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Reproducibility Summary1

Scope of Reproducibility2

The authors propose a novel method for Deep Fair Clustering (DFC), combining existing frameworks for fair clus-3

tering—which typically have difficulty with high-dimensional large-scale data—with previous work on deep cluster-4

ing—which typically has difficulty with fairness. Our reproducibility work targets the central claim that DFC learns fair5

representations with minimal utility loss and obtains superior results on both fairness and accuracy.6

Methodology7

We used the code repository made available by the authors and extended it to include support for pretraining, different8

datasets and comparative methods. We compare the DFC method against Deep Embedded Clustering (DEC) (11), which9

implements a comparable deep clustering method without fairness constraints, on the same four datasets (obtained from10

MNIST (7), USPS (6), MTFL (13) and Office-31 (9)) and fairness metrics that were used in the paper. We select one11

dataset (MNIST-UPS) for additional experiments aimed at validating the contribution of individual components of12

the DFC towards fairness. All experiments were run on a GeForce 1080Ti GPU. Hyperparameter optimization was13

performed using the Weights & Biases Sweeps feature (1).14

Results15

On the selected dataset, we reproduced accuracy to within 2% of reported value, normalized mutual information (NMI)16

and entropy to within 1%, and balance to within 5%. Our DFC method outperformed our DEC method on all accuracy17

and fairness metrics. We reproduced the accuracy of the non-digit datasets to within 1% (Office-31) and 7% (MTFL)18

but failed to obtain similar results for balance.19

What was easy20

We found no major challenges reproducing the provided code in as far as we used the author’s provided pretrained21

models and the selected dataset (MNIST-USPS) used in the code.22

What was difficult23

Extending the code for the non-digit datasets was a challenge, as some hyperparameter settings and architecture details24

were difficult to infer from the paper. We found that performance was sensitive to small changes in the implementation25

and training of the encoders. Consequently, we ran into time and resource constraints when trying to reproduce all26

results for these datasets, due to the large number of models that required pretraining.27

Communication with original authors28

We had helpful one-off contact with the authors to verify hyperparameter settings.29

Submitted to ML Reproducibility Challenge 2020. Do not distribute.



1 Introduction30

Machine learning (ML) is increasingly used in high-stake decision-making where the data contains sensitive attributes,31

such as gender, race or socioeconomic background. Examples include college admission, loan approval and bail/parole32

judgements. Such ML algorithms are vulnerable to bias and unfairness (4), and extensive literature has brought attention33

to the various challenges and inherent trade-offs in this field (5)(14).34

Clustering is an important aspect of many such ML applications. To illustrate what it might mean for a clustering35

assignment to be unfair, we can consider its use in feature engineering, e.g., to label data in an unsupervised setting to36

increase its expressive power (2). In some cases, if the inherent structure of the training data differs between subgroups,37

standard clustering likely leads to partition assignments that correlate significantly with sensitive attributes. Often, these38

are controversial correlations that do not reflect true causal mechanisms. This could facilitate subsequent discrimination39

indirectly based on sensitive attributes, either knowingly or unknowingly.40

In short, fair clustering is an ongoing, important, and complex field that still faces many challenges. The paper ’Deep41

Fair Clustering for Visual Learning’ addresses various such challenges. Moreover, their method for fair clustering42

outperforms competitive fair clustering methods as well as competitive deep clustering methods. This shows that, if43

theoretically sound, their method is able to impose fairness constraints without significantly compromising clustering44

accuracy.45

2 Scope of reproducibility46

The paper aims to tackle the problem of fair clustering of high-dimensional data by introducing a Deep Fair Clustering47

(DFC) method suitable for image data. Their notion of fairness extends the demographic equipartition criterion48

and requires that the clustering assignment is independent of the protected subgroup membership. To achieve this49

independence, they leverage the feature representation encoding from deep methods and train a model to filter out50

sensitive attributes from the representations. Simultaneously, DFC enforces fairness constraints and optimizes clustering51

performance, notably with a minimal trade-off between the two. The central claims are summed up as follows:52

• The first claim states that DFC achieves fair clustering of large-scale and high-dimensional visual data by53

learning fair representations of the input. To support this claim, we train DFC and DEC on the MNIST-USPS54

dataset and compare the learned representations in figure 3. The first row of table 1 shows the corresponding55

accuracy and fairness metrics of the final performance of both methods.56

• The second claim regards the validity and effectiveness of the proposed minimax optimization formulation. In57

particular, we support this claim by recognizing DEC as DFC without the minimax optimization formulation58

(in particular, without the fairness components 4, 5 and the separate clustering of subgroups, see figure 1).59

To our best knowledge, this corresponds to the implementations in (11) and (8). The claim is supported by60

comparing DFC performance with DEC performance on accuracy and fairness metrics in table 1. In addition,61

figure 4 shows the performance of the discriminator during DFC, which provides some insight in the extend to62

which DFC achieves ’masked’ representations during trainig.63

• The third claim states that DFC shows superior performance on four real-world visual datasets (see 3.1). We64

aim to show this by running experiments on the same four datasets with both DEC and DFC and compare65

performance in table 1.66

3 Methodology67

Each claim requires us to implement the DFC method and the DEC method and train it on the MNIST-USPS dataset.68

From here, we address each claim separately in three sets of experiments. For the first, we visualize the representations69

using dimensionality reduction methods and compare the obtained clusters. For the second, we compare the DEC and70

DFC on accuracy, NMI, Balance and Entropy metrics. Moreover, we monitor discriminator accuracy for DFC. For the71

third, we run our experiments with the three other datasets that are used in the paper and compare results on the above72

mentioned four metrics.73

Before discussing the details, we briefly explain the DFC method as we implemented it based on the authors’ description.74

The method has several components that are trained simultaneously in a minimax optimization scheme. An overview of75

the method is shown in figure 1. The task is to cluster datapoints X with sensitive categorical attribute G belonging to76

protected subgroup G(X) ∈ [M ] into K clusters. A feature encoder F(X) transforms the data X into representations77

Z. As the figure shows, each subgroup is clustered separately and requires a separate, pretrained encoder. The clustering78

assignment P = A(Z), taken from the Deep Embedded Clustering method (DEC), creates a soft assignment P79
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Figure 1: Overview of Deep Fair Clustering. The orange and green colors represent the protected subgroups.

reflecting the probability of assigning datapoints to each cluster, once for each protected subgroup, and once for the full80

dataset.81

A discriminator D aims to reconstruct the protected subgroup membership based on the soft assignment P82

Encoder Central to the DFC approach is the encoding of fair representations. Transforming the input data using83

feature encoding is important, in the first place, because (deep) clustering at pixel level does not often yield good results.84

In DFC, the encoded representations are at the same time an important step towards fairness. The authors note that85

"fair representations are achieved when the discriminator cannot distinguish between representations from different86

protected subgroups." To this end, the encoder is finetuned simultaneously with the rest of the clustering algorithm.87

Discriminator A discriminator is constructed to monitor and guide the fairness of representations Z.88

Deep Embedded Clustering For the clustering assignment, the authors closely follow the DEC method. As in (11),89

the cluster assignment is learned using Stochastic Gradient Descent (SGD), repeating the following two processes:90

1. A soft assignment of the datapoints to cluster centroids, using the Student’s t-distribution as a kernel to measure91

the similarity between embedded point z and centroid ck:92

pk =
(1 + ||z − ck||2/α)−

α+1
2∑

k′(1 + ||z − ck′ ||2/α)−α+1
2

, (1)

where pk is the probability of a datapoint belonging to cluster center ck and α the degrees of freedom of the93

Student’s t-distribution.94

2. The obtained distribution P of soft assignments is matched to an auxiliary distribution Q:95

qk =
(pk)

2/
∑

x∈Xg pk∑
k′∈[K]((pk′)2/

∑
x∈Xg pk′)

, (2)

which is calculated for each protected subgroup separately. Finally, the clustering is optimized by minimizing96

the KL-divergence loss:97

Lc := KL(P ||Q) =
∑

g∈[M ]

∑
x∈Xg

∑
k∈[K]

pk log
pk
qk
. (3)

This ensures that the soft assignment matches the target distribution as closely as possible.98

Deep Fair Clustering DFC implements DEC as above, but adds two loss functions to impose the fairness constraint99

while promoting cluster utility. To encourage fair partitions according to the demographic parity, the authors introduce100

a fairness adversarial loss:101

Lf := L(D ◦ A ◦ F(X), G), (4)
Where L is the cross-entropy loss function and ◦ denotes function composition, in particular the result of the encoder102

F(X), the clustering assignment A and the discriminator D applied to the data in sequence. The discriminator D is103
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implemented as a Generative Adversarial Network (GAN) (see figure 1) with the exact inverse architecture of the used104

encoder. It monitors how well the DFC is able to reconstruct the protected subgroup based on the predicted cluster105

probabilities of a datapoint. With respect to the fairness adversarial loss, D is maximized with the probability of106

assigning the correct membership label for each sample. Simultaneously, clustering A and representations F(X) are107

trained to maximally confuse D.108

To increase the clustering performance under the fairness constraint, DFC adds a structure preservation loss:109

Ls =
∑

g∈[M ]

∣∣∣∣∣∣P̂gP̂
>
g − PgP

>
g

∣∣∣∣∣∣2, (5)

where P̂g is the soft assignment for a datapoint in protected subgroup g, and Pg is the result for subgroup g when the110

clustering was performed over the complete dataset. In other words, based on theoretical considerations as described in111

the original paper (8), DFC expects local and global subgroup clustering partition to be similar.112

The final learning objective is as follows:113

max
F,A

αfLf − αsLs − Lc (6)

min
D

αfLf (7)

Note how the fairness adversarial loss (4) is simultaneously maximized w.r.t. F and A (6) to minimize performance of114

the discriminator as a result of clustering, and minimized w.r.t D (7) to optimize its parameters and obtain a saddle-point115

solution. The values for α are 1 by default. Following the paper, for the office-31 dataset αs is recalculated as116

(512/128)2 · (31/10) to adjust for difference in batch size and cluster number.117

3.1 Datasets118

We perform our experiments on the same four datasets as in the original paper. To test claim 1 and 2, we restrict119

ourselves to the MNIST-USPS dataset, obtained from combining the MNIST dataset (7) and the USPS dataset (6).120

From both, only the train images are taken, 60,000 and 7,261 respectively. The Color Reverse MNIST is obtained by121

reversing the black and white pixels in the MNIST dataset and combining the normal and the reversed version. The122

The Multi-task Facial Landamark (MTFL) dataset (13) consist of facial recognition pictures, from which 1000 images123

with and 1000 without glasses are sampled randomly. Finally, the The Office-31 dataset (9) consists of images from 31124

different categories collected from two distinct domains: Amazon and Webcam. For important statistics, see figure 2.

Figure 2: Characteristics of each of the four datasets, taken from the original paper (8).

125

3.1.1 Hyperparameters126

The DFC model is dependent on 5 pretrained models; a VAE and a DEC for each subgroup and a VAE for the whole127

dataset. Since the optimal hyperparameters of the DFC are likely to depend on the hyperparameter choices of the128

pretrained models, a complete search would be expensive. To make hyperparameter search manageable we make the129

assumption that the optimal hyperparameters are independent of the input data and the pretrained models it uses. This130

assumption enables to search the hyperparameter space of the DFC, DEC and VAE independently. Note that the VAE131

only needs to be pretrained and optimized for the MNIST-USPS and Reverse MNIST datasets, the other datasets use a132

pretrained ResNET50 encoder.133

The hyperparameter search for the DEC and the VAE focused on finding the best combination of the learning rate,134

batch size and the number of epochs. These searches were performed with Bayesian optimization and contained135

respectively 32 and 18 experiments on MNIST. The VAE Bayesian search was set to maximize the accuracy of the136

KMeans clustering afterwards, which is also used in the training of the DFC as initial centroids. The goal of the DEC137

was to optimize its clustering accuracy.138
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The DEC and VAE were pretrained using the optimal parameters on MNIST and USPS to facilitate the hyperparameter139

search of the DFC. The focus was on finding the optimal learning rate, batch size, and number of epochs. A random140

grid search was used because it is not clear which metric should be optimized. The best performing set of parameters141

was chosen based on the Accuracy, NMI, entropy and balance.142

The range of the hyperparameter space was inspired by hyperparameters mentioned by the authors in the paper, email143

contact and a DEC MNIST example1.144

The hyperparameters of the KMeans clustering were set to the same values the authors used. TSNE hyperparameters145

were set to defaults as can be seen in Appendix C, which contains a complete list of all hyperparameters and overviews146

of the hyperparameter searches.147

4 Experimental setup and implementation148

All experiments were run on cuda enabled computers with seeds set to 2019 before training each model, unless otherwise149

specified. Our code containing the experiments is available at our GitHub repo 2. Our code is strongly based on the150

implementation provided by the authors 3. We have found that their code is a clear reflection of the paper. However, it151

was necessary to extend their implementation to provide support for pretraining, other datasets and other methods.152

The DFC architectures described in the paper relies on several models joint together. Roughly, it includes an encoder, a153

clustering assignment and a discriminator. Some experiments require slightly different model combinations, which is154

always made explicit.155

4.1 Pretrained Encoder156

The type of encoder can be chosen independently from the DFC. The authors use different architectures based on the157

complexity of the dataset; for the digit based datasets a standard Variational Autoencoder is used, for the other datasets158

a pretrained ResNet50.159

The standard VAE is based on four blocks of a 2D convolutional layer, batch normalization and a ReLU activation layer.160

This is scaled down in 2 steps with fully connected layers to the 64 dimensional hidden space. Since the decoder was161

missing from the author’s implementation, some guesses had to be made about the exact implementation, we tried to162

follow conventions as much as possible. A standard KL-Divergence and MSE loss were used for pretraining. The exact163

architecture can be found in Appendix A.164

For MTFL and Office-31, considering their complex and high resolution images, the authors use ImageNet-pretrained165

ResNet50 (3). The authors did not mention how the ResNet is finetuned exactly. Due to the relatively small size of the166

datasets used for the experiments, it was decided to only finetune the last layer during training the DFC.167

4.2 Pretrained DEC168

The structural preservation loss, discussed before 5, is calculated using two separate DEC models. These models could169

be seen as the golden standard for each subgroup. Since they are equally weighted, this ensures that the protected170

subgroup is underrepresented in the loss. These DECs also require an encoder to transform the images. The same171

encoder training methods and architectures are used for all encoders. The DECs were implemented as a stripped down172

DFC with three modifications. The fairness and the structural preservation loss were removed. Lastly, the clustering loss173

is calculated over the entire batch at once, instead of individually per subgroup. This results in an exact implementation174

of the original DEC paper (11).175

4.3 Centroid Initialization176

The deep clustering methods DEC and DFC both benefit from properly initializing the Student’s t-distribution cluster177

definitions. This is done with a simple KMeans clustering approach. KMeans is trained on the entire dataset that is used178

by the clustering method afterwards. The final centroids learned are copied to be the initial cluster definitions.179

1https://github.com/vlukiyanov/pt-dec/blob/master/examples/mnist/mnist.py
2https://github.com/Joppewouts/Reproducing-Deep-Fair-Clustering
3https://github.com/brandeis-machine-learning/DeepFairClustering
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4.4 DFC180

The DFC consists of a pretrained encoder, a discriminator module and cluster assignment module. The weights of these181

modules are updated with the Adam optimizer, using an inverse exponential learning rate scheduler. The discriminator182

has a standard architecture, details are attached in Appendix B. As described by the authors, the learning rate of the183

discriminator uses a multiplication factor of 10.184

4.4.1 Clustering Assignment185

The fairness constraints and learning objectives of DFC rely on clustering being performed on the subgroups separately.186

Since these subgroups are homogeneous with respect to sensitive attributes, they can be clustered irrespective of187

fairness-considerations. Therefore, the same model can be used as in the Deep Embedding clustering. Accordingly, the188

authors use the DEC clustering for the subgroups separately, as described in section 3. For full details see also (11).189

4.5 Competitive methods190

Due to time constraints, we chose to only implement one competitive method. DEC was a compelling candidate because191

it allows to compare fair deep clustering with ordinary deep clustering.192

4.6 Metrics193

Four metrics are used to evaluate performance; accuracy, normalized mutual information, balance and entropy. These194

are the same metrics as in the original paper, which includes detailed explanations. Furthermore, for evaluating the195

fairness two more metrics are implemented. The accuracy of the discriminator is computed to function as a proxy for the196

fairness of the cluster assignments. The probabilities outputted by the discriminator are converted to subgroup classes by197

thresholding at 0.5. An accuracy of 50% indicates fully masked representations, and therefore fair cluster assignments.198

Secondly, TSNE (10) is implemented to visualize the latent space learned by the encoder. In an ideal fair representation,199

the representation of the two subgroups should be indistinguishable. For example, the digit 5 of MNIST and the digit 5200

of USPS both encoded as the character ’5’ would be ideal, since the representations are indistinguishable. The goal of a201

TSNE mapping is that distant samples in the high dimensional space are also far away from each other in the lower202

dimension, and vice versa. Therefore, in a visualization of a fair latent space, it should be hard to distinguish clusters of203

protected subgroups. All results are calculated over 5 different seeds: 0, 1, 42, 2019 and 2020. However, it was not204

possible to provide the variance for the results that require a ResNet encoder due to time and resource limitations.205

4.6.1 Computational requirements206

We trained all models on an 8.25MB GeForce 1080Ti GPU. Pretraining VAE encoders for each dataset took (5×)±207

45min, pretraining the DEC models (7×)± 1hr. The sweep for optimal parameter search took (20×) 1hr and running208

the DFC and DEC models for all four datasets on 5 random seeds took (8×)± 1hr GPU time. The total experiments209

required a total of ±40hr GPU time.210

5 Results211

Our results support the first claim that DFC learns fair representations that do not cause much loss in utility and the212

second claim that the minimax optimization formulation contributes to clustering that is both fair and accurate. We213

reproduced accuracy on the MNIST-USPS dataset to within 2% of reported value, normalized mutual information214

(NMI) and Entropy to within 1%, and balance to within 5%. Our DFC method outperformed our DEC method on215

all accuracy and fairness metrics. We reproduced the accuracy of the Office-31 datasets to within 1% and the MTFL216

dataset to within 7%, but failed to obtain similarly good results for the fairness metrics.217

5.1 Claim 1: Learning fair representations for the MNIST-USPS dataset218

Figure 3 shows the learned representation of the DFC method (top) and the DEC method (bottom). Protected subgroup219

membership is indicated by color for MNIST (red) and USPS (blue). Monitoring the DFC discriminator performance220

shows that the accuracy for recovering the protected subgroup drops from 60% at the first 1000 runs to 50% after 2000221

iterations. The corresponding accuracy and fairness metrics are shown in table 1. We obtain an accuracy within 2% of222

the accuracy reported in the paper. NMI and Entropy scores fell within 1% of the original findings, and balance was223

5.5% lower in our experiments.224
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Step = 0 Step = 1000 Step = 5000 Step = 10000 End of training

Figure 3: TSNE visualizations of the latent space learned by the encoder on MNIST-USPS with the final models. The
rows respectively show the representations for the DFC and for the DEC. The DFC learns representations of the images
which results nicely in 10 clusters in the visualized space. The DEC learns 9 distinct representation for MNIST digits
and does not seem to separate USPS digits at all.

5.2 Claim 2: Validity of minimax optimization formalization225

Figure 4: DFC Discriminator accuracy over training steps.
An accuracy of 0.5 indicates that representations cannot be
discriminated for subgroup membership.

The first two rows of table 1 show performance on all226

four metrics for the DFC and DEC methods. Results227

indicate that DFC outperforms DEC both in accuracy228

and in fairness methods. Moreover, the table shows that229

our implementation of the DEC method achieves a 17%230

higher accuracy and performs better than the original231

implementation of the DEC on all other metrics except232

balance.233

To further investigate how subcomponents of DFC con-234

tribute towards performance and fairness, we plot the235

decoder accuracy in figure 4. Interestingly, the plot shows236

that DFC initially achieves perfectly masked representa-237

tion up to around 8.5k training steps, where F(X) and238

A no longer succeed in fully confusing D, presumably239

in favour of cluster favourable representations. This in-240

dicates that some trade-off is still present.241

5.3 Claim 3: Different datasets242

The results for all datasets are can be found in table 1. Our implementation of DFC outperformed DEC on the three243

other datasets and showed similar accuracy as reported in the original paper. Results for entropy were also consistently244

higher than the DEC implementations and similar to the entropy reported in the original paper. The balance, however,245

was much lower than in the original paper, and did not differ significantly from the DEC results.246

6 Discussion247

For the MNIST-USPS digit datasets, the results indicate that the method is able to learn fair representations and clusters.248

The entropy results indicate equal fair partitions, the TSNE visualizations show good clusters and the discriminator is249

not able to distinguish between subgroups in the cluster assignments.250

We were partly unable to reproduce its fairness performance on the three other datasets but can think of various251

limitations of our approach that might provide an explanation for this. First, we put notable effort into adjusting252

and training pretrained models for the MNIST-USPS experiments, and performed a hyperparameter search to find253
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Dataset Method Acc NMI Balance Entropy

MNIST-USPS ou
rs DFC 0.81 (0.012) 0.80 (0.015) 0.012 (0.001) 2.292 / 2.299 (0.004 / 0.001)

DEC 0.76 (0.004) 0.73 (0.003) 0.000 (0.000) 2.166 / 2.278 (0.007 / 0.002)

or
ig

. DFC 0.83 0.79 0.067 2.301 / 2.265
DEC 0.59 0.69 0.000 2.082 / 1.735

Reverse MNIST ou
rs DFC 0.39 (0.027) 0.37 (0.038) 0.007 (0.001) 2.283 / 2.293 (0.009 / 0.002)

DEC 0.32 (0.010) 0.32 (0.018) 0.000 (0.000) 1.395 / 1.939 (0.118 / 0.055)
or

ig
. DFC 0.58 0.68 0.763 2.294 / 2.301

DEC 0.40 0.48 0.000 1.774 / 1.384

MTFL ou
rs DFC 0.79 0.27 0.001 0.655 / 0.693

DEC 0.77 0.23 0.001 0.305 / 0.693

or
ig

. DFC 0.72 0.19 0.986 0.693 / 0.693
DEC 0.52 0.03 0.711 0.660 / 0.576

Office 31 ou
rs DFC 0.68 0.72 0.000 2.689 / 3.393

DEC 0.59 0.65 0.000 2.300 / 3.079

or
ig

. DFC 0.69 0.72 0.117 3.422 / 3.403
DEC 0.55 0.60 0.000 3.063 / 2.937

Table 1: Cluster performance and fairness results compared to the original paper with the variance over 5 seeds when
applicable.

optimal settings. Due to time and resource constraints, we were not able to repeat this process for all datasets, which254

may have led to different results. Secondly, our use of the ResNet50 encoder differed slightly from that in the paper.255

Correspondence with the authors had confirmed that their implementation finetuned all parameters of ResNet50.256

However, for us GPU memory constraints made it impossible to store all gradients that would be required. Therefore,257

we resolved to only finetune the final layer, based on transfer learning literature (12) and the relatively small sizes of the258

datasets. This could partially explain the difference in results.259

However, evaluating our full results, an additional question about the added fairness constraints and the experiment260

setup of this method arose. In the case of MNIST-USPS, optimal clustering solutions for the datasets closely match261

optimal fairness according to the constraints. Since the digit datasets are quite nicely balanced in the sense that they262

have similar partitions across subgroups, the equal partition definition of fairness is in line with the optimal solution,263

and we suspect that the fairness constraints here do not pose as much of a challenge as they might in more imbalanced264

datasets. For this reason, we were particularly interested in the results for the non-digit datasets. Further research might265

be needed to investigate the theoretical framework in the context of datasets with different inherent fairness challenges.266

6.1 What was easy and/or difficult267

Based on the implementation made availabe by the authors it was straightforward to evaluate the method on MNIST-268

USPS, using the provided pretrained encoders, DECs and initial centroids. These results matched the results achieved269

in the original paper. However, essential code and specifications were missing to extend these results to other datasets270

and methods. Examples include the hyperparameters for pretraining all the models, hyperparameters for running on271

other datasets, missing specifications for the Decoder of the VAE and the finetuning of ResNet50. This made it hard to272

replicate the method for other datasets.273

Despite the missing parts, the code was helpful for understanding the method in detail. Most importantly, it cleared up274

the workings of the structural preservation loss which was not immediately clear from the paper.275

The large number of different pretrained models needed was another difficulty. The DFC for MNIST-USPS depends on276

8 other models: 3 encoders, 2 DECs and 3 KMeans cluster initializations. This, in combination with the fact that the277

DFC is sensitive to the quality of the pretrained models, made it hard to debug performance issues that could be caused278

by the model itself or any of the previous methods. In addition, it required excellent experiment management to keep279

track of which models are trained with which pretrained models and parameters.280

6.2 Communication with original authors281

We consulted the authors about hyperparameters for pretraining the encoders and which layers of ResNet50 to finetune.282

We received a helpful response in which our questions were adequately answered.283
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Appendices316

A Variational Autoencoder Architecture317

Layer Name Output Size Settings

conv1 16× 32× 32 filter: 3× 3; stride: 1; padding: 1
bn1 16× 32× 32 features: 16
ReLU 16× 32× 32
conv2 32× 16× 16 filter: 3× 3; stride: 2; padding: 1
bn2 32× 16× 16 features: 32
ReLU 32× 16× 16
conv3 32× 16× 16 filter: 3× 3; stride: 1; padding: 1
bn3 32× 16× 16 features: 32
ReLU 32× 16× 16
conv4 16× 8× 8 filter: 3× 3; stride: 2; padding: 1
bn4 16× 8× 8 features: 16
ReLU 16× 8× 8
Flatten 1024
fc1 512
bn5 1D 512 features: 512
ReLU 512
mu 64
logvar 64

Table 2: Encoder architecture. The convolutional and batchnorm layers are standard 2D versions unless otherwise
indicated. The last two layers are the output layers for respectively the mean and log variance of the distribution. These
both take the last ReLU layer as input. Batch size dimension is omitted.

Layer Name Output Size Layer

fc1 512
ReLU 512
fc2 1024
bn1 1D 1024 features: 1024
ReLU 1024
UnFlatten 16× 8× 8
convT1 32× 16× 16 filter: 3× 3; stride: 2; padding: 1; output padding: 1
bn2 32× 16× 16 features: 32
ReLU 32× 16× 16
convT2 32× 16× 16 filter: 3× 3; stride: 1; padding: 1; output padding: 0
bn3 32× 16× 16 features: 32
ReLU 32× 16× 16
convT3 16× 32× 32 filter: 3× 3; stride: 2; padding: 1; output padding: 1
bn4 16× 32× 32 features: 16
ReLU 16× 32× 32
convT4 1× 32× 32 filter: 3× 3; stride: 1; padding: 1; output padding: 0
bn5 1× 32× 32 features: 1
Sigmoid 1× 32× 32

Table 3: Decoder architecture. Transposed Convolutions, indicated with convT, are used as a inverse of standard
convolutional layers. The architecture was chosen to resemble the inverse of the encoder. The final non linear activation
is a sigmoid since this matches the loss function and original image value range. Batch size dimension is omitted.
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B Discriminator Architecture318

Layer Name Output Size Layer

fc1 32
ReLU 32
Dropout 32 Keep prob: 0.5
fc2 32
ReLU 32
Dropout 32 Keep prob: 0.5
fc3 1
Sigmoid 1

Table 4: Discriminator architecture. The input are cluster assignment per sample of shape B × C, where B is the batch
size and C the number of clusters.

C Hyperparameters319

Model Parameter Range Optimal VAE Optimal ResNet

VAE batch size 64, 128, 256 64 -
learning rate 1e-4, 1e-3, 1e-2, 1e-1 0.001 -
epochs 20, 50, 100, 500 50 -

DEC batch size 64, 128, 256 256 128
iterations 10000− 60000 50000 20000
learning rate 1e-4, 1e-3, 1e-2, 1e-1, 1, 10 0.0001 0.0001

DFC batch size 64, 128, 256 64 128
iterations 20000, 35000, 50000 20000 20000
learning rate 1e-4, 1e-3, 1e-2, 1e-1 0.001 0.001

Table 5: Complete list of hyperparameter search space and the optimal values. The search was performed with bayesian
and a grid search for the datasets that rely on the custom VAE. Because of resource limitations the hyperparameter
search for the more complex datasets that rely on ResNet, the search was manually and less extensive performed.

Figure 5: Overview of the results for the VAE hyperparameter search, evaluated with the clustering performance of a
KMeans module on MNIST-USPS.
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Model Parameter Value

KMeans n init 20
max steps 5000
init k-means++
tol 1e-4
precompute distances auto
algorithm auto

TSNE n components 2
perplexity 30
early exaggeration 12
learning rate 200
n iter 1000
metric euclidean
init random
method barnes hut
angle 0.5

VAE & DEC Adam betas (0.9, 0.999)
Adam weight decay 0

DFC Adam betas (0.9, 0.999)
Adam weight decay 1e-4

Table 6: Complete list of default hyperparameters per model not included in the hyperparameter search.

Figure 6: Overview of the results for the DEC hyperparameter search using the best performing pretrained VAE on
MNIST-USPS.

Figure 7: Overview of the results for the DFC hyperparameter search using the best performing pretrained VAE and
DEC evaluated on MNIST-USPS.
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