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ABSTRACT

Due to the data-driven nature of deep neural networks and privacy concerns around
user data, a backdoor could be easily injected into deep neural networks in feder-
ated learning without attracting the attention of users. An affected global model
operates normally as a clean model in regular tasks and behaves differently when
the trigger is presented. In this paper, we propose a novel reverse engineering ap-
proach to detect and mitigate the backdoor attack in federated learning by adopting
a self-supervised Contrastive learning loss. In contrast to existing reverse engi-
neering techniques, such as Neural Cleanse, which involve iterating through each
class in the dataset, we employ the contrastive loss as a whole to identify triggers
in the backdoored model. Our method compares the last-layer feature outputs of
a potentially affected model with these from a clean one preserved beforehand to
reconstruct the trigger under the guidance of the contrastive loss. The reverse-
engineered trigger is then applied to patch the affected global model to remove
the backdoor. If the global model is free from backdoors, the Contrastive loss
will lead to either a blank trigger or one with random pattern. We evaluated the
proposed method on three datasets under two backdoor attacks and compared it
against three existing defense methods. Our results showed that while many popu-
lar reverse engineering algorithms were successful in centralized learning settings,
they had difficulties detecting backdoors in federated learning, including Neural
Cleanse, TABOR, and DeepInspect. Our method successfully detected backdoors
in federated learning and was more time-efficient.

1 INTRODUCTION

In recent years, deep learning has achieved state-of-the-art results in various fields such as image
classification (Karpathy et al., 2014), object detection (Karpathy & Fei-Fei, 2014), face recognition
(Mehdipour-Ghazi & Ekenel, 2016), and self-driving cars (Bojarski et al., 2016; Grigorescu et al.,
2019). Deep neural networks are driven by the vast amount of training data that may carry sensitive
information about the users (Zhu et al., 2019). For privacy protection, the model owner often releases
to the public and shared online only the trained model, but not the original training data. Recently,
federated learning has been introduced to protect the user data privacy (McMahan et al., 2016). It
allows the users to train a model locally and upload the model to the server, so that the server only
needs to access and aggregate the uploaded models, without requiring access to the original local
training data.

Despite its remarkable success, the federated learning scheme is becoming an increasingly attractive
target for cyber criminals, due to the data sensitivity of deep neural networks, the transparency per-
spective of model training, and the publicly available nature of models that are shared online. These
vulnerabilities have been unveiled and exploited by attackers to obtain representative information of
user data (Zhu et al., 2019; Wang et al., 2018) or induce the model to produce improper results (Gu
et al., 2017; Liao et al., 2018; Wang et al., 2020). Neural backdoor attack is a typical data poisoning
attack that injects the backdoor into the model during training and it is only activated when a specific
trigger is present. The poisoned model operates normally in regular tasks but differently when the
trigger is present. The backdoor attack could potentially threaten the life of users in safety-critical
applications such as autonomous driving, which has become an immense public concern.
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To affirm the security and trustworthiness of deep neural networks, various state-of-the-art defense
methods were proposed to identify and mitigate backdoor attack. One such method termed “Neural
Cleanse” (Wang et al., 2019) was proposed to identify and mitigate the backdoor attack. It aims
to reverse engineer the trigger by finding the input perturbation for each class that leads to the
misclassification of the target class. DeepInspect (Chen et al., 2019) is the advanced version of
Neural Cleanse that utilized a generator to find the backdoor. On the other hand, the Artificial
Brain Stimulation (ABS) method (Liu et al., 2019) analyzes internal neurons in a suspicious model
by stimulating different inputs into the model and testing the activation outputs of the neurons to
identify the compromised ones. An optimization method is then applied to these compromised
neurons to reverse engineer the trigger. TABOR (Guo et al., 2019) is another method that was
designed to solve a complex objective function to detect the backdoor and reverse engineer the
trigger. DeepSweep (Zeng et al., 2020) cleanses input data for the model during training, Activation-
clustering (Chen et al., 2018) utilizes the activation outputs of the model to identify and remove
backdoor, and NeuronInspect (Huang et al., 2019) generates heat maps from the output layer of the
model to detect backdoor. However, these defense mechanisms have various drawbacks in terms
of effectiveness, time efficiency, and computational costs, which limit their application in federated
learning.

To tackle those challenges, we propose a novel approach capable of detecting and unlearning the
backdoor in large-scale federated learning systems. Our method utilizes a clean, pretrained model
and adopts a self-supervised learning contrastive loss to efficiently reverse engineer the backdoor
trigger. While existing defense mechanisms in federated learning (Pillutla et al., 2019; Fung et al.,
2018) involve examining updates from local models or modifying the aggregation algorithm to en-
sure the safety of the global model, our method directly targets the global model without the need to
inspect local updates or change the aggregation scheme.

The contrastive loss (Dey et al., 2017; Chopra et al.; Koch, 2015) is typically used to map simi-
lar/dissimilar patterns in input into the same/different locations in the feature embedding space. In
our self-supervised contrastive learning setting, we first inject some perturbations into an image to
mimic the backdoor trigger, and let the poised image go through the clean and suspicious models.
We then utilize the contrastive loss (Chopra et al.; Neculoiu et al., 2016; Chen et al., 2020) to train
the perturbations so that the difference between the clean and suspicious models is maximized. Our
intuition is that a backdoor trigger usually has a fixed pattern and it can generate strong responses at
certain neurons in the model, leading to misclassifications of images of whatever classes to the tar-
get class once the trigger is presented. The Contrastive loss will guide the optimization to adapt the
perturbations to match the trigger, if the model is backdoored, because only the trigger can produce
such strong responses. If the suspicious model is clean, only random noise or a blank image trigger
can be reconstructed, and the difference between the outputs of the two models is small.

To evaluate our method, we tested it on three datasets, with three models and two types of backdoor
attacks. We compared the results with three well-known reverse engineering trigger algorithms. The
experimental results showed that our method efficiently mitigated backdoors in federated learning
where popular reverse engineering methods failed, achieving fast and effective protection against
backdoor attacks. This is particularly important for federated learning, since the mitigation scheme
must be applied in every round of model aggregation. As the number of classes and model com-
plexity increase, the advantages of our method over other competing algorithms grow accordingly,
because we do not iterate each class. Our main contributions are:

• We propose a novel method adopting contrastive loss to efficiently detect and mitigate
backdoor in federated learning without inspecting local model updates or accessing local
training data.

• Our method does not iterate through each class in the dataset to generate the trigger, nor
does it require complex internal neuron analysis, heavy computational resources, or a huge
amount of data resources.

• Our method can be directly applied to remove backdoors without affecting the aggregation
schemes used in federated learning. After the backdoor is removed, the resulting models
maintain high accuracies.
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Figure 1: The overview of the proposed method (left) and the backdoor detection process (right).
Left: Mc and Ms represent the clean and suspicious models, respectively, while x and x′ represent
the clean and combined images. The combined image is obtained by merging the generated trigger
image with the clean image. We create positive feature representation pairs Mc(x

′) and Ms(x), as
well as negative pairs Mc(x

′) and Ms(x
′). During training, the contrastive loss is used to guide

the trigger image generation process, so that the positive pairs are brought closer together in the
feature space while the negative pairs are pushed further apart. Right: we compute two metrics:
MSE = E x,x′ [||Ms(x

′)−Ms(x)||22] and REASR (reverse engineered attack success rate), which
is calculated by using Ms to classify a batch of combined images. If both metrics are above pre-
defined thresholds, Ms is determined as a backdoor model (See Section. 2.5).

2 METHODOLOGY

2.1 THREAT MODEL

We assume that there exist one or multiple attackers in a federated learning network who inject
a backdoor during local training and upload its weight updates to poison the global model through
FedAVG aggregation. Backdoor detection can be carried out either by the server or by local users. In
either case, the server or the local users have a clean historical model with reasonable performance.
This clean model could be a previously verified old version of the global model, or alternatively, a
pre-trained model from a trustworthy party such as the Pytorch library. This clean model is utilized
to establish the contrastive loss. The server or the local users have a very small set of clean data to
sanity-check the model in hand. The sanity-check dataset is used for basic tests to quickly validate
that the performance of the model is acceptable. These assumptions are appropriate and reasonable
due to the fact that organizations in Federated Learning are typically cooperative and often possess
a pre-trained or historical global model with satisfactory performance for specific tasks.

2.2 OVERALL FRAMEWORK

We introduce a novel method to reverse engineer the trigger and utilize it to remove the backdoor
knowledge from the global model by patching the model with the generated trigger. We treat the
trigger construction process as an optimization problem, where the trigger image is updated by
comparing the feature outputs of the clean model and the suspicious model through THE contrastive
loss. Fig. 1 shows the overview of our method, where the clean model (Mc) and suspicious model
(Ms) have the same architecture.

2.3 LOSS FUNCTIONS

Backdoor knowledge is the main difference between the two models. To capture it, we utilize
cosine similarity as our proxy to discover the difference between the two models. The difference is
represented in the image space as trigger or perturbation, which causes the two models to behave
differently. The main loss function comprises three terms. The first term is the adaptive contrastive
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loss,

Lcontrastive = − log
exp (sim (Mc(x

′),Ms(x)))

exp (sim (Ms(x′),Mc(x′)))
, (1)

where x denotes a clean image, x′ represents the combination of the clean image with the generated
trigger image. Mc is the clean model and Ms is the suspicious model. We create positive feature
representation pairs Mc(x

′) and Ms(x), as well as negative pairs Mc(x
′) and Ms(x

′). During
training, the contrastive loss is used to guide the trigger image generation process, so that the positive
pairs are brought closer together in the feature space while the negative pairs are pushed further apart.

To ensure that the generated trigger image does not significantly alter the structure of the original
image, we include the Structural Similarity Index Measure (SSIM) (Wang et al., 2004) as the second
term of our loss function,

LSSIM = −SSIM(x, x′), (2)

SSIM measures the similarity in luminance, contrast, and structure of two images. By incorporating
SSIM, we can ensure that the combined image maintains the structure of the clean image while
still incorporating the backdoor trigger. In order to evade detection and maintain the stealthiness
of the backdoor attack, the attacker typically injects a backdoor trigger into clean images while not
significantly altering the structure of the clean images. Therefore, poisoned images are similar to
clean images in general.

To ensure that the generated trigger image is not too large to significantly alter the structure of the
original image, we include an L1 norm as the third term of our loss function,

L1 = ∥m∥1 , (3)

where m is the mask that is used to combine the trigger and clean images. The L1 norm measures
the absolute summation of each element in a vector. By including this regularization term in our loss
function, we can limit the size of the generated trigger and prevent it from dominating the image.

The final loss function is formulated as a combination of the three components above, each weighted
by a hyperparameter that controls the degree of regularization. Specifically, the final loss function is
given by,

Lfinal = Lcontrastive + αLSSIM + βL1, (4)

where α and β are hyperparameters that control the trade-off between the different terms of the loss
function. By adjusting these hyperparameters, we can fine-tune our method and achieve the best
performance for a given task.

2.4 MOTIVATION OF THE LOSS FUNCTIONS

The overall loss function consists of three components. The contrastive loss, Lcontrastive, captures
the difference in feature space generated by the trigger between the clean model and suspicious
models. The LSSIM loss ensures the trigger image does not significantly change the structure of the
clean image, and the L1 loss restricts the size of the generated trigger. During the reverse engineering
process, the algorithm attempts to search for a unique pattern (trigger) that maximizes the difference
between the negative feature representation pairs and minimizes that between the positive pairs. If
the suspicious model contains a backdoor, the search process can find the trigger, as the true trigger
is static with a fixed pattern and the backdoor planting process results in convolution kernels that are
strong enough to cause misclassification for any images embedded with the trigger. In contrast, if
the suspicious model is backdoor-free, the contrastive loss for any trigger should be small since the
search process won’t be able to find a match among the convolution kernels in the suspicious model.

In this study, we assume that the attacker aims to create a backdoor that is effective and stealthy,
while minimizing the impact of the trigger on the clean images and keeping the size of the trigger
small. The LSSIM loss ensures that the trigger does not significantly alter the structure of the
clean images, while the L1 loss constraint the size of the trigger. In summary, the loss function is
designed to precisely recover a small and stealthy trigger that can be used to remove the backdoor
knowledge from the backdoor model without significant effects on regular tasks, i.e., maintaining
high classification accuracies on clean images.
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2.5 BACKDOOR DETECTION

After generating the trigger, we combine it with a batch of clean images and feed both the clean and
combined images to the suspicious model, as shown in the right part of Fig. 1. We then use two
metrics to detect if the model has been backdoored. Firstly, we calculate the mean squared error
(MSE) between the features outputted by the suspicious model for the clean and combined images.
If the MSE exceeds a certain threshold, it suggests the model has a backdoor, since a backdoored
model will strongly respond to the trigger image. Secondly, we calculate the reversed engineering
attack success rate (REASR) of the model on the combined images. This is achieved by computing
the ratio of the model’s predictions on the combined images to the mode of the predictions. The
intuition is that if a model is backdoored and has a high attack successful rate during training by the
attackers, it will misclassify most of the combined images as the target class, which is the “Mode” of
the predictions. If both MSE and REASR are above the predefined thresholds, we determine the
model as backdoored, and otherwise, we distribute it directly back to the clients. We do not perform
any complex statistical analyses to determine the thresholds, and further details are available in the
implementation section.

2.6 BACKDOOR UNLEARNING

If the suspicious model is identified as a backdoor model, we employ the machine unlearning tech-
nique similar to Neural Cleanse (Wang et al., 2019) to remove the backdoor knowledge through
fine-tuning. In this process, we combine a portion of the clean images from batches of the sanity
dataset with the generated trigger to form a set of poisoned samples. These combined images are
assigned with the correct labels of the original sanity dataset and mixed with clean images. Then
it would be utilized to fine-tune the backdoor model. After fine-tuning, the backdoor model is ex-
pected to maintain its performance on clean data while correctly classifying the poisoned images. In
our experiments, we fine-tune the backdoor model for only one epoch.

2.7 PERFORMANCE METRICS

We adopt five metrics in our experiments to evaluate our method. Accuracy (Acc.), which measures
the model accuracy on clean data. Attack Success Rate (ASR), which measures the model accu-
racy of the combined images successfully misclassified to the target label. The combined images
refer to clean images stamped with the constructed trigger. Speedup, which measures the relative
performance of two methods on reverse engineering the trigger. It is calculated as the ratio of the
performance of the Neural Cleanse over the performance of the utilized method. The higher the
Speedup value, the faster it is in comparison to the baseline method Neural Cleanse. Mean Squared
Error (MSE), which measures the average squared difference/distance between the latent outputs
of combined images and clean images in the model. REASR, which measures the model accuracy
of the combined images misclassified to the target class. The latter two metrics are for the backdoor
detection purpose in our study.

3 EXPERIMENT SETUP

3.1 DATASETS AND MODEL ARCHITECTURES

To evaluate our method, we utilized three image classification datasets: MNIST (Deng, 2012), CI-
FAR10 (Krizhevsky & Hinton, 2009), and GTSRB (Houben et al., 2013). For these datasets, we
utilized a deep convolutional neural network (ConvNet), ResNet18 and ResNet32 (He et al., 2015),
the tasks of each model were for handwritten digits classification, object recognition, and traffic sign
recognition, respectively. The implementation was conducted with NVIDIA GeForce RTX3080.
The dataset and model architecture information are listed in Table 1. The detail is in Section A.

3.2 FEDERATED LEARNING PARAMETERS

Federated learning enables multiple parties to collaboratively train a model without sharing their
private data, thereby preserving data privacy and reducing communication costs (McMahan et al.,
2016). It is also more difficult for attackers to perform a backdoor attack in a federated learning
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Table 1: Specifications of datasets and model structures

Dataset # Training
Samples

Input
Size # Classes Model

Name
Model

Parameters # Local Epochs / # Rounds

MNIST 60,000 1x28x28 10 ConvNet 102,730 3 / 60
CIFAR10 50,000 3x32x32 10 ResNet18 11,173,962 12 / 140 (SBA), 80 (dba)
GTSRB 39,209 3x32x32 43 ResNet32 21,306,731 20 / 60

scenario, as planting or detecting a backdoor is typically more challenging. To speed up the model
training process and ensure high attack success rates, we set the number of total clients to 20 and ran-
domly selected six clients at each round to send their local gradients to the server for model updating
by FedAvg. The server then distributed the updated model back to all clients. The training dataset
was randomly split among all clients to ensure it was independently and identically distributed. The
global model was trained until it reached the desired performance level for a given task. The Adam
optimizer was used for training the model.

3.3 TRIGGER PATTERN DESIGN

Figure 2: Designed triggers (first row) and combined images (second row). The gray scale triggers
in the first three columns are used in the single backdoor attack (SBA), the color triggers in the last
three columns are used in the distributed backdoor attack (DBA), except for MNIST dataset.

We designed three triggers consisting of three different atoms, as shown in Fig. 2. These atoms
include the digit one (“1”) composed of 3 pixels, the plus sign (“+”) composed of 5 pixels, and the
letter (“H”) composed of 7 pixels. A complete trigger contains three atoms and is either a grayscale
or a color image with a possible size of 9, 15, or 21 pixels, respectively. Fig. 2 shows all the triggers.

3.4 ATTACKING SCENARIOS

We implemented two attacking scenarios, including the Single Backdoor Attack (SBA) and the
Distributed Backdoor Attack (DBA). In SBA, one selected participant used a complete grayscale
trigger to plant a backdoor (Fig. 2, left). For example, the attacker combined the trigger with a
batch of clean images and labelled the combined images as a chosen target class. After training,
the attacker uploaded the gradients to the server for model update. The attacker later used the same
complete grayscale trigger to activate the backdoor. In DBA, three selected attackers used an atom
of the complete color trigger (Fig. 2, right) to plant a backdoor. The attackers combined an atom
of the trigger with a batch of clean images and labelled them as a chosen target class. To activate
the backdoor, the attackers used the complete color trigger. In our experiment, we simulated our
backdoor attack based on BadNet (Gu et al., 2017) and the DBA (Xie et al., 2020).

3.5 DETAILED BACKDOOR DETECTION PROCEDURE

We assume that a clean model Mc is available to us, either from a previously verified model or
validated by a third party. To detect if a suspicious model Ms is backdoored, we first randomly
initiated two variables, the mask (m) and the trigger image (T ), multiplied them, and combined the
result with a batch of clean images to form the combined images (x′). The clean images x, together
with x′, were then fed into the model (Fig. 1, left) to generate the trigger image through the proposed
reverse engineering process. Once the trigger image was generated, we used the proposed detection
process (Fig. 1, right) to determine if Ms was backdoored. If it was, we utilized the combined
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images x′ with the correct labels to fine-tune Ms. In our experiment, the number of clean samples
chosen was three times the number of classes in the dataset. See Algorithm at section A.

4 RESULTS AND ANALYSIS

4.1 RESULTS OF BACKDOOR PLANTING

We first planted backdoors in the models we selected for this study. We have three different model
structures and three datasets listed in Table 1, and three trigger image patterns shown in Fig. 2. In
SBA, we used the triggers in the first three columns, while in DBA, we used the triggers in the last
three columns of the figure. We conducted a backdoor planting experiment per dataset, per trigger,
and per attacking scenario, and the average performances are listed in Table 2, where “Acc.” denotes
the accuracy of a model on clean data, and “ASR” represents the attack success rate of a backdoored
model, measuring the ratio of the combined images being classified as the target class. It is observed
that all backdoored models performed well on clean images but also can be activated at very high
ratios.

Table 2: Backdoor planting results

Dataset Base Model Backdoor Model
SBA DBA

Acc. ASR Acc. ASR Acc. ASR
(%) (%) (%) (%) (%) (%)

MNIST 96.51 1.15 98.72 99.66 98.60 100.0
CIFAR10 88.61 2.34 92.46 98.27 91.14 99.98
GTSRB 98.97 0.03 99.85 88.08 99.36 100.0

4.2 REVERSE ENGINEERED TRIGGER IMAGES

Fig. 3 displays samples of the generated trigger images by each method in the experiment. The
intention was to imprint these images onto the clean images, creating combined images that would
effectively trigger the backdoor model with a high attack success rate. The quality of the generated
trigger images directly impacts the effectiveness of the fine-tuning process and ultimately improves
the precision of the metrics used to detect the backdoor in the model. We observe that the generated
trigger images by Neural Cleanse and Tabor have a lot of noise. DeepInspect generated a clear
image showing the pattern in the proper location, whereas our method clearly reconstructed the
atom in SBA. In row 2, which is the DBA setting, the attack is more robust, and all methods started
to have difficulty reconstructing the trigger image. However, our method was still able to use the
generated images to effectively reduce the backdoor knowledge of the backdoor. Table 3 shows the
results after we applied these generated images to fine-tune the backdoored models.

4.3 RESULTS OF BACKDOOR DETECTION

We conducted backdoor detection using the proposed detection procedure as shown in Fig. 1 and
results are shown in Fig. 4, where blue bars represent MSE results and red bars denote REASR
results. For each dataset, both metrics were computed for clean, SBA attacked, and DBA attacked
models, respectively. Each model was attacked three times with the three trigger atoms and averaged
metrics values were computed. It is observed that there are significant margins in both metrics
between clean and backdoored models, regardless the types of the backdoor attack. To further
demonstrate the effectiveness of our method, we applied it to 180 models, half of which were clean,
and half were backdoored, for backdoor detection. We used the same settings as those in Section 2.5
and A.2, and we set the thresholds to 10 and 80 for MSE and REASR, respectively, to identify
backdoored models. Table 4 presents the detection results, and our method only lost one out of the
six cases.
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Table 3: Results of patched models and computational efficiency of different methods

Dataset Method Patched Model Trigger Reverse Engineering
SBA DBA SBA DBA

Acc.(%) ASR(%) Acc.(%) ASR(%) Time(s) Speedup Time(s) Speedup
MNIST NC 98.49 5.90 98.33 88.22 35.96 1.00 35.38 1.00

TABOR 98.48 23.45 98.44 99.99 56.28 0.64 55.47 0.64
DeepInspect 98.54 5.35 98.36 99.15 78.98 0.46 78.56 0.45

Ours 98.40 1.73 97.95 7.41 7.38 4.88 7.63 4.64
CIFAR10 NC 90.18 57.77 87.83 5.32 77.25 1.00 76.62 1.00

TABOR 90.28 21.33 87.36 16.56 213.59 0.36 215.36 0.36
DeepInspect 90.48 0.89 88.48 3.25 141.15 0.55 140.18 0.55

Ours 90.83 0.94 88.18 1.25 27.88 2.77 31.34 2.44
GTSRB NC 99.42 23.50 99.29 42.16 872.22 1.00 880.40 1.00

TABOR 99.30 60.57 99.34 31.86 1501.72 0.58 1522 0.58
DeepInspect 99.42 41.08 99.21 24.63 922.90 0.95 932.29 0.94

Ours 99.45 0.003 99.16 0.31 32.08 27.19 33.08 26.62

(1) (2) (3) (4)Ground Truth

(3) (4)Ground Truth (1) (2)

Figure 3: Reverse engineered trigger im-
ages by (1) Neural Cleanse, (2) Tabor, (3)
DeepInspect, and (4) Ours in SBA setting
(first row) and in DBA setting (second row),
respectively. The atom of the ground truth
trigger image is the plus sign (+).

Figure 4: MSEs and REASRs of clean and backdoored
models.

4.4 RESULTS OF BACKDOOR PATCHING

In our experiment, we patched the backdoored models by fine-tuning them using the generated
trigger image. We compared our method with three reverse engineering trigger algorithms, including
NC (Wang et al., 2019), Tabor (Guo et al., 2019), and DeepInspect (Chen et al., 2019). These
existing methods evaluate each of the classes one at a time, use optimization methods to generate
potential triggers, and utilize the Median Absolute Deviation (MAD) metric to identify the trigger.
We adopted the implementations from the Trojanzoo backdoor library (Pang et al., 2022; 2020a;b)
and used their default settings, except that the number of epochs was set to 500, and the number of
samples was set the same as that for our method for fair comparison. Table 3 shows the experimental
results of the proposed method and three competing algorithms, where all results are the averaged
performances for the three triggers. If we set ASR below 20% after the patching procedure as
a failure case, the three competing methods failed 5 out of 9 cases combined, while our method
succeeded in all three attempts in the SBA attacking scenario. In the DBA attacking scenario, the
three competing methods failed 6 out of 9 cases, while our method succeeded in all three cases.

4.5 COMPUTATIONAL EFFICIENCY

To compare the computational efficiencies of the competing methods, we used the computation
time needed by Neural Cleanse for trigger reverse engineering as the baseline and computed the
“Speedup” of the time by other methods as compared to the baseline. Therefore, Neural Cleanse
has a “Speedup” of 1, and the larger the “Speedup” is, the more efficient the method is. Table 3 lists
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the “Speedup” for each of the competing methods, clearly indicating the efficiency of the proposed
method. The more classes the dataset contains, the more efficient our method is.

5 DISCUSSIONS AND LIMITATIONS

We investigated the impact of trigger size and the number of clients on the performance of our
method and found that, while the proposed method can effectively detect the backdoor if the trigger
size is smaller than 8× 8 pixels, the impact of the number of clients in the federated learning setting
is negligible. In addition, we found that the accuracy of the clean global model could be as low
as 71% to achieve good backdoor detection performance. More details can be found in Section A.
The key innovation of our method is that it does not iterate through each class in the dataset, as in
the case of Neural Cleanse. Instead, it looks at the contrastive loss as a whole to search for triggers
in the backdoored model. This novel method potentially provides two advantages: 1) it is super-
sensitive in the federated learning setting, where traditional methods have failed (Table 3), and 2)
it has the potential to speed up the search process, especially for datasets with a large number of
classes. We have successfully demonstrated the proposed algorithm on several image datasets with
10-43 classes. We believe it can be applied to many other applications with a wide range of classes
and we will evaluate their efficiency in our immediate future work.

6 RELATED WORK

Federated learning. It enables multiple parties to collaboratively train a machine learning model
without sharing their private data with each other or with a central server, thereby preserving data
privacy and reducing communication costs. FedAvg proposed by McMahan et al. (2016), is the
fundamental aggregation algorithm in Federated learning, it reduces the number of communication
rounds required for training, and allows users to train the model locally over multiple iterations. The
existing defensive mechanisms (Pillutla et al., 2019; Fung et al., 2018; Yin et al., 2018; Sun et al.,
2019) in federated learning were developed using the FedAvg scheme as a baseline.

Backdoor attack. It was first introduced by Gu et al. (2017) in centralized learning. An attacker first
poisons a portion of training data by altering one or a group of pixels (“trigger”) in a set of training
images and set their ground truth labels as a chosen target class. They then train the model with
the altered images with clean data to ensure that the backdoored model can maintain its accuracy on
clean images and misclassify any images to the target class if the trigger is presented. Later on, the
backdoor attack (Bagdasaryan et al., 2018; Wang et al., 2020) was extended to federated learning.

Backdoor defense. To defend against the backdoor attack, Wang et al. (2019) proposed the Neural
Cleanse method. It examines each class separately and uses optimization methods to search for
input perturbations that cause misclassifications. The Median Absolute Deviation (MAD) metric is
then employed to identify triggers from the resulted perturbations. Another technique, DeepInspect
(Chen et al., 2019), utilizes a conditional generator to reconstruct triggers for each class and performs
statistical analysis to identify the backdoor. Additionally, TABOR (Guo et al., 2019) was proposed
for trigger reconstruction.

Contrastive learning. It is a self-supervised method that learns the feature representation of the
input data without labeling the dataset. Our work is inspired by the self-supervised contrastive
learning method SimCLR (Chen et al., 2020). SimCLR utilizes positive and negative pairs to advise
the model to learn the feature representation of the dataset. It maximizes the similarity between the
positive pairs and minimizes the similarity between negative pairs.

7 CONCLUSION

This paper proposed an innovative approach to mitigate backdoor attacks in federated learning. Our
method leverages the contrastive loss with a trustworthy historical model to reverse engineer the
trigger. Experimental results showed that the proposed method can effectively mitigate backdoors as
compared to Neural Cleanse, TABOR, and DeepInspect, which were very successful in centralized
learning settings but faced tremendous challenges in federated learning. Our results indicate that
maintaining a clean global model at hand could be a valuable practice.
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A APPENDIX

A.1 DATASET, MODEL ARCHITECTURE AND EXPERIMENT SETUP

The MNIST dataset contains 60,000 black and white handwritten digit images for training and
10,000 images for testing, each image has a size of 28x28x1 belong to one of the 10 classes. The
CIFAR10 dataset contains 50,000 color training images and 10,000 testing images, each with a di-
mension of 32x32x3. There are 10 classes in this dataset. The German Traffic Sign Recognition
Benchmark (GTSRB) dataset consists of 39,209 training images and 12,569 test images, with each
image having a size of 32x32x3. The total number of classes for this dataset is 43. The deep convo-
lutional neural network (ConvNet), ResNet18 and ResNet32 (He et al., 2015) models were utilized.
The ConvNet network is comprised of four convolutional layers and a fully connected layer. Each
convolution layer follows a LeakyReLu activation function and a dropout layer. For the ResNet
models, we modified the last output layer to match the number of classes in the datasets.

A.2 HYPERPARAMETER OPTIMIZATION

Based on trial and error, we used different values for the hyperparameters α and β in our experi-
ments. Specifically, for MNIST with SBA and DBA setting, we set α to 0.5 and β to 0.01 for the
loss function. For CIFAR10, we used 0.001 and 0.0005 for α and β, respectively, and for GTSRB,
we set them to 0.001 and 0.005. During the reverse engineering trigger training, we fixed the num-
ber of epochs to 500 and used 30, 30, and 129 clean images for MNIST, CIFAR10, and GTSRB,
respectively. For the unlearning or fine-tuning process, we set the number of iterations to 1. In our
experiments, we used the default hyperparameter settings for the competing methods as specified
in the Trojanzoo library (Pang et al., 2022; 2020a;b), but the number of epochs and the number of
images followed our settings.

A.3 BACKDOOR TRIGGER REVERSE ENGINEERING ALGORITHM

Algorithm 1 Backdoor Trigger Reverse Engineering Algorithm
Input: clean images x, combined images x′, pre-trained clean model Mc, suspicious model Ms, a
batch of clean data B from sanity dataset D
Output: Mask m, Trigger T

1: Initialize m and T with random noise.
2: Sample a subset of clean images x ⊆ B.
3: while epoch ≤ num epochs do
4: x′ ← m⊕ T + (1−m)⊕ x .
5: Lcontrastive ← −log exp(sim(Mc(x

′),Ms(x)))
exp(sim(Mc(x′),Ms(x′))) .

6: Lssim ← −SSIM(x, x′).
7: L1 ← ∥m∥1.
8: Lfinal ← Lcontrastive + Lssim + L1.
9: Update m, T to minimize Lfinal.

10: end while
11: return m, T

A.4 IMPACT OF TRIGGER SIZE, NUMBER OF CLIENTS AND ACCURACY OF BASE MODEL

We utilized the Single Backdoor Attack (SBA) with the CIFAR-10 dataset in the context of feder-
ated learning to investigate the impacts of trigger size, the number of clients, and the selection of
historical clean model on the performance of the proposed method.

Impact of trigger size. To investigate the impact of trigger size, we designed a white square trigger
located at the bottom right of the image. The trigger sizes are 2x2 (0.3% of the image area), 4x4
(1.6%), 8x8 (6%), and 12x12 (14%), as shown in Fig.5. Figs.6 a) and b) showcase that our method
worked well for small trigger sizes (2x2 and 4x4), where the backdoors were successfully mitigated
(ASRs close to 0 after fine-tuning), while accuracies for clean images remained high. The reason is
that there is one L1 norm component in the loss function that restricts the trigger size to be small.
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We assume the attacker uses small triggers to make the attack stealthy, which is consistent with
these assumptions by defense mechanisms like Neural Cleanse. The proposed method does not
target stealthy attacks with large triggers, such as invisible attack (Li et al., 2021). Note that in this
experiment, we used squared triggers. The proposed method also worked well for slightly larger
triggers (21 pixels) of different shapes, as shown in Fig. 2.

4x42x2 8x8 12x12

Figure 5: Designed white square triggers in various sizes

(a) Before finetuning (b) After finetuning

Figure 6: Impacts (ASR and Accuracy) of trigger size on the performance of the proposed method.

Impact of the number of clients in federated learning. To evaluate the impact of the number of
clients on the performance of our method, we used a trigger set of ‘1’. In the scenario with 50 clients
in federated learning, the attack started at round 56 of weight updating, with a total of 150 rounds
and an active client count of 15 per round. In the case of 100 clients, the attack started at round 93
out of a total of 250 rounds, with 30 active clients in each round. Fig. 7 illustrates that our method
is robust to the number of clients in federated learning. After finetuning, the Attack Success Rate
(ASR) decreases to a mere two percent, while accuracy remains consistently high.

(a) Before finetuning (b) After finetuning

Figure 7: Impacts (ASR and Accuracy) of the number of clients on the performance of the proposed
method.
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Impact of Accuracy of the trustworthy historical base model. For this examination, we specifi-
cally chose clean historical global models from our experiment with accuracies of 63.76%, 71.31%,
74.52%, 80.06%, and 88.62%. We tested these models with our method on the backdoored global
model, which had an accuracy of 92.41% and an ASR of 97.58%. Fig. 8 demonstrates that our
method continues to be effective even when the model’s performance is low, indicating the impor-
tance of maintaining a historical clean model.

(a) Before finetuning (b) After finetuning

Figure 8: Impacts (ASR and Accuracy) of accuracies of historical clean models on the performance
of the proposed method.

A.5 RESULTS OF BACKDOOR MODEL DETECTION

Table 4: Results of backdoor model detection on a selection of models with the threshold values set
at an MSE of 10 and a REASR of 80. We observe that our method excels in detecting malicious
models across most cases, with the exception of the CIFAR-10 dataset under the DBA attack, where
Neural Cleanse achieved the best result.

Dataset Method Detection Rate (%)
SBA DBA

MNIST NC 87 90
TABOR 87 94

DeepInspect 100 90
Ours 100 100

CIFAR10 NC 47 94
TABOR 80 80

DeepInspect 70 77
Ours 97 87

GTSRB NC 60 50
TABOR 60 47

DeepInspect 47 50
Ours 100 100
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