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Abstract

Accurate affinity ranking of small molecules is
pivotal for drug discovery. We investigate whether
structure prediction models like AlphaFold3, pre-
trained on protein-ligand interactions, can address
this task. Zero-shot evaluation of Protenix (an
AlphaFold3-like model) demonstrates superior
prioritization of active compounds over conven-
tional scoring functions and state-of-the-art deep
learning models. By further fine-tuning Protenix
on structure-agnostic protein-ligand bioactivity
data from ChEMBL and BindingDB, we develop
AlphaRank that predicts pairwise affinity relation-
ships. AlphaRank achieves prediction accuracy
comparable to computationally intensive free en-
ergy perturbation (FEP+) workflows on standard
benchmarks, while requiring substantially less
computational resources. Our findings highlight
the emergent potential of AlphaFold3-derived
models in affinity ranking tasks and emphasize
the necessity for targeted methodological explo-
ration to fully harness their capabilities in drug
discovery applications.

1. Introduction
Accurate small molecule affinity ranking is fundamental to
drug discovery, particularly in virtual screening and lead op-
timization. While free energy perturbation (FEP+) remains
the most reliable method, its prohibitive computational
cost limits practical use. Recent breakthroughs in protein
structure prediction, exemplified by AlphaFold3 (Abram-
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son et al., 2024), have achieved unprecedented accuracy in
modeling protein-ligand interaction patterns. This prompts
a pivotal question: can such interaction-aware models tran-
scend structural prediction to address the critical challenge
of efficient affinity ranking?

We first propose a zero-shot strategy for affinity ranking
by co-folding target protein sequences with pairs of small
molecule SMILES using Protenix (Team et al., 2025), an
AlphaFold3-like model. Remarkably, this approach re-
veals a competitive binding mechanism, that higher-affinity
molecules preferentially occupy the real binding pockets.
Evaluated on the FEP benchmark, this method surpasses
traditional energy-based scoring functions like MM-GBSA
and rivals task-specific deep learning models. These re-
sults demonstrate that structural pretraining in AlphaFold3-
derived models inherently captures essential protein-ligand
interaction patterns, enabling competitive affinity discrimi-
nation without explicit affinity-focused optimization.

To enhance alignment between structural features and affin-
ity ranking, we develop AlphaRank by integrating Pro-
tenix’s PairFormer outputs with a lightweight network
trained on approximately 30,000 structure-agnostic bioac-
tivity entries from ChEMBL and BindingDB. Two input
strategies are explored: AlphaRanktriplet predicts relative
affinity by jointly processing protein–ligand–ligand triplets,
while AlphaRankpair independently evaluates individual
protein–ligand pairs through separate co-folding. Finally,
combining both strategies, AlphaRankensemble achieves
state-of-the-art accuracy on both test sets, surpassing all
learning-based baselines and closely approaching the perfor-
mance of the physics-based gold standard FEP+. Crucially,
this approach eliminates structural prerequisites by relying
solely on sequence inputs, offering broad applicability in
structure-agnostic drug discovery scenarios.

Analysis reveals that affinity ranking accuracy varies by
task difficulty, i.e. pairs with large affinity gaps are reliably
distinguished, while subtle differences remain challenging.
Protein-level performance strongly correlates with struc-
tural confidence scores (pLDDT), confirming that predic-
tion quality drives ranking capability. This suggests dual
optimization paths for AlphaRank: refining discrimination
of marginal affinity differences through adversarial train-
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Figure 1. Illustration of AlphaRank with three affinity ranking strategies including zero-shot competitive binding, triplet-based fine-tuning,
and pair-based fine-tuning.

ing, and integrating known structural anchors when pLDDT
indicates low prediction reliability.

2. Related Works
Traditional physics-based affinity prediction methods like
FEP+ (Wang et al., 2015) offer high accuracy prediction
through alchemical transformation-based free energy calcu-
lations but demands intensive molecular dynamics sampling,
making it impractical for large-scale use. MM-GB/SA (Gen-
heden & Ryde, 2015) is an alternative faster method but is
less precise. Recent deep learning approaches have shown
promise in affinity ranking with distinct strategies: PBC-
Net (Yu et al., 2023) leverages ligand pair feature differences
via graph networks, EHIGN (Yang et al., 2024) encodes
multi-type protein-ligand interactions, and LigUnity (Feng
et al., 2025) combines screening and listwise ranking data
for improved predictions. Recent attempts explore Al-
phaFold3’s confidence metrics for affinity ranking, such
as using confidence score ipTM as affinity proxies (Shamir
& London, 2025). However, the systematic adaptation of
AF3-derived models for accurate, generalizable affinity pre-
diction remains an open question.

3. Method
3.1. Zero-shot Competitive Binding

While the previous zero-shot method (Shamir & London,
2025) leveraging interface predicted TM-scores (ipTMs)
demonstrate baseline utility in affinity ranking, these struc-
tural confidence metrics lack explicit design for affinity
ranking. We address this mismatch by developing a com-
petitive binding strategy that incorporates affinity ranking’s
essential inductive biases.

Specifically, for each target protein p, we rank a ligand pair

(l1 and l2) by inputting their SMILES strings alongside the
protein sequence and preprocessed MSA into Protenix. The
model jointly folds the triplet (p, l1, l2) into a complex to
simulate competitive binding. To assess ranking accuracy,
we first define a reference pocket Pref using residues within
6Å of the ligand in the co-crystal structure. Predicted bind-
ing pockets for each ligand are then extracted in the similar
way, and then aligned from the predicted structure to the ref-
erence via sequence mapping. The affinity ranking accuracy
is determined by whether the higher-affinity ligand’s pocket
achieves greater spatial overlap (IoU) with the reference,
where IoU is defined as:

IoUli = IoU(Pref, Pli) =
|Pref ∩ Pli |
|Pref ∪ Pli |

. (1)

A higher IoUli indicates greater overlap with the known
binding site and is used as a proxy for binding quality.

To account for structure prediction uncertainty, we fold K
times per (p, l1, l2) triplet, and ensemble the results through
an averaged normalized score:

S̄ =
1

K

K∑
k=1

Sk =
IoUk

l1 − IoUk
l2

IoUk
l1 + IoUk

l2 + ϵ
, (2)

where ϵ is a small constant to prevent division by zero, and
S̄ ranges from −1 to 1, with positive values favoring l1 and
negative values favoring l2.

3.2. Fine-tuning with PairFormer Features

Our next target is to improve affinity ranking by fine-tuning
AF3-like models on protein-ligand bioactivity data. We
focus on intermediate features from the PairFormer mod-
ule, the core interaction engine which produces single s
and pairwise (z) representations. A lightweight prediction
head processes these features through two input paradigms:
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triplet-based co-folding AlphaRanktriplet for direct ligand
competition analysis and AlphaRankpair for pair-based inde-
pendent scoring.

3.2.1. TRIPLET-BASED FINE-TUNING

Following the zero-shot setting, AlphaRanktriplet encodes
the triplet (p, l1, l2) and then slices ligand atom features
sl1 , sl2 ∈ RM×ds and interaction features between protein-
ligand zp,l1 , zp,l2 ∈ RN×M×dz from PairFormer outputs’
single feature s and pair feature z. Here, N is the num-
ber of protein amino acids and M is the number of ligand
atoms, ds is the single-feature dimension, and dz is the pair-
feature dimension. These features undergo average pooling
to produce condensed vectors s̄l1 , s̄l2 , z̄p,l1 , z̄p,l2 , which are
concatenated and processed by an MLP followed with a
sigmoid function σ:

pl1>l2 = σ(MLP([̄sl1 ; s̄l2 ; z̄p,l1 ; z̄p,l2 ])). (3)

The model is trained with a binary cross-entropy loss:

L = −y log pl1>l2 − (1− y) log(1− pl1>l2) (4)

where y = 1 if l1 is the stronger binder and 0 otherwise.
This training objective enables direct learning of compara-
tive binding behavior from labeled bioactivity data to im-
prove the ability of affinity ranking.

3.2.2. PAIRWISE-BASED FINE-TUNING

AlphaRankpair processes protein-ligand pairs (p, l1) and
(p, l2) independently through the PairFormer module, gen-
erating ligand atom embeddings sli ∈ RM×ds and pairwise
interaction features zp,li ∈ RN×M×dz . Averaging pool-
ing condenses these into fixed-dimensional vectors s̄li , z̄p,li ,
concatenated and transformed by an MLP:

xp,li = MLP([̄sl; z̄p,li ]). (5)

To enable the model to learn to rank affinities, training
employs a pairwise ranking loss from RankNet (Burges
et al., 2005):

Lpair = − y log σ(xp,l1 − xp,l2)

− (1− y) log(1− σ(xp,l1 − xp,l2))
(6)

where y = 1 if l1 is the stronger binding molecules .

3.3. Training data curation

3.3.1. DATA COLLECTION

We curated activity and binding data for single-protein tar-
gets from ChEMBL35 (Mendez et al., 2018) and Bind-
ingDB (Gilson et al., 2016), processing each dataset sep-
arately. Compounds were desalted, and only those with

molecular weights between 100 and 800 Da were retained,
provided they contained no uncommon elements or long
unbranched chains exceeding six atoms. Activity measure-
ments such as IC50, EC50, Ki, and Kd were standardized
by conversion to negative logarithmic molar values. We
processed the data to eliminate redundancy by deduplicat-
ing entries based on BindingDB annotations or matching
assay metadata, where an assay refers to a series of exper-
iments testing different small molecules against the same
protein target. The deduplicated records were then merged
by UniProt ID. The final dataset contains approximately
2.5 million protein-ligand bioactivity records derived from
about 67,000 distinct assays.

3.3.2. DATA SAMPLING

We developed a quality-prioritized sampling strategy to se-
lect training triplets from the bioactivity data. First, we
ranked all assays by their data source reliability. Following
this quality ranking, we proceeded to select assays in de-
scending order of quality while simultaneously maximizing
coverage of distinct UniProt IDs and ensuring no overlap
with test set proteins. This process resulted in the selec-
tion of approximately 8000 high-quality assays. From each
chosen assay we then extracted four distinct protein-ligand
triplets, ultimately generating a balanced training set con-
taining 30000 carefully curated data points that maintain
both data quality and target diversity.

4. Experiments
4.1. Experiment Settings

Benchmark Datasets. We evaluate our methods on two
benchmark datasets: JACS and Merck. Note that we have
already excluded assays from our training data that have
UniProt IDs matching those in the JACS or Merck datasets.
The JACS dataset (Wang et al., 2015) consists of eight high-
quality congeneric series extracted from real-world lead opti-
mization projects. It is designed to benchmark fine-grained
affinity ranking within structurally similar ligands. The
Merck benchmark (Schindler et al., 2020) contains ∆∆G
measurements (higher ∆∆G usually means stronger bind-
ing affinity) across eight pharmaceutically relevant targets
with greater structural diversity and noise, derived from high-
throughput FEP benchmarking studies. For both datasets,
we adopt the FEP+ setup, where each edge corresponds to a
chemically meaningful ligand pair selected based on struc-
tural similarity, synthetic feasibility, and SAR significance.
These pairs reflect realistic decisions encountered in lead
optimization pipelines, where precise molecular ranking is
more impactful.

Metrics. For each target, we evaluate model performance
using Accuracy and Area Under the ROC Curve (AUC),
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Table 1. Performance comparison across different models. Models
are grouped by type: physics-based methods, deep learning base-
lines, AF3 zero-shot, and finetuned AF3 features. Bold indicates
the best learning-based performance on each dataset.

Type Model JACS Merck

Acc AUC Acc AUC

Physics FEP+ 0.7806 0.8515 0.7496 0.8545
MM-GB/SA 0.6396 0.7182 0.5212 0.5607

DL
PBCNet 0.6371 0.6886 0.6083 0.6239
EHIGN 0.6436 0.7329 0.6092 0.6563
LigUnity 0.6694 0.7737 0.6176 0.7009

AF3ZS
Protenix-ipTM 0.5679 0.6406 0.5547 0.6058
AlphaRankzero-shot 0.7048 0.7507 0.5819 0.5968

AF3FT

AlphaRanktriplet 0.7533 0.7855 0.5961 0.6327
AlphaRankpair 0.6845 0.7378 0.6382 0.6790
AlphaRankensemble 0.7258 0.7622 0.6471 0.6838

based on the prediction of pairwise preferences between
edges. Both metrics are computed per target and then aver-
aged across all targets to obtain the final performance.

Baselines. Multiple baselines are compared, including
physics-based methods FEP+(Wang et al., 2015) and MM-
GB/SA(Lyne et al., 2006; Genheden & Ryde, 2015), which
estimate binding affinities via simulation and energy approx-
imations. Deep learning-based methods include PBCNet(Yu
et al., 2023), EHIGN(Yang et al., 2024), and LigUnity(Feng
et al., 2025). Finally, Protenix-ipTM uses AlphaFold3-style
co-folding to extract interface confidence scores as affinity
proxies(Shamir & London, 2025).

4.2. Experiment Results

Table 1 summarizes the performance of all models on the
JACS and Merck datasets. On the JACS benchmark, our
zero-shot method AlphaRankzero-shot achieves a substan-
tial improvement over the direct Protenix-ipTM baseline,
boosting Accuracy from 0.5679 to 0.7048. This highlights
that AlphaFold3-style confidence scores (e.g., ipTM) alone
are insufficient for binding affinity ranking. Instead, our
zero-shot approach introduces a biologically grounded in-
ductive bias through competitive co-folding of ligand pairs
with the same protein, effectively enabling relative ranking
without additional supervision.

Furthermore, our fine-tuned models show consistent gains.
The AlphaRanktriplet model achieves 0.7533 Accuracy
and 0.7855 AUC on JACS, establishing a new state-of-
the-art among learning-based methods. On Merck, the
AlphaRankpair model attains the highest Accuracy (0.6382)
among individual learning-based approaches. When com-
bined, the AlphaRankensemble model achieves the best over-
all performance, with 0.7258 Accuracy on JACS and 0.6471
on Merck, outperforming all deep learning baselines and ap-

(a) (b)

Figure 2. (a) Model performance grouped by the magnitude of
affinity difference (|∆∆G|) label. (b) Relationship between model
accuracy and average pLDDT scores across targets.

proaching the accuracy of the physics-based gold standard
FEP+. We believe the smaller margin on Merck attributes
to its high-throughput screening origin, which introduces
greater experimental noise and chemical diversity.

4.3. Analysis

Through our analysis, we found that two factors signifi-
cantly impact the final ranking performance: the range of
absolute ∆∆G values and the average pLDDT scores dur-
ing co-folding. As shown in Figure 2(a), for the Merck
dataset, performance improves markedly as the magnitude
of |∆∆G| increases. This suggests that the model is more
reliable when ranking ligand pairs with larger affinity differ-
ences—an intuitive outcome, as such cases present clearer
structural and energetic distinctions that are easier to cap-
ture. Interestingly, although our AlphaRankzero-shot gives
comparable AUC to the AlphaFold ipTM baseline on the
full Merck set, it achieves noticeably higher AUC (0.7204
vs. 0.6766) when restricted to pairs with |∆∆G| > 1.0,
indicating that its advantage becomes more pronounced
in high-confidence ranking scenarios, particularly relevant
for lead optimization, where correctly identifying chemical
modifications that yield substantial affinity improvements is
most critical. In contrast, performance on the JACS dataset
remains relatively stable across different ∆∆G intervals,
suggesting that the model is well calibrated for subtle affin-
ity changes, likely due to the congeneric nature and consis-
tent SAR trends within JACS compound series.

In Figure 2(b), we observe a strong correlation between av-
erage pLDDT and model accuracy for Merck targets, while
this correlation is notably weaker for JACS. This implies
that pLDDT, a proxy for structural confidence, can serve
as a useful indicator of model reliability on structurally di-
verse or noisier targets, such as those in Merck. As a result,
pLDDT may be employed as a practical uncertainty signal to
anticipate model performance on unseen targets, improving
the interpretability and robustness of our approach.
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5. Conclusion and Future Work
In this paper, we present AlphaRank, the first framework
to leverage AlphaFold3-style models for accurate affinity
ranking by exploiting their capabilities in interaction model-
ing and co-folding prediction. The method incorporates a
zero-shot setting based on competitive binding, and further
enhance performance through fine-tuning on PairFormer-
derived features. AlphaRank achieves state-of-the-art re-
sults on the JACS dataset, demonstrating the effectiveness
of AlphaFold3-like model for lead optimization. Looking
ahead, we plan to improve AlphaRank with smarter pair
sampling strategies, integration of diffusion-based features,
and end-to-end co-training. Our goal is to approach the ac-
curacy of FEP+ while significantly reducing computational
cost, making accurate affinity ranking more scalable and
practical for drug discovery.
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