

000 STREAMINGTHINKER: LARGE LANGUAGE MODELS 001 002 CAN THINK WHILE READING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Large language models (LLMs) have demonstrated remarkable capabilities in
011 chain of thought (CoT) reasoning. However, the current LLM reasoning paradigm
012 initiates thinking only after the entire input is available, which introduces unnecessary
013 latency and weakens attention to earlier information in dynamic scenarios. In-
014 spired by human cognition of thinking while reading, we first design a *streaming*
015 *thinking* paradigm for LLMs, where reasoning unfolds in the order of input and
016 further adjusts its depth once reading is complete. We instantiate this paradigm
017 with *StreamingThinker*, a framework that enables LLMs to think while reading
018 through the integration of streaming CoT generation, streaming-constraint train-
019 ing, and streaming parallel inference. Specifically, *StreamingThinker* employs
020 streaming reasoning units with quality control for CoT generation, enforces order-
021 preserving reasoning through streaming attention masks and position encoding,
022 and leverages parallel KV caches that decouple input encoding from reasoning
023 generation, thereby ensuring alignment and enabling true concurrency. We eval-
024 uate *StreamingThinker* on the Qwen3 model family across math reasoning, logical
025 reasoning, and context-based QA reasoning tasks. Experimental results show that
026 the *StreamingThinker* preserves performance comparable to batch thinking, while
027 yielding an 80% reduction in token waiting before the onset of reasoning and a
028 more than 60% reduction in time-level latency for producing the final answer,
029 demonstrating the effectiveness of the streaming paradigm for LLM reasoning.

030 031 1 INTRODUCTION

032 Large language models (LLMs) have shown impressive reasoning capabilities, as exemplified by
033 systems like OpenAI-o1 (Jaech et al., 2024) and DeepSeek-R1 (Guo et al., 2025). Yet, most current
034 approaches follow a *batch thinking* paradigm, in which reasoning begins only after the entire input
035 context has been received. This paradigm is problematic in scenarios that demand timely responses
036 or dynamic information processing. First, waiting for the full input before reasoning introduces
037 unnecessary latency. Second, as the input increases, attention to earlier information becomes diluted
038 due to the growing disconnect between reasoning steps and their relevant context (Liu et al., 2024;
039 Levy et al., 2024; Zhang et al., 2025b). This weakens coherence and raises the risk of hallucination.
040 To compensate, LLMs often rely on longer chains of thought (CoT) (Wei et al., 2022; Yeo et al.,
041 2025; Chen et al., 2025b) or repeated self-refinement (Wang et al., 2023; Ling et al., 2023; Madaan
042 et al., 2023) to re-focus, which in turn raise computational costs and inflate token usage.

043 In contrast, human reasoning often unfolds in an immediate and streaming manner. Research in
044 psychology and cognitive science shows that during reading, humans process incoming information
045 instantaneously, including text decoding, meaning construction, background knowledge activation,
046 integrative reasoning, and actively generating inferences to build a coherent understanding (Kintsch,
047 1988; Graesser et al., 1994). This “*thinking while reading*” mechanism not only enhances process-
048 ing efficiency, but also allows reasoning to occur closely alongside the relevant context, minimizing
049 cognitive lag and mitigating the risk of coherence degradation.

050 To narrow the gap between LLM and human reasoning, we propose a *streaming thinking* paradigm
051 for LLMs. Streaming thinking unfolds reasoning steps alongside the input stream, allowing the
052 model to reason while receiving information. Once the full input is available, the model can further

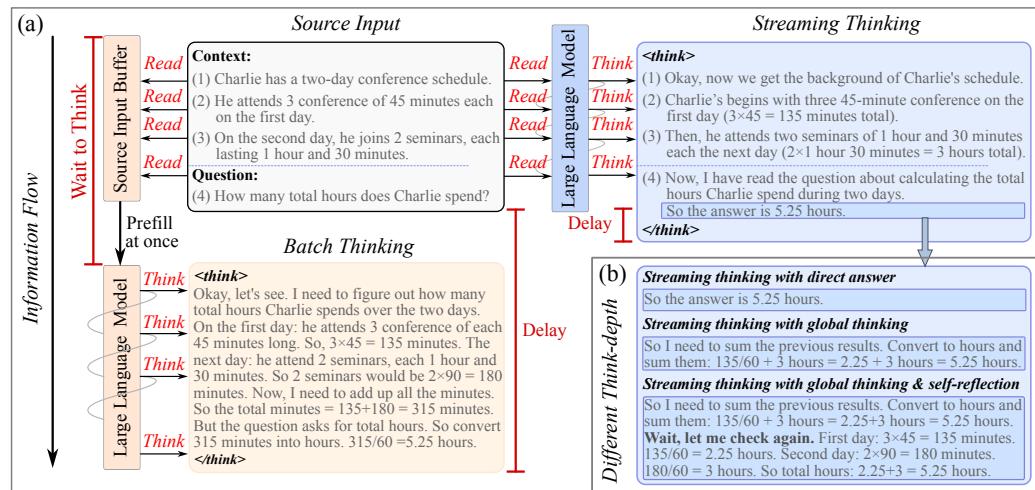


Figure 1: (a) Standard LLM reasoning follows the **batch thinking** paradigm, where reasoning begins only after the entire input is received, leading to high latency and imbalanced attention to the input. The proposed **streaming thinking** paradigm enables LLMs to think while reading during input reception, substantially reducing latency and maintaining attention aligned with the order of input. (b) Streaming thinking paradigm supports multi-depth reasoning, balancing latency with performance.

refine its reasoning and adjust the depth of its analysis to match task complexity.¹ As illustrated in Figure 1, compared with batch thinking, streaming thinking enables much faster responses while preserving consistency with the order of incoming information.

Accordingly, we propose *StreamingThinker*, a framework that instantiates the streaming thinking paradigm. The *StreamingThinker* integrates a streaming CoT generation pipeline with training and inference frameworks that adapt LLMs to the streaming paradigm. The generation pipeline inserts boundary tokens to the inputs to define minimal reasoning units, prompting LLMs to generate serialized reasoning segments for each unit that are reconstructed into incremental content, filtered by quality evaluation, with reasoning depth controlled through token intervention (Wu et al., 2025). To support streaming training, *StreamingThinker* introduces two modifications: a streaming attention mask that restricts each reasoning step to past and current input, and a streaming position encoding that independently indexes input and reasoning tokens from zero to eliminate positional contention, ensuring alignment with associated inputs. For inference, *StreamingThinker* employs parallel KV caches that decouple input encoding from reasoning generation and merge only during cross-attention, enabling true thinking while reading. We conduct a comprehensive evaluation on Qwen3 model family (Yang et al., 2025), covering diverse tasks such as math reasoning, logical reasoning, and context-based QA reasoning. Experimental results indicate that *StreamingThinker* achieves reasoning performance on par with batch thinking, yet reduces token-level waiting before reasoning by 80% and overall answer latency by over 60%.

The contributions of this work are fourfold.

- To the best of our knowledge, we are the first to introduce the streaming thinking paradigm for large language model reasoning. This paradigm mirrors human cognitive processes, enabling LLMs to engage in more timely and continuous thinking in dynamic scenarios.
- We propose a streaming CoT generation pipeline for this paradigm. Drawing on the principles of human streaming thinking, it ensures that the reasoning process remains aligned with the sequential order of the input context.
- We provide an adaptation training and inference framework that implements the streaming thinking paradigm, in which training ensures alignment with sequential inputs and inference enables efficient concurrent reasoning.
- Extensive experiments on diverse reasoning tasks show that our method achieves reasoning performance comparable to batch thinking, while markedly reducing waiting latency.

¹ Appendix A discusses the value and potential applications of human-like streaming thinking in practice.

108
109

2 STREAMING THINKING PARADIGM

110
111 **Paradigm Design** Human streaming cognition involves two complementary processes: rapidly
112 generating and updating representations as input arrives, and subsequently performing global inte-
113 gration to transform local, shallow understanding into holistic, deep comprehension (Kintsch, 1988).114 Inspired by this process, we design a streaming thinking paradigm for LLMs, with an example illus-
115 trated in Figure 1. At each step, the model incrementally processes the incoming sentence, focusing
116 on progressive comprehension such as (1) understanding and summarizing key information, (2) ex-
117 plaining ambiguities and reorganizing semantic relations, (3) extending logical implications, and (4)
118 skipping thinking step when the content is irrelevant to the question. After completing this incremen-
119 tally reading and reasoning, we define multiple reasoning depths as a post-reasoning step, as shown
120 in Figure 1 (b). The model may (1) directly produce an answer, representing the shallowest depth;
121 (2) further integrate global information to achieve deeper comprehension; or (3) perform reflective
122 reasoning on top of global integration to obtain the most reliable reasoning outcome. Within the
123 paradigm, reasoning depth adapts to question complexity and is explicitly controlled by instruction
124 signals that guide the model toward different strategies.125 **Ordering of Context and Question in Streaming Thinking** In the batch thinking paradigm, all
126 input is available simultaneously, so the order of context and question is often overlooked. Yet prior
127 work shows that their relative order can influence reasoning (Chen et al., 2024b; Wei et al., 2024;
128 Xie, 2024), an effect amplified in streaming scenarios. In human reading, two natural input orders
129 commonly occur. In the first, the question is presented before the context, enabling the reader to
130 establish targeted associations as subsequent information is processed. In the second, the context
131 precedes the question, in which case the question remains unavailable during streaming reasoning
132 and the reader must rely solely on the context itself to construct plausible inferences. To approximate
133 these scenarios, our streaming thinking paradigm explicitly distinguishes between the two orders and
134 examines their impact on model reasoning. Some examples are provided in Appendix B.135 **Formal Definition** Streaming thinking is defined as an immediate reasoning process that unfolds
136 alongside the input stream, with reasoning depth flexibly adapting to the complexity of the problem.
137 Formally, let Q denote the input question and C_t the t -th sentence in the input context. At each step,
138 the LLM generates an intermediate reasoning state R_t corresponding to C_t , and R_q corresponding
139 to the question Q . The instruction I sets the reasoning depth, directing how intermediate states are
140 integrated into the final reasoning output R . The streaming thinking process can be described as:

141
142
$$\mathcal{P}_{\text{streaming}} = \begin{cases} \prod_{t=1}^T P(R_t | C_{\leq t}, R_{\leq t-1}) \cdot P(R_q | Q, C_{\leq T}, R_{\leq T}) \cdot P(R | Q, C_{\leq T}, R_{\leq T}, I), & \text{context first,} \\ \underbrace{P(R_q | Q) \cdot \prod_{t=1}^T P(R_t | Q, C_{\leq t}, R_{\leq t-1})}_{\text{streaming thinking}} \cdot \underbrace{P(R | Q, C_{\leq T}, R_{\leq T}, I)}_{\text{with controllable depth}}, & \text{question first.} \end{cases} \quad (1)$$

143
144
145
146
147

148

3 STREAMINGTHINKER

149
150 This section introduces the StreamingThinker, a supervised fine-tuning framework that integrates
151 streaming CoT generation with streaming training and inference mechanisms to adapt batch-oriented
152 LLMs to the streaming thinking paradigm.153
154

3.1 STREAMING COT GENERATION

155 StreamingThinker first constructs a streaming-like CoT dataset, as existing batch-style reasoning
156 traces lack human-like incremental thinking. This step produces streaming-compatible traces with
157 controllable depth, providing the foundation for subsequent training and evaluation.158
159 **Generation Process** The streaming reasoning dataset is constructed through a multi-stage
160 pipeline, as shown in Figure 2. We first insert sentence-level boundary tokens $\langle \text{EOS} \rangle$ for the input
161 to define minimal reasoning units. Then the LLM is prompted to generate order-preserving rea-
162 soning for the preceding sentence and terminate the step with $\langle \text{EOT} \rangle$, when encountering $\langle \text{EOS} \rangle$.

² To further enforce sequential alignment, a higher-parameter teacher model reconstructs the generated reasoning. Once all sentence-level reasoning traces are generated, they are evaluated using granularity score and sequential consistency score. Passing samples are enhanced with token-level intervention to generate depth-controlled reasoning variants. Samples that fail the evaluation are regenerated, and those still failing under Pass@2 (Chen et al., 2021) metric are discarded.

Quality Assurance and Evaluation We propose two evaluation metrics: the *granularity score* measures the fine-grained alignment of the streaming CoT, while the *sequential consistency score* assesses whether the reasoning proceeds in a streaming, order-preserving way. The granularity score is defined as the ratio between the number of boundary tokens in the input and those in the output: $granularity = \frac{N_{EOS}}{N_{EOT}}$, where N_{EOS} and N_{EOT} denote the counts of boundary tokens in the input and output, respectively. When the granularity score is equal to 1, the reasoning matches the input in boundary count, suggesting ideal alignment. The consistency score is defined as the similarity between the input sentence and reasoning sentences, i.e., $consistency = \text{sim}(R_t, C_t) = \frac{v_R \cdot v_C}{\|v_R\| \|v_C\|}$, where v_R and v_C denote the embedding vectors of the reasoning sentences R_t and the input sentence C_t , respectively. We use SentenceBERT (Reimers & Gurevych, 2019) for sequential consistency calculation.³

3.2 STREAMING TRAINING FRAMEWORK

A naive approach is to interleave input and reasoning sentences. While it appears to be streaming, this method is inconsistent with the pretraining format of LLMs and still enforces serial execution, where reasoning prevents the model from simultaneously consuming new inputs. Beyond interleaving, we design an actual streaming training framework for streaming thinking paradigm.

Streaming Attention Mask Matrix According to Equation 1, the core constraint of streaming thinking is that the reasoning step at current time must not access future inputs. In contrast, the standard attention mask used for batch thinking exposes all inputs to every reasoning step. To adapt LLMs to the streaming paradigm, we inject a streaming constraint into the attention mask. As illustrated in Figure 3 (a), within the attention from the reasoning sentences to the input sentences, we apply a causal mask that blocks attention from step t to input positions $> t$. We refer to the masked region as the streaming mask region. Let the input sentence have length T and the reasoning segment length L . The streaming mask is then defined as

$$\mathcal{M}_{\text{streaming}}(i, j) = \mathcal{M}(i, j) + (-\infty - \mathcal{M}(i, j)) \cdot \mathbb{I}_{\{i > T, j < T, j > i - T + 1\}}, \quad (2)$$

where \mathcal{M} is the vanilla causal mask matrix of LLMs, and \mathbb{I} is an indicator function.

Streaming Position Encoding The RoPE (Su et al., 2024) of LLMs represents relative positions by rotating queries and keys, with the attention between a reasoning token R_t and an input token S_t expressed as $Attn(R_t, S_t) = q_R^T R(T + t - t)k_S$, where T is the input length and $t, t + T$ are their positional IDs, and $R(T)$ is the rotary matrix. However, in streaming scenarios, the concurrent generation of output and reception of input induces positional contention in the encoding space (Tong et al., 2025; Guo et al., 2024). To address this issue, we assign independent position IDs to input and reasoning tokens, both starting from zero. Formally, the positional IDs of reasoning token R_t and input token S_t are both set to t , yielding $Attn(R_t, S_t) = q_R^T R(t - t)k_S$. This design removes positional contention in streaming parallel processing. Furthermore, identical position IDs ensure that, during streaming reasoning, a reasoning sentence is positioned nearest to its associated input sentence and distant from others, which conforms to the essential principle of streaming alignment.

²Boundary tokens mark minimal reasoning units and indicate the end of a reasoning step during inference.

³In cases where a single input sentence corresponds to multiple reasoning sentences, we regard them collectively as one segment. We provide the similarity map between the input and the reasoning in the Appendix C.5.

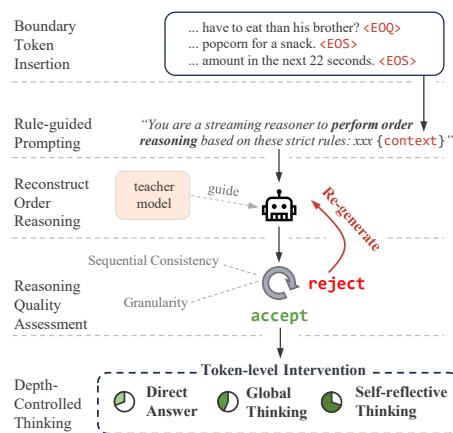


Figure 2: Generation for streaming CoT.

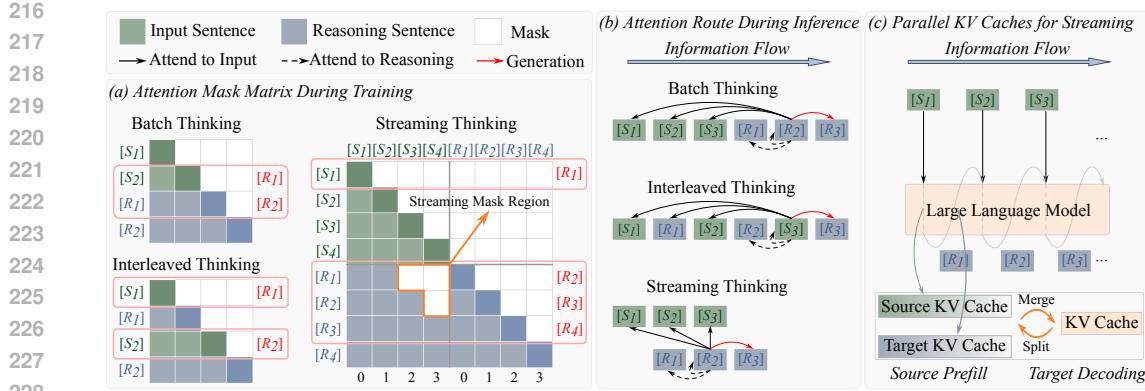


Figure 3: Training and inference framework of StreamingThinker. (a) shows attention mask at training. (b) and (c) show attention routing and parallel KV caches for streaming thinking at inference.

3.3 STREAMING INFERENCE

Attention Route Figure 3(b) compares information flow across paradigms. In batch thinking, reasoning begins only after the full context is received, resulting in long attention routes and serial dependency. Interleaved thinking alternates reasoning with partial inputs but still updates a single cache sequentially, and its format diverges from the pretraining distribution. In contrast, streaming attention preserves consistency with batch-style pretraining while employing parallel caches, enabling concurrent processing with shorter routes and lower latency.

Parallel KV caches To enable parallel processing in streaming reasoning, we design two KV caches during inference: a source cache for input tokens and a target cache for reasoning tokens, as shown in Figure 3 (c). As input arrives sentence by sentence, the LLM performs prefill in arrival order, storing hidden states in the source cache. Before decoding, the two caches are merged so that reasoning can attend to the inputs, and newly generated tokens are written into the merged cache. After finishing a sentence, the caches are split again. This design enables concurrency between source-side prefill and target-side decoding, whereas batch and interleaved paradigms rely on a single continuous cache, enforcing strictly serial execution.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets To evaluate StreamingThinker, we conduct a comprehensive assessment across three representative reasoning tasks: math reasoning, logical reasoning, and context-based QA reasoning. For math reasoning, we selected GSM-symbolic (Mirzadeh et al., 2025) and MetamathQA (Yu et al., 2024). For logical reasoning, we utilized LogicNLI (Tian et al., 2021) and ProofWriter (Tafjord et al., 2020). Finally, for context-based QA reasoning, PubMedQA (Jin et al., 2019) and HotpotQA (Yang et al., 2018) were employed. All datasets were partitioned into dedicated training and testing sets, with detailed specifications provided in the Appendix D.

Models and Baselines We implement our StreamingThinker using models from the Qwen3 family. For streaming CoT generation, we utilize Qwen3-32B as the initial generation model to produce the preliminary streaming reasoning trace. We assign Qwen3-235B-A22B-Instruct as the teacher guidance model to reconstruct the preliminary trace. Then Qwen3-1.7B and Qwen3-4B as the backbone of StreamingThinker for evaluation. To provide a comprehensive evaluation, we compare StreamingThinker with three baselines representing alternative reasoning paradigms: (1) *batch thinking* (*Batch, original*), where the model generates reasoning after observing the entire context without additional supervision; (2) *batch thinking with CoT distillation* (*Batch, SFT*), where reasoning traces are distilled from a stronger 32B teacher model to enhance reasoning ability; and (3) *interleaved mode*, a naive streaming variant that alternates between input segments and reasoning steps without parallel cache support.

Table 1: Pass@1 accuracy (Acc↑) and token usage (Tokens↓) results of the streaming thinking paradigm under the batch processing setting. The comparison includes: (1) the original batch thinking baseline, (2) SFT models trained with RoPE or Streaming RoPE (SPE) distilled from Qwen3-32B CoT data, and (3) the streaming thinking model executed in a batch processing mode (Batch-S) with RoPE or SPE. Reasoning depth is categorized into three levels, denoted as D1–D3, where D1 = direct answer, D2 = with global reasoning, and D3 = with self-reflection.

Methods	Math reasoning				Logical reasoning				Context-based QA reasoning			
	GSM-Symbolic		MetaMathQA		ProofWriter		LogicNLI		HotPotQA		PubMedQA	
	Acc↑	Tokens↓	Acc↑	Tokens↓	Acc↑	Tokens↓	Acc↑	Tokens↓	Acc↑	Tokens↓	Acc↑	Tokens↓
<i>Qwen3-1.7B</i>												
Batch, Original	0.645	1714.25	0.657	1751.40	0.488	1379.58	0.503	1384.47	0.484	638.91	0.616	619.92
Batch, SFT, RoPE	0.748	1104.05	0.755	1236.76	0.785	980.12	0.600	1120.38	0.530	512.42	0.642	602.38
Batch, SFT, SPE	0.740	<u>1032.71</u>	0.761	<u>1195.68</u>	<u>0.790</u>	<u>970.44</u>	0.604	1110.27	<u>0.528</u>	498.73	<u>0.648</u>	611.25
Batch-S, D1, RoPE	0.396	217.33	0.1795	253.26	0.470	360.18	0.515	872.33	0.456	324.71	0.598	452.15
Batch-S, D1, SPE	0.401	212.42	0.183	250.26	0.476	352.07	0.519	865.27	0.463	318.64	0.601	448.92
Batch-S, D2, RoPE	0.688	396.34	0.703	611.61	0.540	555.21	0.542	1196.33	0.492	472.51	0.624	571.66
Batch-S, D2, SPE	0.692	391.25	0.706	618.53	0.544	545.37	0.546	1184.47	0.497	465.33	0.628	565.92
Batch-S, D3, RoPE	0.732	562.88	0.736	829.58	0.804	720.46	0.560	<u>1351.16</u>	0.545	589.42	0.668	693.18
Batch-S, D3, SPE	0.727	552.13	<u>0.738</u>	835.11	0.810	710.32	<u>0.568</u>	1362.82	0.552	<u>583.61</u>	0.663	688.74
<i>Qwen3-4B</i>												
Batch, Original	0.855	1445.61	0.774	1630.67	0.620	1878.57	0.492	1421.92	0.575	617.40	0.609	463.37
Batch, SFT, RoPE	0.890	896.45	0.833	1029.66	0.863	935.36	0.647	1002.37	<u>0.608</u>	455.56	0.675	<u>572.63</u>
Batch, SFT, SPE	0.882	<u>887.14</u>	0.836	<u>989.23</u>	0.861	<u>925.66</u>	<u>0.650</u>	992.38	0.601	467.21	0.680	582.31
Batch-S, D1, RoPE	0.433	203.23	0.662	201.60	0.592	386.25	0.627	683.17	0.552	269.45	0.598	358.14
Batch-S, D1, SPE	0.437	199.64	0.668	200.73	0.596	376.13	0.623	672.61	0.561	257.11	0.592	351.47
Batch-S, D2, RoPE	0.864	348.52	0.791	534.74	0.801	583.28	0.639	983.52	0.592	381.36	0.657	507.32
Batch-S, D2, SPE	0.871	352.17	0.806	528.33	0.795	596.61	0.642	978.52	0.601	388.93	0.651	498.17
Batch-S, D3, RoPE	0.867	499.83	0.821	661.96	0.856	721.89	0.645	1242.82	0.616	474.56	0.661	563.41
Batch-S, D3, SPE	0.874	493.26	<u>0.825</u>	668.19	<u>0.861</u>	715.26	0.651	<u>1176.65</u>	0.621	466.14	0.669	571.22

Metric The evaluation of streaming scenarios can be viewed as a trade-off between performance and latency. For reasoning performance, we adopt Pass@1 score as the accuracy metric to measure the model’s ability to successfully solve problems. Latency is assessed at two levels: token latency and time latency. At the token level, we use token-to-first-token (TTFT) to measure how many input tokens must be observed before the model begins reasoning.⁴ For time latency, we set the LLM’s input speed as the average human speaking rate about 150 words per minute (Geva & Yaghoub Zadeh, 2006; Jacewicz et al., 2010), and define the waiting time until the first answer token as the latency.⁵

4.2 EFFECTIVENESS OF THE STREAMING THINKING PARADIGM FOR LLMs

We begin by validating the feasibility of the streaming thinking paradigm (sequential reasoning with depth adjustment) under the batch setting, which removes interference from streaming input and cache strategies. This controlled setup allows us to assess the model’s adherence to the paradigm and to further investigate two key aspects: (1) the impact on reasoning trajectories and reasoning depth, and (2) the role of streaming position encoding in maintaining alignment and stability.

Effect of Reasoning Depth in Streaming Thinking We first validate the streaming thinking framework on Qwen3-1.7B and Qwen3-4B. As shown in Table 1 and Figure 4, the performance of LLMs improves consistently with increasing reasoning depth in the streaming paradigm. At shallow depths, the model mainly performs local reasoning aligned with the sequential input, which provides fast but relatively coarse-grained understanding. When deeper reasoning stages are introduced—particularly with global reflection—the performance approaches that of batch thinking, demonstrating that additional depth helps compensate for the information fragmentation inherent in streaming reasoning. Moreover, results in Table 1 show that under the batch processing setting, the

⁴This is similar with time-to-first-token, but measured in terms of token count.

⁵Detailed definitions and additional evaluation metrics are provided in Appendix F.

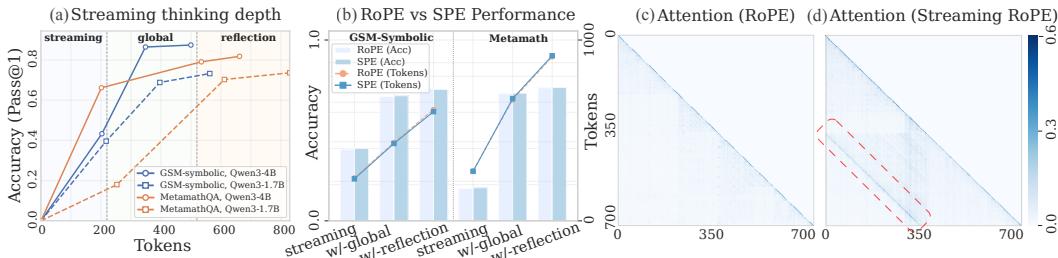


Figure 4: Streaming thinking performance and attention patterns. Subplots (a)–(b) show accuracy–token trade-offs for GSM-Symbolic and MetaMathQA under RoPE and streaming RoPE (SPE); subplots (c)–(d) show average attention maps comparing RoPE and SPE.

streaming thinking paradigm achieves performance comparable to the original batch thinking, while demonstrating notable advantages in token efficiency.

The slope of the curves in Figure 4(a) highlights the marginal gains of each added depth. Notably, introducing the global reasoning stage leads to the most significant improvement, which aligns with the motivation of streaming thinking: since the streaming phase processes inputs in a lightweight, incremental fashion, a global consolidation step is essential to fully integrate dispersed information and support complex inference.

Position Encoding in Streaming Thinking Streaming RoPE assigns consistent yet independent index groups to input and reasoning tokens, ensuring that each reasoning step is correctly aligned with its corresponding input. This design also prevents positional interference, thereby addressing the positional contention issue that arises with the original RoPE in streaming scenarios.

Our experiments further demonstrate that Streaming RoPE achieves performance comparable to the original RoPE under the same settings. As shown in Figure 4(b) and Table 1, in math reasoning tasks at the same depth, Streaming RoPE attains nearly identical accuracy and token consumption to the original RoPE. This indicates that adapting RoPE to the streaming paradigm preserves model capacity without incurring performance degradation.

The attention visualizations in Figures 4(c) and (d) provide additional insights. While the original RoPE exhibits no clear positional preference across the input context, Streaming RoPE shows a pronounced diagonal concentration, reflecting stronger focus on the current context. This bias aligns well with the motivation of streaming thinking: reasoning should primarily rely on information already observed, thereby enabling the model to “think while reading.”

4.3 LLMs THINKING WHILE READING UNDER THE STREAMING THINKING PARADIGM

After confirming the feasibility of streaming thinking in batch settings, we now extend our evaluation to real streaming scenarios, where inputs arrive incrementally over time. In this setting, the model is required to perform reasoning online, relying solely on the partial context available at each step.

Latency of StreamingThinker We examine the latency performance of StreamingThinker using the Qwen3-4B model. As shown in Table 2, streaming thinking achieves a markedly lower TTFT than batch reasoning, as reasoning can be initiated once the first input segment becomes available. The minimal latency observed at depth D1 further indicates that reasoning overlaps with input reading without incurring additional overhead.⁶ These results confirm that StreamingThinker substantially reduces response delay, a property of particular importance for streaming applications.

Interleaved mode and Streaming mode The interleaved mode constitutes a naive instantiation of streaming reasoning. Relative to batch reasoning, it exhibits lower latency—most prominently in terms of TTFT—as reasoning can be initiated earlier, as reported in Table 2. Nevertheless, its accuracy is consistently lower and its overall delay higher than those achieved by streaming thinking. This discrepancy can be attributed to the distributional mismatch between interleaved input

⁶It is important to note that the input rate is set to 150 words per minute to match the average speed of human speech in interactive scenarios. Given that LLM decoding operates at a much faster rate, the effective bottleneck in streaming reasoning stems from input arrival, rather than output generation.

378

379 Table 2: Results compare the original batch thinking and streaming thinking paradigms. The streaming thinking
 380 results include both the naive interleaved streaming mode (Interleaved) and our proposed parallel streaming
 381 mode (Streaming), evaluated under three reasoning depths (D1 = direct answer, D2 = global thinking, D3 =
 382 self-reflection). Results are reported in terms of Pass@1 (Acc), token number to first input token (TTFT), and
 383 time delay for generating first answer token (delay). All experiments are conducted on Qwen3-4B.

Method	GSM-Symbolic			MetaMathQA			ProofWriter		
	Acc↑	TTFT↓	Delay↓ (s)	Acc↑	TTFT↓	Delay↓ (s)	Acc↑	TTFT↓	Delay↓ (s)
Batch, Original	0.855	94.74	47.70	0.774	100.51	53.81	0.620	232.11	61.99
Interleaved, D1	0.410	20.77	6.30	0.655	16.89	6.23	0.583	20.51	11.96
Interleaved, D2	0.829	20.77	11.90	0.754	16.89	16.55	0.750	20.51	18.07
Interleaved, D3	0.843	20.77	15.46	0.783	16.89	20.49	0.801	20.51	22.35
Streaming, D1	0.421	20.77	0.66	0.657	16.89	0.68	0.588	20.51	0.71
Streaming, D2	0.842	20.77	5.973	0.752	16.89	10.98	0.761	20.51	6.50
Streaming, D3	0.856	20.77	9.768	0.780	16.89	15.18	0.813	20.51	11.05
Method	LogicNLI			HotPotQA			PubMedQA		
	Acc↑	TTFT↓	Delay↓ (s)	Acc↑	TTFT↓	Delay↓ (s)	Acc↑	TTFT↓	Delay↓ (s)
Batch, Original	0.492	350.08	46.92	0.575	1485.547	20.37	0.609	357.468	15.29
Interleaved, D1	0.591	42.06	21.17	0.537	24.32	8.33	0.571	21.74	11.09
Interleaved, D2	0.614	42.06	30.47	0.576	24.32	12.02	0.633	21.74	15.71
Interleaved, D3	0.627	42.06	38.50	0.598	24.32	14.45	0.646	21.74	17.45
Streaming, D1	0.603	42.06	0.72	0.544	24.32	0.69	0.579	21.74	0.74
Streaming, D2	0.629	42.06	9.9	0.581	24.32	3.92	0.641	21.74	4.92
Streaming, D3	0.634	42.06	18.45	0.603	24.32	6.50	0.653	21.74	6.76

401 sequences and the LLMs’ pre-training corpus, which impairs reasoning fidelity. Moreover, the in-
 402 interleaved paradigm enforces a sequential synchronization constraint, requiring the completion of
 403 ongoing reasoning before additional input tokens can be incorporated, thereby exacerbating latency.
 404 In contrast, StreamingThinker employs parallelized KV caches that disentangle input encoding from
 405 reasoning generation, enabling concurrent reading and reasoning. This architectural design effec-
 406 tively minimizes latency while preserving reasoning quality, thereby highlighting the necessity of
 407 streaming-specific mechanisms for efficient online reasoning.

4.4 ORDERING OF CONTEXT AND QUESTION FOR STREAMINGTHINKER

410 The ordering of context and question plays a critical
 411 role in streaming reasoning. Unlike batch settings,
 412 where the model has access to the entire input si-
 413 multaneously, the streaming paradigm requires rea-
 414 soning to unfold as inputs arrive. In real-world sce-
 415 narios, however, the order in which the question and
 416 context appear is often unknown. To account for
 417 this, we evaluate the proposed streaming thinking
 418 framework under both orderings to examine its ro-
 419 bustness across different streaming conditions.

420 Table 3 reports the performance of Streaming-
 421 Thinker under the context-first input setting across
 422 different datasets. Overall, the results follow a similar trend to the question-first setting, confirming
 423 the framework’s ability to provide timely responses regardless of input order. As the depth of reason-
 424 ing increases, both accuracy and latency improve, albeit with a gradual rise in token consumption.

425 Figure 5 highlights the differences between the two settings.⁷ When the question appears first, the
 426 model is aware of the reasoning target. This is particularly advantageous in Context-based QA
 427 tasks where critical information is sparse; the prior knowledge of the question allows the model to
 428 precisely capture key evidence, thereby avoiding the generation of reasoning for irrelevant context
 429 (in contrast to domains with denser information). However, for the identified relevant segments,
 430 the model tends to expand its logic immediately. This leads to higher token usage at depth D1,
 431 and since part of the reasoning is already completed during the streaming process, the incremental

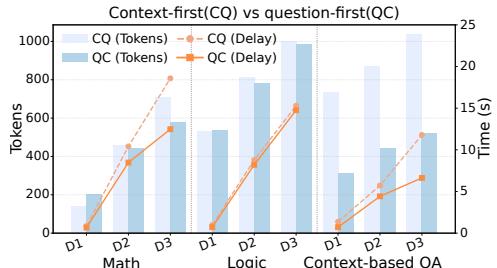


Figure 5: Comparison between context-first and question-first settings. Bars indicate model token consumption, while lines represent time latency.

⁷For clarity, we report the average performance for tasks of the same type.

432
 433 Table 3: Results on context-first setting, where the LLM receives context before the question. (D1 =
 434 direct answer, D2 = global thinking, D3 = self-reflection). Results are reported in terms of Pass@1
 435 (Acc), token numbers (Token), token number to first input token (TTFT), and time delay for gener-
 436 ating first answer token (delay). All experiments are conducted on Qwen3-4B.

Method	GSM-Symbolic				MetaMathQA				ProofWriter			
	Acc↑	Token↓	TTFT↓	Delay↓	Acc↑	Token↓	TTFT↓	Delay↓	Acc↑	Token↓	TTFT↓	Delay↓
Batch, Original	0.842	1483.65	94.74	48.20	0.774	1668.30	100.51	54.23	0.633	1786.42	232.11	58.05
Streaming, D1	0.476	165.42	18.68	0.77	0.668	114.50	20.40	0.94	0.528	457.91	8.12	1.06
Streaming, D2	0.837	451.81	18.68	9.23	0.760	463.59	20.40	11.59	0.740	697.20	8.12	7.33
Streaming, D3	0.844	797.63	18.68	20.45	0.788	617.36	20.40	16.71	0.798	875.19	8.12	13.11
Method	LogicNLI				HotPotQA				PubMedQA			
	Acc↑	Token↓	TTFT↓	Delay↓	Acc↑	Token↓	TTFT↓	Delay↓	Acc↑	Token↓	TTFT↓	Delay↓
Batch, Original	0.483	1487.56	350.08	48.35	0.566	1492.41	1485.55	48.50	0.593	1320.36	357.47	42.90
Streaming, D1	0.476	604.84	5.60	0.89	0.532	1172.36	46.39	1.62	0.562	298.51	31.49	1.12
Streaming, D2	0.613	927.35	5.60	10.24	0.575	1266.41	46.39	5.90	0.628	475.63	31.49	5.54
Streaming, D3	0.625	1122.32	5.60	16.55	0.591	1381.73	46.39	12.14	0.640	687.45	31.49	12.43

449
 450 token growth at deeper levels (D2 and D3) becomes smaller compared to the context-first setting.
 451 In contrast, when the context appears first, the model lacks knowledge of which information is
 452 salient. As a result, its reasoning remains more conservative, proceeding sentence by sentence
 453 without extensive elaboration, which produces lower token usage at D1 when processing the same
 454 context sentence.⁸ However, this characteristic leads to inefficiency in sparse scenarios (such as
 455 the context-based QA tasks): due to the conservative strategy, the model fails to skip irrelevant
 456 information, resulting in a significantly longer total generation length.

5 DISCUSSION

461 **Efficiency Analysis** We evaluate the model efficiency on Qwen3-4B using 100 samples from
 462 GSM-Symbolic dataset. As shown in Table 4, the Streaming paradigm reduces the first-token latency
 463 (measured by time consumption) from 28.00s to 6.23s ($\sim 4.5 \times$ speedup). Crucially, the parallel KV
 464 cache operations introduce negligible temporal overhead, with $split_{kv}$ and $merge_{kv}$ taking less
 465 than 5ms combined. Additionally, peak memory usage remains consistent with the baseline (~ 7.99
 466 GB). While bandwidth cost increases, this is primarily due to the inherent multiple prefill phases in
 467 streaming scenarios rather than the parallel KV cache mechanism itself. Note that Table 4 reports
 468 the latency for each stage separately; the actual end-to-end wall-clock time, which benefits from the
 469 concurrent execution of reading and reasoning, has been detailed in Section 4.

470 **Why Streaming Thinker Work?** Prior studies (Fan et al., 2025; Laban et al., 2025; Li et al.,
 471 2025) caution that reasoning over incomplete inputs significantly degrades performance, as standard
 472 models are prone to hallucinating based on partial evidence (Fan et al., 2025) or struggling with
 473 uncertainty (Laban et al., 2025). However, Streaming Thinker circumvents these pitfalls through
 474 three distinct mechanisms. First, global information is **deferred rather than lost**. Unlike scenarios
 475 where critical conditions are permanently removed, our framework merely shifts the timing of ac-
 476 quisition, ensuring the model incorporates the full global context after the streaming phase. Second,
 477 we employ a **conservative reasoning strategy**. Instead of attempting premature complex reflection,
 478 the model concentrates on shallow reasoning” (e.g., intermediate calculations and entity tracking)
 479 during the streaming phase. This functions as an incremental pre-processing step that simplifies
 480 raw context. Third, this behavior is enforced via a **specialized streaming training paradigm**. Un-
 481 like batch models that rigidly apply full-context patterns to partial inputs—often falling into the
 482 “over-thinking” trap—our model is explicitly adapted to local scopes, learning to process available
 483 information without jumping to erroneous conclusions.

484
 485 ⁸The model’s conservative reasoning stems from our cautious data generation strategy—when the question
 is unknown, excessive logical expansion may cause overthinking.

486
 487 **Table 4: Efficiency evaluation on Qwen3-4B.** We compare the efficiency of Batch and Streaming
 488 paradigms using 100 randomly selected samples from the **GSM-Symbolic** dataset. Metrics include
 489 execution memory usage (Peak/ Δ), bandwidth cost, and time consumption across different stages.

Metric	Batch Thinking Paradigm			Streaming Thinking Paradigm				
	Read	Prefill	Decoding	Read	Split KV	Prefill	Merge KV	Decoding
Count (times)	69.86	1	436.0	69.86	4.65	4.65	4.65	439.0
Peak Mem (MB)	–	7,991	7,998	–	7,957	7,993	7,940	7,999
Total Mem Δ (MB)	–	+222	+102	–	-289	+215	+217	+103
Bandwidth Cost (MB)	–	–	–	–	–	+29,173	+434	-3,310
Avg Time (s)	0.4	0.052	0.039	0.4	< 0.001	0.041	< 0.001	0.037
Total Time (s)	27.945	0.052	17.178	27.945	0.005	0.190	0.004	16.392
First-token Latency (s)	28.003	–	–	6.231	–	–	–	–

500 6 RELATED WORK

501 **Efficient Reasoning in LLMs** Prior studies on efficient reasoning in LLMs have mainly focused
 502 on three directions: token compression (Aggarwal & Welleck, 2025; Xia et al., 2025; Zhang et al.,
 503 2025a), structural quantization and pruning (Liu et al., 2025; Srivastava et al., 2025; Zhao et al.,
 504 2025), and efficient decoding (Pan et al., 2025; Liao et al., 2025). Token compression methods
 505 such as Tokenskip (Xia et al., 2025) condense CoT into fewer tokens to reduce the inference cost.
 506 Structural approaches leverage quantization or pruning to compress model parameters for efficient
 507 reasoning such as (Srivastava et al., 2025). Efficient decoding has been explored through parallel
 508 sampling of generation paths (Pan et al., 2025) or by using smaller models for speculative pre-
 509 diction (Liao et al., 2025) to reduce inference latency. In contrast, our work introduces streaming
 510 processing as a complementary dimension of efficiency, allowing reasoning to proceed concurrently
 511 with input processing to reduce response latency.

512 **Streaming LLMs** Recent research on streaming LLMs has focused on three directions: architecture
 513 adaptation (Tong et al., 2025; Raffel et al., 2024; Guo et al., 2024), latency control (Ma et al.,
 514 2018; Ahmed et al., 2025; Cheng et al., 2025), and modality adaptation (Chen et al., 2024a; 2025a;
 515 Xie & Wu, 2024). Architecture adaptation addresses the mismatch between decoder-only trans-
 516 formers and streaming settings (Tong et al., 2025), where issues such as positional interference and
 517 redundant re-encoding are mitigated through recurrent states, and modified attention mechanisms.
 518 Latency control emphasizes fine-grained alignment between input and output, ranging from fixed
 519 policies (e.g., wait-k (Ma et al., 2018)) to adaptive scheduling that optimize the accuracy–latency
 520 balance. Modality adaptation extends streaming LLMs beyond text to speech recognition (Guo et al.,
 521 2024), speech translation (Cheng et al., 2025), and video understanding (Chen et al., 2024a) by in-
 522 tegrating modality-specific encoders and synchronization mechanisms. From a reasoning perspective,
 523 recent studies (Xie et al., 2025a; Chiang et al., 2025; Xie et al., 2025b) have explored alternating rea-
 524 soning and generation to approximate streaming operation. Our work differs by explicitly modeling
 525 thinking while reading, enabling reasoning to evolve concurrently with incremental input.

526 7 CONCLUSION

527 In this work, we introduce the streaming thinking paradigm for large language models, inspired
 528 by the human ability to think while reading. Unlike conventional batch reasoning, this paradigm
 529 unfolds reasoning concurrently with input arrival and adapts its depth after reading is complete.
 530 To instantiate this paradigm, we developed StreamingThinker, which integrates a streaming CoT
 531 generation pipeline, streaming-constrained training, and parallel inference supported by specialized
 532 KV cache designs. Comprehensive experiments across math reasoning, logical reasoning, and long-
 533 context QA demonstrate that StreamingThinker substantially reduces latency while preserving or
 534 improving reasoning quality. Our analysis further reveals the benefits of controllable reasoning
 535 depth, streaming-specific position encoding, and parallel inference for enabling true concurrency.
 536 These findings highlight streaming thinking as a promising new direction for efficient and coherent
 537 reasoning in LLMs, bridging the gap between artificial and human-like cognition.

540 REPRODUCIBILITY STATEMENT
541

542 We have taken several steps to ensure the reproducibility of our work. All experimental settings, in-
543 cluding dataset descriptions, training details, and hyperparameter selections, are clearly documented
544 in the main text and appendix. We further provide extensive ablation studies to justify our design
545 choices. Upon acceptance, we will release the full codebase and scripts to facilitate replication.

547 REFERENCES
548

549 Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
550 reinforcement learning. *arXiv preprint arXiv:2503.04697*, 2025.

551 Zeeshan Ahmed, Frank Seide, Zhe Liu, Rastislav Rabatin, Jachym Kolar, Niko Moritz, Ruiming
552 Xie, Simone Merello, and Christian Fuegen. Non-monotonic attention-based read/write policy
553 learning for simultaneous translation. *arXiv preprint arXiv:2503.22051*, 2025.

555 Joya Chen, Zhaoyang Lv, Shiwei Wu, Kevin Qinghong Lin, Chenan Song, Difei Gao, Jia-Wei Liu,
556 Ziteng Gao, Dongxing Mao, and Mike Zheng Shou. Videollm-online: Online video large lan-
557 guage model for streaming video. In *Proceedings of the IEEE/CVF Conference on Computer
558 Vision and Pattern Recognition*, pp. 18407–18418, 2024a.

559 Joya Chen, Ziyun Zeng, Yiqi Lin, Wei Li, Zejun Ma, and Mike Zheng Shou. Livecc: Learning
560 video llm with streaming speech transcription at scale. In *Proceedings of the Computer Vision
561 and Pattern Recognition Conference*, pp. 29083–29095, 2025a.

562 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
563 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
564 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

566 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
567 Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
568 thought for reasoning large language models. *arXiv preprint arXiv:2503.09567*, 2025b.

569 Xinyun Chen, Ryan Andrew Chi, Xuezhi Wang, and Denny Zhou. Premise order matters in reason-
570 ing with large language models. *International Conference on Machine Learning (ICML 2024)*,
571 pp. 6596–6620, 2024b.

573 Shanbo Cheng, Yu Bao, Zhichao Huang, Yu Lu, Ningxin Peng, Lu Xu, Runsheng Yu, Rong Cao,
574 Yujiao Du, Ting Han, et al. Seed liveinterpret 2.0: End-to-end simultaneous speech-to-speech
575 translation with your voice. *arXiv preprint arXiv:2507.17527*, 2025.

576 Cheng-Han Chiang, Xiaofei Wang, Linjie Li, Chung-Ching Lin, Kevin Lin, Shujie Liu, Zhendong
577 Wang, Zhengyuan Yang, Hung-yi Lee, and Lijuan Wang. Stitch: Simultaneous thinking and
578 talking with chunked reasoning for spoken language models. *arXiv preprint arXiv:2507.15375*,
579 2025.

581 Chenrui Fan, Ming Li, Lichao Sun, and Tianyi Zhou. Missing premise exacerbates overthinking:
582 Are reasoning models losing critical thinking skill? *arXiv preprint arXiv:2504.06514*, 2025.

583 Esther Geva and Zohreh Yaghoub Zadeh. Reading efficiency in native english-speaking and english-
584 as-a-second-language children: The role of oral proficiency and underlying cognitive-linguistic
585 processes. *Scientific Studies of Reading*, 10(1):31–57, 2006.

586 Arthur C Graesser, Murray Singer, and Tom Trabasso. Constructing inferences during narrative text
587 comprehension. *Psychological review*, 101(3):371, 1994.

589 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
590 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
591 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

592 Shoutao Guo, Shaolei Zhang, and Yang Feng. Decoder-only streaming transformer for simultaneous
593 translation. *arXiv preprint arXiv:2406.03878*, 2024.

594 Ewa Jacewicz, Robert Allen Fox, and Lai Wei. Between-speaker and within-speaker variation in
 595 speech tempo of american english. *The Journal of the Acoustical Society of America*, 128(2):
 596 839–850, 2010.

597

598 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 599 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
 600 *preprint arXiv:2412.16720*, 2024.

601 Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W Cohen, and Xinghua Lu. Pubmedqa: A
 602 dataset for biomedical research question answering. *arXiv preprint arXiv:1909.06146*, 2019.

603

604 Walter Kintsch. The role of knowledge in discourse comprehension: a construction-integration
 605 model. *Psychological review*, 95(2):163, 1988.

606 Philippe Laban, Hiroaki Hayashi, Yingbo Zhou, and Jennifer Neville. Llms get lost in multi-turn
 607 conversation. *arXiv preprint arXiv:2505.06120*, 2025.

608

609 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
 610 man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
 611 in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

612

613 Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length on
 614 the reasoning performance of large language models. In *Proceedings of the 62nd Annual Meeting*
 615 *of the Association for Computational Linguistics (ACL 2024)*, pp. 15339–15353, 2024.

616 Jinzhe Li, Gengxu Li, Yi Chang, and Yuan Wu. Don't take the premise for granted: Evaluating the
 617 premise critique ability of large language models. *arXiv preprint arXiv:2505.23715*, 2025.

618

619 Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li, Christof Monz, Silvio Savarese, Doyen Sahoo, and
 620 Caiming Xiong. Reward-guided speculative decoding for efficient llm reasoning. *arXiv preprint*
 621 *arXiv:2501.19324*, 2025.

622

623 Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and Hao Su.
 624 Deductive verification of chain-of-thought reasoning. *Advances in Neural Information Processing*
 625 *Systems (NeurIPS 2023)*, 36:36407–36433, 2023.

626

627 Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 628 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the*
 629 *Association for Computational Linguistics (TACL 2024)*, 11:157–173, 2024.

630

631 Ruikang Liu, Yuxuan Sun, Manyi Zhang, Haoli Bai, Xianzhi Yu, Tiezheng Yu, Chun Yuan, and
 632 Lu Hou. Quantization hurts reasoning? an empirical study on quantized reasoning models. *arXiv*
 633 *preprint arXiv:2504.04823*, 2025.

634

635 Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng, Kaibo Liu, Baigong Zheng, Chuanqiang
 636 Zhang, Zhongjun He, Hairong Liu, Xing Li, et al. Stacl: Simultaneous translation with im-
 plicit anticipation and controllable latency using prefix-to-prefix framework. *arXiv preprint*
 637 *arXiv:1810.08398*, 2018.

638

639 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 640 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 641 with self-feedback. *Advances in Neural Information Processing Systems (NeurIPS 2023)*, 36:
 642 46534–46594, 2023.

643

644 Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
 645 Mehrdad Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning
 646 in large language models. *The Thirteenth International Conference on Learning Representations*
 647 (*ICLR 2025*), 2025.

648

649 Jiayi Pan, Xiuyu Li, Long Lian, Charlie Snell, Yifei Zhou, Adam Yala, Trevor Darrell, Kurt Keutzer,
 650 and Alane Suhr. Learning adaptive parallel reasoning with language models. *arXiv preprint*
 651 *arXiv:2504.15466*, 2025.

648 Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu, Weimin Zheng, and Xinran
 649 Xu. Mooncake: A kvcache-centric disaggregated architecture for llm serving. *arXiv preprint*
 650 *arXiv:2407.00079*, 2024.

651

652 Matthew Raffel, Victor Agostinelli, and Lizhong Chen. Simultaneous masking, not prompting op-
 653 timization: A paradigm shift in fine-tuning llms for simultaneous translation. *arXiv preprint*
 654 *arXiv:2405.10443*, 2024.

655 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 656 networks. *arXiv preprint arXiv:1908.10084*, 2019.

657

658 Gaurav Srivastava, Shuxiang Cao, and Xuan Wang. Towards reasoning ability of small language
 659 models. *arXiv preprint arXiv:2502.11569*, 2025.

660 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 661 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

662

663 Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
 664 Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
 665 reasoning for large language models. *arXiv preprint arXiv:2503.16419*, 2025.

666 Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark. Proofwriter: Generating implications,
 667 proofs, and abductive statements over natural language. *arXiv preprint arXiv:2012.13048*, 2020.

668

669 Jidong Tian, Yitian Li, Wenging Chen, Liqiang Xiao, Hao He, and Yaohui Jin. Diagnosing the first-
 670 order logical reasoning ability through logicnli. *Proceedings of the 2021 Conference on Empirical
 671 Methods in Natural Language Processing (EMNLP 2021)*, 2021.

672 Junlong Tong, Jinlan Fu, Zixuan Lin, Yingqi Fan, Anhao Zhao, Hui Su, and Xiaoyu Shen. Llm as ef-
 673 fective streaming processor: Bridging streaming-batch mismatches with group position encoding.
 674 *arXiv preprint arXiv:2505.16983*, 2025.

675

676 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
 677 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 678 models. *The Eleventh International Conference on Learning Representations (ICLR 2023)*, 2023.

679

680 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 681 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 682 neural information processing systems (NeurIPS 2022)*, 35:24824–24837, 2022.

683

684 Sheng-Lun Wei, Cheng-Kuang Wu, Hen-Hsen Huang, and Hsin-Hsi Chen. Unveiling selection
 685 biases: Exploring order and token sensitivity in large language models. In *Findings of the Asso-
 686 ciation for Computational Linguistics ACL 2024*, pp. 5598–5621, 2024.

687

688 Tong Wu, Chong Xiang, Jiachen T Wang, G Edward Suh, and Prateek Mittal. Effectively controlling
 689 reasoning models through thinking intervention. *arXiv preprint arXiv:2503.24370*, 2025.

690

691 Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
 692 chain-of-thought compression in llms. *arXiv preprint arXiv:2502.12067*, 2025.

693

694 Roy Xie, David Qiu, Deepak Gopinath, Dong Lin, Yanchao Sun, Chong Wang, Saloni Potdar, and
 695 Bhuvan Dhingra. Interleaved reasoning for large language models via reinforcement learning.
 696 *arXiv preprint arXiv:2505.19640*, 2025a.

697

698 Zhifei Xie and Changqiao Wu. Mini-omni: Language models can hear, talk while thinking in
 699 streaming. *arXiv preprint arXiv:2408.16725*, 2024.

700

701 Zhifei Xie, Ziyang Ma, Zihang Liu, Kaiyu Pang, Hongyu Li, Jialin Zhang, Yue Liao, Deheng Ye,
 702 Chunyan Miao, and Shuicheng Yan. Mini-omni-reasoner: Token-level thinking-in-speaking in
 703 large speech models. *arXiv preprint arXiv:2508.15827*, 2025b.

Zikai Xie. Order matters in hallucination: Reasoning order as benchmark and reflexive prompting
 for large-language-models. *arXiv preprint arXiv:2408.05093*, 2024.

702 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 703 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 704 *arXiv:2505.09388*, 2025.

705

706 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
 707 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 708 answering. *arXiv preprint arXiv:1809.09600*, 2018.

709 Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
 710 of-thought reasoning in llms. *arXiv preprint arXiv:2502.03373*, 2025.

711

712 Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
 713 guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
 714 for large language models. *The Twelfth International Conference on Learning Representations*
 (ICLR 2024), 2024.

715

716 Jintian Zhang, Yuqi Zhu, Mengshu Sun, Yujie Luo, Shuofei Qiao, Lun Du, Da Zheng, Huajun
 717 Chen, and Ningyu Zhang. Lighthinker: Thinking step-by-step compression. *arXiv preprint*
 718 *arXiv:2502.15589*, 2025a.

719

720 Yuwei Zhang, Jayanth Srinivasa, Gaowen Liu, and Jingbo Shang. Attention reveals more than
 721 tokens: Training-free long-context reasoning with attention-guided retrieval. *arXiv preprint*
 722 *arXiv:2503.09819*, 2025b.

723

724 Anhao Zhao, Fanghua Ye, Yingqi Fan, Junlong Tong, Zhiwei Fei, Hui Su, and Xiaoyu Shen.
 725 Skipgpt: Dynamic layer pruning reinvented with token awareness and module decoupling. *arXiv*
 726 *preprint arXiv:2506.04179*, 2025.

727

728 Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
 729 Zhang. {DistServe}: Disaggregating prefill and decoding for goodput-optimized large language
 730 model serving. In *18th USENIX Symposium on Operating Systems Design and Implementation*
 (OSDI 24), pp. 193–210, 2024.

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A MOTIVATION AND PROSPECTIVE APPLICATIONS
757758 A.1 MOTIVATION AND PROSPECTIVE APPLICATIONS
759760 One motivation for introducing *streaming thinking* arises from the limitations of the conventional
761 batch reasoning paradigm. In batch reasoning, a model must wait until the entire input is observed
762 before producing any reasoning, which introduces latency, prevents timely responses, and under-
763 mines robustness in handling dynamic or sequential information. In contrast, streaming thinking
764 enables large language models to reason incrementally as input arrives, closely mirroring the hu-
765 man cognitive process of *thinking while reading*. A second motivation lies in its broad practical
766 value: this capability unlocks a wide range of applications where timely reasoning and continuous
767 adaptation are essential. We provide some potential applications as follows.
768769 **Real-time Dialogue and Interactive Systems** In advanced conversational agents or AI tutors,
770 streaming thinking allows the model to perform continuous reasoning on a user’s partial utterances.
771 For example, it can infer a user’s evolving intent, reason about the logical consistency of their
772 arguments in real-time, and formulate clarifying questions or guidance without waiting for the user
773 to pause. This enables a fluid, collaborative dialogue rather than a static, turn-based exchange.
774775 **Long-Context Analysis and Synthesis** When processing lengthy documents, live transcripts, or
776 codebases, the model can engage in incremental synthesis. It continuously builds and refines a men-
777 tal model of the content, reasoning about causal links, logical dependencies, and thematic connec-
778 tions across the information stream. This is crucial for tasks like real-time meeting summarization,
779 where key decisions and action items must be identified and reasoned about as they emerge.
780781 **Human-AI Collaborative Reasoning** In creative and analytical workflows, streaming thinking
782 facilitates a true partnership. An AI can act as a thought partner, reasoning alongside a human analyst
783 or writer. As the human proposes an idea, the AI can immediately reason about its implications,
784 offer counter-arguments, or synthesize it with prior information, creating a dynamic and interactive
785 brainstorming loop that accelerates discovery and innovation.
786787 **Dynamic Decision-Making and Planning** In high-stakes environments such as autonomous nav-
788 igation or real-time financial market analysis, streaming thinking is critical. An autonomous agent
789 must reason about a constantly changing environment from a stream of sensory data to make timely
790 decisions. This involves continuously updating its world model, predicting future states, and re-
791 evaluating its action plans based on the most current information, a process impossible under the
792 latency of a batch thinking paradigm.
793794 **Embodied Intelligence and Robotic Control** The streaming thinking paradigm is also particu-
795 larly well-suited for the challenges presented by embodied AI. An embodied agent, like a robot,
796 operates within a dynamic physical environment, which distinguishes it from models that process
797 static information. It continually receives multi-modal sensory data and is required to respond to
798 this information in a timely manner. In this context, streaming thinking allows the agent to engage
799 in continuous perceptual reasoning, interpreting incoming data to consistently update its internal
800 model of the world. This capability supports dynamic instrumental reasoning, where the model can
801 flexibly plan and re-plan its actions to navigate changing conditions and work towards a goal. For
802 example, a household robot would need to reason about multiple factors at once, such as the move-
803 ment of a person, the delicacy of an object it plans to handle, and the best path through a cluttered
804 space, while adapting its motor commands accordingly. This close coupling of perception, reason-
805 ing, and action in a real-time loop is a core aspect of embodied cognition, and achieving it presents
806 significant challenges for a conventional batch thinking approach.
807808 **Streaming Multimodal Understanding** Beyond text, streaming thinking is vital for interpreting
809 continuous non-verbal data streams, such as live video feeds or audio environments. For instance,
810 in video understanding, a model must reason about the temporal causality of events as they oc-
811 cur—identifying that an action in frame t is a consequence of an event in frame $t - n$. This is essen-
812 tial for applications like live sports commentary, real-time video surveillance for anomaly detection,
813 or accessibility tools that provide live descriptions of the visual world for the visually impaired. By
814 maintaining an evolving memory of the visual stream, the model can provide coherent, context-rich
815 interpretations without the need to process the entire video offline.
816

810 A.2 RESEARCH SCOPE AND POSITIONING
811812 This work positions itself as a pioneering exploration into the **paradigm of Streaming Think-813 ing**—technically enabling Large Language Models (LLMs) to perform concurrent reading and814 reasoning. Our primary contribution lies in establishing the architectural and training methodologies815 required to adapt LLMs for efficient, continuous data processing.816 Regarding our evaluation scope, we utilize mathematical reasoning, logic reasoning, and contextual817 QA tasks primarily as a controlled testbed to verify the logical consistency of our streaming frame-818 work. These deterministic domains serve as a rigorous testbed to verify that our model can maintain819 logical consistency and accuracy under the strict constraints of streaming inference. Our future work820 aims to extend this paradigm to complex streaming scenarios.
821822 B STREAMING THINKING PARADIGM
823824 B.1 COGNITIVE FOUNDATIONS OF STREAMING THINKING
825

826 Human reasoning during reading naturally unfolds in a streaming manner—people engage in com-827 prehension and inference as information arrives, without waiting for the complete context.

828 Our proposed StreamingThinker architecture draws structural inspiration from established models of829 human discourse comprehension, specifically the Construction-Integration (CI) model proposed by830 Kintsch (Kintsch, 1988). The CI model posits that comprehension occurs in two alternating cycles:
831

- 832 • The Construction Phase: A bottom-up process where linguistic input triggers the activation833 of concepts and propositions based on local context. In this stage, the cognitive system834 acts as a high-bandwidth information buffer, prioritizing the establishment of local co-835 herence (e.g., resolving immediate pronouns or connecting adjacent clauses) over global836 consistency. Crucially, this phase is non-selective: it allows multiple, potentially conflict-837 ing interpretations to co-exist in a temporary cognitive state. This ensures that no critical838 information is prematurely discarded before the full context is available
- 839 • The Integration Phase: Once the initial propositional network is constructed, the cognitive840 system iteratively updates node activations based on their connectivity and connection841 strengths. Through this process, the system resolves local ambiguities (e.g., polysemy)842 and filters out contextually inappropriate inferences. The result is a refined macrostruc-843 ture where only the information strictly consistent with the global context remains active,
844 ensuring a unified and logical understanding of the discourse.

845 Inspired by this cognitive process, we proposed in the main text a Streaming Thinking Paradigm
846 that enables large language models to reason concurrently with incremental input. Our stream-847 ing phase corresponds to the construction phase, where the model performs “shallow reasoning”
848 (e.g., entity tracking, intermediate calculation) to process incoming chunks and maintain local co-849 herence (Graesser et al., 1994). Our final reasoning phase corresponds to the integration phase,
850 where the model utilizes the fully accumulated context (KV cache) to synthesize a globally consis-851 tent answer. This theoretical alignment explains why our model avoids the “hallucination” pitfalls
852 of premature guessing: like a human reader, it defers the final integration of complex causal chains
853 until the necessary global information is available.

854 In this appendix, we further elaborate on this paradigm by providing detailed explanations and illus-855 trative examples that clarify its operational design and the ordering of context and question.

856 At each step, the model incrementally processes the incoming sentence, focusing on shallow and
857 progressive comprehension, which aligns the construction phase in human comprehension. Specif-858 ically, we designed distinct categories of tasks for the model during local construction, serving as
859 cognitive scaffolds for establishing local coherence. These tasks (e.g., intermediate calculation,
860 entity tracking) compel the model to explicitly process and encode immediate details, transforming
861 raw input into structured representations without prematurely committing to a global conclusion.
862 (1) understanding and summarizing key information, (2) explaining ambiguities and reorganizing
863 semantic relations, (3) extending logical implications, and (4) skipping thinking step when the
content is irrelevant to the question.

864 After completing incrementally reading and reasoning, the model shifts its focus from local coherence to global interpretation. It leverages the full context now available in its memory (KV cache) to perform the deep, unconstrained reasoning that was deliberately deferred during the streaming phase. Specifically, the model may: (1) directly produce an answer, representing the shallowest depth; (2) further integrate global information to achieve deeper comprehension; or (3) perform reflective reasoning on top of global integration to obtain the most reliable reasoning outcome.

870

871 B.2 EXAMPLES OF PARADIGM DESIGN

872

873 We instantiate Streaming Thinking on three representative tasks—math reasoning, logical reasoning, and long-context QA—to show how the paradigm incrementally processes input, manages intermediate reasoning, and enables depth-wise answers (see Box B.1a–c).

874

875 **Math reasoning (Box B.1a).** Given a multi-conditions problem, the model reads the context sentence by sentence, identifying rate/quantity information, skipping irrelevant text, and maintaining interpretable intermediate results (e.g., partial counts). The pipeline supports three reasoning depths: D1 a direct computation from the current notes, D2 a globally consolidated solution that aggregates all intervals, and D3 a reflective pass that re-checks each arithmetic step to ensure reliability.

876

877

878 Paradigm design for Streaming Thinking in Math Reasoning

879

880 Input sentences	881 Streaming thinking
882	883
884	885
886	887
887	888
888	889
889	890
890	891
891	892
892	893
893	894
894	895
895	896
896	897
897	898
898	899
899	900
900	901
901	902
902	903
903	904
904	905
905	906
906	907
907	908
908	909
909	910
910	911
911	912
912	913
913	914
914	915
915	916
916	917

882

Input sentences

883

Streaming thinking

884

Question

885 1. How many more popcorns does Mohammed eat than his brother?

886

Context

887 2. Mohammed is popping popcorn for a snack.

888 3. As the skillet of kernels heats up, the kernels start popping faster.

889 4. 100 pop in the first 22 seconds of cooking, then 3 times that amount in the next 22 seconds.

890 5. The kernels increase to 6 times the initial popping rate in the next 22 seconds.

891 6. In the final 22 seconds, the popping slows down to half the rate as the past 22 seconds.

892 7. After Mohammed takes the skillet off the heat, a quarter of the number of kernels that popped in the final 22 seconds of cooking also pop from the residual heat.

893 8. Mohammed gives 2/5 of the made popcorn to his brother Yusuf.

894 <think>

895 1. Okay, I need to calculate how many more pieces of popcorn Mohammed has than his brother.

896 2. <skip>

897 3. Heating the skillet accelerates kernel popping.

898 4. The process starts with 100 kernels popping in the first 22-second interval, followed by a second interval where the amount triples, yielding $100 \times 3 = 300$ kernels.

899 5. In the next 22 seconds, the rate increases to 6 times the initial rate, meaning the number of popped kernels is based on the initial amount of 100, resulting in $100 \times 6 = 600$ kernels for this third period.

900 6. For the final 22 seconds of cooking, the rate slows to half of the preceding interval's rate, which gives us $600 \div 2 = 300$ kernels.

901 7. After the skillet is removed from the heat, residual heat pops an additional quarter of the amount from the final cooking period, adding $300 \div 4 = 75$ kernels.

902 8. Finally, the total amount of popcorn is the sum of all intervals: $100 + 300 + 600 + 75 = 1,375$. Mohammed gives $2/5$ of this to his brother Yusuf, which amounts to $1375 \times 2 \div 5 = 550$ kernels.

903 [Optional depth, streaming thinking with direct answer]

904 So, the answer is 275.

905 [Optional depth, streaming thinking with global thinking]

906 So, after giving 550 pieces to his brother, Mohammed retains $1375 - 550 = 825$. The difference is $825 - 550 = 275$.

907 [Optional depth, streaming thinking with global thinking & reflection]

908 So, after giving 550 pieces to his brother, Mohammed retains $1375 - 550 = 825$. The difference is $825 - 550 = 275$. Wait, let me check again. The first interval is 100, second is $3 \times$ that = 300, third is $6 \times$ the initial rate (not cumulative), so 600—that's right. Fourth is half of the previous interval's rate, so half of 600 is 300, yes. Then residual heat adds a quarter of that final 300, so 75—correct. Total: $100 + 300 + 600 + 300 + 75 = 1,375$. He gives $2/5$ to Yusuf: $1,375 \times 2 \div 5 = 550$. That leaves Mohammed with 825. Difference: $825 - 550 = 275$. All steps check out. So yes, Mohammed has 275 more pieces than his brother.

909 <\think>

918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

Logical reasoning (Box B.1b). Premises are normalized as explicit statements; each incoming sentence is mapped to entities and relations, while unrelated sentences are skipped. Local implications are updated online, and the final decision is produced at different depths: D1 yields an immediate verdict when premises suffice; D2 integrates all premises to assess entailment vs. contradiction; D3 performs a reflective consistency check, which may revise a premature “True/False” to “Unknown” when a critical premise (e.g., a location) is not actually supported by the context.

Paradigm design for Streaming Thinking in Logic Reasoning

Input sentences	Streaming thinking
Question	<think>
1. Is the conclusion true given the premises?, ['True', 'False', 'Unknown'], conclusion:William Dickinson went to schools located in the United Kingdom for both high school and university.	1. Okay, the question is asking whether the conclusion — that William Dickinson went to schools in the United Kingdom for both high school and university — is true, based on the given premises. The possible answers are True, False, or Unknown.
Context	
2.William Dickinson was a British politician who sat in the House of Commons William Dickinson attended Westminster school for high school and then the University of Edinburgh.	2. William Dickinson attended Westminster School for high school and then the University of Edinburgh.
3. The University of Edinburgh is a university located in the United Kingdom.	3. The University of Edinburgh is located in the United Kingdom.
4. William Dickinson supported the Portland Whigs.	4. <Skip>
5. People who supported the Portland Whigs did not get a seat in the Parliament.	5. <Skip>
[Optional depth, streaming thinking with direct answer]	
Therefore, the answer is True.	
[Optional depth, streaming thinking with global thinking]	
The conclusion specifies that both his high school and university were located in the United Kingdom. The context explicitly states he attended Westminster School and the University of Edinburgh. Since the University of Edinburgh is confirmed to be in the UK, the university part is satisfied. However, the location of Westminster School is not directly stated in the context. Westminster School is a well-known school in London, UK, but the context does not explicitly mention its location. Without explicit confirmation that Westminster School is in the UK, the conclusion about both institutions being in the UK remains uncertain. Therefore, the answer is Unknown.	
[Optional depth, streaming thinking with global thinking & reflection]	
The conclusion specifies that both his high school and university were located in the United Kingdom. The context explicitly states he attended Westminster School and the University of Edinburgh. Since the University of Edinburgh is confirmed to be in the UK, the university part is satisfied. However, the location of Westminster School is not directly stated in the context. Westminster School is a well-known school in London, UK, but the context does not explicitly mention its location. Without explicit confirmation that Westminster School is in the UK, the conclusion about both institutions being in the UK remains uncertain. Wait, let me check again. The context only mentions the University of Edinburgh's location in the UK. Westminster School is not explicitly stated to be in the UK. Even though common knowledge might suggest it is, the premises provided do not confirm this. Therefore, the conclusion cannot be fully verified from the given premises. Therefore, the answer is Unknown.	
<\think>	

Context-based QA (Box B.1c). For scientific or document-level passages, the model streams through long context, filtering sentences that are irrelevant, extracting mechanistic cues (e.g., causal roles, experimental outcomes), and merging compatible evidence across distant spans. D1 gives a concise answer when a single decisive statement appears; D2 synthesizes multi-sentence evidence for a stronger justification; D3 runs a reflective verification that cross-checks all cited evidence for agreement before committing to the final answer.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Paradigm Design for Streaming Thinking in Context-based QA Reasoning

Input sentences

Question

1. Do mitochondria play a role in remodelling lace plant leaves during programmed cell death?

Context

2. Programmed cell death (PCD) is the regulated death of cells within an organism.

3. The lace plant (*Aponogeton madagascariensis*) produces perforations in its leaves through PCD.

4. The leaves of the plant consist of a latticework of longitudinal and transverse veins enclosing areoles.

5. PCD occurs in the cells at the center of these areoles and progresses outwards, stopping approximately five cells from the vasculature.

6. The role of mitochondria during PCD has been recognized in animals; however, it has been less studied during PCD in plants.

7. The following paper elucidates the role of mitochondrial dynamics during developmentally regulated PCD in vivo in *A. madagascariensis*. A single areole within a window stage leaf (PCD is occurring) was divided into three areas based on the progression of PCD; cells that will not undergo PCD (NPSCD), cells in early stages of PCD (EPCD), and cells in late stages of PCD (LPCD).

8. Window stage leaves were stained with the mitochondrial dye MitoTracker Red CMXRos and examined.

9. Mitochondrial dynamics were delineated into four categories (M1-M4) based on characteristics including distribution, motility, and membrane potential ($\Delta \Psi_m$).

10. A TUNEL assay showed fragmented nDNA in a gradient over these mitochondrial stages.

11. Chloroplasts and transvacuolar strands were also examined using live cell imaging.

12. The possible importance of mitochondrial permeability transition pore (PTP) formation during PCD was indirectly examined via *in vivo* cyclosporine A (CsA) treatment.

13. This treatment resulted in lace plant leaves with a significantly lower number of perforations compared to controls, and that displayed mitochondrial dynamics similar to that of non-PCD cells.

Streaming thinking

<think>

1. Okay, let's see. The question asks whether mitochondria contribute to the remodeling of lace plant leaves during programmed cell death. I need to focus on 'mitochondria', 'remodeling of lace plant leaves', and 'programmed cell death'.

2. The first sentence introduce that Programmed cell death (PCD) is the regulated death of cells within an organism.

3. In lace plants, leaf perforations are created through programmed cell death.

4. <Skip>

5. <Skip>

6. This study investigates mitochondrial involvement in developmental cell death in lace plant leaves.

7. Researchers divided an areole into three zones: non-PCD cells, early PCD cells, and late PCD cells, reflecting the progression of cell death.

8. They stained mitochondria in window-stage leaves with MitoTracker Red to observe their properties.

9. Mitochondria were classified into four dynamic states (M1-M4) based on distribution, motility, and membrane potential.

10. A DNA fragmentation assay (TUNEL) showed nuclear degradation corresponding with mitochondrial changes, linking mitochondrial dynamics to PCD progression.

11. <Skip>

12. The potential involvement of the mitochondrial permeability transition pore was tested pharmacologically with cyclosporine A.

13. Treatment reduced the number of leaf perforations and preserved mitochondria in a state similar to healthy cells, showing that blocking mitochondrial pore activity suppressed PCD.

[Optional depth, streaming thinking with direct answer]

Therefore, the answer is No.

[Optional depth, streaming thinking with global thinking]

The study demonstrates that mitochondria change in distribution, motility, and membrane potential during the stages of programmed cell death in lace plant leaves. DNA fragmentation corresponds with these mitochondrial states, and inhibition of the mitochondrial permeability transition pore reduces perforation formation. Together, this evidence shows that mitochondria are actively involved in regulating and executing cell death that sculpts lace plant leaves. Therefore, the answer is Yes.

[Optional depth, streaming thinking with global thinking & reflection]

The study demonstrates that mitochondria change in distribution, motility, and membrane potential during the stages of programmed cell death in lace plant leaves. DNA fragmentation corresponds with these mitochondrial states, and inhibition of the mitochondrial permeability transition pore reduces perforation formation. Together, this evidence shows that mitochondria are actively involved in regulating and executing cell death that sculpts lace plant leaves. Wait, let me check again. The lace plant forms leaf perforations through PCD, so if mitochondria affect PCD, they affect remodeling. The study showed mitochondria shift in distribution, motility, and membrane potential during PCD stages, changes that align with DNA fragmentation. Blocking the mitochondrial permeability transition pore reduced perforations and preserved healthy-like mitochondria. Thus, mitochondria actively regulate and execute PCD in shaping lace plant leaves. Therefore, the answer is Yes.

<\think>

1026

B.3 EXAMPLES OF THE ORDERING OF CONTEXT AND QUESTION

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Example: Order of Context and Question for Streaming Thinking in Math Reasoning

Question first

Input sentences

Question

1. How many more popcorns does Mohammed eat than his brother?

Context

2. Mohammed is popping popcorn for a snack.

3. As the skillet of kernels heats up, the kernels start popping faster.

4. 100 pop in the first 22 seconds of cooking, then 3 times that amount in the next 22 seconds.

5. The kernels increase to 6 times the initial popping rate in the next 22 s.

6. In the final 22 seconds, the popping slows down to half the rate as the past 22 seconds.

7. After Mohammed takes the skillet off the heat, a quarter of the number of kernels that popped in the final 22 seconds of cooking also pop from the residual heat.

8. Mohammed gives 2/5 of the made popcorn to his brother Yusuf.

Streaming thinking

<think>

1. Okay, I need to calculate how many more pieces of popcorn Mohammed has than his brother.

2. <skip>

3. Heating the skillet accelerates kernel popping.

4. The process starts with 100 kernels popping in the first 22-second interval, followed by a second interval where the amount triples, yielding $100 \times 3 = 300$ kernels.5. In the next 22 seconds, the rate increases to 6 times the initial rate, meaning the number of popped kernels is based on the initial amount of 100, resulting in $100 \times 6 = 600$ kernels for this third period.6. For the final 22 seconds of cooking, the rate slows to half of the preceding interval's rate, which gives us $600 \div 2 = 300$ kernels.7. After the skillet is removed from the heat, residual heat pops an additional quarter of the amount from the final cooking period, adding $300 \div 4 = 75$ kernels.8. Finally, the total amount of popcorn is the sum of all intervals: $100 + 300 + 600 + 300 + 75 = 1375$. Mohammed gives 2/5 of this to his brother Yusuf, which amounts to $1375 \times 2 \div 5 = 550$ kernels.

[Optional depth, streaming thinking with direct answer]

So, the answer is 275.

[Optional depth, streaming thinking with global thinking]

So, after giving 550 pieces to his brother, Mohammed retains $1375 - 550 = 825$. The difference is $825 - 550 = 275$.

[Optional depth, streaming thinking with global thinking & reflection]

So, after giving 550 pieces to his brother, Mohammed retains $1375 - 550 = 825$. The difference is $825 - 550 = 275$. **Wait, let me check again.** The first interval is 100, second is $3 \times 100 = 300$, third is $6 \times 100 = 600$ (not cumulative), so $600 - 100 = 500$ —that's right. Fourth is half of the previous interval's rate, so half of 600 is 300, yes. Then residual heat adds a quarter of that final 300, so $300 \div 4 = 75$ —correct. Total: $100 + 300 + 600 + 300 + 75 = 1375$. He gives 2/5 to Yusuf: $1375 \times 2 \div 5 = 550$. That leaves Mohammed with 825. Difference: $825 - 550 = 275$. All steps check out. So yes, Mohammed has 275 more pieces than his brother.

<\think>

Context first

Input sentences

Context

1. Mohammed is popping popcorn for a snack.

2. As the skillet of kernels heats up, the kernels start popping faster.

3. 100 pop in the first 22 seconds of cooking, then 3 times that amount in the next 22 seconds.

4. The kernels increase to 6 times the initial popping rate in the next 22 s.

5. In the final 22 seconds, the popping slows down to half the rate as the past 22 seconds.

6. After Mohammed takes the skillet off the heat, a quarter of the number of kernels that popped in the final 22 seconds of cooking also pop from the residual heat.

7. Mohammed gives 2/5 of the made popcorn to his brother Yusuf.

Question

8. How many more popcorns does Mohammed eat than his brother?

Streaming thinking

<think>

1. Okay, the input sentences are start with that Mohammed pops popcorn for a snack.

2. Then we know that popping speeds up as the skillet heats.

3. Then the process starts with 100 kernels popping in the first 22-second interval, followed by a second interval where the amount triples, yielding $100 \times 3 = 300$ kernels.4. In the next 22 seconds, the rate increases to 6 times the initial rate, meaning the number of popped kernels is based on the initial amount of 100, resulting in $100 \times 6 = 600$ kernels for this third period.5. For the final 22 seconds of cooking, the rate slows to half of the preceding interval's rate, which gives us $600 \div 2 = 300$ kernels.6. After the skillet is removed from the heat, residual heat pops an additional quarter of the amount from the final cooking period, adding $300 \div 4 = 75$ kernels.7. Finally, the total amount of popcorn is the sum of all intervals: $100 + 300 + 600 + 300 + 75 = 1375$. Mohammed gives 2/5 of this to his brother Yusuf, which amounts to $1375 \times 2 \div 5 = 550$ kernels.

8. Now I have read the question and I need to calculate how many more pieces of popcorn Mohammed has than his brother.

[Optional depth, streaming thinking with direct answer]

So, the answer is 275.

[Optional depth, streaming thinking with global thinking]

So, after giving 550 pieces to his brother, Mohammed retains $1375 - 550 = 825$. The difference is $825 - 550 = 275$.

[Optional depth, streaming thinking with global thinking & reflection]

So, after giving 550 pieces to his brother, Mohammed retains $1375 - 550 = 825$. The difference is $825 - 550 = 275$. **Wait, let me check again.** The first interval was 100, then three times that → 300, then six times the initial rate (not cumulative) → 600. After that, half of the previous 600 → 300, and finally the residual quarter of that 300 → 75. Adding them all, $100 + 300 + 600 + 300 + 75 = 1375$, consistent. Giving 2/5 to Yusuf: $1375 \times 2 \div 5 = 550$. Subtracting leaves 825, and the difference indeed comes out as 275. So yes, after rechecking, the conclusion holds—Mohammed ends up with 275 more pieces than his brother.

<\think>

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

Logical reasoning (Box B.2b). Under *question-first* ordering, the model enters a hypothesis-testing mode: each premise is checked against the claimed conclusion, distractors are skipped, and if a critical premise is missing, depth D3 returns UNKNOWN. With *context-first* ordering, the model first normalizes premises into entities and relations; after the question is posed, it adjudicates entailment/contradiction/unknown using the cached structure. Answers remain consistent across orders, while the traces reveal different timing of inference.

Example: Order of Context and Question for Streaming Thinking in Logical Reasoning

Question first	Context first
Input sentences	Input sentences
Question	Context
1. Is the conclusion true given the premises?, ['True', 'False', 'Unknown'], conclusion:William Dickinson went to schools located in the United Kingdom for both high school and university.	1. William Dickinson was a British politician who sat in the House of Commons William Dickinson attended Westminster school for high school and then the University of Edinburgh.
Context	2. The University of Edinburgh is a university located in the UK.
2. William Dickinson was a British politician who sat in the House of Commons William Dickinson attended Westminster school for high school and then the University of Edinburgh.	3. William Dickinson supported the Portland Whigs.
3. The University of Edinburgh is a university located in the UK.	4. People who supported the Portland Whigs did not get a seat in the Parliament.
4. William Dickinson supported the Portland Whigs.	Question
5. People who supported the Portland Whigs did not get a seat in the Parliament.	5. Is the conclusion true given the premises?, ['True', 'False', 'Unknown'], conclusion:William Dickinson went to schools located in the United Kingdom for both high school and university.
Streaming thinking	Streaming thinking
<think>	<think>
1. Okay, the question is asking whether the conclusion — that William Dickinson went to schools in the United Kingdom for both high school and university — is true, based on the given premises. The possible answers are True, False, or Unknown.	1. Okay, we now know that William Dickinson attended Westminster School for high school and then the University of Edinburgh.
2. William Dickinson attended Westminster School for high school and then the University of Edinburgh.	2. And, the University of Edinburgh is a university situated in the United Kingdom.
3. The University of Edinburgh is located in the United Kingdom.	3. William Dickinson supports the Portland Whigs.
4. <Skip>	4. Then, according to the rule, anyone who supported the Portland Whigs did not obtain a seat in Parliament. So William Dickinson did not obtain a seat in Parliament.
5. <Skip>	5. Now, the question is asking whether the conclusion — that William Dickinson went to schools in the United Kingdom for both high school and university — is true.
[Optional depth, streaming thinking with direct answer]	[Optional depth, streaming thinking with direct answer]
So, the answer is 275.	Therefore, the answer is True.
[Optional depth, streaming thinking with global thinking]	[Optional depth, streaming thinking with global thinking]
The conclusion specifies that both his high school and university were located in the UK. The context explicitly states he attended Westminster School and the University of Edinburgh. Since the University of Edinburgh is confirmed to be in the UK, the university part is satisfied. However, the location of Westminster School is not directly stated in the context. Westminster School is a well-known school in London, UK, but the context does not explicitly mention its location. Without explicit confirmation that Westminster School is in the UK, the conclusion about both institutions being in the UK remains uncertain. Therefore, the answer is Unknown.	The context explicitly states he attended Westminster School and the University of Edinburgh. Since the University of Edinburgh is confirmed to be in the UK, the university part is satisfied. However, the location of Westminster School is not directly stated in the context. Westminster School is a well-known school in London, UK, but the context does not explicitly mention its location. Without explicit confirmation that Westminster School is in the UK, the conclusion about both institutions being in the UK remains uncertain. Therefore, the answer is Unknown.
[Optional depth, streaming thinking with global thinking & reflection]	[Optional depth, streaming thinking with global thinking & reflection]
The conclusion specifies that both his high school and university were located in the United Kingdom. The context explicitly states he attended Westminster School and the University of Edinburgh. Since the University of Edinburgh is confirmed to be in the UK, the university part is satisfied. However, the location of Westminster School is not directly stated in the context. Westminster School is a well-known school in London, UK, but the context does not explicitly mention its location. Without explicit confirmation that Westminster School is in the UK, the conclusion about both institutions being in the UK remains uncertain. Wait, let me check again. The context only mentions the University of Edinburgh's location in the UK. Westminster School is not explicitly stated to be in the UK. Even though common knowledge might suggest it is, the premises provided do not confirm this. Therefore, the conclusion cannot be fully verified from the given premises. Therefore, the answer is Unknown.	The context explicitly states he attended Westminster School and the University of Edinburgh. Since the University of Edinburgh is confirmed to be in the UK, the university part is satisfied. However, the location of Westminster School is not directly stated in the context. Westminster School is a well-known school in London, UK, but the context does not explicitly mention its location. Without explicit confirmation that Westminster School is in the UK, the conclusion about both institutions being in the UK remains uncertain. Wait, let me check again. The context only mentions the University of Edinburgh's location in the UK. Westminster School is not explicitly stated to be in the UK. Even though common knowledge might suggest it is, the premises provided do not confirm this. Therefore, the conclusion cannot be fully verified from the given premises. Therefore, the answer is Unknown.
<\think>	<\think>

1134 C STREAMING CoT GENERATION
11351136 C.1 DOES INCREMENTAL SENTENCE INPUT WORK?
1137

1138 A straightforward idea is to feed sentences into LLMs sequentially and expect sentence-by-sentence
1139 reasoning based on the accumulated input. However, our experiments show that when given only a
1140 single sentence without streaming fine-tuning, the original reasoning model tends to overthink (Sui
1141 et al., 2025). In other words, although this sentence-level data generation method appears to align
1142 better with the streaming property, the vanilla model lacks such generative capability and exhibits
1143 reduced controllability in CoT generation.

1144 C.2 DOES DIRECT PROMPTING OF LLMs WORK?
1145

1146 Another intuitive approach is to directly prompt LLMs to perform streaming-style reasoning with
1147 carefully crafted instructions. In this setup, the model is explicitly asked to reason sentence by
1148 sentence. Nevertheless, our experiments show that, lacking fine-grained control, prompt engineering
1149 alone is insufficient: although the model may superficially follow the instructions, it often deviates
1150 from the intended trajectory, resulting in inconsistent or overly verbose reasoning. Therefore, we
1151 design a pipeline for CoT trajectory control based on the complete input, which enforces sequential
1152 reasoning in LLMs through explicit boundary constraints and teacher guidance.

1153 C.3 CONTROL CoT PROCESS
1154

1155 In this work, we design a multi-stage pipeline for streaming CoT generation and control. The
1156 pipeline consists of four key components: (1) boundary-token insertion to finely define reasoning
1157 units and ensure sequential alignment; (2) instruction-based prompting to guide the LLM toward
1158 the desired streaming paradigm; (3) teacher-model guidance to reconstruct reasoning chains with
1159 improved structural consistency and semantic fidelity; and (4) token-level intervention to control the
1160 trajectory of CoT, enabling adjustable reasoning depth and style.

1161 **Boundary Token Insert** In our proposed streaming thinking paradigm, a complete sentence serves
1162 as a atomic unit of cognition. This design achieves a critical balance between the fine-grained
1163 nature of streaming processing and the preservation of semantic integrity in the information being
1164 processed. To implement this design, we introduce a structured protocol of boundary tokens to ex-
1165 plicitly demarcate the model’s thinking boundaries. Specifically, this protocol distinguishes between
1166 input signals and the model’s generated reasoning states:

- 1167 • **Input Demarcation:** We employ two distinct tokens to structure the input stream. The
1168 <EOS> (End-of-Sentence) token follows each contextual sentence, triggering an incremen-
1169 tal thinking step for context assimilation. In contrast, the <EOQ> (End-of-Question) token
1170 marks the end of the problem description, signaling a shift from context processing to an-
1171 swer formulation.
- 1172 • **Thinking State Demarcation:** The model’s thought process is, in turn, segmented by three
1173 corresponding output tokens. The <EOT> (End-of-Thought) token concludes each incre-
1174 mental reasoning segment associated with a context sentence. The <EOQ> token concludes
1175 the reasoning phase triggered by the question. Finally, the <EOR> (End-of-Reasoning) to-
1176 ken signifies the completion of the entire streaming thinking chain with controllable depth,
1177 preceding the final answer generation.

1178 It is important to note that the boundary tokens are introduced primarily as a data generation and
1179 evaluation methodology. Their purpose is to provide a structured prompt for the LLMs to generate
1180 the desired streaming chain-of-thought behavior. Moreover, in real streaming reasoning scenarios,
1181 once the LLM outputs a boundary token, the current reasoning unit can be regarded as completed.
1182 Thus, during training, boundary tokens serve as supervisory signals that guide the model to recog-
1183 nize when a reasoning unit should be terminated.

1184 There is an example for boundary tokens insert.

Boundary Tokens Insert for Generation	
1188	Input sentences
1189	Question
1190	1. How many more popcorns does Mohammed eat than his brother?<EOQ>
1191	Context
1192	2. Mohammed is popping popcorn for a snack.<EOS>
1193	3. As the skillet of kernels heats up, the kernels start popping faster.<EOS>
1194	4. 100 pop in the first 22 seconds of cooking, then 3 times that amount in
1195	the next 22 seconds.<EOS>
1196	5. The kernels increase to 6 times the initial popping rate in the next 22
1197	seconds.<EOS>
1198	6. In the final 22 seconds, the popping slows down to half the rate as the
1199	past 22 seconds.<EOS>
1200	7. After Mohammed takes the skillet off the heat, a quarter of the number
1201	of kernels that popped in the final 22 seconds of cooking also pop from the
1202	residual heat.<EOS>
1203	8. Mohammed gives 2/5 of the made popcorn to his brother Yusuf.<EOS>
1204	
1205	
1206	
1207	
1208	
1209	
1210	
1211	
1212	
1213	
1214	
1215	
1216	
1217	
1218	
1219	
1220	
1221	
1222	
1223	
1224	
1225	
1226	
1227	
1228	
1229	
1230	
1231	
1232	
1233	
1234	
1235	
1236	
1237	
1238	
1239	
1240	
1241	

Table 1: Streaming reasoning instruct template.

Input: question, context, example.

You are a streaming reasoner to perform an order reasoning based on the following Question and Context:

Input Question:{question}

Input Context:{context}

Follow these strict instructions:

1. Must process the Context in order, as if the input arrive in a streaming way.

(1) Must perform reasoning one sentence at a time, i.e. When you encounter an <EOS> in the Input Context, perform reasoning about the sentence that before this <EOS>.

(2) Upon encountering <EOS>, immediately reason about the preceding sentence and end with an <EOT>.

(3) Do Not skip any <EOS> and Do Not forget any <EOT>, i.e. each <EOS> in the Input must match a <EOT> in the reasoning.

2. If you read any Question end with <EOQ>.

(1) Explain the Question that before the <EOQ> in the Input Question. (2) End your interpretation with <EOQ>. (3) Do not add assumptions beyond the explicit meaning of the Question.

3. For each input sentence, smoothly integrate the following into a coherent paragraph-style output:

(1) **Understanding and summarizing key information:** (1-1) Ignore redundant, irrelevant, or ambiguous information. (1-2)Focus on extracting core facts, quantities, conditions, roles, time, location, and other essential elements.

(2) **Explaining ambiguities and reorganizing semantic relation:** (2-1) Clarify vague expressions, ambiguities, or implied information. (2-2) Rephrase the original meaning using clearer, more straightforward, and structurally explicit language, without changing the factual content.

(3) **Lightly extending logical implications:** (3-1) Allowed examples include: Simple calculations (e.g., totals, differences, ratios). Natural inferences about time, sequence, or spatial order. Direct factual inference that logically follows from explicit information. (3-2) Prohibited actions: assumptions, predictions, or subjective evaluations.

(4) **Skipping irrelevant input:** If a sentence is not related to the Question, output <Skip><EOT> immediately after reading <EOS>.

4. **After reading and reasoning all sentences: DO NOT summarize or infer any judgment.**

There is an in-context example:{example}.

1242 **Prompt Template** The prompt presented in Table 1 casts the model as a streaming reasoner that
 1243 consumes the context sentence-by-sentence, keyed by `<EOS>`, and emits an immediate reasoning
 1244 step ending with `<EOT>`. It first interprets any question ending with `<EOQ>` and closes that inter-
 1245 pretation with `<EOQ>`. Each step must extract core facts, clarify ambiguities, and permit only light,
 1246 local inferences; irrelevant sentences are output as `<Skip><EOT>`. No global summary is allowed,
 1247 and an in-context example anchors the desired behavior.

1248
 1249 **Teacher Guidance Template** The prompt shown in Table 2 directs a teacher LLM to realign an
 1250 initial streaming trace so that every input sentence (terminated by `<EOS>`) maps exactly to one reasoning
 1251 step (terminated by `<EOT>`). If present, the question is explained once up to `<EOQ>` before
 1252 processing the context in strict order. The teacher may only simplify, clarify, and streamline existing
 1253 content—no new reasoning, no cross-sentence references, no merges, skips, or delays—thereby
 1254 enforcing strict locality and one-to-one pairing.

1255
 1256 **Table 2: Instruction template for teacher LLM under both question-first and context-first settings.**

1257 **Input:** `question, context, example, reasoning`.

1258
 1259 You have to reconstruct the following reasoning process based on the Original Input and the Initial Streaming
 1260 Reasoning Process, ensuring full compliance with the requirements of a streaming reasoner. The Original
 1261 Input consists of multiple sentences, each ending with `<EOS>`. Every sentence represents an independent
 1262 unit of reasoning. Your objective is to revise the initial reasoning such that each reasoning step corresponds
 1263 exactly.

1264 Follow these strict instructions:

1265 1. If any Question before reading the Input context.
 1266 (1) Explain the Question that before the `<EOQ>` in the Input Question at first.
 1267 (2) End your interpretation with `<EOQ>`.
 1268 (3) Do not add assumptions beyond the explicit meaning of the Question.

1269 2. Must process the Context in order, as if the input arrive in a streaming way.
 1270 (1) Must perform reasoning one sentence at a time, i.e. When you encounter an `<EOS>` in the Input Context,
 1271 perform reasoning about the sentence that before this `<EOS>`.
 1272 (2) Upon encountering `<EOS>`, immediately reason about the preceding sentence and output a result ending
 1273 with an `<EOT>`.
 1274 (3) Do Not skip any `<EOS>` and Do Not forget any `<EOT>`, i.e. each `<EOS>` in the Input must match a
 1275 `<EOT>` in the reasoning.

1276 3. For each input sentence, smoothly integrate the following into a coherent paragraph-style reasoning
 1277 output:
 1278 (1) Understanding and summarizing key information.
 1279 (2) Explaining ambiguities and reorganizing semantic relation.
 1280 (3) Lightly extending logical implications.
 1281 (4) Skipping irrelevant input.

1282 4. For each sentence:
 1283 (1) Do not merge, skip, or delay reasoning for any sentence. Each input sentence must be immediately
 1284 followed by its reasoning step.
 1285 (2) Do not quote or repeat the input sentence in the reasoning output.
 1286 (3) Do not introduce new reasoning not found in the original streaming process. You may only simplify,
 1287 clarify, or streamline what is already there.
 1288 (4) Your reasoning must be strictly local to each sentence. Do not refer to previous or later sentences. Avoid
 1289 speculation, assumptions, or global summaries when streaming reasoning.

1290 There is an in-context example: `{example}`.

1291 Now, begin your streaming reasoning reconstruction:

1292 `Input question: {question}`

1293 `Input context: {context}`

1294 `Reasoning content: {reasoning}`

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

Table 3: Instruct template of streaming thinking intervention.

<i>Streaming thinking with direct answer</i>	
< im_start >user\n{n {Instruction & Entire Input}< im_end >\n	
< im_start >assistant\n<think>{Streaming Thinking Content}. Now, let me direct output the answer.	
<i>Streaming thinking with global thinking</i>	
< im_start >user\n{n {Instruction & Entire Input}< im_end >\n	
< im_start >assistant\n<think>{Streaming Thinking Content}. Now, let me start the global thinking, focus on high-level reasoning trace that leads to the final answer.	
<i>Streaming thinking with global thinking & reflection</i>	
< im_start >user\n{n {Instruction & Entire Input}< im_end >\n	
< im_start >assistant\n<think>{Streaming Thinking Content}Now, let me start the global thinking. {Global Thinking Content}. Wait, let me check again.	

Thinking Intervention Template These prompts demonstrated in Table 3 modulate how the assistant transitions from streaming thoughts (`<think>`) to an answer: (i) direct answer ends the streaming trace and outputs the result immediately; (ii) global thinking triggers a brief high-level consolidation before answering; (iii) global thinking & reflection adds a final self-check pass. All variants preserve the streaming trace while explicitly steering when and how the final answer is produced.

C.4 QUALITY EVALUATION OF STREAMING CoT

As described in the main text, we evaluate the quality of data generation using two metrics: *granularity score* and *sequential consistency score*. The granularity score ensures that each input sentence corresponds to a distinct and non-overlapping reasoning segment, while the sequential consistency score verifies that the reasoning process unfolds in the same order as the input sequence. In this appendix, we provide a detailed explanation of the two evaluation metrics.

The *granularity score* measures the fine-grained alignment between the segmentation of the input context and that of the reasoning process. Formally, it is defined as the ratio between the number of boundary tokens in the input and those in the output:

$$\text{granularity} = \frac{N_{\text{EOS}}}{N_{\text{EOT}}},$$

where N_{EOS} and N_{EOT} denote the counts of boundary tokens in the input and output, respectively. A score of 1 indicates that the reasoning preserves the segmentation of the input exactly, suggesting ideal boundary alignment.

The *sequential consistency score* evaluates whether reasoning follows the input order in a streaming, segment-by-segment manner. We compute the semantic similarity between each input sentence and its corresponding reasoning segment:

$$\text{consistency} = \text{sim}(R_t, C_t) = \frac{v_R \cdot v_C}{\|v_R\| \|v_C\|},$$

where v_R and v_C denote the embedding vectors of reasoning sentence R_t and input sentence C_t , respectively. We employ SentenceBERT (Reimers & Gurevych, 2019) to obtain embeddings. A higher score reflects that the reasoning faithfully preserves both the order and semantic content of the input stream. In cases where multiple reasoning sentences correspond to one input sentence, we aggregate them as a single segment.

C.5 SIMILARITY MAP OF STREAMING CoT

For further qualitative evidence, we provide a sentence-level similarity map in Figure 1, which visualizes how reasoning aligns with the input across time. This map highlights diagonal patterns when the reasoning process maintains strong sequential consistency.

Figure 1: Examples of sentence-level similarity map between the input sentences and the reasoning content (from math reasoning task). High similarity along the diagonal demonstrates strong alignment, enabling evaluation through sequential consistency.

D DATASET DETAILS

Math Reasoning We construct math reasoning data from GSM-Symbolic (Mirzadeh et al., 2025), MetaMathQA (Yu et al., 2024), and TuLu-personas-math-grade (Lambert et al., 2024).

GSM-Symbolic is a symbolic variant of GSM8K that reformulates arithmetic word problems into semi-structured symbolic expressions, explicitly preserving quantities, operators, and logical relations. It consists of two subsets, GSM-Symbolic-P1 (5K samples) and GSM-Symbolic-P2 (2.5K samples), where P2 includes longer and more complex problems. We randomly sample 4K and 2K instances from P1 and P2 for training, respectively, while the remaining data are used for generating training instances.

MetaMathQA is an augmented dataset derived from the GSM8K and MATH training sets, containing 40K samples. It integrates symbolic reasoning with natural language explanation, covering multi-step arithmetic and algebraic reasoning tasks. We randomly select 1K samples for testing and use the remaining data for training instance generation.

TuLu-personas-math-grade comprises 50K math-related examples generated by GPT-4o under diverse instructional and persona conditions. The dataset emphasizes reasoning diversity and linguistic variation, providing rich supervision signals for reasoning style adaptation. All samples are used for generating training data.

To align with the streaming objective of “thinking while reading,” we retain inputs with at least three sentences and exclude tasks with very short inputs (e.g., proofs), which emphasize deep reasoning rather than streaming reasoning. We mix the generated data from all sources, and after filtering for correctness and evaluating the quality of streaming CoT, we retain 7.9K samples for training.

Logical Reasoning For logical reasoning, we evaluate on ProofWriter (Tafjord et al., 2020) and LogicNLI (Tian et al., 2021). ProofWriter is a benchmark designed for evaluating multi-step logical reasoning and theorem proving capabilities in natural language. It is derived from the Entailment-Bank corpus, where each example consists of a hypothesis and a set of supporting facts expressed in natural language. The task requires the model to infer whether the hypothesis is entailed, contradicted, or neutral given the supporting facts, while optionally generating an explicit reasoning chain that connects the premises to the conclusion. LogicNLI is a natural language inference (NLI) benchmark designed to evaluate the logical reasoning ability of language models beyond surface-level semantics. Each example in LogicNLI consists of a premise and a hypothesis pair, annotated with one of three logical relations: entailment, contradiction, or neutral. Unlike conventional NLI datasets that focus primarily on lexical or syntactic cues, LogicNLI emphasizes reasoning over formal logic structures such as conjunction, disjunction, negation, quantifiers, and implication.

1404 The ProofWriter dataset contains approximately 40K samples. We randomly sample 1K instances
 1405 for testing, while the remaining data are used for generating training instances. For LogicNLI, we
 1406 use its original 1k test set, while the remaining 16K training data is used for generating streaming
 1407 CoT data. After applying the streaming CoT generation process, the resulting dataset contains
 1408 approximately 20k instances for training.
 1409

1410 **Context-based QA Reasoning** For context-based QA reasoning task, we evaluate Streaming-
 1411 Thinker on PubMedQA (Jin et al., 2019) and HotpotQA (Yang et al., 2018) datasets.
 1412

1413 PubMedQA is a biomedical question answering benchmark designed to evaluate factual reasoning
 1414 and evidence-based inference in scientific texts. Each instance consists of a biomedical research
 1415 question, a context paragraph extracted from PubMed abstracts, and a short-form answer annotated
 1416 as yes, no, or maybe. The dataset emphasizes reasoning over factual statements, experimental find-
 1417 ings, and logical connections.

1418 HotpotQA is a large-scale question answering dataset designed to evaluate multi-hop reasoning
 1419 across multiple supporting documents. Each example consists of a question, a set of supporting
 1420 paragraphs from Wikipedia, and a corresponding answer. Unlike single-hop QA datasets that require
 1421 reasoning within a single sentence or passage, HotpotQA explicitly requires models to integrate
 1422 information from multiple contexts to derive the correct answer.

1423 The PubMedQA dataset contains 1K samples for testing and 61K samples for training, where all
 1424 of training samples are used for streaming CoT generation. The HotpotQA dataset includes 90K
 1425 samples. We randomly sample 1K examples for testing and 60K for streaming CoT generation.
 1426 After correctness filtering and streaming CoT quality evaluation, we retain a total of 16K samples
 1427 for training.

1428

1429 E MODEL DETAILS

1432 E.1 TRAINING DETAILS

1433 During training, we adopt a streaming mask region on top of the standard decoder-only LLM causal
 1434 mask to enforce strict streaming constraints. Specifically, each training instance is composed of
 1435 grouped *input* and *reasoning* segments, where the streaming mask (Eq. 2) ensures that reasoning at
 1436 time t cannot attend to future inputs. Additionally, the *position encoding* of both the input and CoT
 1437 is modified to group-wise streaming encoding, preventing positional conflicts.

1438 For training, we set the batch size to 16 and employ the AdamW optimizer with a learning rate of 1e-
 1439 5. We additionally enable activation checkpointing to mitigate memory overhead from maintaining
 1440 parallel caches during training. These choices align the training setup with prior LLM pretraining
 1441 while introducing only the modifications necessary for streaming compatibility.

1443

1444 E.2 DECODING STRATEGY

1445 During inference, decoding must also respect the streaming paradigm. Unlike standard autoregres-
 1446 sive generation where all inputs are visible, our decoding operates in a *streaming-aware* manner.
 1447 Input tokens are continuously appended to a dedicated input cache, while reasoning tokens are gen-
 1448 erated in parallel using a separate reasoning cache. At each step, the streaming mask ensures that
 1449 reasoning about the current sentence depends only on past inputs and past reasoning, never on un-
 1450 seen future inputs.

1451 For generation, we follow the sampling parameters of Qwen3. This balances fluency and diver-
 1452 sity while maintaining consistency across sequentially produced reasoning sentences. Importantly,
 1453 because input and reasoning caches are maintained independently, decoding proceeds with lower
 1454 latency: new inputs can be consumed without flushing or rewriting the reasoning cache, and rea-
 1455 soning updates can be emitted as soon as the corresponding input sentence completes. This strategy
 1456 preserves alignment with streaming training while ensuring responsiveness in real-time scenarios.
 1457 The streaming thinking decoding process is shown in Algorithm 1.

1458 **Algorithm 1** Streaming thinking with parallel KV caches

1459 **Input:** Source length list S , target length list T .

1460 1: Initialize input KV cache I_{cache} , output KV cache O_{cache} , and merged KV cache M_{cache} .

1461 2: Read the first input sentence, and save hidden state to input KV cache I_{cache} .

1462 3: [Parallel] For Input KV Cache (prefill) :

1463 4: **while** Input sentence is arrival **do**:

1464 5: Separate M_{cache} to I_{cache} and O_{cache} .

1465 6: Read the input sentence, and save hidden state to input KV cache I_{cache} .

1466 7: **end while**

1467 8: [Parallel] For Output KV Cache (decoding) :

1468 9: **while** Input sentence is arrival **do**:

1469 10: **if** $N_{EOS} \geq N_{EOT} + 1$: Sentence arrival time is less than LLM decoding time.

1470 11: Select a slice of the input KV cache I'_{cache} to keep $N_{EOS} == N_{EOT} + 1$.

1471 12: **elif** $N_{EOS} < N_{EOT} + 1$: Sentence arrival time exceeds LLM decoding time.

1472 13: Wait for the input KV cache prefilling and keep $N_{EOS} == N_{EOT} + 1$.

1473 14: Select a slice of the input KV cache I'_{cache} .

1474 15: Merge I'_{cache} and O_{cache} to M_{cache} .

1475 16: Decode the streaming thinking tokens and save to M_{cache} .

1476 17: **end while**

1477 18: [End of Parallel]

1478 19: Generate controllable deep thinking with thinking intervention.

1479 20: **Return:** The streaming CoT.

E.3 RELATION BETWEEN PARALLEL KV CACHES AND PREFILL-DECODE SEPARATION

1487 While our parallel KV caches mechanism may formally resemble techniques for Prefill-Decode
 1488 separation (Zhong et al., 2024; Qin et al., 2024), the foundational motivations and operational goals
 1489 behind the two approaches are fundamentally distinct.

1490 Prefill-Decode separation is primarily a system-level optimization designed to enhance throughput
 1491 in batched inference. It bifurcates the generation process into two discrete phases: a computationally
 1492 intensive prefill stage that processes the input prompt in a parallel batch, and a memory-bandwidth-
 1493 bound decoding stage for auto-regressive token generation. The core objective is to maximize hard-
 1494 ware utilization by applying specialized computational kernels to each distinct phase, thereby im-
 1495 proving efficiency for a fundamentally sequential task.

1496 In contrast, the design of our parallel KV caches is driven by the goal of enabling the model to
 1497 generate output concurrently while still consuming input. In other words, our approach is designed
 1498 to overlap the processing of incoming data with the generation of the output, breaking the strict
 1499 sequential dependency where generation can only begin after the entire input has been processed.

F EVALUATION METRIC

F.1 REASONING ACCURACY

1507 **Pass@1 Accuracy** This metric measures the proportion of test instances in which the model’s
 1508 top-1 generated output exactly matches the ground-truth answer. Unlike relaxed metrics that con-
 1509 sider multiple sampled generations (e.g., pass@ k), pass@1 provides a strict estimate of the model’s
 1510 reliability under single-shot decoding, which is the default usage setting for most real-world applica-
 1511 tions. A higher pass@1 score thus indicates stronger reasoning consistency and correctness without
 relying on sampling diversity.

1512
1513

F.2 REASONING LATENCY

1514
1515
1516
1517
1518
1519

Token-length Delay In streaming tasks, token-length delay measures *how many tokens must be consumed before the model begins its reasoning process*. Formally, it is defined as the gap between the start of the input stream and the position of the first reasoning token. A smaller token delay indicates that the model can initiate reasoning earlier in the stream, leading to faster overlap between input consumption and output generation. This metric thus reflects the responsiveness of reasoning onset in the streaming paradigm.

1520
1521

$$\text{Token-Delay} = \text{Position of first reasoning token} \quad (1)$$

1522
1523
1524
1525
1526
1527

Time Delay Time delay measures the real-time latency *between the arrival of the last input token and the emission of the first answer token*. This metric captures system-level responsiveness, incorporating factors such as decoding speed, cache management, and hardware throughput. While token delay evaluates the generation behavior in discrete units, time delay provides a wall-clock perspective that better reflects the user’s perceived waiting time. The Figure 2 illustrates the latency comparison between streaming thinking and batch thinking.

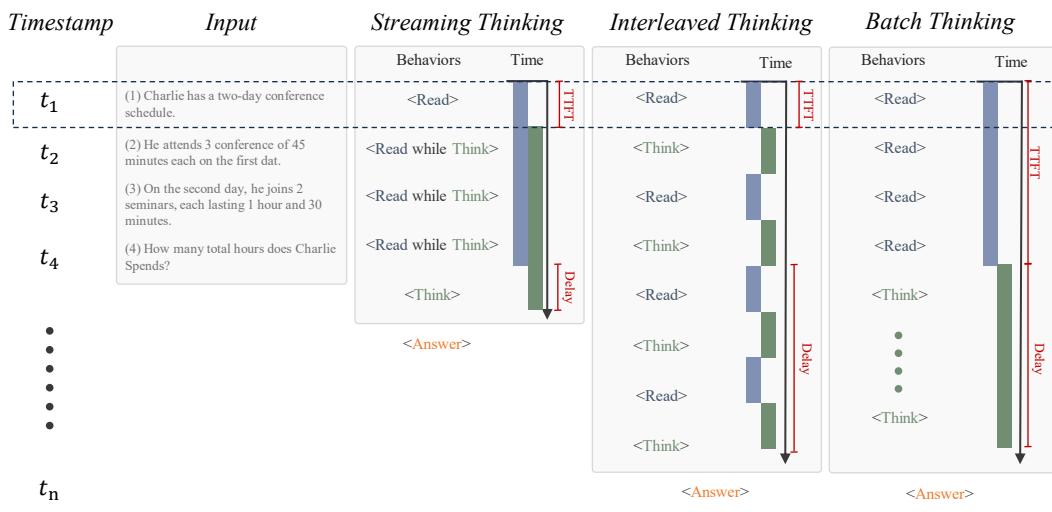
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 2: Comparison of reasoning paradigms. Streaming thinking enables concurrent reading and reasoning with minimal delay, while interleaved thinking alternates between the two but still accumulates overhead, and batch thinking postpones reasoning until all inputs are read, leading to the largest delay.

G THE USE OF LARGE LANGUAGE MODELS (LLMs)

LLMs are only used for language refinement (e.g., grammar and style corrections). They are not involved in research conception, execution, or analysis.