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Abstract

Referring expression segmentation aims to seg-001
ment a target object precisely in the image002
by referencing to a given linguistic expres-003
sion. Since the network predicts based on the004
reference information that guides the network005
on which regions to pay attention, the capac-006
ity of this guidance information has a signifi-007
cant impact on the segmentation result. How-008
ever, most existing methods rely on linguistic009
context-based tokens as the guidance elements,010
which are limited in providing the visual under-011
standing of the fine-grained target regions. To012
address this issue, we propose a novel Multi-013
Expression Guidance framework for Referring014
Expression Segmentation, MERES, which en-015
ables the network to refer to the visual expres-016
sion tokens as well as the linguistic expression017
tokens to complement the linguistic guidance018
capacity by effectively providing the visual019
contexts of the fine-grained target regions. To020
produce the semantic visual expression tokens,021
we introduce a visual expression extractor that022
adaptively selects the useful visual information023
relevant to the target regions from the image024
context and allows the visual expression to cap-025
ture the richer visual contexts. The proposed026
module strengthens the adaptability to the di-027
verse image and language inputs, and improves028
visual understanding of the target regions. Our029
method consistently shows strong performance030
on three public benchmarks, where it surpasses031
the existing state-of-the-art methods.032

1 Introduction033

Referring expression segmentation (RES) [22, 40,034

45, 44, 26] is one of the challenging vision-035

language tasks [6, 69, 20, 37], and can be applied036

in various applications such as human-robot inter-037

action and the object retrieval. Given an image and038

a natural language expression describing a target039

object within the image, one of the key points in040

this task is for the network to precisely segment the041

target object regions from the image by referring to042

Figure 1: Guidance set comparison of our approach and
previous approaches [68, 32, 15, 62, 38]. Unlike these
approaches, our approach allows visual expression to-
kens as well as linguistic expression tokens to be used as
guidance elements, to complement linguistic guidance
capacity. Extended figure is available in Appendix A.

the given expression. Unlike the single modal seg- 043

mentation [60, 31, 27] based on fixed categories, 044

the RES treats the free-form language expressions. 045

For instance, the language expression can be given 046

as a word that represents a single attribute, such 047

as “left”, or as a phrase or sentence that represents 048

more than one attribute, such as “pink shirts on the 049

sofa”. On the other hand, the image context con- 050

tains more diverse information of the target object 051

beyond the location, color and relationships, such 052

as the fine-grained region information with irregu- 053

lar shape that is difficult to describe in the language 054

expression. In this paper, we address the limitation 055

of the linguistic expression, which contains only 056

some part of the target region information. 057

Existing methods [68, 32, 61] have focused on 058

the multi-modal fusion, which enables vision fea- 059

tures to effectively refer to the language features. 060

Some studies [24, 15, 62] have focused on im- 061

proving the comprehension for the linguistic ex- 062

pression by allowing language features to refer to 063

the vision features via the language-vision cross- 064

attention mechanism. These methods successfully 065

address the ambiguity of the language expression 066

by obtaining the enhanced linguistic features. More 067

recent studies [38, 57] employ large language mod- 068
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Figure 2: t-SNE and qualitative results of the ablation method and the proposed method. In t-SNE results, our
VE tokens help to better cluster the target pixel embeddings, whereas LE tokens of the ablation method cannot
sufficiently cluster the target pixels. In segmentation results, due to the lack of visual understanding of the fine-
grained target regions, the ablation method guides the network to segment only some part of the target regions
(i.e., boat) or segment even non-target regions (i.e., other elephant’s leg). In contrast, our method shows robust
segmentation by complementing the linguistic guidance capacity and providing visual contexts of the target regions.

els (LLMs) [65, 11, 63, 76] to improve the under-069

standing of the language expression via LLM’s070

immense knowledge, and exploit the generated lan-071

guage tokens in the segmentation network. How-072

ever, as displayed in Figure 1, all these methods073

rely on the linguistic context-based tokens to guide074

the network to segment the target regions. Since075

these tokens are insufficient to capture the visual076

contexts, these linguistic-based tokens are limited077

in providing the visual understanding that helps078

guide the network to the target areas composed of079

the fine-grained regions with different visual char-080

acteristics. For example, in Figure 2, the network081

guided by only linguistic-based tokens segments082

only part of the target regions (i.e., (a)) or segments083

even non-target regions (i.e., (b)).084

To tackle this issue, we focus on producing the085

visual expression tokens that can complement the086

linguistic information by effectively providing the087

visual contexts of the target regions; the set of such088

tokens that provide the target region information089

to the network is called Guidance Set in this paper.090

The role of the guidance set is to guide the network091

on which regions to focus its attention, because092

the network predicts target regions based on the093

guidance information. Thus, we explore the capa-094

bility of the guidance set, which has a significant095

impact on the segmentation results in the referring096

expression segmentation task.097

In this paper, we propose a novel Multi-098

Expression guidance framework for Referring Ex-099

pression Segmentation, MERES, which enables100

the network to refer to the advanced guidance set101

composed of the visual expression tokens as well102

as the linguistic expression tokens. The proposed103

framework is distinct from previous studies in that104

we produce the visual expression tokens to enhance105

the capacity of the guidance set and avoid relying 106

only on the linguistic guidance, as illustrated in 107

Figure 1. Our visual expression tokens comple- 108

ment the linguistic guidance capacity by effectively 109

providing the visual contexts of the target regions. 110

To produce the semantic visual expression, we 111

design a visual expression extractor from the terms 112

of two points: (1) It needs to selectively exploit the 113

semantic information relevant to the target regions 114

from the image context that contains both target and 115

non-target region information. (2) It needs to con- 116

sider the rich visual contextual information of the 117

target regions. For (1), the relevance to the given 118

linguistic expression can be used as a cue to identify 119

some degree of target regions in the image context, 120

but if there is insufficient target information in the 121

linguistic cue, the useful visual information may 122

not be selected due to the weak relevance to the 123

linguistic features. To prevent this over-reliance on 124

high relevance to the linguistic cue at the selection 125

step, our module adaptively selects the semantic 126

information related to the target regions from the 127

image context. This strengthens the adaptability to 128

diverse language and image inputs for robust seg- 129

mentation. For (2), our module allows the visual 130

expression tokens to consider richer visual contexts 131

by leveraging the global-local linguistic cues (i.e., 132

sentence-level and word-level cues), where each of 133

linguistic cues has different contextual information, 134

and by acquiring the relationship between each vi- 135

sual token. This improves the visual understanding 136

of the fine-grained target regions. 137

We demonstrate the effectiveness of the pro- 138

posed approach on three public RES benchmarks. 139

In particular, our approach outperforms previous 140

state-of-the-art methods on all of three datasets. 141

Our contributions are summarized as follows: 142
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• We propose a novel Multi-Expression guid-143

ance framework for Referring Expression Seg-144

mentation, MERES, which enables the net-145

work to refer to the advanced guidance set146

composed of visual expression tokens as well147

as linguistic expression tokens, to complement148

linguistic guidance capacity.149

• To produce more semantic visual expression150

tokens, we introduce a visual expression ex-151

tractor that adaptively selects the useful in-152

formation related to the target regions from153

image context and allows the visual expres-154

sion to consider the richer visual contexts. Our155

module enhances the adaptability to diverse156

image and language inputs, and improves vi-157

sual understanding of the target regions.158

• Our method consistently shows strong perfor-159

mance and surpasses previous state-of-the-art160

methods on three widely-used RES datasets.161

2 Related Works162

Referring Expression Segmentation. Different163

from the unimodal segmentation [56, 70, 79] based164

on predefined categories, referring segmentation165

addresses the unrestricted language expression. Re-166

cent researches [32, 68, 71, 61] have explored on167

the better multi-modal fusion for this task. Other168

recent studies [59, 3, 15] have incorporated the vi-169

sual information into the language features. KWAN170

[59] captured the visual context features for key-171

words and concatenated them with the vision fea-172

tures. STEP [3] extracted the visual-attended text173

representation to obtain the heatmap. VLT [15]174

improved the comprehension for the language ex-175

pression and captured the enhanced language fea-176

tures by referring to the vision features. ReLA177

[43] and DMMI [23] proposed the generalized RES178

datasets that contain multi-target and no-target sam-179

ples. JMCELN [26] used learnable embeddings180

to adaptively obtain multi-modal contextual infor-181

mation. CGFormer [62] exploited the linguistic182

tokens for grouping visual features. SADLR [72]183

iteratively updated the segmentation mask and the184

global linguistic features.185

Unlike these approaches, as shown in Figure 9 of186

Appendix, our approach focuses on producing the187

visual expression tokens to complement the linguis-188

tic guidance capacity, which can effectively provide189

the visual understanding of the target regions.190

Token Selection. Recent studies have exploited191

the top-k method for the token selection to flexibly 192

select the useful tokens in various tasks. TS-ViT 193

[78] proposed a drop-in token selection method 194

to improve the selectivity of the self-attention and 195

enhance the robustness of the transformer models. 196

For patch selection in large images, DPS [12] ex- 197

ploited the top-k method to aggregate information 198

from the different patches in a flexible manner. For 199

video object segmentation, HMMN [58] proposed 200

a top-k guided memory matching method, resulting 201

in efficient and robust fine-scale memory matching. 202

MiVOS [9] proposed a top-k filtering scheme for 203

the attention-based memory read operation. TS2- 204

Net [47] proposed a token shift and selection trans- 205

former that dynamically selects informative tokens 206

in both temporal and spatial dimensions on text-to- 207

video retrieval. PPMN [19] proposed a pixel-noun 208

matching network using top-k selection to endow 209

noun features with stronger discriminative ability 210

on panoptic segmentation. 211

We thus leverage the top-k selection method 212

in our visual expression extractor to prevent over- 213

reliance on high relevance to the linguistic cues at 214

the selection step by adaptively selecting the useful 215

visual information associated with target regions 216

on referring expression segmentation. 217

3 Proposed Method 218

We propose a novel multi-expression guidance 219

framework on referring expression segmentation, 220

MERES, to avoid relying on linguistic guidance. 221

Figure 3 shows the overall framework. We first 222

describe the vision and language feature extraction 223

(Sec.3.1), and then introduce a visual expression 224

extractor (Sec.3.2). Finally, we explain a segmen- 225

tation decoder (Sec.3.3). 226

3.1 Vision and Language Feature Extraction 227

Given the input image I and the linguistic expres- 228

sion Q that consists of T − 1 words, the vision en- 229

coder extracts the vision features Fi ∈ RHiWi×Ci 230

at each stage i ∈ {1, 2, 3, 4} and the language 231

encoder extracts the linguistic expression tokens 232

Ql = [wcls,w1, ...,wT−1] ∈ RT×D. Note that Hi, 233

Wi, Ci and D denote the height, width, channel 234

dimension of the feature maps at the ith vision 235

stage, and the channel dimension of the linguistic 236

features. The first token wcls of linguistic expres- 237

sion features is a special [CLS] token, which is the 238

global representation that understands the linguistic 239

expression at the sentence level. 240
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Figure 3: Overview of the proposed framework. Our method improves the robustness of the guidance set capacity
by producing the visual expression. The visual expression extractor produces the visual expression tokens via three
steps: the adaptive selection, the semantic refinement and the visual relationship modeling.

3.2 Visual Expression Extractor241

To improve the guidance capability, we produce the242

visual expression that contains the visual semantic243

contexts related to the target object. As illustrated244

in Figure 3, the visual expression extractor consists245

of three steps: i) adaptive selection, ii) semantic246

refinement, iii) visual relationship modeling.247

Adaptive selection. This step leverages the global-248

local linguistic cues to consider both the compre-249

hensive and specific attribute contexts for the rich250

contextual information, as each linguistic cue cap-251

tures the different contextual embedding. In this252

step, the linguistic expression tokens are first en-253

hanced by the cross-attention layers using the vi-254

sion features as key-value pairs to improve the com-255

prehension for the language contexts. Then, the vi-256

sion features Fv(= F4) ∈ RN×C and the enhanced257

global-local linguistic tokens Q̂l are embedded into258

the joint embedding space by the linear projection259

ϕ, where N is the total number of pixels. This260

process is formulated as follows:261

X = ϕV(Fv) , Y = ϕL(Q̂l) , (1)262

After that, the relevance score map S ∈ RT×N263

between the vision pixel tokens and the linguistic264

tokens is computed to rank, and the pixel tokens265

are selected by the top-k method as follows:266

S = S(X,Y) , Sk = K(S) , (2)267

where S, K, Sk ∈ RT×K and K denote the co-268

sine similarity function, the number of the selected269

pixels, the set of the selected pixel index lists270

per linguistic token, and the top-k operation. As271

shown in Figure 3, the top-k ranked pixel tokens272

Fk ∈ RK×D are used to produce the visual ex-273

pression tokens. Even if there is insufficient target274

region information in the linguistic cues, the top-k275

method enables to adaptively select the semantic 276

visual information that has weak relevance to lin- 277

guistic cues but is useful for robust segmentation. 278

This adaptive selection prevents over-reliance on 279

the high relevance to the linguistic cues. 280

To prevent the high relevance scores between the 281

linguistic cues and the incorrect regions, the rele- 282

vance score map s ∈ R1×N of the global linguistic 283

token is supervised by the pixel contrastive loss: 284

Lc =

{
−log(σ(sj/τ)) if j ∈ Z+

−log(1− σ(sj/τ)) if j ∈ Z− , (3) 285

where Z+ and Z− denote the set of the relevant 286

pixels and irrelevant pixels for the target regions. 287

τ is a learnable temperature, and σ is a sigmoid 288

function. The pixel contrastive loss encourages that 289

the relevant pixels are embedded closer together 290

for high relevance score and the irrelevant pixels 291

are embedded far apart for low relevance score. 292

Semantic refinement. The selected useful tokens 293

are passed to the semantic refinement step. Rather 294

than simply aggregating the selected information, 295

it is more effective to refine the selected informa- 296

tion as the network adaptively captures the useful 297

information from the selected information to pro- 298

duce more semantic visual expression tokens. In 299

the semantic refinement step, the aggregated visual 300

tokens Fa ∈ RT×D are first obtained by the top-k 301

weighted average pooling, as follows: 302

n ∈ {1, 2, ..., N}, t ∈ {1, 2, ..., T}, (4) 303

304
Mt

n =

{
0 n ∈ St

k

−∞ n ̸∈ St
k

,M = [M1, ...,MT ], (5) 305

306
Snorm = Reshape(softmax(S + M)), (6) 307

308

Fa =
1

K

K∑
(Snorm ⊙ Repeat(Fv, T )), (7) 309
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where ⊙ and M ∈ RT×N denote the element-wise310

multiplication and the top-k selective mask that311

masks the non top-k ranked scores. Repeat(f, x)312

indicates repeating the feature f x times to expand313

the shape. Since the top-k selection is discrete, the314

normalized top-k score map Snorm ∈ RT×N×1 is315

obtained by normalizing the whole relevance score316

map S combined with the top-k selective mask M.317

Then, the refined visual tokens Fr ∈ RT×D are318

obtained by refining each aggregated visual token319

via the selective masked cross-attention mechanism320

to dynamically capture the useful semantic infor-321

mation from the top-k selected pixels, as follows:322

F̂ = MCA(Fa,Fv,M)+Fa, Fr = MLP(F̂)+F̂, (8)323

where MCA denotes the masked cross-attention, and324

F̂ is the intermediate features.325

Visual relationship modeling. The visual expres-326

sion tokens Q̂v = [vcls, v1, ..., vT−1] ∈ RT×D are327

produced by considering the visual relationship328

to mutually complement each visual token’s in-329

formation and capture the visual contextual infor-330

mation, improving the visual understanding of the331

fine-grained target regions, formulated as:332

Q̂ = MHSA(Fr) + Fr , Q̂v = MLP(Q̂) + Q̂ , (9)333

where MHSA and Q̂ indicate the multi-head self-334

attention, and the intermediate features.335

3.3 Segmentation Decoder336

To segment the target region, the decoder lever-337

ages the guidance set G = {Q̂l, Q̂v} composed of338

the enhanced linguistic expression tokens and the339

visual expression tokens. The decoder can focus340

its attention on more precise target regions due to341

the enhanced guidance for the visual understand-342

ing of target regions. At each decoder stage, the343

cross-attention layer, which uses the vision features344

as the query and the guidance tokens as the key-345

value, is employed to highlight the target regions.346

The vision decoder features are then upsampled347

and concatenated with the corresponding vision en-348

coder features to feed into the next decoder stage.349

The final segmentation map is projected to a binary350

class mask by a linear projection layer. The binary351

cross-entropy loss is used for the network training.352

4 Experiments353

4.1 Implementation Details354

Experimental settings. The vision encoder is355

Swin-B [48] initialized with the pre-trained weight356

on ImageNet-22K [35], and the language encoder 357

is BERT-base [14] initialized with the official pre- 358

trained weight of the uncased version. The decoder 359

was randomly initialized. We trained models for 40 360

epochs with 16 batch size on 24G RTX3090 GPUs. 361

Datasets. RefCOCO [73] and RefCOCO+ [73] 362

are widely utilized datasets for referring image 363

segmentation. RefCOCO contains 19,994 images 364

with 142,209 language expressions for 50,000 ob- 365

jects, and RefCOCO+ contains 19,992 images with 366

141,564 expressions for 49,856 objects. The expres- 367

sions in RefCOCO+ do not include words about ab- 368

solute locations, which makes it more challenging 369

than RefCOCO. G-Ref [51, 52] is also a commonly 370

used dataset, which contains 26,711 images with 371

104,560 language expressions for 54,822 objects. 372

G-Ref, which is the most challenging dataset, has 373

more complex and longer expressions than Ref- 374

COCO and RefCOCO+. 375

Evaluation metrics. Following previous works, 376

we adopted the overall intersection-over-union 377

(oIoU), mean intersection-over-union (mIoU), and 378

precision at 0.5, 0.7 and 0.9 thresholds. More de- 379

tails for settings and metrics are in Appendix C. 380

4.2 Comparison with State-of-the-Arts 381

In Table 1, we evaluated our approach with previ- 382

ous state-of-the-art methods on three public bench- 383

marks for referring expression segmentation. Our 384

method consistently showed strong performance 385

on all evaluation splits of all datasets, and out- 386

performed other existing methods on three bench- 387

marks. Compared to VLT [15], which leverages 388

the enhanced linguistic features as the guidance 389

set elements, our MERES improved oIoU perfor- 390

mance by 2.39%, 2.01% and 2.34% on each split 391

of RefCOCO, respectively. Compared to the recent 392

state-of-the-art method, CGFormer [62], our model 393

showed 2.16%, 1.08% and 2.71% higher oIoU per- 394

formance on each split of RefCOCO+. Compared 395

to the other recent method, VG-LAW [61], our 396

model achieved significant mIoU improvements of 397

2.49% and 2.84% on each split of G-Ref, the most 398

challenging dataset. These results demonstrate the 399

effectiveness of our approach. 400

In addition, we compared on the generalization 401

setting to further validate the generalization ability 402

in Table 2. Our MERES surpassed the existing 403

methods and consistently showed performance im- 404

provements on both seen and unseen sets. These 405

results suggest that our method has a better gener- 406

alization ability than other methods in this task. 407
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Method Venue Vision Language RefCOCO RefCOCO+ G-Ref
Encoder Encoder val test A test B val test A test B val(U) test(U) val(G)

mIoU

MCN [50] CVPR ’20 DarkNet53 Bi-GRU 62.44 64.20 59.71 50.62 54.99 44.69 49.22 49.40 -
LTS [28] CVPR ’21 DarkNet53 Bi-GRU 65.43 67.76 63.08 54.21 58.32 48.02 54.40 54.25 -
CRIS [68] CVPR ’22 CLIP-R101 CLIP 70.47 73.18 66.10 62.27 68.08 53.60 59.87 60.36 -
JMCELN [26] EMNLP ’23 CLIP-R101 CLIP 74.40 77.69 70.43 66.99 72.69 57.34 64.08 64.99 -
PVD [10] AAAI ’24 Swin-B BERT-base 75.07 77.29 70.13 64.39 69.15 57.19 63.22 63.89 61.74
VG-LAW [61] CVPR ’23 ViT-B BERT-base 75.05 77.36 71.69 66.61 70.30 58.14 65.36 65.13 -
MERES (Ours) - Swin-B BERT-base 76.97 78.89 73.63 68.63 73.88 61.94 67.85 67.97 65.86

oIoU

CMPC [25] CVPR ’20 ResNet101 LSTM 61.36 64.53 59.64 49.56 53.44 43.23 - - 49.05
ReSTR [32] CVPR ’22 ViT-B Transformer 67.22 69.30 64.45 55.78 60.44 48.27 54.48 - -
LAVT [71] CVPR ’22 Swin-B BERT-base 72.73 75.82 68.79 62.14 68.38 55.10 61.24 62.09 -
CoupAlign [77] NeurIPS ’22 Swin-B BERT-base 74.70 77.76 70.58 62.92 68.34 56.69 62.84 62.22 -
VLT [15] TPAMI ’23 Swin-B BERT-base 72.96 75.96 69.60 63.53 68.43 56.92 63.49 66.22 62.80
ReLA [43] CVPR ’23 Swin-B BERT-base 73.82 76.48 70.18 66.04 71.02 57.65 65.00 65.97 62.70
DMMI [23] ICCV ’23 Swin-B BERT-base 74.13 77.13 70.16 63.98 69.73 57.03 63.46 64.19 61.98
SADLR [72] AAAI ’23 Swin-B BERT-base 74.24 76.25 70.06 64.28 69.09 55.19 63.60 63.56 61.16
CGFormer [62] CVPR ’23 Swin-B BERT-base 74.75 77.30 70.64 64.54 71.00 57.14 64.68 65.09 62.51
MERES (Ours) - Swin-B BERT-base 75.35 77.97 71.94 66.70 72.08 59.85 65.78 66.93 63.49

Table 1: Performance comparison with the existing state-of-the-art methods on three widely-used referring expres-
sion segmentation benchmarks. (U): UMD split. (G): Google split. Best score is in bold.

Method Vision Language val(U) test(U) val(G)

Encoder Encoder seen unseen seen unseen seen unseen

CRIS [68] CLIP-R101 CLIP 58.64 42.63 59.68 38.88 42.36 32.84
LAVT [71] Swin-B CLIP 60.16 42.33 60.37 41.38 57.33 40.43
CGFormer [62] Swin-B CLIP 65.60 46.11 65.67 42.31 62.85 45.05

MERES (Ours) Swin-B CLIP 66.52 46.74 66.93 43.06 63.61 46.01

Table 2: Comparison for generalization setting [62] on
G-Ref using mIoU. Details for setting is in Appendix E.

4.3 Ablation Studies408

4.3.1 Effectiveness of Proposed Framework409

In Table 3, we conducted experiments to validate410

the effectiveness of using the visual expression to-411

kens as well as the linguistic expression tokens as412

the elements of the guidance set. All ablation mod-413

els are based on our network. Compared to ‘LE414

only’ method that uses only the pure language en-415

coder features Ql as guidance elements, ‘Enhanced416

LE’ method, which uses only the enhanced linguis-417

tic tokens Q̂l as guidance elements, showed better418

performance on each dataset. This suggests that419

the enhancement of the language features by refer-420

ring to the visual information helps to improve the421

comprehension for the meaning of the language ex-422

pression context. Compared to these two methods,423

our full method showed remarkable improvements424

on both datasets. These results indicate that lin-425

guistic guidance capacity is insufficient to provide426

the visual understanding of the fine-grained tar-427

get regions, and using visual expression tokens as428

guidance elements can effectively complement the429

linguistic guidance capacity.430

Furthermore, ‘VE only’ method (row3) showed431

significant increases of 0.96% and 1.77% oIoU than432

‘Enhanced LE’ method on each dataset. These in-433

teresting results demonstrated the effectiveness of434

the visual expression itself. In addition, we com-435

pared our full method with the all-pixel method436

(row4) that uses all visual pixels as visual guidance437

elements. Even though the all-pixel method can438

provide the unique visual information to the net-439

work, our method showed 0.99% and 1.66% higher440

Guidance Elements RefCOCO val G-Ref val(U)

P@0.5 P@0.7 P@0.9 mIoU oIoU P@0.5 P@0.7 P@0.9 mIoU oIoU

LE 84.73 75.49 34.87 74.61 72.85 72.77 59.90 22.86 62.52 61.59
Enhanced LE 85.46 76.22 36.04 75.10 73.56 74.02 61.28 24.55 64.35 63.68
VE 86.38 77.82 36.90 75.84 74.52 74.89 63.03 26.33 66.31 65.45
Enhanced LE + All pixels 86.17 77.40 36.73 75.65 74.36 74.85 62.77 25.91 66.02 65.27
Enhanced LE + VE 86.71 78.30 37.24 76.97 75.35 76.13 64.60 27.87 67.85 66.93

Table 3: Main ablation for the effectiveness of our ap-
proach. LE: Linguistic Expression tokens. VE: Visual
Expression tokens. Our full model is in gray .

Figure 4: Precision-Recall curves of our model and the
ablation models on RefCOCO+ testA.

oIoU on each dataset. This indicates that produc- 441

ing visual expression tokens is better to improve 442

the ability to understand the visual contexts of the 443

target regions than using all of pixels, by selec- 444

tively exploiting the semantic information relevant 445

to the target regions and considering the contextual 446

information between the visual expression tokens. 447

In Figure 4, we also displayed the precision- 448

recall curves. The area under curve (AUC-PR) 449

summarizes the overall performance of the model 450

across different threshold values. As shown in Fig- 451

ure 4, ‘VE only’ method maintained its advantage 452

in precision over the ‘LE only’ and ‘Enhanced LE’ 453

methods. Our full model had the highest AUC-PR. 454

4.3.2 Effectiveness of Adaptive Selection 455

Selection method. To better select the visual in- 456

formation, we experimented with the thresholding 457

method and the top-k method in Table 4 (a). The 458

top-k selection method showed higher oIoU perfor- 459

mance than the thresholding method. This indicates 460

that the top-k selection is more adaptive for select- 461
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Method mIoU (%) oIoU (%)

w/o selection 66.77 (-1.86) 64.71 (-1.99)
sigmoid (> 0.5) 67.42 (-1.21) 65.35 (-1.35)
top-k ranked selection 68.63 66.70

(a) Selection method

Global Local mIoU (%) oIoU (%)

✓ ✗ 66.52 (-2.11) 64.34 (-2.36)
✗ ✓ 66.65 (-1.98) 64.67 (-2.03)
✓ ✓ 68.63 66.70

(b) Utilization of linguistic cues

Method mIoU (%) oIoU (%)

✗ 66.85 (-1.78) 64.80 (-1.90)
✓ 68.63 66.70

(c) Semantic refinement

Method mIoU (%) oIoU (%)

✗ 66.98 (-1.65) 64.88 (-1.82)
✓ 68.63 66.70

(d) Considering visual relationship

Method mIoU (%) oIoU (%)

✗ 67.54 (-1.09) 65.43 (-1.27)
✓ 68.63 66.70

(e) Supervised by the contrastive loss

Method mIoU (%) oIoU (%)

w/o top-k mask 66.91 (-1.72) 64.95 (-1.75)
w/ top-k mask 68.63 66.70

(f) Normalization with top-k mask

Table 4: Ablation studies for the design of our visual expression extractor on RefCOCO+ val. Our default setting is
marked in gray . The drops are relative to our default setting.

ing the semantic visual information than the thresh-462

olding method that depends on high relevance to463

the linguistic cues. Even if there is insufficient tar-464

get information in the linguistic cues, this adaptive465

selection allows our module to exploit the useful466

pixel information, which has weak relevance to the467

linguistic features but is helpful for target segmen-468

tation. Thus, our module can prevent over-reliance469

on the high relevance to linguistic cues during the470

selection step and enhance the adaptability for the471

diverse linguistic expressions and image contexts.472

Utilization of linguistic cues. We conducted the473

ablation on the effectiveness of the global-local lin-474

guistic cues in the adaptive selection step. In Table475

4 (b), compared to our full model, removing the use476

of the local linguistic cues showed a 2.36% drop in477

oIoU. In addition, removing the use of the global478

linguistic cue showed a 2.03% drop in oIoU. These479

results indicate that using both global and local lin-480

guistic cues allows the visual expression tokens to481

consider the enriched visual contextual information482

of the fine-grained target regions, as each linguistic483

cue has different contextual information.484

4.3.3 Effectiveness of Semantic Refinement485

In Table 4 (c), we conducted the ablation on the486

refinement step with the selected pixels. This result487

highlights that the refinement step, which enables488

the aggregated visual tokens to dynamically capture489

the semantic information from the selected infor-490

mation, is effective than simply aggregating the491

selected information for producing more semantic492

visual expression tokens.493

4.3.4 Effect of Visual Relationship Modeling494

In Table 4 (d), we conducted the ablation on the495

visual relationship modeling step. This result in-496

dicates that each token of the visual expression497

acquires the visual context information for target498

regions by considering the relationship between499

each visual token. Therefore, the visual expres-500

sion tokens can improve the ability to the visual501

understanding of the target regions.502

(a)

(b)
Figure 5: (a) Performance by increasing the k value on
three splits. (b) Segmentation results at different k.

4.3.5 Design Choices 503

Supervision by the contrastive loss. In Table 4 504

(e), we experimented on supervising the relevance 505

score map by the pixel contrastive loss (Eq.3). This 506

result indicates that the contrastive loss helps to 507

monitor the selection of the useful pixel tokens 508

associated with the correct target region and to 509

prevent the high relevance scores between the lin- 510

guistic features and incorrect regions. 511

Normalization with top-k mask. We ablated on 512

applying a softmax normalization with the top-k 513

mask to the relevance scores (Eq.6). In Table 4 (f), 514

normalizing without the top-k mask showed a sig- 515

nificant performance drop. This means that using 516

the selected pixels relevant to the target regions is 517

beneficial for robust segmentation than using all 518

pixels including the irrelevant pixels. 519

4.3.6 Analysis on Number of k 520

We experimented on the value of k, which is the 521

ratio of the pixel tokens selected for the visual ex- 522

pression extraction to adaptively exploit the useful 523

visual information. Compared to the k values of 10 524

and 80, the k of 30 showed higher oIoU in Figure 525

5(a). In addition, as shown in Figure 5(b), the k 526

of 30 segmented more clearly, while the k of 10 527

missed some part of the target regions and the k 528

of 80 even segmented other object regions. The 529

smaller number of k resulted in a lack of informa- 530

tion, where the useful visual information cannot be 531

sufficiently exploited. In contrast, the larger num- 532

ber of k resulted in including the noise information 533

7



Figure 6: Visualization of our method and ablated model on various language expressions describing the same target
object in the image. Additional results are in Appendix F.

Figure 7: Visualization of our method and the previous state-of-the-art methods [15, 62] on the different types of
the images and language expressions. Additional results are in Appendix F.

and degrades the guidance capability. Therefore,534

the optimal k can adaptively select the semantic535

visual information and filter out noise components536

to improve the robustness of the guidance capacity.537

4.4 Qualitative Results538

Comparison to the ablation model. In addition539

to the comparison in Figure 2, we compared the540

segmentation results for different language expres-541

sions describing the same target in Figure 6. Our542

method consistently predicted the accurate regions543

by leveraging the visual expression, which comple-544

ments the linguistic guidance information, while545

the ablated model predicted inconsistently and seg-546

mented the incorrect regions. These results indicate547

that our method enhances the adaptability to var-548

ious language expressions and image inputs for549

robust segmentation, and improves the ability to550

comprehend visual contexts of the target regions.551

Comparison to the state-of-the-arts. In Figure552

7, we compared with previous methods, which use553

only the enhanced linguistic tokens as the guid-554

ance set, on diverse types of inputs. Our method555

segmented more clearly for the complex and am-556

biguous language expressions (e.g., (a) and (b)) and557

the complicated images (e.g., (c) and (d)), whereas558

other methods incorrectly predicted and uncertainly559

segmented the regions. These results indicate that560

our approach is more effective in improving visual561

understanding of the target regions. More cases,562

Method Venue LLM Vision RefCOCO RefCOCO+ G-Ref
Encoder val test A test B val test A test B val(U) test(U)

LISA-7B [38] CVPR ’24 ✓ SAM-H [33] 74.1 76.5 71.1 62.4 67.4 56.5 66.4 68.5
PixelLM [57] CVPR ’24 ✓ CLIP-VIT-L 73.0 76.5 68.2 66.3 71.7 58.3 69.3 70.5

MERES - ✗ Swin-B 75.4 78.0 71.9 66.7 72.1 59.9 65.8 66.9

Table 5: Comparison with LLM-based RES models.

Figure 8: Qualitative comparison to a LLM-based RES
model on RefCOCO+. More results are in Appendix G.

including longer expressions, are in Appendix F. 563

5 Conclusion 564

We proposed a novel Multi-Expression guidance 565

framework for Referring Expression Segmentation 566

(MERES), which enables visual expression tokens 567

as well as linguistic expression tokens to be used 568

as the guidance elements, to complement the lin- 569

guistic guidance capacity by effectively providing 570

visual contexts of the target regions. To produce 571

semantic visual expression, we design a visual ex- 572

pression extractor that adaptively selects the useful 573

visual information related to target regions from 574

image contexts and allows the visual expression 575

tokens to consider the richer visual contexts. This 576

enhances the adaptability to diverse image and lan- 577

guage inputs, and improves visual understanding 578

of the fine-grained target regions. Extensive ex- 579

periments demonstrated the effectiveness of our 580

approach on three public referring expression seg- 581

mentation benchmarks. 582
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6 Limitations583

With the development of LLMs [64, 18, 17, 74] for584

vision-language multi-modal tasks [36, 30, 41, 7],585

LLM-based RES models [38, 57] have been ac-586

tively explored in this task. For further exploration,587

we conducted comparison with these models in588

Table 5. Compared to LLM-based models, our589

model showed lower performance on the most chal-590

lenging dataset, G-Ref, which consists of the dif-591

ficult language samples. As shown in Figure 15592

of the Appendix, the reason for this is that due to593

the much smaller model parameters and smaller594

training datasets, our model lacks the reasoning595

ability for the implicit and detailed descriptions596

in comparison to the LLM. This finding suggests597

that our performance bottleneck may still lie in un-598

derstanding the language expressions on this task,599

while our model has better performance than the600

existing state-of-the-art models in Table 1. The601

possible solutions to overcome this limitation are602

to train with the large-scale image-text datasets, to603

exploit the stronger language model (e.g., LLMs),604

and to leverage the language learning techniques605

[21, 66, 13, 29, 39, 67, 8, 2, 1, 5].606

Another finding is that our model surprisingly607

showed better performance on RefCOCO and Ref-608

COCO+ in Table 5. This finding indicates that our609

model has a stronger ability to understand the vi-610

sual contexts of the target regions than LLM-based611

models, which rely on the generated linguistic to-612

ken (i.e., the LLM’s ability) for their segmentation613

ability, as shown in Figure 8. In future work, be-614

yond the reliance on the LLM’s ability, the explo-615

ration of extending our approach to combine with616

the LLM has the potential for broader impact and617

further generalization.618
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Appendix 1045

• Code and README file were submitted as a 1046

zip file for reproducibility. 1047

• In Appendix A, we present additional expla- 1048

nations to clarify the differences between our 1049

approach and previous approaches. 1050

• In Appendix B, we provide the performance 1051

comparison with other methods that are 1052

trained with the additional large scale text- 1053

image pair datasets. 1054

• In Appendix C, we provide the additional im- 1055

plementation details. 1056

• In Appendix D, we provide the additional de- 1057

tails for datasets. 1058

• In Appendix E, we provide the additional de- 1059

tails for the generalization setting. 1060

• In Appendix F, we provide additional qualita- 1061

tive results on the various types of language 1062

expressions, the different language expres- 1063

sions describing the same target object, and 1064

the long and difficult language expressions. 1065

• In Appendix G, we present the additional qual- 1066

itative comparison with the LLM-based RES 1067

model (i.e., LISA [38]). 1068

A Difference from Previous Approaches 1069

In Figure 9, we illustrated the guidance sets of pre- 1070

vious approaches and our approach to clarify the 1071

differences. Previous approaches used the various 1072

linguistic guidance elements to guide the network 1073

to the target regions. As shown in (a), CRIS [68] 1074

used the linguistic encoder features as the elements 1075

of the guidance set. As shown in (b), VG-LAW 1076

[61] used the layer-specific linguistic features as the 1077

guidance elements, which embedded for each layer 1078

of the vision encoder. As shown in (c), BRINet 1079

[24], ReSTR [32], VLT [15], DMMI [23], and CG- 1080

Former [62] used the visual-attended linguistic fea- 1081

tures as the elements of the guidance set, which 1082

are enhanced by referring to the vision features; 1083

we called these features as the enhanced linguistic 1084

expression tokens in this paper. As shown in (d), 1085

JMCELN [26] and ReLA [43] used the dynamic 1086

multi-modal tokens, which dynamically capture the 1087

region and language features by using the learnable 1088

tokens, as the guidance elements. As shown in (e), 1089
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Figure 9: Guidance set comparison of previous approaches (i.e., CRIS [68], VG-LAW [61], BRINet [24], ReSTR
[32], VLT [15], DMMI [23], CGFormer [62], JMCELN [26], ReLA [43], SADLR [72] and LISA [38]) and our
approach. Previous approaches leverage various guidance sets to guide the network to the target regions. Different
from these approaches, our approach enables the visual expression tokens as well as the enhanced linguistic
expression tokens to be used as the elements of the guidance set, to complement the linguistic guidance capacity by
effectively providing the visual understanding of the fine-grained target regions.

SADLR [72] used the global linguistic features as1090

the guidance elements, which are iteratively up-1091

dated with the pooled visual vector based on the1092

previous iteration’s prediction mask. As shown in1093

(f), LISA [38], the LLM-based RES model, used1094

the special linguistic token (i.e., [SEG] token) gen-1095

erated by the multimodal LLM as the guidance1096

elements.1097

Different from these approaches, our approach1098

uses not only the enhanced linguistic expression1099

tokens but also the visual expression tokens as the1100

elements of the guidance set, as illustrated in Fig-1101

ure 9. Our visual expression tokens complement1102

the linguistic guidance capacity by effectively pro-1103

viding the visual contexts of the fine-grained target1104

regions. Therefore, our method allows the network1105

to avoid relying on the linguistic guidance.1106

B Comparison with Other RES Methods1107

To further analysis of our method, we compared1108

our model with other RES methods [80, 81, 46]1109

that use the additional large scale text-image pair1110

datasets [54, 34, 4] at training. PolyFormer [46]1111

showed higher performance on four splits (i.e., Ref-1112

COCO+ val. & test A, and G-Ref val(U) & test(U)).1113

However, despite the unfair condition of not using1114

any additional large-scale text-image datasets at 1115

training, our model outperformed it on the other 1116

splits. These results demonstrate the great adapt- 1117

ability of our approach. 1118

C Additional Implementation Details 1119

Experimental Settings. Our method was imple- 1120

mented in PyTorch [53]. We used the AdamW 1121

[49] optimizer with initial learning rate of 3e-5 and 1122

adopted the polynomial learning rate decay sched- 1123

uler. The input image resolution was 480×480. 1124

Evaluation Metrics. Following previous works, 1125

we adopted the overall intersection-over-union 1126

(oIoU), mean intersection-over-union (mIoU), and 1127

precision at 0.5, 0.7 and 0.9 thresholds. The oIoU 1128

is the ratio between the total intersection regions 1129

and the total union regions of all test samples. The 1130

mIoU is the average of IoUs between the predicted 1131

mask and the ground truth of all test samples. The 1132

precision is the percentage of test samples that have 1133

an IoU score higher than a threshold. 1134

D Additional Details for Datasets 1135

RefCOCO & RefCOCO+. These two datasets 1136

are distributed under the Apache-2.0 license, and 1137

are collected from the two-player game [73]. The 1138
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Method Venue Vision RefCOCO RefCOCO+ G-Ref
Encoder val test A test B val test A test B val(U) test(U) val(G)

X-Decoder (B) [80] CVPR ’23 DaViT-B [16] - - - - - - 64.5 - -
SEEM (B) [81] NeurlIPS ’23 DaViT-B - - - - - - 65.0 - -
PolyFormer [46] CVPR ’23 Swin-B 74.82 76.64 71.06 67.64 72.89 59.33 67.76 69.05 -

MERES (Ours) - Swin-B 75.35 77.97 71.94 66.70 72.08 59.85 65.78 66.93 63.49

Table 6: oIoU performance comparison with other RES models, which use the additional large scale text-image pair
datasets at training, on three public referring expression segmentation benchmarks. (U): UMD split. (G): Google
split. The best score is in bold.

Dataset Split Max Min Mean

RefCOCO

train 39

1

3.5
val 21 3.6

test A 23 3.4
test B 27 3.6

RefCOCO+

train 24

1

3.5
val 22 3.6

test A 16 3.3
test B 22 3.8

G-Ref

train 46

1

8.5
val(U) 37 8.5
test(U) 32 8.4
val(G) 37 8.5

Table 7: Length of the language expression samples on
each split of all datasets.

evaluation sets of RefCOCO and RefCOCO+ are1139

splitted into the validation subset, the test A subset1140

and the test B subset. The images of the testA1141

subset contain the multiple people, and the images1142

of the testB subset contain the multiple instances1143

of all other objects. RefCOCO+, which forbids the1144

words about the absolute locations in the language1145

expressions, is more challenging than RefCOCO.1146

G-Ref. This dataset is distributed under the CC-BY1147

4.0 license, and is collected on Amazon Mechanical1148

Turk. We use both UMD [52] and Google [51]1149

partitions for the evaluation. The UMD partition1150

splits the evaluation set into the validation subset1151

and the test subset. The Google partition consists1152

of only the validation set. The average length of1153

the language expressions is 8.4 words. This means1154

that the G-Ref dataset contains longer and more1155

complex language expressions than the RefCOCO1156

and RefCOCO+ datasets. Thus, G-Ref is the most1157

challenging dataset.1158

In Table 7, we present the length of the language1159

expression samples on each split of three datasets.1160

E Additional Details for Generalization 1161

Setting 1162

To further validate the generalization ability of our 1163

model, we experimented on the generalization set- 1164

ting introduced by [62]. These setting splits the 1165

RES datasets into the seen and unseen categories 1166

on MSCOCO [42] of the open-vocabulary detec- 1167

tion [75]. The training set contains only the seen 1168

categories, and the test set consists of the seen sub- 1169

set and the unseen subset. Following the previous 1170

work [62], we adopted the text encoder of CLIP 1171

[55] as the language encoder for a fair comparison 1172

in this experiment, and trained our model for 50 1173

epochs. 1174

F Additional Qualitative Results 1175

In addition to the comparison (Figure 7) with 1176

the previous methods [15, 62] that use the visual- 1177

attended linguistic tokens as the elements of the 1178

guidance set, we compared with the other state-of- 1179

the-art method [43], which uses the dynamic multi- 1180

modal tokens as the elements of the guidance set, 1181

on longer and more complex language expressions 1182

in Figure 10. These results demonstrate that our 1183

MERES can effectively enhance the adaptability to 1184

the various cases and improve visual understand- 1185

ing of the fine-grained target regions than other 1186

approaches. 1187

In Figure 11, we visualized more results of our 1188

MERES and the previous methods [15, 62], which 1189

use the visual-attended linguistic tokens as the ele- 1190

ments of the guidance set, on the challenging types 1191

of language expressions to verify the robustness 1192

of our method, such as typos and slang, which 1193

make it difficult for the network to refer to the lin- 1194

guistic contexts. Compared to previous methods 1195

[15, 62], our MERES correctly determined the tar- 1196

get regions. In Figure 12, we visualized additional 1197

qualitative results on various types of the language 1198

expressions and the images to clearly demonstrate 1199

the high level of competence in understanding the 1200
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Figure 10: Additional qualitative comparison of our method and the existing state-of-the-art method (i.e., ReLA
[43]), which uses the dynamic multi-modal tokens as the elements of the guidance set, on longer and more difficult
language expressions.

Figure 11: Visualization of our method and the previous methods [15, 62], which use the visual-attended linguistic
tokens as the elements of the guidance set, on the challenging types of the linguistic expressions such as typos and
slang.

context of the target regions. Our MERES showed1201

more accurate segmented regions than the previous1202

state-of-the-art methods for the diverse expressions1203

describing the relative location (e.g. “animal be-1204

hind fence” and “banana closest to apples”), color1205

(e.g. “white” and “beige”) and other attributes (e.g.,1206

“200999”, “empty” and “with handles”).1207

In Figure 13, we visualized additional results of1208

our full model and the ablation model for two or1209

three different language expressions describing the1210

same object. Our method showed robust segmenta-1211

tion for various language expressions, whereas the1212

ablation model segmented the non-target regions1213

or did not highlight the target regions.1214

G Additional Qualitative Comparison1215

with LISA1216

In Figure 14, we present the additional compari-1217

son on RefCOCO+ with LISA [38], which lever-1218

ages the capabilities of the Large Language Model 1219

(LLM). Our model showed robust segmentation 1220

for the challenging target regions (e.g., “Guy sit- 1221

ting with black shirt” and “The person a white shirt 1222

and white hat”). These results indicate that our 1223

approach is more effective in understanding the 1224

visual contexts of the target object compared to 1225

the LLM-based method. On the other hand, for 1226

the challenging language expressions that are too 1227

difficult even for humans to understand, our model 1228

showed failure cases as shown in Figure 15, while 1229

LISA correctly detected the target object. This 1230

means that the LLM-based method has a great abil- 1231

ity to comprehend the meaning of the implicit and 1232

complex language expressions. Therefore, in future 1233

work, the exploration of combining our approach’s 1234

strength with the LLM’s strength has the potential 1235

for broader impact on this task. 1236
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Figure 12: Additional qualitative comparison of the proposed method and the previous state-of-the-art methods on
more diverse language expressions and images.
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w/o visual expression

“ man with scarf ”“ second guy from right”

Ground Truth Image w/o visual expression

“guy with scarf ”

w/o visual expression

w/o visual expression MERES (Ours)Ground Truth Image w/o visual expression

“ standing man on left ”“ left smiling man ”

“ right half of pizza ”“ right half ”

“ guy signing shirt ”“ man on left kneeling ”

“ Soccer play in the front ”“ Standing girl”

(b) Two  different language expressions

(a) Three different language expressions

MERES (Ours)

MERES (Ours) MERES (Ours)MERES (Ours)

“ kid on left, yellow shirt ”“ yellow shirt by the ballerina” “ player left side ”

“ GUY ON LEFT ”“ large photo of man juggling ” “ biggest pic of juggler ”

Figure 13: Additional qualitative comparison of the proposed method and the ablated model on different language
expressions describing the same object in the image.
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Figure 14: Additional qualitative results of our MERES and LISA [38] on RefCOCO+ dataset.

Figure 15: Failure cases of our MERES on G-Ref dataset.
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