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Abstract

Referring expression segmentation aims to seg-
ment a target object precisely in the image
by referencing to a given linguistic expres-
sion. Since the network predicts based on the
reference information that guides the network
on which regions to pay attention, the capac-
ity of this guidance information has a signifi-
cant impact on the segmentation result. How-
ever, most existing methods rely on linguistic
context-based tokens as the guidance elements,
which are limited in providing the visual under-
standing of the fine-grained target regions. To
address this issue, we propose a novel Multi-
Expression Guidance framework for Referring
Expression Segmentation, MERES, which en-
ables the network to refer to the visual expres-
sion tokens as well as the linguistic expression
tokens to complement the linguistic guidance
capacity by effectively providing the visual
contexts of the fine-grained target regions. To
produce the semantic visual expression tokens,
we introduce a visual expression extractor that
adaptively selects the useful visual information
relevant to the target regions from the image
context and allows the visual expression to cap-
ture the richer visual contexts. The proposed
module strengthens the adaptability to the di-
verse image and language inputs, and improves
visual understanding of the target regions. Our
method consistently shows strong performance
on three public benchmarks, where it surpasses
the existing state-of-the-art methods.

1 Introduction

Referring expression segmentation (RES) [22, 40,
45, 44, 26] is one of the challenging vision-
language tasks [6, 69, 20, 37], and can be applied
in various applications such as human-robot inter-
action and the object retrieval. Given an image and
a natural language expression describing a target
object within the image, one of the key points in
this task is for the network to precisely segment the
target object regions from the image by referring to
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Figure 1: Guidance set comparison of our approach and
previous approaches [68, 32, 15, 62, 38]. Unlike these
approaches, our approach allows visual expression to-
kens as well as linguistic expression tokens to be used as
guidance elements, to complement linguistic guidance
capacity. Extended figure is available in Appendix A.

the given expression. Unlike the single modal seg-
mentation [60, 31, 27] based on fixed categories,
the RES treats the free-form language expressions.
For instance, the language expression can be given
as a word that represents a single attribute, such
as “left”, or as a phrase or sentence that represents
more than one attribute, such as “pink shirts on the
sofa”. On the other hand, the image context con-
tains more diverse information of the target object
beyond the location, color and relationships, such
as the fine-grained region information with irregu-
lar shape that is difficult to describe in the language
expression. In this paper, we address the limitation
of the linguistic expression, which contains only
some part of the target region information.
Existing methods [68, 32, 61] have focused on
the multi-modal fusion, which enables vision fea-
tures to effectively refer to the language features.
Some studies [24, 15, 62] have focused on im-
proving the comprehension for the linguistic ex-
pression by allowing language features to refer to
the vision features via the language-vision cross-
attention mechanism. These methods successfully
address the ambiguity of the language expression
by obtaining the enhanced linguistic features. More
recent studies [38, 57] employ large language mod-
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Figure 2: t-SNE and qualitative results of the ablation method and the proposed method. In t-SNE results, our
VE tokens help to better cluster the target pixel embeddings, whereas LE tokens of the ablation method cannot
sufficiently cluster the target pixels. In segmentation results, due to the lack of visual understanding of the fine-
grained target regions, the ablation method guides the network to segment only some part of the target regions
(i.e., boat) or segment even non-target regions (i.e., other elephant’s leg). In contrast, our method shows robust
segmentation by complementing the linguistic guidance capacity and providing visual contexts of the target regions.

els (LLMs) [65, 11, 63, 76] to improve the under-
standing of the language expression via LLM’s
immense knowledge, and exploit the generated lan-
guage tokens in the segmentation network. How-
ever, as displayed in Figure 1, all these methods
rely on the linguistic context-based tokens to guide
the network to segment the target regions. Since
these tokens are insufficient to capture the visual
contexts, these linguistic-based tokens are limited
in providing the visual understanding that helps
guide the network to the target areas composed of
the fine-grained regions with different visual char-
acteristics. For example, in Figure 2, the network
guided by only linguistic-based tokens segments
only part of the target regions (i.e., (a)) or segments
even non-target regions (i.e., (b)).

To tackle this issue, we focus on producing the
visual expression tokens that can complement the
linguistic information by effectively providing the
visual contexts of the target regions; the set of such
tokens that provide the target region information
to the network is called Guidance Set in this paper.
The role of the guidance set is to guide the network
on which regions to focus its attention, because
the network predicts target regions based on the
guidance information. Thus, we explore the capa-
bility of the guidance set, which has a significant
impact on the segmentation results in the referring
expression segmentation task.

In this paper, we propose a novel Multi-
Expression guidance framework for Referring Ex-
pression Segmentation, MERES, which enables
the network to refer to the advanced guidance set
composed of the visual expression tokens as well
as the linguistic expression tokens. The proposed
framework is distinct from previous studies in that
we produce the visual expression tokens to enhance

the capacity of the guidance set and avoid relying
only on the linguistic guidance, as illustrated in
Figure 1. Our visual expression tokens comple-
ment the linguistic guidance capacity by effectively
providing the visual contexts of the target regions.

To produce the semantic visual expression, we
design a visual expression extractor from the terms
of two points: (1) It needs to selectively exploit the
semantic information relevant to the target regions
from the image context that contains both target and
non-target region information. (2) It needs to con-
sider the rich visual contextual information of the
target regions. For (1), the relevance to the given
linguistic expression can be used as a cue to identify
some degree of target regions in the image context,
but if there is insufficient target information in the
linguistic cue, the useful visual information may
not be selected due to the weak relevance to the
linguistic features. To prevent this over-reliance on
high relevance to the linguistic cue at the selection
step, our module adaptively selects the semantic
information related to the target regions from the
image context. This strengthens the adaptability to
diverse language and image inputs for robust seg-
mentation. For (2), our module allows the visual
expression tokens to consider richer visual contexts
by leveraging the global-local linguistic cues (i.e.,
sentence-level and word-level cues), where each of
linguistic cues has different contextual information,
and by acquiring the relationship between each vi-
sual token. This improves the visual understanding
of the fine-grained target regions.

We demonstrate the effectiveness of the pro-
posed approach on three public RES benchmarks.
In particular, our approach outperforms previous
state-of-the-art methods on all of three datasets.
Our contributions are summarized as follows:



* We propose a novel Multi-Expression guid-
ance framework for Referring Expression Seg-
mentation, MERES, which enables the net-
work to refer to the advanced guidance set
composed of visual expression tokens as well
as linguistic expression tokens, to complement
linguistic guidance capacity.

* To produce more semantic visual expression
tokens, we introduce a visual expression ex-
tractor that adaptively selects the useful in-
formation related to the target regions from
image context and allows the visual expres-
sion to consider the richer visual contexts. Our
module enhances the adaptability to diverse
image and language inputs, and improves vi-
sual understanding of the target regions.

* Our method consistently shows strong perfor-
mance and surpasses previous state-of-the-art
methods on three widely-used RES datasets.

2 Related Works

Referring Expression Segmentation. Different
from the unimodal segmentation [56, 70, 79] based
on predefined categories, referring segmentation
addresses the unrestricted language expression. Re-
cent researches [32, 68, 71, 61] have explored on
the better multi-modal fusion for this task. Other
recent studies [59, 3, 15] have incorporated the vi-
sual information into the language features. KWAN
[59] captured the visual context features for key-
words and concatenated them with the vision fea-
tures. STEP [3] extracted the visual-attended text
representation to obtain the heatmap. VLT [15]
improved the comprehension for the language ex-
pression and captured the enhanced language fea-
tures by referring to the vision features. RelLA
[43] and DMMI [23] proposed the generalized RES
datasets that contain multi-target and no-target sam-
ples. JMCELN [26] used learnable embeddings
to adaptively obtain multi-modal contextual infor-
mation. CGFormer [62] exploited the linguistic
tokens for grouping visual features. SADLR [72]
iteratively updated the segmentation mask and the
global linguistic features.

Unlike these approaches, as shown in Figure 9 of
Appendix, our approach focuses on producing the
visual expression tokens to complement the linguis-
tic guidance capacity, which can effectively provide
the visual understanding of the target regions.
Token Selection. Recent studies have exploited

the top-£ method for the token selection to flexibly
select the useful tokens in various tasks. TS-ViT
[78] proposed a drop-in token selection method
to improve the selectivity of the self-attention and
enhance the robustness of the transformer models.
For patch selection in large images, DPS [12] ex-
ploited the top-k method to aggregate information
from the different patches in a flexible manner. For
video object segmentation, HMMN [58] proposed
a top-k guided memory matching method, resulting
in efficient and robust fine-scale memory matching.
MiVOS [9] proposed a top-k filtering scheme for
the attention-based memory read operation. TS2-
Net [47] proposed a token shift and selection trans-
former that dynamically selects informative tokens
in both temporal and spatial dimensions on text-to-
video retrieval. PPMN [19] proposed a pixel-noun
matching network using top-£ selection to endow
noun features with stronger discriminative ability
on panoptic segmentation.

We thus leverage the top-k selection method
in our visual expression extractor to prevent over-
reliance on high relevance to the linguistic cues at
the selection step by adaptively selecting the useful
visual information associated with target regions
on referring expression segmentation.

3 Proposed Method

We propose a novel multi-expression guidance
framework on referring expression segmentation,
MERES, to avoid relying on linguistic guidance.
Figure 3 shows the overall framework. We first
describe the vision and language feature extraction
(Sec.3.1), and then introduce a visual expression
extractor (Sec.3.2). Finally, we explain a segmen-
tation decoder (Sec.3.3).

3.1 Vision and Language Feature Extraction

Given the input image 7 and the linguistic expres-
sion Q that consists of 7' — 1 words, the vision en-
coder extracts the vision features F; € RHiWixCi
at each stage i € {1,2,3,4} and the language
encoder extracts the linguistic expression tokens
Q, = [Wus, Wi, ..., wr_1] € RT*P_ Note that H;,
W;, C; and D denote the height, width, channel
dimension of the feature maps at the i*" vision
stage, and the channel dimension of the linguistic
features. The first token w,;s of linguistic expres-
sion features is a special [CLS] token, which is the
global representation that understands the linguistic
expression at the sentence level.
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Figure 3: Overview of the proposed framework. Our method improves the robustness of the guidance set capacity
by producing the visual expression. The visual expression extractor produces the visual expression tokens via three
steps: the adaptive selection, the semantic refinement and the visual relationship modeling.

3.2 Visual Expression Extractor

To improve the guidance capability, we produce the
visual expression that contains the visual semantic
contexts related to the target object. As illustrated
in Figure 3, the visual expression extractor consists
of three steps: i) adaptive selection, ii) semantic
refinement, iii) visual relationship modeling.
Adaptive selection. This step leverages the global-
local linguistic cues to consider both the compre-
hensive and specific attribute contexts for the rich
contextual information, as each linguistic cue cap-
tures the different contextual embedding. In this
step, the linguistic expression tokens are first en-
hanced by the cross-attention layers using the vi-
sion features as key-value pairs to improve the com-
prehension for the language contexts. Then, the vi-
sion features F,(= F,) € RV*¢ and the enhanced
global-local linguistic tokens 61 are embedded into
the joint embedding space by the linear projection
¢, where N is the total number of pixels. This
process is formulated as follows:

X =¢"(F,), Y=06(Q), (M)
After that, the relevance score map S € RT*N
between the vision pixel tokens and the linguistic
tokens is computed to rank, and the pixel tokens
are selected by the top-%£ method as follows:

S=8(X,Y), Sy =K(S), 2)
where S, K, S, € RT*K and K denote the co-
sine similarity function, the number of the selected
pixels, the set of the selected pixel index lists
per linguistic token, and the top-k operation. As
shown in Figure 3, the top-k ranked pixel tokens
F, € REXD are used to produce the visual ex-
pression tokens. Even if there is insufficient target
region information in the linguistic cues, the top-k

method enables to adaptively select the semantic
visual information that has weak relevance to lin-
guistic cues but is useful for robust segmentation.
This adaptive selection prevents over-reliance on
the high relevance to the linguistic cues.

To prevent the high relevance scores between the
linguistic cues and the incorrect regions, the rele-
vance score map s € RV of the global linguistic
token is supervised by the pixel contrastive loss:

—log(o(sj/7)) ifjez*

—log(1 —o(s;/7)) ifjeZ
where Z1 and Z~ denote the set of the relevant
pixels and irrelevant pixels for the target regions.
T is a learnable temperature, and o is a sigmoid
function. The pixel contrastive loss encourages that
the relevant pixels are embedded closer together
for high relevance score and the irrelevant pixels
are embedded far apart for low relevance score.
Semantic refinement. The selected useful tokens
are passed to the semantic refinement step. Rather
than simply aggregating the selected information,
it is more effective to refine the selected informa-
tion as the network adaptively captures the useful
information from the selected information to pro-
duce more semantic visual expression tokens. In
the semantic refinement step, the aggregated visual
tokens F, € RT*P are first obtained by the top-k
weighted average pooling, as follows:

3)

ne{l,2,.,N}, te{l,2,..,T}, &
St
m, =0 "€ M =M. M), (5)
—00 n &Sy
Snorm = Reshape(softmax(S +M)), (6)
| K
Fo= 2 > " (Snorm © Repeat(F,, T)), (7)



where ® and M € RT*¥ denote the element-wise
multiplication and the top-k selective mask that
masks the non top-k ranked scores. Repeat(f, =)
indicates repeating the feature f x times to expand
the shape. Since the top-k selection is discrete, the
normalized top-k score map S,,orm € RTXNX1 g
obtained by normalizing the whole relevance score
map S combined with the top-k selective mask M.
Then, the refined visual tokens F, € RT*P are
obtained by refining each aggregated visual token
via the selective masked cross-attention mechanism
to dynamically capture the useful semantic infor-
mation from the top-k selected pixels, as follows:

F = MCA(F,,F,,M)+F,, F, = MLP(F)+F, (8)

where MCA denotes the masked cross-attention, and
F is the intermediate features.

Visual relationship modeling. The visual expres-
sion tokens (A)U = [Veis, V1, oo V1] € RTXD are
produced by considering the visual relationship
to mutually complement each visual token’s in-
formation and capture the visual contextual infor-
mation, improving the visual understanding of the
fine-grained target regions, formulated as:

Q = MHSA(F,) + F,, Q, =MLP(Q) + Q, (9)

where MHSA and (3 indicate the multi-head self-
attention, and the intermediate features.

3.3 Segmentation Decoder

To segment the target region, the decoder lever-
ages the guidance set G = {Qy, Q, } composed of
the enhanced linguistic expression tokens and the
visual expression tokens. The decoder can focus
its attention on more precise target regions due to
the enhanced guidance for the visual understand-
ing of target regions. At each decoder stage, the
cross-attention layer, which uses the vision features
as the query and the guidance tokens as the key-
value, is employed to highlight the target regions.
The vision decoder features are then upsampled
and concatenated with the corresponding vision en-
coder features to feed into the next decoder stage.
The final segmentation map is projected to a binary
class mask by a linear projection layer. The binary
cross-entropy loss is used for the network training.

4 Experiments

4.1 Implementation Details

Experimental settings. The vision encoder is
Swin-B [48] initialized with the pre-trained weight

on ImageNet-22K [35], and the language encoder
is BERT-base [14] initialized with the official pre-
trained weight of the uncased version. The decoder
was randomly initialized. We trained models for 40
epochs with 16 batch size on 24G RTX3090 GPUs.
Datasets. RefCOCO [73] and RefCOCO+ [73]
are widely utilized datasets for referring image
segmentation. RefCOCO contains 19,994 images
with 142,209 language expressions for 50,000 ob-
jects, and RefCOCO+ contains 19,992 images with
141,564 expressions for 49,856 objects. The expres-
sions in RefCOCO+ do not include words about ab-
solute locations, which makes it more challenging
than RefCOCO. G-Ref [51, 52] is also a commonly
used dataset, which contains 26,711 images with
104,560 language expressions for 54,822 objects.
G-Ref, which is the most challenging dataset, has
more complex and longer expressions than Ref-
COCO and RefCOCO+.

Evaluation metrics. Following previous works,
we adopted the overall intersection-over-union
(oloU), mean intersection-over-union (mloU), and
precision at 0.5, 0.7 and 0.9 thresholds. More de-
tails for settings and metrics are in Appendix C.

4.2 Comparison with State-of-the-Arts

In Table 1, we evaluated our approach with previ-
ous state-of-the-art methods on three public bench-
marks for referring expression segmentation. Our
method consistently showed strong performance
on all evaluation splits of all datasets, and out-
performed other existing methods on three bench-
marks. Compared to VLT [15], which leverages
the enhanced linguistic features as the guidance
set elements, our MERES improved oloU perfor-
mance by 2.39%, 2.01% and 2.34% on each split
of RefCOCO, respectively. Compared to the recent
state-of-the-art method, CGFormer [62], our model
showed 2.16%, 1.08% and 2.71% higher oloU per-
formance on each split of RefCOCO+. Compared
to the other recent method, VG-LAW [61], our
model achieved significant mloU improvements of
2.49% and 2.84% on each split of G-Ref, the most
challenging dataset. These results demonstrate the
effectiveness of our approach.

In addition, we compared on the generalization
setting to further validate the generalization ability
in Table 2. Our MERES surpassed the existing
methods and consistently showed performance im-
provements on both seen and unseen sets. These
results suggest that our method has a better gener-
alization ability than other methods in this task.



Method ‘ Venue ‘ Vision Language RefCOCO RefCOCO+ G-Ref
Encoder Encoder val test A test B val test A test B val(u) test(u) val(q)
MCN [50] CVPR 20 DarkNet53 Bi-GRU 62.44 64.20 59.71 50.62 54.99 44.69 49.22 49.40
LTS [28] CVPR 21 DarkNet53 Bi-GRU 65.43 67.76 63.08 54.21 58.32 48.02 54.40 54.25
CRIS [68] CVPR 22 CLIP-R101 CLIP 70.47 73.18 66.10 62.27 68.08 53.60 59.87 60.36
mloU | JMCELN [26] EMNLP "23 CLIP-R101 CLIP 74.40 77.69 70.43 66.99 72.69 57.34 64.08 64.99 -
PVD [10] AAAIL 24 Swin-B BERT-base 75.07 77.29 70.13 64.39 69.15 57.19 63.22 63.89 61.74
VG-LAW [61] CVPR "23 ViT-B BERT-base 75.05 77.36 71.69 66.61 70.30 58.14 65.36 65.13 -
MERES (Ours) - Swin-B BERT-base 76.97 78.89 73.63 68.63 73.88 61.94 67.85 67.97 65.86
CMPC [25] CVPR 20 ResNet101 LSTM 61.36 64.53 59.64 49.56 53.44 43.23 - 49.05
ReSTR [32] CVPR 22 ViT-B Transformer 67.22 69.30 64.45 55.78 60.44 48.27 54.48 - -
LAVT [71] CVPR 22 Swin-B BERT-base 72.73 75.82 68.79 62.14 68.38 55.10 61.24 62.09
CoupAlign [77] NeurIPS °22 Swin-B BERT-base 74.70 77.76 70.58 62.92 68.34 56.69 62.84 62.22 -
VLT [15] TPAMI ’23 Swin-B BERT-base 72.96 75.96 69.60 63.53 68.43 56.92 63.49 66.22 62.80
oloU ReLA [43] CVPR 23 Swin-B BERT-base 73.82 76.48 70.18 66.04 71.02 57.65 65.00 65.97 62.70
DMMI [23] ICCV ’23 Swin-B BERT-base 74.13 77.13 70.16 63.98 69.73 57.03 63.46 64.19 61.98
SADLR [72] AAAL’23 Swin-B BERT-base 74.24 76.25 70.06 64.28 69.09 55.19 63.60 63.56 61.16
CGFormer [62] CVPR ’23 Swin-B BERT-base 74.75 77.30 70.64 64.54 71.00 57.14 64.68 65.09 62.51
MERES (Ours) - Swin-B BERT-base 75.35 77.97 71.94 66.70 72.08 59.85 65.78 66.93 63.49

Table 1: Performance comparison with the existing state-of-the-art methods on three widely-used referring expres-
sion segmentation benchmarks. (U): UMD split. (G): Google split. Best score is in bold.

Method ‘ Vision Language val() test () val(c)

RefCOCO val
P@0.7 P@0.9

G-Ref val ()

Guidance Elements mloU  oloU | P@0.5 P@0.7 P@0.9 mloU oloU

‘ P@0.5

Encoder Encoder seen  unseen | seen  unseen | seen  unseen
CRIS [68] CLIP-R101 CLIP 58.64  42.63 59.68  38.88 4236 32.84 LE 8473 7549 3487 7461 7285 | 7277 5990 2286 6252 61.59
LAVT [71] Swin-B CLIP 60.16 4233 | 6037 4138 | 5733 4043 Enhanced LE 8546 7622 3604 7510 7356 | 7402 6128 2455 6435 63.68

162 - . 5. 46. 5. 03 85 5.05 VE 8638 7782 3690 7584 7452 | 7489 6303 2633 6631 6545
CGFormer [62] Swin-B CLIP 6560 011 | 6567 4231 | 6285 450 Enhanced LE + All pixels | 8617 7740 3673 7565 7436 | 7485 6277 2591 6602 6527
MERES (Ours) ‘ Swin-B CLIP ‘ 66.52 46.74 ‘ 66.93 43.06 ‘ 63.61 46.01 Enhanced LE + VE 86.71 78.30 3724 7697 7535 | 76.13 64.60 27.87 67.85  66.93

Table 2: Comparison for generalization setting [62] on
G-Ref using mloU. Details for setting is in Appendix E.

4.3 Ablation Studies

4.3.1 Effectiveness of Proposed Framework

In Table 3, we conducted experiments to validate
the effectiveness of using the visual expression to-
kens as well as the linguistic expression tokens as
the elements of the guidance set. All ablation mod-
els are based on our network. Compared to ‘LE
only’ method that uses only the pure language en-
coder features Q; as guidance elements, ‘Enhanced
LE’ method, which uses only the enhanced linguis-
tic tokens (A)l as guidance elements, showed better
performance on each dataset. This suggests that
the enhancement of the language features by refer-
ring to the visual information helps to improve the
comprehension for the meaning of the language ex-
pression context. Compared to these two methods,
our full method showed remarkable improvements
on both datasets. These results indicate that lin-
guistic guidance capacity is insufficient to provide
the visual understanding of the fine-grained tar-
get regions, and using visual expression tokens as
guidance elements can effectively complement the
linguistic guidance capacity.

Furthermore, ‘VE only’ method (row3) showed
significant increases of 0.96% and 1.77% oloU than
‘Enhanced LE’ method on each dataset. These in-
teresting results demonstrated the effectiveness of
the visual expression itself. In addition, we com-
pared our full method with the all-pixel method
(row4) that uses all visual pixels as visual guidance
elements. Even though the all-pixel method can
provide the unique visual information to the net-
work, our method showed 0.99% and 1.66% higher

Table 3: Main ablation for the effectiveness of our ap-
proach. LE: Linguistic Expression tokens. VE: Visual
Expression tokens. Our full model is in gray .
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Figure 4: Precision-Recall curves of our model and the
ablation models on RefCOCO+ testA.

oloU on each dataset. This indicates that produc-
ing visual expression tokens is better to improve
the ability to understand the visual contexts of the
target regions than using all of pixels, by selec-
tively exploiting the semantic information relevant
to the target regions and considering the contextual
information between the visual expression tokens.

In Figure 4, we also displayed the precision-
recall curves. The area under curve (AUC-PR)
summarizes the overall performance of the model
across different threshold values. As shown in Fig-
ure 4, ‘VE only’ method maintained its advantage
in precision over the ‘LE only’ and ‘Enhanced LE’
methods. Our full model had the highest AUC-PR.

4.3.2 Effectiveness of Adaptive Selection

Selection method. To better select the visual in-
formation, we experimented with the thresholding
method and the top-k method in Table 4 (a). The
top-k selection method showed higher oloU perfor-
mance than the thresholding method. This indicates
that the top-k selection is more adaptive for select-



Method mloU (%) oloU (%) Global Local mloU (%) oloU (%) Method mloU (%) oloU (%)
wio selection 66.77 (-1.86)  64.71 (-1.99) v X 66.52 (-2.11)  64.34 (-2.36)
sigmoid (> 0.5) 67.42(-121) 6535 (-1.35) x v 66.65 (-1.98)  64.67 (-2.03) X 66.85(-1.78)  64.80 (-1.90)
top-k ranked selection 68.63 66.70 v v 68.63 66.70 v 68.63 66.70
(a) Selection method (b) Utilization of linguistic cues (c) Semantic refinement
Method mloU (%) oloU (%) Method mloU (%) oloU (%) Method mloU (%) oloU (%)
X 66.98 (-1.65) 64.88 (-1.82) X 67.54 (-1.09)  65.43 (-1.27) w/o top-k mask  66.91 (-1.72)  64.95 (-1.75)
v 68.63 66.70 v 68.63 66.70 w/ top-k mask 68.63 66.70

(d) Considering visual relationship

(e) Supervised by the contrastive loss

(f) Normalization with top-£ mask

Table 4: Ablation studies for the design of our visual expression extractor on RefCOCO+ val. Our default setting is
marked in gray . The drops are relative to our default setting.

ing the semantic visual information than the thresh-
olding method that depends on high relevance to
the linguistic cues. Even if there is insufficient tar-
get information in the linguistic cues, this adaptive
selection allows our module to exploit the useful
pixel information, which has weak relevance to the
linguistic features but is helpful for target segmen-
tation. Thus, our module can prevent over-reliance
on the high relevance to linguistic cues during the
selection step and enhance the adaptability for the
diverse linguistic expressions and image contexts.
Utilization of linguistic cues. We conducted the
ablation on the effectiveness of the global-local lin-
guistic cues in the adaptive selection step. In Table
4 (b), compared to our full model, removing the use
of the local linguistic cues showed a 2.36% drop in
oloU. In addition, removing the use of the global
linguistic cue showed a 2.03% drop in oloU. These
results indicate that using both global and local lin-
guistic cues allows the visual expression tokens to
consider the enriched visual contextual information
of the fine-grained target regions, as each linguistic
cue has different contextual information.

4.3.3 Effectiveness of Semantic Refinement

In Table 4 (c), we conducted the ablation on the
refinement step with the selected pixels. This result
highlights that the refinement step, which enables
the aggregated visual tokens to dynamically capture
the semantic information from the selected infor-
mation, is effective than simply aggregating the
selected information for producing more semantic
visual expression tokens.

4.3.4 Effect of Visual Relationship Modeling

In Table 4 (d), we conducted the ablation on the
visual relationship modeling step. This result in-
dicates that each token of the visual expression
acquires the visual context information for target
regions by considering the relationship between
each visual token. Therefore, the visual expres-
sion tokens can improve the ability to the visual
understanding of the target regions.

RefCOCO

—o— val

RefCOCO+ G-Ref

oloU (%)

val o —e— val(Google)

7‘ZD 10 20 30 4 50 60 70 80 10 20 £ 70 80
The ratio of the selected pixel tokens (%)

(@)

10 20 % 4 50 6 70 80

thi AR A, v A
Ground Truth k= k =80%

Figure 5: (a) Performance by increasing the k value on
three splits. (b) Segmentation results at different k.

4.3.5 Design Choices

Supervision by the contrastive loss. In Table 4
(e), we experimented on supervising the relevance
score map by the pixel contrastive loss (Eq.3). This
result indicates that the contrastive loss helps to
monitor the selection of the useful pixel tokens
associated with the correct target region and to
prevent the high relevance scores between the lin-
guistic features and incorrect regions.

Normalization with top-k mask. We ablated on
applying a softmax normalization with the top-k
mask to the relevance scores (Eq.6). In Table 4 (f),
normalizing without the top-k mask showed a sig-
nificant performance drop. This means that using
the selected pixels relevant to the target regions is
beneficial for robust segmentation than using all
pixels including the irrelevant pixels.

4.3.6 Analysis on Number of k

We experimented on the value of k, which is the
ratio of the pixel tokens selected for the visual ex-
pression extraction to adaptively exploit the useful
visual information. Compared to the k values of 10
and 80, the k£ of 30 showed higher oloU in Figure
5(a). In addition, as shown in Figure 5(b), the k
of 30 segmented more clearly, while the k& of 10
missed some part of the target regions and the k
of 80 even segmented other object regions. The
smaller number of & resulted in a lack of informa-
tion, where the useful visual information cannot be
sufficiently exploited. In contrast, the larger num-
ber of £ resulted in including the noise information



“fridge on right ”

Ground Truth

Image w/o visual expression  MERES (Ours)

“yellow fridge on the right ”

w/o visual expression
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Figure 6: Visualization of our method and ablated model on various language expressions describing the same target

object in the image. Additional results are in Appendix F.

(a) “ first umbrella not the one in upper right ”

MERES (Ours)

CGFormer

Ground Truth VLT

(b) “ black shape upper left half of page ”

(d) bottom right front head ”

Ground Truth CGFormer MERES (Ours

Figure 7: Visualization of our method and the previous state-of-the-art methods [15, 62] on the different types of
the images and language expressions. Additional results are in Appendix F.

and degrades the guidance capability. Therefore,
the optimal k£ can adaptively select the semantic
visual information and filter out noise components
to improve the robustness of the guidance capacity.

4.4 Qualitative Results

Comparison to the ablation model. In addition
to the comparison in Figure 2, we compared the
segmentation results for different language expres-
sions describing the same target in Figure 6. Our
method consistently predicted the accurate regions
by leveraging the visual expression, which comple-
ments the linguistic guidance information, while
the ablated model predicted inconsistently and seg-
mented the incorrect regions. These results indicate
that our method enhances the adaptability to var-
ious language expressions and image inputs for
robust segmentation, and improves the ability to
comprehend visual contexts of the target regions.

Comparison to the state-of-the-arts. In Figure
7, we compared with previous methods, which use
only the enhanced linguistic tokens as the guid-
ance set, on diverse types of inputs. Our method
segmented more clearly for the complex and am-
biguous language expressions (e.g., (a) and (b)) and
the complicated images (e.g., (c) and (d)), whereas
other methods incorrectly predicted and uncertainly
segmented the regions. These results indicate that
our approach is more effective in improving visual
understanding of the target regions. More cases,

RefCOCO
val  testA testB

RefCOCO+
val testA testB

G-Ref
valiyy  test)

Vision

Method ‘ Venue Encoder

LLM ‘

LISA-7B [38] | CVPR "24 v SAM-H [33] | 74.1 765 711 | 624 674 565 | 66.4 68.5
PixelLM [57] | CVPR 24 v CLIP-VIT-L | 73.0 76,5 682 | 663 71.7 583 | 69.3 70.5

MERES -] X Swin-B 719 | 667 721 599 | 658 669

Table 5: Comparison with LLM-based RES models.

“Police on horse with turned head ”
o mﬁl ;.,m

754 780

“Guyin sweater

MERES (Ours) MERES (Ours)

Figure 8: Qualitative comparison to a LLM-based RES
model on RefCOCO+. More results are in Appendix G.

Ground Truth LIsA

Ground Truth LISA

including longer expressions, are in Appendix F.

5 Conclusion

We proposed a novel Multi-Expression guidance
framework for Referring Expression Segmentation
(MERES), which enables visual expression tokens
as well as linguistic expression tokens to be used
as the guidance elements, to complement the lin-
guistic guidance capacity by effectively providing
visual contexts of the target regions. To produce
semantic visual expression, we design a visual ex-
pression extractor that adaptively selects the useful
visual information related to target regions from
image contexts and allows the visual expression
tokens to consider the richer visual contexts. This
enhances the adaptability to diverse image and lan-
guage inputs, and improves visual understanding
of the fine-grained target regions. Extensive ex-
periments demonstrated the effectiveness of our
approach on three public referring expression seg-
mentation benchmarks.



6 Limitations

With the development of LLMs [64, 18, 17, 74] for
vision-language multi-modal tasks [36, 30, 41, 7],
LLM-based RES models [38, 57] have been ac-
tively explored in this task. For further exploration,
we conducted comparison with these models in
Table 5. Compared to LLM-based models, our
model showed lower performance on the most chal-
lenging dataset, G-Ref, which consists of the dif-
ficult language samples. As shown in Figure 15
of the Appendix, the reason for this is that due to
the much smaller model parameters and smaller
training datasets, our model lacks the reasoning
ability for the implicit and detailed descriptions
in comparison to the LLM. This finding suggests
that our performance bottleneck may still lie in un-
derstanding the language expressions on this task,
while our model has better performance than the
existing state-of-the-art models in Table 1. The
possible solutions to overcome this limitation are
to train with the large-scale image-text datasets, to
exploit the stronger language model (e.g., LLMs),
and to leverage the language learning techniques
[21, 66, 13, 29, 39, 67, 8, 2, 1, 5].

Another finding is that our model surprisingly
showed better performance on RefCOCO and Ref-
COCO+ in Table 5. This finding indicates that our
model has a stronger ability to understand the vi-
sual contexts of the target regions than LLM-based
models, which rely on the generated linguistic to-
ken (i.e., the LLM’s ability) for their segmentation
ability, as shown in Figure 8. In future work, be-
yond the reliance on the LLM’s ability, the explo-
ration of extending our approach to combine with
the LLM has the potential for broader impact and
further generalization.
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Appendix

¢ Code and README file were submitted as a
zip file for reproducibility.

* In Appendix A, we present additional expla-
nations to clarify the differences between our
approach and previous approaches.

In Appendix B, we provide the performance
comparison with other methods that are
trained with the additional large scale text-
image pair datasets.

* In Appendix C, we provide the additional im-
plementation details.

* In Appendix D, we provide the additional de-
tails for datasets.

* In Appendix E, we provide the additional de-
tails for the generalization setting.

In Appendix F, we provide additional qualita-
tive results on the various types of language
expressions, the different language expres-
sions describing the same target object, and
the long and difficult language expressions.

In Appendix G, we present the additional qual-
itative comparison with the LLM-based RES
model (i.e., LISA [38]).

A Difference from Previous Approaches

In Figure 9, we illustrated the guidance sets of pre-
vious approaches and our approach to clarify the
differences. Previous approaches used the various
linguistic guidance elements to guide the network
to the target regions. As shown in (a), CRIS [68]
used the linguistic encoder features as the elements
of the guidance set. As shown in (b), VG-LAW
[61] used the layer-specific linguistic features as the
guidance elements, which embedded for each layer
of the vision encoder. As shown in (c¢), BRINet
[24], ReSTR [32], VLT [15], DMMI [23], and CG-
Former [62] used the visual-attended linguistic fea-
tures as the elements of the guidance set, which
are enhanced by referring to the vision features;
we called these features as the enhanced linguistic
expression tokens in this paper. As shown in (d),
JMCELN [26] and ReL A [43] used the dynamic
multi-modal tokens, which dynamically capture the
region and language features by using the learnable
tokens, as the guidance elements. As shown in (e),
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Figure 9: Guidance set comparison of previous approaches (i.e., CRIS [68], VG-LAW [61], BRINet [24], ReSTR
[32], VLT [15], DMMI [23], CGFormer [62], IMCELN [26], ReLA [43], SADLR [72] and LISA [38]) and our
approach. Previous approaches leverage various guidance sets to guide the network to the target regions. Different
from these approaches, our approach enables the visual expression tokens as well as the enhanced linguistic
expression tokens to be used as the elements of the guidance set, to complement the linguistic guidance capacity by
effectively providing the visual understanding of the fine-grained target regions.

SADLR [72] used the global linguistic features as
the guidance elements, which are iteratively up-
dated with the pooled visual vector based on the
previous iteration’s prediction mask. As shown in
(f), LISA [38], the LLM-based RES model, used
the special linguistic token (i.e., [SEG] token) gen-
erated by the multimodal LLM as the guidance
elements.

Different from these approaches, our approach
uses not only the enhanced linguistic expression
tokens but also the visual expression tokens as the
elements of the guidance set, as illustrated in Fig-
ure 9. Our visual expression tokens complement
the linguistic guidance capacity by effectively pro-
viding the visual contexts of the fine-grained target
regions. Therefore, our method allows the network
to avoid relying on the linguistic guidance.

B Comparison with Other RES Methods

To further analysis of our method, we compared
our model with other RES methods [80, 81, 46]
that use the additional large scale text-image pair
datasets [54, 34, 4] at training. PolyFormer [46]
showed higher performance on four splits (i.e., Ref-
COCO+ val. & test A, and G-Ref val ) & test(y)).
However, despite the unfair condition of not using
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any additional large-scale text-image datasets at
training, our model outperformed it on the other
splits. These results demonstrate the great adapt-
ability of our approach.

C Additional Implementation Details

Experimental Settings. Our method was imple-
mented in PyTorch [53]. We used the AdamW
[49] optimizer with initial learning rate of 3e-5 and
adopted the polynomial learning rate decay sched-
uler. The input image resolution was 480x480.
Evaluation Metrics. Following previous works,
we adopted the overall intersection-over-union
(oloU), mean intersection-over-union (mloU), and
precision at 0.5, 0.7 and 0.9 thresholds. The oloU
is the ratio between the total intersection regions
and the total union regions of all test samples. The
mloU is the average of IoUs between the predicted
mask and the ground truth of all test samples. The
precision is the percentage of test samples that have
an loU score higher than a threshold.

D Additional Details for Datasets

RefCOCO & RefCOCO+. These two datasets
are distributed under the Apache-2.0 license, and
are collected from the two-player game [73]. The



Method Venue Vision RefCOCO RefCOCO+ G-Ref
Encoder val test A testB val test A testB | valiyy testiyy valq
X-Decoder (B) [80] CVPR 23 DaViT-B [16] - 64.5 - -
SEEM (B) [81] NeurlIPS ’23 DaViT-B - - - - - - 65.0 - -
PolyFormer [46] CVPR 23 Swin-B 7482 76.64 71.06 | 67.64 72.89 59.33 | 67.76  69.05 -
MERES (Ours) - \ Swin-B \ 7535 7797 71.94 \ 66.70 72.08 59.85 \ 65.78 6693  63.49

Table 6: oloU performance comparison with other RES models, which use the additional large scale text-image pair
datasets at training, on three public referring expression segmentation benchmarks. (U): UMD split. (G): Google

split. The best score is in bold.

Dataset | Split | Max | Min | Mean
train 39 3.5

val 21 3.6

RefCOCO | s | 23 | 1 | 34
test B 27 3.6

train 24 3.5

val 22 3.6

RefCOCO+ | A | 16 | ' | 33
test B 22 3.8

train 46 8.5

_ Val(U) 37 8.5
GRef | ety | 32 | 1| 84
val(G) 37 8.5

Table 7: Length of the language expression samples on
each split of all datasets.

evaluation sets of RefCOCO and RefCOCO+ are
splitted into the validation subset, the test A subset
and the test B subset. The images of the testA
subset contain the multiple people, and the images
of the testB subset contain the multiple instances
of all other objects. RefCOCO+, which forbids the
words about the absolute locations in the language
expressions, is more challenging than RefCOCO.

G-Ref. This dataset is distributed under the CC-BY
4.0 license, and is collected on Amazon Mechanical
Turk. We use both UMD [52] and Google [51]
partitions for the evaluation. The UMD partition
splits the evaluation set into the validation subset
and the test subset. The Google partition consists
of only the validation set. The average length of
the language expressions is 8.4 words. This means
that the G-Ref dataset contains longer and more
complex language expressions than the RefCOCO
and RefCOCO+ datasets. Thus, G-Ref is the most
challenging dataset.

In Table 7, we present the length of the language
expression samples on each split of three datasets.
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E Additional Details for Generalization
Setting

To further validate the generalization ability of our
model, we experimented on the generalization set-
ting introduced by [62]. These setting splits the
RES datasets into the seen and unseen categories
on MSCOCO [42] of the open-vocabulary detec-
tion [75]. The training set contains only the seen
categories, and the test set consists of the seen sub-
set and the unseen subset. Following the previous
work [62], we adopted the text encoder of CLIP
[55] as the language encoder for a fair comparison
in this experiment, and trained our model for 50
epochs.

F Additional Qualitative Results

In addition to the comparison (Figure 7) with
the previous methods [15, 62] that use the visual-
attended linguistic tokens as the elements of the
guidance set, we compared with the other state-of-
the-art method [43], which uses the dynamic multi-
modal tokens as the elements of the guidance set,
on longer and more complex language expressions
in Figure 10. These results demonstrate that our
MERES can effectively enhance the adaptability to
the various cases and improve visual understand-
ing of the fine-grained target regions than other
approaches.

In Figure 11, we visualized more results of our
MERES and the previous methods [15, 62], which
use the visual-attended linguistic tokens as the ele-
ments of the guidance set, on the challenging types
of language expressions to verify the robustness
of our method, such as typos and slang, which
make it difficult for the network to refer to the lin-
guistic contexts. Compared to previous methods
[15, 62], our MERES correctly determined the tar-
get regions. In Figure 12, we visualized additional
qualitative results on various types of the language
expressions and the images to clearly demonstrate
the high level of competence in understanding the
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“The orange that is touching 2 other oranges and also touching
the black bowl.”

Input Image Ground Truth ReLA MERES (Ours)

Figure 10: Additional qualitative comparison of our method and the existing state-of-the-art method (i.e., ReLA
[43]), which uses the dynamic multi-modal tokens as the elements of the guidance set, on longer and more difficult

language expressions.

“seond row last right ”

Ground Truth VLT CGFormer  MERES (Ours)

“ply”

MERES (Ours)

CGFormer

Ground Trutl VLT

Figure 11: Visualization of our method and the previous methods [15, 62], which use the visual-attended linguistic
tokens as the elements of the guidance set, on the challenging types of the linguistic expressions such as typos and

slang.

context of the target regions. Our MERES showed
more accurate segmented regions than the previous
state-of-the-art methods for the diverse expressions
describing the relative location (e.g. “animal be-
hind fence” and “banana closest to apples”), color
(e.g. “white” and “beige”) and other attributes (e.g.,
“200999”, “empty” and “with handles”).

In Figure 13, we visualized additional results of
our full model and the ablation model for two or
three different language expressions describing the
same object. Our method showed robust segmenta-
tion for various language expressions, whereas the
ablation model segmented the non-target regions
or did not highlight the target regions.

G Additional Qualitative Comparison
with LISA

In Figure 14, we present the additional compari-
son on RefCOCO+ with LISA [38], which lever-
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ages the capabilities of the Large Language Model
(LLM). Our model showed robust segmentation
for the challenging target regions (e.g., “Guy sit-
ting with black shirt” and “The person a white shirt
and white hat”). These results indicate that our
approach is more effective in understanding the
visual contexts of the target object compared to
the LLM-based method. On the other hand, for
the challenging language expressions that are too
difficult even for humans to understand, our model
showed failure cases as shown in Figure 15, while
LISA correctly detected the target object. This
means that the LLM-based method has a great abil-
ity to comprehend the meaning of the implicit and
complex language expressions. Therefore, in future
work, the exploration of combining our approach’s
strength with the LLM’s strength has the potential
for broader impact on this task.



“girlin green pants in front”
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“apple in front at left
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Figure 12: Additional qualitative comparison of the proposed method and the previous state-of-the-art methods on

more diverse language expressions and images.



(a) Three different language expressions

“yellow shirt by the ballerina” “kid on left, yellow shirt”

Figure 13: Additional qualitative comparison of the proposed method and the ablated model on different language
expressions describing the same object in the image.
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“Brown shirt glasses guy” “Side arm showing”

2

Ground Truth LISA  MERES (Ours) Ground Truth LISA MERES (Ours)

Figure 14: Additional qualitative results of our MERES and LISA [38] on RefCOCO+ dataset.

“A sheep with yellow tags in its ears that is holding its “The front tire of the bike that’s hidden behind the red

ears up higher than the other”” wheels in the right hand picture.”
v(

Ground Truth LISA MERES (Ours)

Figure 15: Failure cases of our MERES on G-Ref dataset.
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