortGPT
Assistant

~25%

As of 2022, the Prime Prime minister of India is [insert current date] . The previous Prime
minister of India is [insert previous Prime minister, or other relevant information]. The most

recent election was held on [insert date] and the Prime minister is [insert Prime minister].

Vi w 1: The Prime minister of India is the president of the India's republic. There is a Prime
minister in the India, there is no Prime minister in the India. The Prime minister of India is
the first minister poverty, the India is the first Prime minister. The Prime minister of India

is the leader of the India. ... ... ... ...

FFN-SkipLLM
Assistant

~25%

The current Prime Minister of India is Narendra Modi. He has been serving as the Prime
Minister since 2014. The Prime Minister of India is a political leader who is elected by the

parliamentarians and serves as the head of the government. The Prime Minister is
responsible for implementing policies, programs, and initiatives to improve the economic,

social, and political well-being of the country.

Figure 1: Merits of Autoregressive Decoding with Layer Skipping: Comparison of the responses generated
by two recent Layer Skipping methods, namely SkipDecode (Del Corro et al., 2023) and ShortGPT (Men et al.,
2024) for a knowledge-intensive QA example. It can be observed that both LLaMa-chat-13B model with ∼ 25%
layers skipped per token using SkipDecode and ShortGPT suffers from hallucination and token collapse (repetitive
generation) while FFN-SkipLLM can still retrieve the correct response.

Layer Name # Parameters

attention.wq.weight ∼ 16.77M
attention.wk.weight ∼ 16.77M
attention.wv.weight ∼ 16.77M
attention.wo.weight ∼ 16.77M

feed_forward.w1.weight ∼ 45.08M
feed_forward.w2.weight ∼ 45.08M
feed_forward.w3.weight ∼ 45.08M

Table 1: Parameter count of Attention and FFN layers
of a transformer block in LLaMa-7B.

Although the proposed methods have shown some084

promising success, their performance is widely re-085

stricted by the issue of inappropriately handling086

KV caching. KV caching saves keys and values of087

all attention layers for previously generated tokens088

and accelerates sequence generation by reducing re-089

dundant computation (though at the cost of higher090

memory usage). Given a token generated via early091

exiting, its KV caches in subsequent layers are in-092

complete which impedes the generation of future093

tokens beyond the exiting layer of the current to-094

ken.095

For handling the KV cache issue, some recent096

works (Elbayad et al., 2019; Schuster et al., 2022;097

Li et al., 2021b; Chen et al., 2023a; Del Corro et al.,098

2023) propose three main solutions: copying hid-099

den states, pre-fixed token-level skip pattern, and100

KV recomputation. Despite these mitigation meth-101

ods, our careful knowledge-intensive investigation102

reveals that layer-skipping induces permanent dam- 103

age due to deviation from the inference process 104

that the model is trained to excel at, leading to 105

significant hallucination of wrong facts and token 106

generation collapse. Figure 1 shows the compari- 107

son of the responses generated by two recent Layer 108

Skipping methods, namely SkipDecode (Del Corro 109

et al., 2023) and ShortGPT (Men et al., 2024) for 110

a knowledge-intensive QA example. In their re- 111

sponse, both ShortGPT and SkipDeocde fail to gen- 112

erate the correct answer “Narendra Modi", suffer 113

from token collapse, and hallucinate misinforma- 114

tion. 115

In this work, we ask an interesting unexplored 116

question: Instead of attempting to fix the KV cache, 117

can we completely circumvent the KV cache bot- 118

tleneck of layer-skipping and still avoid unneces- 119

sary computational expenses while mitigating hal- 120

lucination and token generation collapse? To this 121

end, our work is the first attempt to investigate a 122

fine-grained layer-skipping strategy that focuses on 123

computationally expensive feed-forward network 124

(FFN) blocks in LLMs. Table 1 presents the param- 125

eter counts of individual components of LLaMa-7B 126

layer and it can be observed that FFN blocks hold 127

approximately two-thirds of the parameter budget 128

of the layer, marking them as favorable candidates 129

for skipping during token-by-token generation. Our 130

2



work derives its motivation from two primary ob-131

servations: 1 we find a monotonically increasing132

cosine similarity between the tensors generated133

before and after the FFN blocks across layers in134

LLMs which indicates unnecessary computation135

performed by these blocks, 2 due to the observed136

phenomenon of attention sink (Xiao et al., 2023),137

we find that allowing a small fraction of first-few138

token (∼ 5-10% of maximum sequence length) de-139

coding using the full strength (no-skip) of LLMs140

can significantly help in stabilizing the KV cache,141

paving way for skipping FFN blocks without sig-142

nificant performance degradation for later tokens.143

We propose FFN-SkipLLM, a novel fine-grained144

skip strategy of autoregressive LLMs which is an145

input-adaptive feed-forward skipping strategy that146

can skip ∼ 25-30% of FFN blocks of LLMs with147

marginal change in performance on knowledge-148

intensive tasks. Note that because we only skip149

FFN blocks, we in turn can fully circumvent the KV150

cache issue associated with layer-skipping. Our pri-151

mary contributions can be summarized as:152

• Unlike prior layer-skipping methods, we fo-153

cus on only skipping computationally expen-154

sive FFN blocks based on our observation155

of their monotonically increasing saturation156

within the middle layers of LLMs.157

• Our proposed FFN-SkipLLM uses a simple158

cosine similarity metric across tensors to cap-159

ture the trend of FFN saturation and decide160

an input-adaptive skipping of FFN blocks.161

More specifically, once a similarity threshold162

is reached, given the monotonically increasing163

saturation, we greedily select the next k layers164

whose FFN blocks can be ignored depending165

on the desired skipping requirement.166

• Our extensive knowledge-intensive experi-167

ments such as Factoid-QA, Multi-turn con-168

versations, and Variable-length in-context text169

summarization, reveal that FFN-SkipLLM170

can skip ∼ 25-30% of FFN blocks of LLMs171

with a marginal change in performance and172

reduce hallucination and token collapse.173

2 Layer-skipping: An174

Knowledge-Intensive Evaluation175

Recent advancements in autoregressive models176

(Touvron et al., 2023; Qin et al., 2023; Zhang et al.,177

2022) have revolutionized the quality of language178

generation in various generative tasks, including179

question answering (Rajpurkar et al., 2016), sum- 180

marization (Fabbri et al., 2019; Nallapati et al., 181

2016), and machine translation (Bahdanau et al., 182

2014). However, these large transformer models 183

face challenges in terms of high inference latency 184

attributed to their numerous layers and the autore- 185

gressive decoding process. The sequential com- 186

putation of multiple stacks of transformer layers 187

for each token during the inference stage imposes 188

significant computational overheads, thus limiting 189

their real-time adaptability. 190

To counter the computational cost of token-by- 191

token generation with modern gigantic LLMs, sev- 192

eral works (Chen et al., 2023b; Men et al., 2024; 193

Del Corro et al., 2023; Kim et al., 2024; Bae et al., 194

2023a) have been recently exploring token-level 195

early exit and layer-skipping (depth-pruning) strate- 196

gies. The primary challenge associated with these 197

approaches is that if the current token exits at a 198

higher layer, there arises a need to recalculate the 199

Key-Value (KV) caches for preceding tokens. To 200

this end, three major approaches have been ex- 201

plored: (1) copy the hidden states of the current 202

token at the exiting layer to all later layers, which 203

will be used to compute the keys and values at later 204

attention layers, (2) pre-specify the exiting layer 205

for each token, while ensuring that KV missing 206

in previous tokens will not hinder the generation 207

of later tokens; with this approach, the ability of 208

token-wise adaptive selection of exits is inevitably 209

lost, (3) KV recomputation which is a variant of 210

synchronized parallel decoding and adds additional 211

computational and memory overhead. 212

Despite some notable performance gains over 213

some metrics (e.g., perplexity, Rough-L, BLUE), 214

our careful knowledge-intensive investigation re- 215

veals that the KV cache problem during layer-skip 216

is not effectively addressed. Figure 1 illustrates the 217

responses generated by two recent layer-skipping 218

methods SkipDecode (Del Corro et al., 2023) and 219

(Men et al., 2024) for a given factoid-based QA 220

task which requires answering using relevant en- 221

tities and attributes ingested within LLMs during 222

pre-training. Interestingly, answers generated by 223

the SkipDecode agent hallucinate misinformation 224

claiming ‘... does not have a prime minister ... 225

India abolished its cabinet posts ... ‘ while the 226

ShortGPT agent fails to generate any factoid to 227

answer the question. Note that both agents suffer 228

from token collapse and start generating repetitive 229

content after some time. To quantitatively estimate 230

the damage of layer-skipping, Table 3 presents the 231

3



Method (∼ 20% Skip) Factoid-QA Multi-turn Conversation In-context Summarization

Full Model 79.02 7.61 8.15
SkipDecode (Del Corro et al., 2023) 73.33 6.53 7.47

ShortGPT (Men et al., 2024) 70.49 6.17 6.33

Ours (FFN-SkipLLM) 78.89 7.55 8.11

Table 2: Performance comparison of Autoregressive Decoding with ∼ 20% layers skipped using SoTA methods
(SkipDecode, ShortGPT) wrt. our proposed input-adaptive FFN-SkipLLM on knowledge-intensive tasks.

Cold Region Cold Region Cold Region Cold Region Cold Region Cold Region Cold Region Cold Region

Figure 2: Cosine similarity across embedding dimension of a token tensor entering before and after the FFN block
of different layers in LLaMa-2 7B and 13B model. Inputs are sampled at random from Wikitext ad C4 datasets and
the mean curve indicates the average cosine similarity across 128 generated tokens. Red regions are termed cold
regions in our work and skipping FFN blocks within this region significantly hurt LLMs performance.

performance of SkipDecode and ShortGPT with232

respect to the full model on three knowledge-rich233

tasks (Section 4.1, 4.2, 4.3) that closely resem-234

ble the daily use-cases for LLMs. It can be ob-235

served that despite impressive results reported on236

traditional metrics, we find the performance signifi-237

cantly suffers when compared to the full model. To238

this end, in this work, we attempt to explore an or-239

thogonal direction that diverges from conventional240

layer-skipping and investigate the potential of skip-241

ping computationally heavy FFN blocks across lay-242

ers which accounts for approximately two-thirds of243

the parameter count.244

3 FFN-SkipLLM: A Fine-grained245

Input-adaptive FFN Skipping246

3.1 Preliminaries and Motivation247

Given a autoregressive large language model248

(LLaMa-2 in our case) ML with T layers,249

each layer li ∈ L consists of two major250

computational blocks: Multihead-Attention251

block (Wq,Wk,Wv,Wo) and FFN block252

(FFW1, FFW2, FFW3). Table 1 presents253

the approximate parameter counts occupied by254

these components in layer li indicating FFN255

blocks occupying around two-thirds of the total256

parameter counts. In pursuit of avoiding the KV257

issue incurred due to entire layer-skipping, we258

explored the redundant computation done by FFN259

blocks during token-by-token generation. More260

specifically, given a layer li, we calculated the261

cosine similarity across the embedding dimension262

of the tensor entering a given FFN block and263

exiting the block.264

Algorithm 1: Pseudocode for our Input-
Adaptive FFN-SkipLLM

Input: warm_up_index: int; input_state:
tensor; cold_s: int; cold_e: int;
token_index: int

if token_index ≤ warm_up_index then
generate_with_full_model(token_index,
input_state)

else
generate_with_skip_model(token_index,
input_state, cold_s, cold_e)

def
generate_with_skip_model(token_index,
input_state, cold_s, cold_e):

past_state← input_state
for <0 ... cold_s> do

h← past_start +
attention(past_state)

past_state← h +
feed_forward(h)

skip_state← False
for <cold_s ... cold_e> do

h← past_start +
attention(past_state)

if skip_state == False then
temp← h + feed_forward(h)
sim_score← cosine (h,
temp)

if sim_score ≥ sim_threshold
then

skip_state← True
past_state← temp

else
past_state← h

for <cold_e ... num_layers> do
h← past_state +
attention(past_state)

past_state← h +
feed_forward(h)

4



Figure 2 presents the layerwise mean cosine sim-265

ilarity of 128 generated tokens across different lay-266

ers in LlaMa-2 7B and 13B models where the ini-267

tial input prompt was sampled from the wikitext268

and C4 datasets. We are motivated by the follow-269

ing three observations: 1 surprisingly high co-270

sine similarity across the embedding dimension of271

the tensor entering a given FFN block and exiting272

it indicates the existence of redundant computa-273

tion; 2 monotonically increasing cosine similar-274

ity across middle layers (yellow region) indicat-275

ing redundant computation is concentrated around276

middle layers in the model ML; 3 existence of277

two cold segments (red region) where there exists278

a decreasing trend of cosine similarity indicating279

they significantly influence the input tensor and280

should be left intact during our FFN blocks skip-281

ping goal. In addition, a recent work (Xiao et al.,282

2023) identified the emergence of attention sink283

attributed to the strong attention scores towards284

initial tokens in autoregressive token-by-token gen-285

eration. Our experiments found this observation is286

highly effective in stabilizing the generated tokens287

with FFN block-skipping and reducing repetitive288

tokens. FFN-SkipLLM incorporates this with a289

hyperparameter warm_up_index to develop a290

high-quality KV cache for initial few token genera-291

tions before adopting the FFN skipping policy.292

3.2 Methodology293

In this section, we will discuss our proposed294

methodology for input-adaptive FFN-SkipLLM.295

As discussed earlier, FFN-SkipLLM capitalizes on296

the redundant computational cost of FFN blocks297

across deep autoregressive LLMs for token genera-298

tion. As shown in Figure 2, given the model ML,299

its layers can be categorized into two regions: cold300

regions (FFNs are non-redundant) and non-cold301

regions (FFNs tend to be redundant). Cold regions302

(red) encompass the first few layers (cold_s)303

and the last few layers (cold_e) and they can304

be identified using a small calibration set from305

Wikitext/C4. FFN-SkipLLM uses an extra hyper-306

parameter warm_up_index1 which represents307

how many initial first tokens will not undergo any308

layer-skipping to capitalize on attention sink obser-309

vation.310

Algorithm 1 illustrates the pseudocode for311

FFN-SkipLLM. A typical transformer layer per-312

forms two heavy operations: attention calculation313

1Necessary ablation is provided in Section 5.1.

and feed-forward transformation. Our proposed 314

method allows both operations in cold regions 315

but facilitates skipping feed-forward transforma- 316

tion within the non-cold regions. Our input adap- 317

tivity comes from tracking the cosine similarity 318

of the token features before and after the FFN 319

blocks and deciding when to start skipping given 320

a sim_thresold. More specifically, based on 321

our monotonically increasing cosine similarity in 322

non-cold regions, we greedily skip k FFN blocks 323

from the subsequent layers. 324

4 Experimental Results 325

Baseline Details: To empirically evaluate the per- 326

formance gains enabled by our proposed FFN- 327

SkipLLM across multiple knowledge-intensive 328

tasks. We aim to investigate how well FNN block 329

skipping can retain the ability to access factoid an- 330

swers ingested during pretraining, perform multi- 331

turn instruction following, and in-context summa- 332

rization. Our baselines are: 1 full model which 333

indicate the maximum capability of LLM under 334

consideration; 2 random skip where FFN-blocks 335

are dropped at random without giving careful con- 336

sideration of cold and non-cold regions; 3 no input 337

adaptive where we do not track the cosine similar- 338

ity per token and FFN-blocks are dropped at ran- 339

dom from the non-cold region. Our baselines are 340

constructed to carefully validate the effect of our 341

observations in FFN-SkipLLM. 342

4.1 Factoid-based Question Answering 343

Task Definition and Rationale. Factoid-based 344

Question Answering (Factoid-QA) (Iyyer et al., 345

2014), which asks precise facts about entities, is a 346

long-standing problem in NLP. A typical Factoid- 347

QA task aims to search for entities or entity at- 348

tributes from a knowledge graph, and it is widely 349

used as a tool in academia, commercial search 350

engines, and conversational assistants. Modern 351

LLMs are trained on gigantic text corpora ingest- 352

ing a large amount of world knowledge about en- 353

tities and their relationships during pre-training, 354

and have unique abilities to generate factually cor- 355

rect responses to user queries. In this task setting, 356

we aim to investigate how our input-adaptive FFN 357

block skipping impacts LLMs’ ability to answer 358

natural language questions using facts, i.e., enti- 359

ties or attributes knowledge ingested within them 360

during pre-training? 361

5



~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10
GP

T-
4 

Sc
or

e
8.32 8.33 8.33

2.91

1.25 1.03

7.04
6.23

5.30

8.12 7.92 7.82

Coherence

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4 
Sc

or
e

8.37 8.41 8.43

2.91

1.23 1.03

6.98

6.16

5.26

8.37
7.99 7.85

Consistency

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4 
Sc

or
e

8.78 8.91 8.86

3.02

1.28 1.03

7.07

6.15

5.10

8.79
8.03 7.86

Fluency

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4 
Sc

or
e

8.38 8.43 8.43

2.90

1.23 1.03

7.12
6.37

5.40

8.40
7.95 7.93

Relevance

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4 
Sc

or
e

8.40 8.43 8.47

5.80

1.90

1.03

8.30

7.33

5.23

8.77
8.26

7.90

Coherence

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10
GP

T-
4 

Sc
or

e
8.40 8.50 8.53

5.73

1.76
1.03

8.46

7.23

5.00

8.77
8.20

7.80

Consistency

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4 
Sc

or
e

8.70 8.97 9.03

6.00

1.66
1.03

8.73

7.50

5.00

8.93
8.43

7.90

Fluency

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4 
Sc

or
e

8.40 8.50 8.47

5.76

1.80
1.03

8.53

7.47

5.30

8.77
8.27

7.93

Coherence

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4 
Sc

or
e

8.03 8.05 8.10

5.00

3.10
2.37

7.33
6.75

6.05

8.40
8.01

7.42

Coherence

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4 
Sc

or
e

8.03 8.08 8.18

4.96

3.06
2.35

7.33
6.83

6.06

8.32
7.91

7.40

Consistency

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10
GP

T-
4 

Sc
or

e
8.43 8.60 8.68

5.16

3.18
2.43

7.73
6.93

6.18

8.66 8.40
7.75

Fluency

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4 
Sc

or
e

8.06 8.11 8.20

5.00

3.10
2.37

7.36 7.33

6.12

8.41
8.05

7.48

Relevance

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

Figure 3: Performance comparison of our baselines wrt. FFN-SkipLLM for in-context summarization of small (row
1), medium (row 2), and large (row 3) stories while preserving coherence, consistency, fluency, and relevance.

Method ∼5% ∼15% ∼25% ∼35%

Full Model 79.02%
Baseline 1 (Random Skip) 77.32% 72.96% 49.22% 31.07%

Baseline 2 (No input adaptive) 78.92% 77.71% 74.13% 69.93%

Ours (FFN-SkipLLM) 80.05% 78.42% 78.09% 75.61%

Table 3: Performance comparison of our baselines with
varying layer skip ratios wrt. proposed input-adaptive
FFN-SkipLLM on Factoid-based QA.

Prompt Design: Please give answer to this question:
<QUESTION> The answer is

Example: Please give answer to this question: Who is
the prime minister of India?

Model Response: Please give answer to this ques-
tion: Who is the prime minister of India? The
current Prime Minister of India is Narendra Modi. He has
been serving as the Prime Minister since 2014. The Prime
Minister of India is a political leader who is elected by the parlia-
mentarians and serves as the head of the government. The Prime
Minister is responsible for implementing policies, programs, and
initiatives to improve the economic, social, and political well-
being of the country.

362

Dataset Details and Results. We use Free-363

baseQA (Jiang et al., 2019) which is a dataset364

for open-domain QA over the Freebase knowl-365

edge graph. The QA pairs are collected from vari-366

ous sources, including the TriviaQA dataset (Joshi367

et al., 2017) and other trivia websites (QuizBalls,368

QuizZone, KnowQuiz), and are matched against369

Freebase to generate relevant subject-predicate- 370

object triples that were further verified by human 371

annotators. TriviaQA dataset shows rich linguistic 372

variation and complexity, making it a good testbed 373

for evaluating knowledge ingested within LLMs. 374

The results of various baseline methods and FFN- 375

SkipLLM are demonstrated in Table 3. It is interest- 376

ing to observe that FFN-SkipLLM with ∼5% skip 377

ratio per token can outperform the full model per- 378

formance. A careful study of Baselines 1 and 2 in- 379

dicates the effectiveness of our observation of cold 380

vs non-cold regions for FFN-block skipping. Note 381

that at a high skip ratio, the performance of the ran- 382

dom baseline is significantly worse with ≥50% 383

performance drop. On the other hand, we can 384

also note that our input-adaptive FFN-SkipLLM 385

is highly robust in retaining a large fraction of full 386

model performance in comparison to Baseline 2. 387

4.2 In-context Variable Length Text 388

Summarization 389

Task Formulation and Details. Modern LLMs 390

have shown astonishing success in summarizing 391

long-context documents in both abstractive and ex- 392

tractive settings. However, it is yet not explored 393

6



how FFN block skipping impacts LLMs’ capabil-394

ity for summarization. In this task setting, we aim395

to investigate how well autoregressive decoding396

with FFN block skipping hold onto consistency, co-397

herence, fluency, and relevance when prompted to398

summarize textual information of varying length399

(small, medium, and large) in abstractive setting400

(Jain et al., 2023). For evaluation, similar to (Zheng401

et al., 2023), we propose to use GPT-4 as a judge,402

which compares the compressed LLM generated403

summaries wrt. GPT-3.5 (text-davinci-003) gener-404

ated summaries.405

Prompt Design: A chat between a curious user
and an artificial intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the user’s questions.
USER: Summarize the given story in less than
150 words while preserving high coherence,
consistency, fluency, and relevance.\n\n
<STORY>.
ASSISTANT:

Example: A chat between a curious user and an artificial
intelligence assistant. The assistant gives helpful, detailed, and
polite answers to the user’s questions. USER: Summarize the
given story in less than 150 words while
preserving high coherence, consistency,
fluency, and relevance.\n\nLibyan and U.S.
officials say the two governments held
face-to-face talks in Tunisia ...have
denied previous reports of talks with the
government.
ASSISTANT:

406

Dataset Details and Results We use a popu-407

lar summarization dataset CNN/DailyMail (Chen408

et al., 2016) for evaluation, which is an English-409

language dataset containing just over 300k unique410

news articles written by journalists at CNN and411

DailyMail. We created 3 subset categories412

{small (≤470 words), medium (≥470 and ≤ 790413

words), and large (≥ 790 words)} of stories, each414

with 100 articles reflecting word distribution of415

CNN/DailyMail to minimize OpenAI API costs.416

Figure 3 summarizes the result of the variable417

length text summarization task. One interesting ob-418

servation we find is that with increasing in-context419

stories for summarization, we found that the perfor-420

mance of random baseline improves. Upon digging421

we found that it start copying random text snippets422

from the in-context story directly into the summary423

which led to a comparatively better GPT-4 evalua-424

tion score. With an increasing skip ratio, we found425

that the performance gap between FFN-SkipLLM426

and our baselines increases. Moreover, at ∼10-12%427

skip ratio we found that GPT-4 consistently ranks428

our summary better than the full model across co-429

herence, consistency, fluency, and relevance.430

4.3 Multi-turn Conversation and Instruction 431

Following 432

Task Formulation and Rationale. In this task 433

setting, we investigate how FFN block skipping 434

impacts the LLMs’ ability to answer open-ended 435

questions and evaluate their multi-turn conver- 436

sational and instruction-following ability – two 437

critical elements for human preference. Evalu- 438

ating AI chatbots is a challenging task, as it re- 439

quires examining language understanding, reason- 440

ing, and context awareness. To compare the per- 441

formance of compressed LLMs’ responses, we 442

closely follow the prompt design setting in MT- 443

Bench (Zheng et al., 2023) using GPT-4 as a judge. 444

We prompt GPT-4 to rate the answers generated by 445

compressed LLMs wrt. GPT-3.5 (text-davinci-003) 446

model based on varying metrics (e.g., correctness, 447

helpfulness, logic, accuracy, etc.) on a scale of 448

[0-10] with detailed explanations. 449

Dataset Details and Results. We rely on the 450

80 high-quality multi-turn questions identified in 451

MT-Bench (Zheng et al., 2023). This setting cov- 452

ers common-use human-centric interaction with 453

LLMs, and focuses on challenging questions to dif- 454

ferentiate models. We used 8 common categories 455

of user prompts to guide the prompt construction 456

to interact with compressed LLMs: writing, role- 457

play, extraction, reasoning, math, coding, etc. For 458

each category, we adopted manually designed 10 459

multi-turn questions from MT-Bench to evaluate 460

our compressed models. 461

Prompt Design: A chat between a curious user and an
artificial intelligence assistant. The assistant gives helpful, detailed,
and polite answers to the user’s questions. USER: <QUESTION>
ASSISTANT:

Example: A chat between a curious user and an artificial in-
telligence assistant. The assistant gives helpful, detailed, and polite
answers to the user’s questions. USER: How can I improve
my time management skills?
ASSISTANT:

462

Figure 4 presents the performance comparison of 463

our baseline models across 8 different categories. It 464

is surprising to observe that across some categories 465

such as coding, fermi, and commonsense; FFN- 466

SkipLLM perform quite match the performance 467

of the full model comfortably up to ∼25% skip 468

ratio per token. Unlike identified by (Men et al., 469

2024) that layer dropping fails on generative tasks, 470

it is important to acknowledge our careful FFN 471

block dropping can significantly reduce hallucina- 472

tion across knowledge-intensive tasks. Note that 473

our random skip baseline observes a terminal de- 474

cline in performance even with a slop rato of 10- 475

7



2.7% 6.30% 12.34% 26.01% 36.2%
% FFN Pruned

0

2

4

6

8

10
GP

T-
4 

Sc
or

e
Coding

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

2.7% 6.30% 12.34% 26.01% 36.2%
% FFN Pruned

0

2

4

6

8

10

GP
T-

4 
Sc

or
e

Commonsense

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

2.7% 6.30% 12.34% 26.01% 36.2%
% FFN Pruned

0

2

4

6

8

10

GP
T-

4 
Sc

or
e

Counterfactual

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

2.7% 6.30% 12.34% 26.01% 36.2%
% FFN Pruned

0

2

4

6

8

10

GP
T-

4 
Sc

or
e

Fermi

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

2.7% 6.30% 12.34% 26.01% 36.2%
% FFN Pruned

0

2

4

6

8

10

GP
T-

4 
Sc

or
e

Generic

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

2.7% 6.30% 12.34% 26.01% 36.2%
% FFN Pruned

0

2

4

6

8

10

GP
T-

4 
Sc

or
e

Knowledge

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

2.7% 6.30% 12.34% 26.01% 36.2%
% FFN Pruned

0

2

4

6

8

10

GP
T-

4 
Sc

or
e

Roleplay

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

2.7% 6.30% 12.34% 26.01% 36.2%
% FFN Pruned

0

2

4

6

8

10

GP
T-

4 
Sc

or
e

Writing

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

Figure 4: Performance comparison of our baselines with varying layer skip ratios wrt. FFN-SkipLLM on multi-turn
conversation across 8 different categories.

0 20 40 60 80 100

Warmup Tokens

6.8

7.0

7.2

7.4

7.6

7.8

8.0

8.2

8.4

P
er

fo
rm

an
ce

Multi-turn Conversation

In-context Summarization

Figure 5: Ablation for the role of warm_up_index
hyperparamter of FFN-SkipLLM on the performance.

Dense 5% 10% 20% 30% 50%

FLOPs Reduction 0 ∼0.3B ∼0.8B ∼1.7B ∼2.5B ∼4.3B
Throughput 9.08 8.35 9.17 10.22 10.89 12.45

Table 4: End-to-end decoding FLOPs reduction of
LLaMa-2 7B model using FFN-SkipLLM.

15% which suggests the importance of cold regions476

and input-adaptivity.477

5 Additional Results and Ablation478

5.1 Influence of Warm-up Index on479

Performance480

As discussed in Section 3, developing a high-481

quality KV during the initial pahse of decoing can482

significantly help in reducing hallucination and gen-483

eration of repetitive tokens. FFN-SkipLLM incor-484

porates this observation by incorporating an hy-485

perparameter warm_up_index. We conducted486

a ablation study to understand the role of warmup487

tokens generation with full model capacity on488

the final performance on two evaluation tasks (in-489

context summarization and multi-turn converation)490

as presented in Figure 5. It can be clearnly ob-491

served that the FFN-SkipLLM enjoys a significant492

benefit in performance with merely 25-30 warmup493

tokens which start saturating with further increase.494

5.2 Inference Speedup Analysis 495

In this section, we analysze the speedup acheived 496

by FFN-SkipLLM which attempts to skip redun- 497

dant feed-forward computation, as presented in 498

Table 4. The reported speedups correspond to end- 499

to-end decode throughput of LLaMA-V2-7B model 500

on MT-Bench dataset on an Nvidia RTX A6000 501

GPU using HuggingFace Accelerate. We also 502

reported the total approximate FLOPs reduction 503

acheived due to skipping computationally heavy 504

feed-forward blocks of transformer layer. It is 505

evident that FFN-SkipLLM can delivers a signif- 506

icant inference speedup compared to the dense 507

model which becomes more evident with grow- 508

ing skipping ratio. Due to additional computational 509

overhead of cosine similarity monitoring, we find 510

that noticeable FLOPs reduction couldn’t reflect 511

in throughput at 5% skip ratio but becomes visible 512

with increase in skip ratio. 513

6 Conclusion 514

In this paper, we explore an orthogonal dimen- 515

sion for layer-skipping and early-exit strategies 516

that suffer from KV cache issues leading to the 517

hallucination of misinformation and token collapse. 518

We propose FFN-SkipLLM, a novel fine-grained 519

skip strategy of autoregressive LLMs which is an 520

input-adaptive feed-forward skipping strategy that 521

can skip ∼ 25-30% of FFN blocks of LLMs with 522

marginal change in performance on knowledge- 523

intensive tasks. FNN-Skip LLM is built on the 524

core observation of monotonically increasing re- 525

dundancy within the FFN blocks of LLMs. Our 526

future work includes exploring parameter-efficient 527

continual fine-tuning techniques to push the perfor- 528

mance of FFN-SkipLLM for high skip ratios. 529

8



7 Limitations530

Our work has limitations. Firstly, all our experi-531

ments are conducted using LLaMa-v2 7B model532

and we plan to extend our work to other large533

models where we expect the performance bene-534

fits to be more noticeable given their ability to be535

compressed to high degree with marginal perfor-536

mance drop (Frantar and Alistarh, 2023). Secondly,537

due to the novelty of our approach in exploring538

FFN block skipping instead of conventional layer539

dropping, our baselines are self-curated along with540

SoTA layer-dropping baselines. Thirdly, one major541

limitation of our work is scaling FFN-SkipLLM542

for non-trivial skipping ratios (≥ 35%) without a543

significant performance drop. Despite the acknowl-544

edged limitations, we beleive that our proposed545

framework and the unique insights will inspire546

future work focusing on efficient and compute-547

constrained LLM inference pipelines.548

References549

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-550
Young Yun. 2023a. Fast and robust early-exiting551
framework for autoregressive language models with552
synchronized parallel decoding. arXiv preprint553
arXiv:2310.05424.554

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-555
Young Yun. 2023b. Fast and robust early-exiting556
framework for autoregressive language models with557
synchronized parallel decoding. In Proceedings of558
the 2023 Conference on Empirical Methods in Natu-559
ral Language Processing, pages 5910–5924, Singa-560
pore. Association for Computational Linguistics.561

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-562
gio. 2014. Neural machine translation by jointly563
learning to align and translate. arXiv preprint564
arXiv:1409.0473.565

Danqi Chen, Jason Bolton, and Christopher D Man-566
ning. 2016. A thorough examination of the cnn/daily567
mail reading comprehension task. arXiv preprint568
arXiv:1606.02858.569

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and570
Zhangyang Wang. 2024. Llaga: Large language and571
graph assistant. arXiv preprint arXiv:2402.08170.572

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia573
Liu, Yang Zhang, Zhangyang Wang, and Michael574
Carbin. 2020. The lottery ticket hypothesis for pre-575
trained bert networks. Advances in neural informa-576
tion processing systems, 33:15834–15846.577

Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding,578
and Jingren Zhou. 2023a. Ee-llm: Large-scale579

training and inference of early-exit large lan- 580
guage models with 3d parallelism. arXiv preprint 581
arXiv:2312.04916. 582

Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and 583
Jingren Zhou. 2023b. Ee-llm: Large-scale training 584
and inference of early-exit large language models 585
with 3d parallelism. ArXiv, abs/2312.04916. 586

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi 587
Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin, 588
Wenqi Fan, Hui Liu, et al. 2023c. Exploring the 589
potential of large language models (llms) in learning 590
on graphs. arXiv preprint arXiv:2307.03393. 591

Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, 592
Bin Yu, Ahmed Awadallah, and Subhabrata Mukher- 593
jee. 2023. Skipdecode: Autoregressive skip decoding 594
with batching and caching for efficient llm inference. 595
arXiv preprint arXiv:2307.02628. 596

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 597
Luke Zettlemoyer. 2023a. Qlora: Efficient finetuning 598
of quantized llms. ArXiv, abs/2305.14314. 599

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, 600
Denis Kuznedelev, Elias Frantar, Saleh Ashkboos, 601
Alexander Borzunov, Torsten Hoefler, and Dan Alis- 602
tarh. 2023b. Spqr: A sparse-quantized representation 603
for near-lossless llm weight compression. ArXiv, 604
abs/2306.03078. 605

Keyu Duan, Qian Liu, Tat-Seng Chua, Shuicheng 606
Yan, Wei Tsang Ooi, Qizhe Xie, and Junxian He. 607
2023. Simteg: A frustratingly simple approach 608
improves textual graph learning. arXiv preprint 609
arXiv:2308.02565. 610

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael 611
Auli. 2019. Depth-adaptive transformer. arXiv 612
preprint arXiv:1910.10073. 613

Alexander R Fabbri, Irene Li, Tianwei She, Suyi Li, 614
and Dragomir R Radev. 2019. Multi-news: A 615
large-scale multi-document summarization dataset 616
and abstractive hierarchical model. arXiv preprint 617
arXiv:1906.01749. 618

Jonathan Frankle and Michael Carbin. 2019. The lottery 619
ticket hypothesis: Finding sparse, trainable neural 620
networks. In International Conference on Learning 621
Representations. 622

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 623
sive language models can be accurately pruned in 624
one-shot. 625

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 626
Dan Alistarh. 2022. Gptq: Accurate post-training 627
quantization for generative pre-trained transformers. 628
ArXiv, abs/2210.17323. 629

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao 630
Chen, and Qun Liu. 2020. Dynabert: dynamic bert 631
with adaptive width and depth. In Proceedings of the 632
34th International Conference on Neural Information 633

9

https://doi.org/10.18653/v1/2023.emnlp-main.362
https://doi.org/10.18653/v1/2023.emnlp-main.362
https://doi.org/10.18653/v1/2023.emnlp-main.362
https://doi.org/10.18653/v1/2023.emnlp-main.362
https://doi.org/10.18653/v1/2023.emnlp-main.362
https://api.semanticscholar.org/CorpusID:266149909
https://api.semanticscholar.org/CorpusID:266149909
https://api.semanticscholar.org/CorpusID:266149909
https://api.semanticscholar.org/CorpusID:266149909
https://api.semanticscholar.org/CorpusID:266149909
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:259076379
https://api.semanticscholar.org/CorpusID:259076379
https://api.semanticscholar.org/CorpusID:259076379
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://api.semanticscholar.org/CorpusID:253237200
https://api.semanticscholar.org/CorpusID:253237200
https://api.semanticscholar.org/CorpusID:253237200


Processing Systems, NIPS’20, Red Hook, NY, USA.634
Curran Associates Inc.635

Mohit Iyyer, Jordan L. Boyd-Graber, Leonardo636
Max Batista Claudino, Richard Socher, and Hal637
Daumé. 2014. A neural network for factoid ques-638
tion answering over paragraphs. In Conference on639
Empirical Methods in Natural Language Processing.640

Sameer Jain, Vaishakh Keshava, Swarnashree Mysore641
Sathyendra, Patrick Fernandes, Pengfei Liu, Gra-642
ham Neubig, and Chunting Zhou. 2023. Multi-643
dimensional evaluation of text summarization with in-644
context learning. arXiv preprint arXiv:2306.01200.645

Ajay Jaiswal, Shiwei Liu, Tianlong Chen, and646
Zhangyang Wang. 2023a. The emergence of essen-647
tial sparsity in large pre-trained models: The weights648
that matter. arXiv preprint arXiv:2306.03805.649

Ajay Jaiswal, Liyan Tang, Meheli Ghosh, Justin F650
Rousseau, Yifan Peng, and Ying Ding. 2021.651
Radbert-cl: Factually-aware contrastive learning for652
radiology report classification. In Machine Learning653
for Health, pages 196–208. PMLR.654

Ajay Kumar Jaiswal, Shiwei Liu, Tianlong Chen, Ying655
Ding, and Zhangyang Wang. 2023b. Instant soup:656
Cheap pruning ensembles in a single pass can draw657
lottery tickets from large models. In International658
Conference on Machine Learning, pages 14691–659
14701. PMLR.660

Ajay Kumar Jaiswal, Haoyu Ma, Tianlong Chen, Ying661
Ding, and Zhangyang Wang. 2022. Training your662
sparse neural network better with any mask. In In-663
ternational Conference on Machine Learning, pages664
9833–9844. PMLR.665

Kelvin Jiang, Dekun Wu, and Hui Jiang. 2019. Free-666
baseqa: A new factoid qa data set matching trivia-667
style question-answer pairs with freebase. In North668
American Chapter of the Association for Computa-669
tional Linguistics.670

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke671
Zettlemoyer. 2017. Triviaqa: A large scale distantly672
supervised challenge dataset for reading comprehen-673
sion. arXiv preprint arXiv:1705.03551.674

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault675
Castells, Shinkook Choi, Junho Shin, and Hyoung-676
Kyu Song. 2024. Shortened llama: A simple depth677
pruning for large language models. arXiv preprint678
arXiv:2402.02834.679

Jeonghoon Kim, Jung Hyun Lee, Sungdong Kim, Joon-680
suk Park, Kang Min Yoo, Se Jung Kwon, and Dong-681
soo Lee. 2023. Memory-efficient fine-tuning of com-682
pressed large language models via sub-4-bit integer683
quantization. ArXiv, abs/2305.14152.684

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui685
Yuan, Shu Liu, and Jiaya Jia. 2023. Lisa: Reason-686
ing segmentation via large language model. arXiv687
preprint arXiv:2308.00692.688

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip 689
Torr. 2019. Snip: Single-shot network pruning based 690
on connection sensitivity. In International Confer- 691
ence on Learning Representations. 692

Noah Lee, Na Min An, and James Thorne. 2023. Can 693
large language models infer and disagree like hu- 694
mans? ArXiv, abs/2305.13788. 695

Lei Li, Yankai Lin, Deli Chen, Shuhuai Ren, Peng Li, 696
Jie Zhou, and Xu Sun. 2021a. CascadeBERT: Ac- 697
celerating inference of pre-trained language models 698
via calibrated complete models cascade. In Find- 699
ings of the Association for Computational Linguis- 700
tics: EMNLP 2021, pages 475–486, Punta Cana, Do- 701
minican Republic. Association for Computational 702
Linguistics. 703

Tianhao Li, Sandesh Shetty, Advaith Kamath, Ajay 704
Jaiswal, Xiaoqian Jiang, Ying Ding, and Yejin Kim. 705
2024. Cancergpt for few shot drug pair synergy pre- 706
diction using large pretrained language models. npj 707
Digital Medicine, 7(1):40. 708

Xiaonan Li, Yunfan Shao, Tianxiang Sun, Hang Yan, 709
Xipeng Qiu, and Xuanjing Huang. 2021b. Accelerat- 710
ing bert inference for sequence labeling via early-exit. 711
arXiv preprint arXiv:2105.13878. 712

Long Lian, Boyi Li, Adam Yala, and Trevor Dar- 713
rell. 2023. Llm-grounded diffusion: Enhancing 714
prompt understanding of text-to-image diffusion 715
models with large language models. arXiv preprint 716
arXiv:2305.13655. 717

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, 718
Xingyu Dang, and Song Han. 2023. Awq: Activation- 719
aware weight quantization for llm compression and 720
acceleration. ArXiv, abs/2306.00978. 721

Junling Liu, Chao Liu, Peilin Zhou, Qichen Ye, Dading 722
Chong, Kang Zhou, Yueqi Xie, Yuwei Cao, Shoujin 723
Wang, Chenyu You, et al. 2023a. Llmrec: Bench- 724
marking large language models on recommendation 725
task. arXiv preprint arXiv:2308.12241. 726

Shiwei Liu, Tianlong Chen, Zhenyu Zhang, Xuxi Chen, 727
Tianjin Huang, Ajay Jaiswal, and Zhangyang Wang. 728
2023b. Sparsity may cry: Let us fail (current) 729
sparse neural networks together! arXiv preprint 730
arXiv:2303.02141. 731

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao, 732
Haotang Deng, and Qi Ju. 2020. FastBERT: a self- 733
distilling BERT with adaptive inference time. In 734
Proceedings of the 58th Annual Meeting of the Asso- 735
ciation for Computational Linguistics, pages 6035– 736
6044, Online. Association for Computational Lin- 737
guistics. 738

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie 739
Chang, Pierre Stock, Yashar Mehdad, Yangyang 740
Shi, Raghuraman Krishnamoorthi, and Vikas Chan- 741
dra. 2023c. Llm-qat: Data-free quantization aware 742
training for large language models. arXiv preprint 743
arXiv:2305.17888. 744

10

https://api.semanticscholar.org/CorpusID:216034672
https://api.semanticscholar.org/CorpusID:216034672
https://api.semanticscholar.org/CorpusID:216034672
https://api.semanticscholar.org/CorpusID:174800890
https://api.semanticscholar.org/CorpusID:174800890
https://api.semanticscholar.org/CorpusID:174800890
https://api.semanticscholar.org/CorpusID:174800890
https://api.semanticscholar.org/CorpusID:174800890
https://api.semanticscholar.org/CorpusID:258841104
https://api.semanticscholar.org/CorpusID:258841104
https://api.semanticscholar.org/CorpusID:258841104
https://api.semanticscholar.org/CorpusID:258841104
https://api.semanticscholar.org/CorpusID:258841104
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
https://api.semanticscholar.org/CorpusID:258841424
https://api.semanticscholar.org/CorpusID:258841424
https://api.semanticscholar.org/CorpusID:258841424
https://api.semanticscholar.org/CorpusID:258841424
https://api.semanticscholar.org/CorpusID:258841424
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://api.semanticscholar.org/CorpusID:258999941
https://api.semanticscholar.org/CorpusID:258999941
https://api.semanticscholar.org/CorpusID:258999941
https://api.semanticscholar.org/CorpusID:258999941
https://api.semanticscholar.org/CorpusID:258999941
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537


Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-745
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and Jian-746
feng Gao. 2023. Chameleon: Plug-and-play compo-747
sitional reasoning with large language models. arXiv748
preprint arXiv:2304.09842.749

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,750
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng751
Chen. 2024. Shortgpt: Layers in large language752
models are more redundant than you expect. arXiv753
preprint arXiv:2403.03853.754

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing755
Xiang, et al. 2016. Abstractive text summarization756
using sequence-to-sequence rnns and beyond. arXiv757
preprint arXiv:1602.06023.758

Chen Qian, Huayi Tang, Zhirui Yang, Hong Liang, and759
Yong Liu. 2023. Can large language models em-760
power molecular property prediction? arXiv preprint761
arXiv:2307.07443.762

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao763
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is764
chatgpt a general-purpose natural language process-765
ing task solver? arXiv preprint arXiv:2302.06476.766

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and767
Percy Liang. 2016. Squad: 100,000+ questions768
for machine comprehension of text. arXiv preprint769
arXiv:1606.05250.770

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,771
Amnon Shashua, Kevin Leyton-Brown, and Yoav772
Shoham. 2023. In-context retrieval-augmented lan-773
guage models. arXiv preprint arXiv:2302.00083.774

Tomohiro Sawada, Daniel Paleka, Alexander Havrilla,775
Pranav Tadepalli, Paula Vidas, Alexander Kranias,776
John J Nay, Kshitij Gupta, and Aran Komatsuzaki.777
2023. Arb: Advanced reasoning benchmark for large778
language models. arXiv preprint arXiv:2307.13692.779

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,780
Dara Bahri, Vinh Q. Tran, Yi Tay, and Donald Met-781
zler. 2022. Confident adaptive language modeling.782

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan783
Li, Max Ryabinin, Daniel Y Fu, Zhiqiang Xie, Beidi784
Chen, Clark Barrett, Joseph E Gonzalez, et al. 2023.785
High-throughput generative inference of large lan-786
guage models with a single gpu. arXiv preprint787
arXiv:2303.06865.788

Tianxiang Sun, Xiangyang Liu, Wei Zhu, Zhichao Geng,789
Lingling Wu, Yilong He, Yuan Ni, Guotong Xie, Xu-790
anjing Huang, and Xipeng Qiu. 2022. A simple791
hash-based early exiting approach for language un-792
derstanding and generation.793

Peng Tang, Pengkai Zhu, Tian Li, Srikar Appalaraju,794
Vijay Mahadevan, and R. Manmatha. 2023. Deed:795
Dynamic early exit on decoder for accelerating796
encoder-decoder transformer models. Preprint,797
arXiv:2311.08623.798

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 799
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 800
Baptiste Rozière, Naman Goyal, Eric Hambro, 801
Faisal Azhar, et al. 2023. Llama: Open and effi- 802
cient foundation language models. arXiv preprint 803
arXiv:2302.13971. 804

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan 805
Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong 806
Lu, Jie Zhou, Yu Qiao, et al. 2023. Vision- 807
llm: Large language model is also an open-ended 808
decoder for vision-centric tasks. arXiv preprint 809
arXiv:2305.11175. 810

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 811
Han, and Mike Lewis. 2023. Efficient streaming 812
language models with attention sinks. arXiv preprint 813
arXiv:2309.17453. 814

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and 815
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting 816
for accelerating BERT inference. In Proceedings 817
of the 58th Annual Meeting of the Association for 818
Computational Linguistics, pages 2246–2251, Online. 819
Association for Computational Linguistics. 820

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, 821
and Yongfeng Zhang. 2023. Natural language is all a 822
graph needs. arXiv preprint arXiv:2308.07134. 823

Lu Yin, Ajay Jaiswal, Shiwei Liu, Souvik Kundu, and 824
Zhangyang Wang. 2023a. Pruning small pre-trained 825
weights irreversibly and monotonically impairs "dif- 826
ficult" downstream tasks in llms. 827

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, 828
Yaqing Wang, Yiling Jia, Mykola Pechenizkiy, 829
Yi Liang, Zhangyang Wang, and Shiwei Liu. 2023b. 830
Outlier weighed layerwise sparsity (owl): A missing 831
secret sauce for pruning llms to high sparsity. arXiv 832
preprint arXiv:2310.05175. 833

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 834
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 835
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. 836
Opt: Open pre-trained transformer language models. 837
arXiv preprint arXiv:2205.01068. 838

LI Zhangheng, Shiwei Liu, Tianlong Chen, AJAY KU- 839
MAR JAISWAL, Zhenyu Zhang, Dilin Wang, Raghu- 840
raman Krishnamoorthi, Shiyu Chang, and Zhangyang 841
Wang. 2023. Sparse cocktail: Every sparse pattern 842
every sparse ratio all at once. 843

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 844
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 845
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. 846
Judging llm-as-a-judge with mt-bench and chatbot 847
arena. arXiv preprint arXiv:2306.05685. 848

Wei Zhu. 2021. LeeBERT: Learned early exit for BERT 849
with cross-level optimization. In Proceedings of the 850
59th Annual Meeting of the Association for Compu- 851
tational Linguistics and the 11th International Joint 852
Conference on Natural Language Processing (Vol- 853
ume 1: Long Papers), pages 2968–2980, Online. As- 854
sociation for Computational Linguistics. 855

11

https://arxiv.org/abs/arXiv:2207.07061
https://arxiv.org/abs/arXiv:2203.01670
https://arxiv.org/abs/arXiv:2203.01670
https://arxiv.org/abs/arXiv:2203.01670
https://arxiv.org/abs/arXiv:2203.01670
https://arxiv.org/abs/arXiv:2203.01670
https://arxiv.org/abs/2311.08623
https://arxiv.org/abs/2311.08623
https://arxiv.org/abs/2311.08623
https://arxiv.org/abs/2311.08623
https://arxiv.org/abs/2311.08623
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://api.semanticscholar.org/CorpusID:263620664
https://api.semanticscholar.org/CorpusID:263620664
https://api.semanticscholar.org/CorpusID:263620664
https://api.semanticscholar.org/CorpusID:263620664
https://api.semanticscholar.org/CorpusID:263620664
https://doi.org/10.18653/v1/2021.acl-long.231
https://doi.org/10.18653/v1/2021.acl-long.231
https://doi.org/10.18653/v1/2021.acl-long.231


Terry Yue Zhuo. 2023. Large language models are856
state-of-the-art evaluators of code generation. arXiv857
preprint arXiv:2304.14317.858

12



A Appendix859

A.1 Background Work860

Recent advances in model compression (pruning,861

quantization, and distillation) have been very suc-862

cessful in democratizing LLMs, allowing them863

to perform inference on consumer-grade GPUs.864

In contrast to their static nature, input-dependent865

early-exit or layer-dropping strategies present a866

unique potential for faster inference for new gigan-867

tic auto-regressive models during token-by-token868

generation. The majority of existing approaches869

primarily has been around BERT-scale encoder870

models (Hou et al., 2020; Li et al., 2021a; Liu871

et al., 2020; Xin et al., 2020; Zhu, 2021).872

A notable challenge in auto-regressive genera-873

tion tasks is managing Key-Value (KV) caching, a874

process that stores the keys and values from atten-875

tion layers corresponding to previously generated876

tokens to accelerate sequence generation. However,877

if a token is generated via early exiting, the KV878

caches for all subsequent layers are missing, com-879

plicating the generation of future tokens that exit880

at layers beyond the initial exiting layer. This chal-881

lenge has been acknowledged in the literature, and882

various strategies have been proposed to address it.883

One method (Elbayad et al., 2019; Li et al., 2021b;884

Schuster et al., 2022) duplicates the hidden states885

from the current token’s exiting layer to subsequent886

layers, which act as the KV cache for generating887

future tokens. Although being efficient, it causes888

deviation in the inference process and generates889

sub-optimal outputs.890

Another approach (Del Corro et al., 2023) pre-891

determines the exiting layers for all tokens, which892

guarantees later tokens always exits at earlier lay-893

ers, thus ensuring KV caches are always present.894

However,this approach suffers from degrading per-895

formance for as token length increases, and pin-896

pointing the optimal exiting parameters to balance897

model performance with inference efficiency is898

non-trivial. The third strategy (Bae et al., 2023b;899

Tang et al., 2023) stores the hidden states of pre-900

vious tokens that early-exited. When a KV cache901

missing occurs, a batched forward pass wtih cur-902

rent and recent tokens is conducted, materializing903

the missing KV cache. In the worst-case scenario,904

this approach requires utilizing the full network,905

thus negating the intended efficiency benefits. In906

contrast to these work, our work explores an or-907

thogonal direction to layer skipping and focuses on908

FFN-block skipping which circumvents the hassle909

and issues with KV caching and can effectively 910

ignore two-thirds of parameter counts. 911

13



GENERAL QUESTION PROMPT >>  You are a helpful and precise assistant for checking the quality of the answer.", "prompt_template": "
[Question]\n{question}\n\n[The Start of Assistant 1's Answer]\n{answer_1}\n\n[The End of Assistant 1's Answer]\n\n[The Start of
Assistant 2's Answer]\n{answer_2}\n\n[The End of Assistant 2's Answer]\n\n[System]\n{prompt}\n\n", "defaults": {"prompt": "We would
like to request your feedback on the performance of two AI assistants in response to the user question displayed above.\nPlease
rate the helpfulness, relevance, accuracy, level of details, factual information, and length of their responses. Each assistant
receives an overall score on a scale of 1 to 10, where a higher score indicates better overall performance.\nPlease first output a
single line containing only two values indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a
space. In the subsequent line, please provide a comprehensive explanation of your evaluation, avoiding any potential bias and
ensuring that the order in which the responses were presented does not affect your judgment."}

CODING QUESTION PROMPT >>  You are a helpful and precise assistant for checking the quality of the answer.", "prompt_template": "[Question]\n{question}\n\n[The
Start of Assistant 1's Answer]\n{answer_1}\n\n[The End of Assistant 1's Answer]\n\n[The Start of Assistant 2's
Answer]\n{answer_2}\n\n[The End of Assistant 2's Answer]\n\n[System]\n{prompt}\n\n", "defaults": {"prompt": "Your task is to
evaluate the coding abilities of the above two assistants. They have been asked to implement a program to solve a given problem.
Please review their code submissions, paying close attention to their problem-solving approach, code structure, readability, and
the inclusion of helpful comments.\n\nPlease ensure that the assistants' submissions:\n\n1. Correctly implement the given problem
statement.\n2. Contain accurate and efficient code.\n3. Include clear and concise comments that explain the code's logic and
functionality.\n4. Adhere to proper coding standards and best practices.\n\nOnce you have carefully reviewed both submissions,
provide detailed feedback on their strengths and weaknesses, along with any suggestions for improvement. You should first output a
single line containing two scores on the scale of 1-10 (1: no code/no sense; 10: perfect) for Assistant 1 and 2, respectively. Then
give extra comments starting from the next line."}

MATHS QUESTION PROMPT >>  You are a helpful and precise assistant for checking the quality of the answer.", "prompt_template": "[Question]\n{question}\n\n[The
Start of Assistant 1's Answer]\n{answer_1}\n\n[The End of Assistant 1's Answer]\n\n[The Start of Assistant 2's
Answer]\n{answer_2}\n\n[The End of Assistant 2's Answer]\n\n[System]\n{prompt}\n\n", "defaults": {"prompt": "We would like to
request your feedback on the mathematical proficiency of two AI assistants regarding the given user question displayed
above.\nFirst, please solve the problem independently, without referring to the answers provided by Assistant 1 and Assistant
2.\nAfterward, please examine the problem-solving process of Assistant 1 and Assistant 2 step-by-step to ensure their correctness,
identifying any incorrect steps if present. Your evaluation should take into account not only the answer but also the problem-
solving steps.\nFinally, please output a Python tuple containing two numerical scores for Assistant 1 and Assistant 2, ranging from
1 to 10, respectively. If applicable, explain the reasons for any variations in their scores and determine which assistant
performed better."}

Figure 6: Examples of prompts used for different categories to evaluate the compressed LLM ASSISTANT wrt.
GPT-3.5 ASSISTANT using GPT-4 as a Judge.

14


	Introduction
	Layer-skipping: An Knowledge-Intensive Evaluation
	FFN-SkipLLM: A Fine-grained Input-adaptive FFN Skipping
	Preliminaries and Motivation
	Methodology

	Experimental Results
	Factoid-based Question Answering
	In-context Variable Length Text Summarization
	Multi-turn Conversation and Instruction Following

	Additional Results and Ablation
	Influence of Warm-up Index on Performance
	Inference Speedup Analysis

	Conclusion
	Limitations
	Appendix
	Background Work


