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ABSTRACT

We propose an alternative to sparse autoencoders (SAEs) as a simple and effective
unsupervised method for extracting interpretable concepts from neural networks.
The core idea is to cluster differences in activations, which we formally justify
within a discriminant analysis framework. To enhance the diversity of extracted
concepts, we refine the approach by weighting the clustering using the skewness
of activations. The method aligns with Deleuze’s modern view of concepts as
differences. We evaluate the approach across five models and three modalities (vi-
sion, language, and audio), measuring concept quality, diversity, and consistency.
Our results show that the proposed method achieves concept quality surpassing
prior unsupervised SAE variants while approaching supervised baselines, and that
the extracted concepts enable steering of a model’s inner representations, demon-
strating their causal influence on downstream behavior.

1 INTRODUCTION

Interpretability of neural network representations is essential for building trustworthy models, en-
abling a deeper understanding of the mechanisms underlying a model’s predictions, and promoting
fairness and accountability. However, interpreting the internal representations learned by neural net-
works remains a central challenge in deep learning. Sparse autoencoders (SAEs) (Bricken et al.,
2023; Cunningham et al., 2023) have emerged as a powerful tool for extracting sparse and seman-
tically meaningful features from model activations. Nevertheless, they face challenges that limit
their applicability. Notably, they suffer from difficulties in training, and may still yield polyseman-
tic features, not corresponding to a single interpretable concept. Moreover, sparse autoencoders
(and similar methods) rely on feature sparsity as a proxy for interpretability, a choice that has been
criticized as potentially inadequate (Sharkey et al., 2025).

We introduce an alternative to sparse autoencoders (SAEs) for extracting features that correspond
to interpretable concepts from neural networks. Drawing inspiration from Deleuze’s philosophical
view of concepts as differences, we model concepts as directions that capture distinctions between
representations of individual samples. Specifically, our approach can be seen as an unsupervised
discriminant analysis: it identifies directions in the internal representation that best separate data
samples. We estimate those directions by sampling activation differences between pairs of data

(a) Image: Van Gogh’s Paintings

“Winning the prize”

“the Gold Medal”

“the World Record”

(b) Text: Sports Achievements (c) Audio: Brass Instruments

Figure 1: Our method extracts diverse concepts from image, text and audio models.
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points, then use KMeans clustering to uncover recurring patterns. Our analysis is further refined
using distributional skewness to promote diversity.

Evaluating interpretability methods remains a major challenge. SAEs are often assessed by their
reconstruction–sparsity trade-off, which does not necessarily reflect interpretability. Hence, most
recent studies in this field are also evaluated qualitatively, showing their relevance through selected
examples. While insightful, such evaluations provide limited support. In contrast, we adopt a quanti-
tative evaluation based on probe loss (Gao et al., 2025), which measures the extent to which extracted
concepts capture the attributes expected to be present in a dataset. To ensure robust evaluation, we
apply this metric to a broad set of 874 attributes spanning different tasks, five datasets and five mod-
els across three modalities (image, text and audio). Our method captures the desired attributes more
effectively than recent SAE-based approaches. In several settings, it is competitive with supervised
linear discriminant analysis. Beyond the presence of expected attributes, we also evaluate cross-run
consistency with the Maximum Pairwise Pearson Correlation (MPPC) (Wang et al., 2025), establish-
ing a comprehensive evaluation framework for concept evaluation methods. Finally, we demonstrate
concept steering on text and image models, showing that manipulating extracted concepts causally
influence downstream behavior, without incurring information loss.

Hence, the main contribution of this paper is a novel type of approach of mechanistic interpretabil-
ity of neural networks. We investigate the fundamental principle underlying our approach and
demonstrate that it achieves globally more compelling results than state-of-the-art sparse autoen-
coder (SAE)–based techniques. Our method is advantageous in its simplicity: it is governed by a
single, interpretable hyperparameter. The proposed principle is theoretically grounded in discrim-
inant analysis and clustering, and further relates to Deleuze’s philosophical notion of “concepts.”
Similar to SAE-based approaches, our method is fully unsupervised and therefore does not require
manual specification or annotation of the identified concepts.

2 METHODS

2.1 CRITERIA AND CONCEPTUAL GROUNDING

Our aim is to extract an ontology of “concepts” from a neural network, by analyzing its activations.
Before proposing our approach, we first discuss the criteria such concepts should satisfy.

• Interpretability: this work aims to extract human-interpretable features, that are then re-
ferred to as “concepts”.

• Transparency: in order to gain interpretable insights into the model, the approach itself
should be as simple and transparent as possible, not relying on non-interpretable hyperpa-
rameters.

• Diversity: the extracted concepts should be semantically diverse, in order to represent a
wide variety of data samples, ideas, and semantic levels.

• Consistency: the approach should consistently yield similar concepts when run multiple
times with different random seeds.

Existing methods in mechanistic interpretability typically extract unsupervised concepts by recon-
structing model activations (Bricken et al., 2023; Cunningham et al., 2023). Because they are trained
to minimize reconstruction error, such approaches are driven to capture as much variance in the acti-
vation space as possible, subject to sparsity constraints. This framing implicitly presents concepts as
universal structural components of the model activations, echoing the classical philosophical view
of concepts as “the universal essence of a fact” (Plato, c. 375 BCE; Hegel, 1816). However, such
a representation has been criticized as overly restrictive (Nietzsche, 1889; Sartre & Elkaı̈m-Sartre,
1946). More recent perspectives instead emphasize concepts as arising from Difference and Repeti-
tion (Deleuze, 1968), rather than universals. Following this idea, our approach does not attempt to
model the full variance of activations. Instead, it identifies recurring differences between activations.

2.2 EXTRACTING REPEATED DIFFERENCES IN ACTIVATION SPACE

Our objective is to extract concepts from model activations, at a given layer with D dimensions, over
a dataset of N samples. To represent repeated differences in activations between data samples, we
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Figure 2: Overview of our concept extraction approach. We sample pairwise differences in activa-
tion between samples. Then, we use the inverse-skewness of those differences to selected the final
concepts, corresponding to vectors in the activation space.

define D = {d⃗1, d⃗2, ..., d⃗N} as a set of D-dimensional pairwise differences in activation between
samples. Since our approach is fully unsupervised, we cannot restrain D to contrastive pairs between
two classes. However, computing all pairwise differences is quadratic in N . To approximate the
distribution of differences, we instead randomly sample N pairs, ensuring that each data point is
used once on each side of the subtraction.

To constrain our concept dictionary to a fixed number of concepts k, we cluster activation differences
using KMeans (Lloyd, 1982; Zeng & Zheng, 2019). However, some activation differences exhibit
highly skewed distributions: they remain near-zero for most samples, but occasionally spike to large
values. Those differences tend to dominate the Euclidean distance used by standard KMeans, and
produce redundant clusters (Milligan, 1980). The skewness of a distribution X , defined as the
normalized third central moment is

µ̃3(X) =

∑N
i=1(Xi − X̄)3

Nσ3
(1)

For a concept direction d⃗i, we consider skewness as that of the projection {d⃗i · x⃗j}Nj=1. Since highly
skewed coordinates tend to produce redundant clusters, we penalize them by assigning weights
inversely proportional to skewness. In order to avoid ill-defined clustering with negative weights,
and to consider opposite directions d⃗i as similar (as we are seeking directions, regardless of their
orientation), we consider −d⃗i for differences with negative skewness. This results in a variant of
Feature-Weighted KMeans (Huang et al., 2005), in which concept directions are weighted during
centroids computation, in order to promote concept diversity. More precisely, this clustering defines
the weighted distance between d⃗i and its corresponding centroid C̄ as

d(d⃗i, C̄) =
1

µ̃3(d⃗i)
||C̄ − d⃗i||2

The obtained centroids are then used as concept vectors.

Both pair sampling and KMeans clustering run in linear time and memory with respect to dataset size
N and activation dimension D, demonstrating scalability of our approach towards large datasets, or
large models.

Finally, this procedure retains a simple and transparent formulation ( Figure 2), that are key proper-
ties for interpretability research. Notably, the number of extracted concepts k is the only hyperpa-
rameter required for our approach, and is itself interpretable.
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2.3 CONNECTION TO DISCRIMINANT ANALYSIS

Our objective is to extract “concepts” from model activations, by defining a concept as a differ-
ence between ideas. In a supervised setting, this objective is closely related to discriminant analy-
sis (Fisher, 1936), which aims to identify a direction c⃗ orthogonal to the optimal separating hyper-
plane between two classes. Let ΣA and ΣB be the covariance matrices of each class, and µA and
µB their respective mean vectors. The separation between classes is maximized for :

c⃗ ∝ (ΣA +ΣB)
−1(µ⃗A − µ⃗B) (2)

Consider two samples i and j, with their corresponding activations x⃗i, x⃗j . Suppose we seek the
optimal separation between two clusters, with mean vectors x⃗i and x⃗j , distinguished by a concept
c⃗. As wa are working in high-dimensional spaces (at least 512 dimensions for most transformer
models), we consider the covariance matrices Σi and Σj to be diagonal, containing each dimension’s
variance (Ahdesmäki & Strimmer, 2010).

From equation 2, c⃗ ∝ xi − xj reaches optimal separation when Σi ∝ Σj ∝ I , i.e. under isotropic
distributions of clusters. Therefore, considering the differences in activation as optimal separation
between ideas is equivalent to making a hypothesis on isotropic distribution of concepts (not sam-
ples) in activation space.

Unlike standard LDA, equation 2 does not require assumptions such as homoscedasticity or Gaus-
sianity (McLachlan, 2005), and can naturally extend to multiclass discrimination (Rao, 1948).

2.4 LOSSLESS STEERING

Sparse autoencoders and related methods allow steering of extracted concepts (Zhou et al., 2025).
To do so, they project sample activations in their concept space, apply a steering vector, and projects
back into the activation space. The two projections required introduce reconstruction error and
information loss. In contrast, our extracted concepts are vectors in the activation space. Therefore,
we can perform steering directly in the activations space. To steer the embedding of a sample
x, with a magnitude α and a concept c⃗i, consider its steered representation x̃ = x + αc⃗i. By
avoiding projections into and out of the concept space, our approach enables lossless steering: the
modifications affect only the targeted direction and can be exactly reversed.

3 EXPERIMENTS

Datasets and Models To evaluate our concept extraction methods, we conduct a large-scale study
spanning five models and five datasets across three modalities (vision, language, and audio), cover-
ing a wide variety of semantic attributes.

For text, we use two datasets: IMDB (Maas et al., 2011) and CoNLL-2003 (Tjong Kim Sang &
De Meulder, 2003). IMDB provides sentence-level binary sentiment classification labels, while
CoNLL-2003 provides token-level labels for named entity recognition (NER), part-of-speech (POS)
tagging, and syntactic chunking. For vision, we use a subset of ImageNet (Russakovsky et al., 2015)
with 100 classes and the WikiArt dataset (Baylies, 2020) which contains paintings labeled by artist
(129 classes), style (27 classes), and genre (11 classes). Concerning text datasets, IMDB has binary
classification labels, while CoNLL-2003 has token-wise labels for NER (9 classes), POS-tagging
(47 classes) and chunk tags (23 classes). For audio, we use AudioSet (Gemmeke et al., 2017), with
multi-classification labels (527 audio classes).

Our text experiments are conducted on DeBERTa (He et al., 2021) and the encoder of BART (Lewis
et al., 2020). For vision, we evaluate DinoV2 (Oquab et al., 2023) and CLIP (Radford et al., 2021).
For audio, we use a pretrained Audio Spectrogram Transformer (AST) (Gong et al., 2021). We
only consider encoder models, (including the encoder of BART). This choice allows us to evaluate
the quality of extracted concepts with respect to supervised labels that are likely represented at the
analyzed layer of each model, since our objective is to compare concept extraction methods. It also
enables comparable analyses across multiple modalities. More details on datasets and models are
provided in Appendix B.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Baselines Sparse autoencoders (SAE) are predominant among concept extraction methods. We
compare our method to five different types of SAEs:

• VanillaSAE (Van-SAE) (Bricken et al., 2023): standard SAE, trained with an L2 recon-
struction loss, and enforcing sparsity via an L1 penalty which requires a coefficient λ;

• GatedSAE (Gat-SAE) (Rajamanoharan et al., 2024a): SAE learning activations gates,
hence separating feature selection and magnitude estimation;

• JumpReLUSAE (JR-SAE) (Rajamanoharan et al., 2024b): SAE with a learnable threshold
θi for each concept, designed to minimize the reconstruction error;

• MatryoshkaSAE (Mat-SAE) (Bussmann et al., 2025): SAE learning nested dictionaries of
concepts, focusing on hierarchies of concepts, belonging to multiple semantic levels;

• TopKSAE (Tk-SAE) (Gao et al., 2025): SAE enforcing sparsity via a TopK activation
function, that sets every activation to zero, except the k highest.

We also compare our approach to Independant Component Analysis (ICA) (Comon, 1994), that is
a linear decomposition method maximizing statistical independence between latent dimensions. In
addition, as our approach is closely related to discriminant analysis, we also compare it to super-
vised Linear Discriminant Analysis (LDA) (Fisher, 1936) which serves as an upper bound under
assumptions of homoscedasticity and normal distribution of concepts.

Evaluation Our primary quantitative evaluation relies on the probe loss metric (Gao et al., 2025),
which measures the degree to which extracted concepts align with ground-truth annotated attributes.
Beyond the quality on individual concepts, we also aim at uncovering a broad set of concepts from
model activations. To this end, we assess probe loss across tasks characterized by diverse attribute
sets, thereby quantifying the capacity of our approach to capture multiple, semantically meaningful
concepts. In addition, Maximum Pairwise Pearson Correlation (MPPC) (Wang et al., 2025) is used to
measure the consistency of the different methods. Finally, to highlight causal influence of concepts
on model predictions, we perform concept steering, and provide qualitative examples. Note that,
while prior work on sparse autoencoders has emphasized reconstruction–sparsity trade-offs, these
objectives are not applicable to our framework; we therefore exclude them from evaluation. All
the reported results are computed using activations from the last transformer block of each encoder,
using a concept space with 6144 dimensions, corresponding to 8 times the size of the activations
(except for ICA, that is limited to 768).

3.1 EVALUATION OF CONCEPT QUALITY

We evaluate concepts extracted in an unsupervised manner: to be meaningful, such concepts should
align with interpretable attributes that are known to exist in a given dataset. We quantify this align-
ment by using Probe Loss (Gao et al., 2025). For each attribute, it measures the ability of a 1d
logistic probe to recover ground-truth attributes. For each attribute, we train a one-dimensional lo-
gistic probe on every concept and record the lowest cross-entropy loss. For multi-class attributes,
we report the median Probe Loss across attributes. Probe Loss results are presented in Table 1.

From Table 1, our method globally outperforms all variations of SAE, with the lowest probe loss
on 12 of the 17 tested tasks, and the 2nd lowest on the 5 other cases. This indicates a high abil-
ity to recover attributes expected to be found in datasets, on a wide variety of tasks, models and
modalities. On several cases, probe loss is midway between supervised LDA and the second most
effective unsupervised method (typically TopKSAE). Note that LDA obtains poor results on BART
over CoNLL-2003, which indicates that the additional hypothesis made by LDA compared to our
method (normal distribution of concepts and homoscedasticity) are not satisfied in this particular
case. On average over all datasets, our approach is significantly the best classified among unsuper-
vised approaches. Significance of the results is detailed in Appendix C.

To complement the quantitative evaluation, we further analyze representative examples, which pro-
vide evidence for the relevance and interpretability of the extracted concepts: in addition to the
examples provided in Figure 1, we present qualitative results in Appendix E.
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Table 1: Quantitative evaluation (Probe Loss, lower is better) of unsupervised approaches on CLIP
and DinoV2 image encoders, DeBERTa and BART text encoders and Audio Spectrogram Trans-
former on audio. Supervised baseline (LDA) is reported for reference (gray row). Best results are in
bold, second in italics. Bottom right table indicates the average rank of all methods over all datasets
(lower is better).

CLIP DinoV2

la
be

ls Method ImNet WikiArt ImNet WikiArt

Artist Style Genre Artist Style Genre

✓ LDA 0.0083 0.0084 0.0465 0.0976 0.0044 0.0101 0.0545 0.1084

✗ ICA 0.0154 0.0141 0.0816 0.2104 0.0161 0.0155 0.0839 0.2035
✗ Van-SAE 0.0264 0.0137 0.0558 0.1531 0.0220 0.0147 0.0722 0.1706
✗ Gat-SAE 0.0384 0.0142 0.0747 0.1647 0.0345 0.0151 0.0789 0.1752
✗ JR-SAE 0.0355 0.0138 0.0667 0.1490 0.0327 0.0148 0.0741 0.1723
✗ Mat-SAE 0.0216 0.0141 0.0686 0.1588 0.0127 0.0154 0.0767 0.1613
✗ Tk-SAE 0.0154 0.0125 0.0558 0.1360 0.0096 0.0144 0.0718 0.1577
✗ Ours 0.0128 0.0119 0.0560 0.1230 0.0055 0.0137 0.0680 0.1538

DeBERTa BART

la
be

ls Method IMDB CoNLL-2003 IMDB CoNLL-2003

NER POS Chunk NER POS Chunk

✓ LDA 0.6394 0.0429 0.0044 0.0062 0.3473 0.6326 0.3875 0.0870

✗ ICA 0.6936 0.1251 0.0195 0.0126 0.6931 1.4578 0.7143 6.1319
✗ Van-SAE 0.6893 0.0869 0.0252 0.0173 0.5983 0.2719 0.1647 0.0447
✗ Gat-SAE 0.6883 0.1223 0.0251 0.3982 0.6391 0.3982 0.4054 0.3208
✗ JR-SAE 0.6908 0.1150 0.0248 0.0170 0.6931 0.4416 0.2111 0.0883
✗ Mat-SAE 0.6836 0.0868 0.0189 0.0164 0.6931 1.120 0.4954 0.2143
✗ Tk-SAE 0.6858 0.0839 0.0166 0.0167 0.5980 0.3478 0.2045 0.0399
✗ Ours 0.6849 0.0665 0.0161 0.0143 0.5974 0.2148 0.0639 0.0419

AST

la
be

ls

AudioSet

✓ LDA 0.0164

✗ ICA 0.0234
✗ Van-SAE 0.0177
✗ Gat-SAE 0.0186
✗ JR-SAE 0.0181
✗ Mat-SAE 0.0186
✗ Tk-SAE 0.0169
✗ Ours 0.0164

Average rank ↓

la
be

ls

All datasets

✓ LDA -

✗ ICA 5.76± 1.60
✗ Van-SAE 3.71± 1.22
✗ Gat-SAE 5.71± 0.85
✗ JR-SAE 4.65± 0.73
✗ Mat-SAE 4.29± 1.15
✗ Tk-SAE 2 .18 ± 0 .51
✗ Ours 1.29± 0.45

3.2 CONSISTENCY ACROSS RUNS

In order to measure consistency of a concept extraction method, we measure the Maximum Pairwise
Pearson Correlation (MPPC) (Wang et al., 2025) 10 times between sets of concepts extracted with
different random seeds, and report the average. Therefore, a MPPC closer to 1 indicates a higher
consistency. We present MPPC in details and discuss its statistical significance in Appendix D.

Results from Table 2 show that our approach generally extracts more consistent concepts than other
models, except for VanillaSAE, but this method reaches much lower concept quality and diversity
according to Table 1.
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Table 2: Evaluating the consistency of extracted concepts with MPPC on several tasks/datasets
including WikiArt (WA), AudioSet (AS).

CLIP DinoV2 DeBERTa BART AST

ImNet WA ImNet WA IMDB CoNLL IMDB CoNLL AS

ICA 0.449 0.388 0.264 0.406 0.122 0.440 0.999 0.420 0.296
Van-SAE 0.840 0.918 0.603 0.903 0.986 0.437 0.996 0.439 0.837
Gat-SAE 0.346 0.415 0.264 0.401 0.836 0.453 0.996 0.357 0.399
JR-SAE 0.341 0.440 0.272 0.424 0.894 0.536 0.996 0.439 0.449
Mat-SAE 0.225 0.247 0.201 0.219 0.707 0.339 0.506 0.216 0.274
Tk-SAE 0.757 0.861 0.588 0.824 0.866 0.594 0.996 0.761 0.601
Ours 0.821 0.856 0.789 0.843 0.980 0.588 1.0 0.768 0.830

3.3 CONCEPT STEERING: QUALITATIVE EVIDENCE OF CAUSAL INFLUENCE

A possible use of extracted concepts is to explicitly modify the behavior of a model, by steering its
internal concepts. We provide qualitative examples of steering, using the method described in 2.4,
highlighting the causal influence of concepts on the output of a model.

Discriminative Steering on CLIP From WikiArt, we consider two concepts corresponding to
artistic styles (identified empirically from images), namely Romanticism and Abstract paintings.
Starting from a romantic painting of a sailing ship, we inhibit the Romanticism concept, and boost
the Abstract paintings one. The resulting steered embedding shifts the painting’s representation such
that its nearest neighbors in the WikiArt dataset are abstract sailing ships (Figure 3).

Figure 3: Steering a painting style in CLIP activations: target is represented by its nearest images.

Steering BART BART (Lewis et al., 2020) is a text encoder–decoder model which, without fine-
tuning, typically reproduces its input sequence. Here, we steer the final transformer layer of its
encoder before passing the modified representation into the decoder. We analyze the steering ef-
fects of a concept with highest activations corresponding to country names (Figure 4). Inhibiting
this concept (α < 0) causes BART to replace “Rio de Janeiro” with “February”, forming a coher-
ent sentence with no geographical indication. In the same fashion, its leads to replacing the word
“country” by the word “city”. Positive values of α encourage the model to evoke country names,
even in sentences without geographic context. In particular, this leads to frequent mentions of the
United States, highlighting a potential bias in BART.

3.4 ABLATION STUDIES

We conduct an ablation study of our method, to assess the impact of three aspects on its perfor-
mance. First, we evaluate the interest of learning from differences between samples, rather than
directly from the samples themselves (i.e. changing the input space). Second, we evaluate the im-
pact of using a clustering to identify the concepts, by replacing the the KMeans clustering of our
approach with an SAE, trained on the activations or the differences. Finally, we evaluate the impact
of weighting the KMeans clustering by the inverse skewness. Since the objective of this weighting
is to increase diversity, we also report an evaluation of the diversity of the extracted concepts, mea-
sured by the effective rank (Roy & Vetterli, 2007; Skean et al., 2025). Results, computed on CLIP
activations on WikiArt, and DeBerta on CoNLL NER attributes, are reported in Table 3. These
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Figure 4: Steering the concept of countries in a BART model for three sentences (in gray), using
different values of α

Table 3: Ablation study in terms of performance (Probe Loss) and diversity (effective rank). Our
approach is the last line.

sk
ew

ne
ss

w
ei

gh
tin

g probe loss ↓ effective rank ↑
input concept CLIP DeBERTa CLIP DeBERTa
space identif. WikiArt CoNLL-NER WikiArt CoNLL

activ Tk-SAE ✗ 0.0125 0.0839 96.1 183.9
activ. KMeans ✓ 0.0133 0.1184 24.3 14.6
diff Tk-SAE ✗ 0.0134 0.1093 340.5 109.2
diff KMeans ✗ 0.0128 0.0841 17.9 5.65

diff KMeans ✓ 0.0119 0.0665 124.4 182.0

results, most notably those for KMeans on activations and TopKSAE on differences highlight the
impact of representing differences in activations. Moreover, these results highlight the importance
of using the inverse skewness of pairwise differences as KMeans weights, allowing the extraction of
a much larger set of concepts from CLIP over ImageNet.

4 RELATED WORKS

Concept-Based Interpretability Identifying the internal mechanism of a neural network corre-
sponding to a precise concept provides valuable insights into the network’s behavior. Arik & Liu
(2020) perform clustering on multi-layer activations, in order to determine similar images, not to
extract interpretable concepts. Prior studies have investigated the extent to which a classification
probe can be learned directly on model hidden representations (Köhn, 2015). Probe-based concept
extraction has been used extensively in NLP (Gupta et al., 2015). These studies suggest that LLMs
linearly represent the truth or falsehood of factual statements (Marks & Tegmark, 2024). Simi-
lar analyses have also been applied to computer vision (Alain & Bengio, 2017) or reinforcement
learning (Lovering et al., 2022). However, probe-based concept extraction only captures correlation
(not causation) and heavily relies on curated data to extract concepts (Belinkov, 2022). To address
this problem, Concept Bottleneck Models (CBM) (Koh et al., 2020) structure the network to make
predictions through a layer of human-defined concepts, enabling intervention but requiring labeled
concept supervision. Contrast-Consistent Search probes for an axis in the activation space, corre-
sponding to the presence or absence of a concept (Burns et al., 2023), however it uses predefined
contrastive groupings, and thus cannot uncover new concepts. Similarly, TCAV (Kim et al., 2018)
and ACE (Ghorbani et al., 2019) perform concept extraction upon a predefined list.

Sparse Autoencoders Sparse autoencoders (SAEs) (Lee et al., 2007) are a sparse dictionary learn-
ing technique that aims to find a sparse decomposition of data into an overcomplete set of features.
They typically enforce sparsity via an L1 penalty. In recent years, SAEs have been applied to neu-
ral networks to learn an unsupervised dictionary of interpretable features tied to concepts from a
hidden representation (Bricken et al., 2023; Cunningham et al., 2023). Various extensions of sparse
autoencoders have been proposed with modified activation functions, such as JumpReLU (Raja-
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manoharan et al., 2024b), TopK (Gao et al., 2025), and BatchTopK (Bussmann et al., 2024) sparse
autoencoders. Other works seek hierarchies of features by extracting nested dictionaries (Bussmann
et al., 2025; Zaigrajew et al., 2025). Analogous methods have been developed in order to find rela-
tions between different layers of a same network, including transcoders (Dunefsky et al., 2024) and
crosscoders (Lindsey et al., 2024).

Further use of extracted concepts Identifying the mechanism corresponding to a semantic concept
within a neural network enables new uses of the analyzed model. For example, studies use extracted
concepts to analyze the circuits related to a specific task (Conmy et al., 2023; Dunefsky et al., 2024),
or to measure the importance of concepts in model inner representations (Fel et al., 2023). Concept
extraction techniques can also be used to perform steering, i.e. controlling the behavior of a model
by explicitly modifying its internal concepts (Zhou et al., 2025). When applied to multiple models in
parallel, concept extraction methods allow construction of shared concept spaces (Thasarathan et al.,
2025), automating naming of CLIP concepts (Rao et al., 2024) and quantification of similarities
between models (Wang et al., 2025).

5 CONCLUSION

Discussion We introduce a novel approach for extracting human-interpretable “concepts” from
neural network activations, and evaluate its performance on a wide variety of attributes spanning
five models and three modalities. Our method has a simple formulation that may be viewed as
an unsupervised form of discriminant analysis. Using probe loss evaluation, we demonstrate that
the extracted concept space contains attributes expected to be present in labeled datasets. Notably,
our approach outperforms existing methods on this metric. In addition, we show that the extracted
concepts are stable across multiple runs, enabling consistent analyses, and that the method supports
lossless intervention on internal representations. These findings suggest that explicitly representing
inter-sample differences, in line with Deleuze’s notion of concepts, may improve the quality and
utility of extracted concepts.

Limitations Although our method is fully unsupervised, its evaluation relies on labeled datasets.
As a result, interpretable concepts that do not correspond to the available labels may yield high probe
losses, even if these concepts are highly interpretable but specific or subtle. Evaluation without using
labeled datasets requires a consensual proxy for interpretability with solid theoretical justification.
Such a proxy is still missing to date, especially considering that sparsity does not meet these crite-
ria (Sharkey et al., 2025). All our evaluations are performed using projections into concept spaces
of 6,144 dimensions (8x the activations dimension). While some studies use even higher projection
dimensions, increasing the dimensionality substantially could introduce bias in our evaluation, espe-
cially given the limited number of attributes and data samples studied relative to the potential size of
the concept space. Studying concept extraction behavior in higher-dimensional spaces could reveal
additional characteristics of the methods and enrich the analysis. Our method relies on the hypothe-
sis that concepts may be represented as linear projections. It is validated empirically on 5 different
models of different categories and modalities. However, a model having inner representations that
do not satisfy this hypothesis could theoretically exist, and would require adjusting the method.

Perspectives This study considers only encoder models (including the encoder of BART). This
choice allows us to evaluate the quality of extracted concepts with respect to supervised labels that
are likely represented at the analyzed layer of each model, since our objective is to compare concept
extraction methods. It also enables comparable analyses across multiple modalities. Our method
could be applied to large decoder models as well, to gain mechanistic insight into their behavior. Our
method is fully unsupervised and extracts concepts that represent repeated directions in a model.
Therefore, generalization of a method naming concepts automatically would benefit the extent of
the findings allowed. We provide qualitative examples of concept steering. As our method allows
lossless steering, such intervention on model inner representations could be used at a larger scale,
for example to adapt to a specific domain.

9
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REPRODUCIBILITY STATEMENT

Our results can be reproduced, following the method described in section 2 and Appendix A. Cor-
responding code is provided as supplemental material.
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A APPENDIX: IMPLEMENTATION DETAILS

All our experiments are using a set of 6144 concepts, except for ICA, that is unable to represent a
number of dimensions larger than D, the dimension of model activations. Therefore, ICA experi-
ments are ran in D = 768 dimensions.

TopKSAEs are trained using a TopK activation function, with k = 32. We select a learning rate of
10−5, that minimizes its reconstruction error on CLIP activations over ImageNet. For VanillaSAE,
GatedSAE and JumpReLUSAE, we select the L1 penalization coefficient reaching the lowest probe
loss. From a sweep of 7 values between 10−9 and 10−3, we select 10−8 for VanillaSAE, 10−6

for GatedSAE and 10−5 for JumpReLUSAE. Concerning MatryoshkaSAE, we use groups of sizes
[512, 1024, 1536, 3072], in order to represent progressively larger latent dictionaries.

For Independent Component Analysis we used the scikit-learn (Pedregosa et al., 2011) implemen-
tation of FastICA (Hyvärinen & Oja, 2000), with a log hyperbolic cosine to approximate the neg-
entropy, a SVD whitening and the extraction of multiple components in parallel.

B APPENDIX: DETAILS ON EXPERIMENTAL SETUP

All datasets used in our experiments (section 3) are reported in Table 4 with their main characteris-
tics. When available, we use the train/test splits provided. As WikiArt has no predefined train/test
sets, we use its even samples (0, 2, 4...) as a train set, and the other ones as the test set. Note that
WikiArt is actually a set of data with three different label types, thus could be considered as three
different datasets.

Globally we thus have a much larger variety of experimental settings than in comparable previous
works. Since we are interested in identifying concepts, all tasks relate to classification but they
exhibit a deep variety in their nature, due to the type of data handled (text, image, audio) and how
the data have to be considered to address the task. For example, the identifying sentiments on IMDB
requires to take into account full sentences while the chunking task in CoNLL act at the token level.

Table 4: Datasets used in our experiments.

Dataset Modality Label Type (number of classes) Train/Test Size URL

ImageNet-100 Image Object categories (100) 50k / 5k �

WikiArt Image Artist (129), Style (27), Genre (11) 40k / 40k �

IMDB Text Sentiment (binary, sentence-level) 25k / 25k �

CoNLL-2003 Text NER (9), POS (47), Chunking (23, token-level) 288k / 67k �

AudioSet Audio Audio event categories (527) 18k / 17k �

The model encoders we considered in our experiments are summarized in Table 5. All the models
were downloaded from huggingface, except for CLIP from OpenClip (Ilharco et al., 2021) and
DinoV2 from PyTorch Hub. The model size is the number of parameters and since all of them were
encoded in float32 their actual size in memory is this number multiplied by four.

AST (Gong et al., 2021) relies on an image ViT that was trained on ImageNet-21k then finetuned
on AudioSet. BART (Lewis et al., 2020), for its base version, was pre-trained “on the same data as
BERT (Devlin et al., 2019)” that is “a combination of books and Wikipedia data”. CLIP (Radford
et al., 2021) was trained “on publicly available image-caption data” that is images-caption pairs
from the Web and publicly available datasets such as YFCC 100M (Thomee et al., 2016). The
creator of the model did not release the dataset to avoid its use “as the basis for any commercial
or deployed model”. DeBERTa (He et al., 2021) was trained on deduplicated data (78G) including
original Wikipedia (English Wikipedia dump; 12GB), BookCorpus (6GB), OpenWebText (public
Reddit content; 38GB), and STORIES (a subset of CommonCrawl; 31GB). DinoV2 (Oquab et al.,
2023) was trained on the LVD-142M dataset, that was assembled and curated by the authors of the
model.
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Table 5: Pretrained models used in our experiments. The Size is the number of parameters (in
millions).

Model Modality Version Size Training data URL

DeBERTa Text base 99 M BookCorpus, Wikipedia, OpenWeb-
Text, STORIES �

BART (encoder) Text base 139 M Books, Wikipedia �

DinoV2 Image ViT-B/14 86 M LVD-142 �

CLIP Image ViT-B/16 150 M openAI private: web, YFCC100M... �

AST Audio 10-10-0.4593 87 M AudioSet, ImageNet-21k �

Figure 5: Pairwise comparisons of methods on AST-Audioset. Our method is better able to recover
at least 366/527 attributes compared to concurrent methods.

C APPENDIX: SIGNIFICANCE OF PROBE LOSS RESULTS

Table 1 reports the median probe loss for each task. In Figure 5, we perform attribute-wise compar-
isons on AST-Audioset, the studied task comprising the largest number of attributes. The numbers
represent how many times the method of each row better recovers the attributes than the methods on
the column. For instance, last row show that our method attributes of Audioset.

Our method is able to better recover at least 366/527 attributes (69.4%) than other methods. Per-
forming a Wilcoxon signed-rank test, we obtain a statistic of 106584 with a p-value of 1.7× 10−26,
rejecting the null hypothesis thus proving the significance of those probe loss results.

In a similar fashion on CLIP-WikiArt, our method reaches a lower probe loss than TopKSAE on
140/167 attributes (83.8%, even with TopKSAE reaching a lower probe loss on the “style” at-
tributes), obtaining a test statistic of 12671 and a p-value of 7.9 × 10−20, rejecting the null hy-
pothesis.

D APPENDIX: STATISTICAL SIGNIFICANCE OF MPPC

The Maximum Pairwise Pearson Correlation (MPPC) was proposed by Wang et al. (2025) as a
similarity indicator between models.
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D.1 DEFINITION OF MPPC

To compare two sets of extracted concepts A and B, ρA→B
i is defined as the maximum pairwise

Pearson correlation between the i-th concept of A and all concepts of B. With fA
i the vector

containing values for each sample for the i-th concepts of A, µA
i and σA

i its mean and standard
deviation (respectively for fB

j , µB
j and σB

j ):

ρA→B
i = max

j

E[(fA
i − µA

i )(f
B
j − µB

j )]

σA
i σ

B
j

(3)

Then, MPPCA→B is defined as the arithmetic mean of ρA→B
i over all i, quantifying the extent

to which the concepts in A are represented in B. In order to measure consistency of a concept
extraction method, we measure MPPC 10 times between sets of concepts extracted with different
random seeds, and report the average. Therefore, a MPPC closer to 1 indicates a higher consistency.

D.2 STATISTICAL SIGNIFICANCE IN OUR CASE

With ρi the maximum pairwise coefficient (Eq. 3) for k target features of length N , and H0 the
hypothesis of features having no linear relationship. Using the Fischer z-transformation (Fisher,
1915)

z = artanh(r) ∼ ∥(0, 1√
N − 3

)

P(max
i

(ri) > x) = 1− P(r ≤ x)k

P(ρi > x) = P(max
i

(zi) > artanh(x))

P(ρi > x) = 1− Φ(artanh(x)
√
N − 3)k

With k = 6144 (corresponding to the main experiments), and L = 10000 being largely lower than
the size of the most used datasets, we obtain P(ρi > 0.3) ≈ 10−206 , thus reject H0.

E APPENDIX: QUALITATIVE EXAMPLES OF EXTRACTED CONCEPTS

Image Concepts We present in figure 6 three examples of concepts extracted from image models,
from different datasets. The concepts are represented by the images with their nine highest acti-
vations. The name of the concepts are empirically set from the images. Displayed concepts are
extracted from CLIP’s activations, with figs. 6a to 6c extracted from ImNet, figs. 6d to 6f from
WikiArt and corresponding to paintings content, and figs. 6g to 6i corresponding to artistic styles.

Text Concepts In Table 6 and Table 7, we represent 3 textual concepts. For each concept, we dis-
play the 3 sentences containing the highest token-wise concept values, and underline tokens among
the top-100.

F APPENDIX: ADDITIONAL STEERING EXAMPLES

Textual Concept: Baseball Extracted from DeBERTa, over CoNLL-2003. Enhancing this con-
cept (positive values of alpha) causes replacement of any sport-specific terms (football, basketball)
by their baseball equivalent. Those changes affect mentions of teams, leagues and scoring methods.

• (± 0) The best sport is basketball, NBA is the best → (+3.75) The best sport is baseball,
MLB is the best

• (± 0) He scored 3 touchdowns in the first half → (+4.5) He scored 3 RBI in the first inning
• (± 0) The New York Knicks beat the Los Angeles Lakers → (+3.75) The New York Yan-

kees beat the Los Angeles Dodgers
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(a) Puppies (b) Underwater Animals (c) Guitars

(d) Portraits of children (e) Paintings of cliffs (f) Paintings of Venice

(g) Popart (h) Cubist paintings (i) Minimalist paintings

Figure 6: Nine examples of visual concepts extracted from CLIP, over ImageNet and WikiArt.
Representing the 9 images with the highest activations for each.
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Table 6: Examples of textual concepts extracted from DeBERTa on CoNLL-2003

Sports Achievements Last Names Nationalities

Seven athletes went into Fri-
day’s penultimate meeting of
the series with a chance of
winning the prize.

Katarina Studenikova (Slo-
vakia) beat 6- Karina
Habsudova.

One Romanian passenger
was killed, and 14 others
were injured on Thursday
when a Romanian-registered
bus collided with a Bulgarian
one in northern Bulgaria,
police said.

Russia’s double Olympic
champion Svetlana Mas-
terkova smashed her second
world record in just 10 days
on Friday when she bettered
the mark for the women’s
1,000 metres.

Hendrik Dreekman (Ger-
many) vs. Greg Rusedski
(Britain).

He said a Turkish civil avi-
ation authority official had
made the same point and he
noted that a Turkish plane
had a similar accident there
in 1994.

Jamaican veteran Merlene
Ottey, who beat Devers in
Zurich after just missing out
on the gold medal in Atlanta
after a photo finish, had to
settle for third place in 11.04.

The Greek socialist party’s
executive bureau gave the
green light to Prime Minis-
ter Costas Simitis to call snap
elections, its general secre-
tary Costas Skandalidis told
reporters.

A Polish school girl black-
mailed two women with
anonymous letters threaten-
ing death and later explained
that she needed money for
textbooks, police said on
Thursday.

Table 7: Additional Examples of textual concepts extracted from DeBERTa on CoNLL-2003

Years from the 1990’s Age Geopolitical Evolutions

West lake, arrested in Decem-
ber 1993 and charged with
heroin trafficking , sawed the
iron grill off his cell window

Machado, 19, flew to Los An-
geles after slipping away from
the New Mexico desert town
of Las Cruces

Peruvian guerrillas killed one
man and took eight peo-
ple hostage after taking over
a village in the country’ s
northeastern jungle

Since taking over as cap-
tain from Ne ale Fraser in
1994, Newcombe’ s record in
tandem with Roche, his for-
mer doubles partner, has been
three wins and three losses.

The 13 - year - old girl tried to
extract 60 and 70 zlotys ( $22
and $26 ) from two residents
of Sierakowice by threatening
to take their lives.

[...] is ready at any time
without preconditions to enter
peace negotiations

The bullish comments for the
coming year soothed ana-
lysts and most shareholders ,
who were disappointed by the
lower than expected profit for
1995/96.

On Tuesday night , Kevorkian
attended the death of Louise
Siebens, a 76-year-old Texas
woman with amyotrophic lat-
eral sclerosis

[..] that is to end the state of
hostility

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 7: Steering Gemma3 captioning of The Starry Night, by Vincent Van Gogh, upon 2 concepts
corresponding to positivity and negativity.

Steering Gemma3 Image Captioning Our method can extract concepts from large decoder mod-
els. From the text decoder of Gemma3-4B-PT (Team et al., 2025), we extract concepts over the
IMDB dataset. We steer two concepts identified as corresponding to positivity/negativity during
image captioning, see Figure 7.

G APPENDIX: LLM USAGE

Beyond the usage of LLM described in the paper, that is part of the study, we used commercial
services to polish the writting: find synonyms, rephrase sentences.
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