
Path-enhanced Pre-trained Language Model for Knowledge Graph
Completion

Anonymous ACL submission

Abstract

Pre-trained language models (PLMs) have001
achieved remarkable knowledge graph comple-002
tion(KGC) success. However, previous meth-003
ods derive KGC results mainly from triple-level004
and text-described learning, which lack the ca-005
pability of capturing long-term relational and006
structural information. Moreover, the absence007
of a visible reasoning process leads to poor in-008
terpretability and credibility of the completions.009
In this paper, we propose a path-enhanced010
pre-trained language model-based knowledge011
graph completion method (PEKGC), which em-012
ploys multi-view generation to infer missing013
facts in triple-level and path-level simultane-014
ously to address lacking long-term relational015
information and interpretability issues. Further-016
more, a neighbor selector module is proposed017
to filter neighbor triples to provide the adjacent018
structural information. Finally, we propose a019
fact-level re-evaluation and a heuristic fusion020
ranking strategy for candidate answers to fuse021
multi-view predictions. Extensive experiments022
on the benchmark datasets demonstrate that our023
model significantly improves the performance024
of the KGC task.025

1 Introduction026

Knowledge graphs (KGs) are designed to store027

knowledge in graph-structured format, as seen in028

Freebase (Bollacker et al., 2008), WordNet (Miller,029

1995), and NELL (Carlson et al., 2010). The exten-030

sive application of various KGs has greatly bene-031

fited numerous downstream tasks, such as question032

answering, recommendation systems, and informa-033

tion retrieval. However, due to the limited scale034

of KGs, whether manually or automatically con-035

structed, they invariably suffer from incomplete036

coverage and fail to encompass the vast expanse of037

real-world knowledge. This limitation has given038

rise to the task of knowledge graph completion039

(KGC), which involves predicting missing links by040

understanding the existing triples within KGs.041

Query: Answer:(TuYouyou, Nationality, ?) China

Triple-level
PLM

Path-level
PLM

Tu Youyou - Born In - Zhejiang
- Located In - China

Tu Youyou Nationality <MASK>

China

Figure 1: An example of PLM-based KGC in triple and
path levels. In this triple, (Tu Youyou, Nationality, ?) is
a query, and the answer is China.

Typically, most mainstream KGC methods fall 042

into two categories: embedding-based and path- 043

based. Embedding-based methods (Bordes et al., 044

2013; Yang et al., 2015; Dettmers et al., 2018; 045

Vashishth et al., 2019) focus on mapping entities 046

and relations into a low-dimensional, continuous 047

vector space to capture intrinsic connections and 048

predict missing links in the vector space. By com- 049

parison, path-based methods (Das et al., 2018; Qu 050

et al., 2020; Zhu et al., 2021) aim to use paths be- 051

tween entities to predict and achieve more directly 052

interpretable results. Whereas, both approaches 053

aim to model all interactions among entities and 054

relations directly, they hardly adapt to large-scale 055

growth parameters and knowledge scenarios. 056

Recently, inspired by the success of pre-training 057

language models (PLMs), such as BERT (De- 058

vlin et al., 2019), RoBERTa (Liu et al., 2019), 059

and T5 (Raffel et al., 2020), in NLP tasks, en- 060

couraging increased interest in probing PLMs to 061

complete KGs. According to the structure of 062

the models, PLM-based models can be divided 063

into two categories: encoder-only models, such 064

as KG-BERT (Yao et al., 2019) and PKGC (Lv 065

et al., 2022), and encoder-decoder models, such 066

as KGT5 (Saxena et al., 2022) and KGS2S (Chen 067

et al., 2022). The encoder-only models encode both 068

the query and all candidate entities to calculate their 069

matching confidence, while the encoder-decoder 070

models encode the query and then decode possible 071
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candidate entities. Overall, PLM-based KGC meth-072

ods work by converting triples into serialized text073

descriptions sentences and feeding the sentences074

to PLMs to complete KGs. As illustrated in Fig-075

ure 1, current PLM-based models (referred to as076

triple-level PLM) encode the concatenated query077

text, “Tu Youyou Nationality [MASK]”, from a “flat”078

text-described view and directly generate the an-079

swer entity, China.080

However, current PLM-based models have flat-081

tened triples into a simple triple-level text descrip-082

tion presenting three significant limitations: (i) low083

expressiveness. The embeddings of entities and084

relations are learned at the triple level, which rep-085

resents the embeddings as being focused only on086

a local perspective (i.e., one-hop structure). Pre-087

vious research has indicated that relying solely on088

local relational information for KG learning is not089

enough (Guo et al., 2019). (ii) inefficient infor-090

mation propagation. These models depend exclu-091

sively on one-hop neighbors for aggregating and092

propagating information, which is inefficient for093

transferring semantics and knowledge between en-094

tities. (iii) lack of interpretability. KGC results095

are generated directly in response to queries with-096

out the necessary explanations or reasoning pro-097

cess, which harms the credibility of completions.098

Therefore, there is an urgent need to leverage rich099

structural information of KGs to capture more com-100

plex, long-term, or higher-level features to enhance101

expressiveness, propagation, and interpretability.102

To address the limitations above, in this paper,103

we propose a Path-enhanced Pre-trained Language104

Model-based Knowledge Graph Completion model105

(PEKGC), which employs multi-view generation106

by an encoder-decoder architecture to tackle lack-107

ing long-term relational structures and poor inter-108

pretability issues. To enable PLM-based models109

to capture path-level knowledge and bridge long-110

term gaps between entities, our model generates111

possible entities with reasoning path chains, which112

also serve as evidence for the generated answers in113

response to queries. Besides, to extract local knowl-114

edge, our model simultaneously generates answers115

at a triple level. In this way, the model can focus on116

multi-level knowledge simultaneously and can be117

cross-validated occurring at both levels. To better118

use the adjacent structural information and enhance119

the inference ability of the model, we also design a120

neighbor selector module, which is pre-trained to121

filter the most relevant triples to the query as neigh-122

borhood information. In addition, we use KG soft123

prompts and position soft prompts to distinguish 124

between KG knowledge and textual knowledge, as 125

well as to mark the internal relationships of triples. 126

To further re-evaluate and re-rank the joint results 127

of both levels, we propose a fact-level re-evaluation 128

and a heuristic fusion ranking strategy, which can 129

re-calculate the confidence scores of candidate an- 130

swers and efficiently re-rank them. In summary, 131

the major contributions of this work are as follows: 132

• We propose a multi-level generation paradigm 133

for knowledge graph completion that can cap- 134

ture local triple-level knowledge and long- 135

term relational structures, and also model 136

the text and structural information, achieving 137

more directly interpretable results. 138

• We propose a heuristic fusion ranking strategy 139

for multi-view generation during inference, 140

further combining triple-level and path-level 141

results to achieve better ranking performance. 142

• Extensive experiments are conducted on 143

benchmark datasets, demonstrating that the 144

proposed method outperforms existing state- 145

of-the-art methods. 146

2 Related Work 147

2.1 Knowledge Graph Completion 148

Traditional KGC methods aim to map entities 149

and relations into a low-dimensional and contin- 150

uous vector space to capture inner connections. 151

These methods can be further subdivided into 152

translation-based methods (Bordes et al., 2013; 153

Sun et al., 2018), semantic matching methods 154

(Yang et al., 2015; Balažević et al., 2019), convo- 155

lutional neural network-based (CNN-based) meth- 156

ods (Dettmers et al., 2018; Ren et al., 2020), and 157

graph neural network-based (GNN-based) methods 158

(Schlichtkrull et al., 2018; Vashishth et al., 2019). 159

However, as the scale of KGs has increased, the 160

extraction and expression ability of these methods 161

has gradually encountered bottlenecks. 162

2.2 Path-based KGC 163

To bridge the long-term relational gaps between 164

entities and improve the interpretability of comple- 165

tion results, some methods introduce the multi-hop 166

paths into the KGC task, i.e., path-based methods. 167

These methods can be further subdivided into rule- 168

based methods (Qu et al., 2020; Sadeghian et al., 169

2019), reinforcement learning-based (RL-based) 170
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methods (Das et al., 2018; Lin et al., 2018; Jiang171

et al., 2023), and propagation path-based meth-172

ods (Zhu et al., 2021; Zhang et al., 2023). Rule-173

based methods utilize logical inference and sym-174

bolic rules to complete KGs. They usually suffer175

from poor generalization and high complexity due176

to their direct operation on symbols when applied177

to large-scale KGs. RL-based methods frame multi-178

hop path reasoning as a finite horizon determin-179

istic partially observed Markov decision process180

(MDP) and train an agent to navigate on KGs to181

locate target entities. However, these methods are182

also limited in the vast search space and sparse183

rewards encountered during training. Propagation184

path-based methods use relational paths to encode185

and transmit the intermediate knowledge between186

entities. Limited by the complexity of propagation,187

their dimensions are generally small, resulting in188

weak expression ability.189

2.3 Pre-trained Language Model-based KGC190

Recent research has focused on fine-tuning PLMs191

for KGC tasks to leverage the implicit knowledge192

of PLMs and the structured knowledge of KGs.193

KG-BERT (Yao et al., 2019) is the first to use194

BERT for KGC by simply concatenating triples’195

names as text-based input. Subsequent methods196

can be categorized into two main types based on197

their model structures: encoder-only models and198

encoder-decoder models. Encoder-only models199

such as StAR (Wang et al., 2021), which integrates200

graph embedding techniques to introduce struc-201

tured knowledge, CoLE (Liu et al., 2022), which202

distills selective knowledge between graph embed-203

ding and PLMs, and PKGC (Lv et al., 2022), which204

employs soft prompts to convert triples into nat-205

ural prompt sentences Encoder-decoder models206

such as KGT5 (Saxena et al., 2022), which uses207

a Seq2Seq generative framework to encode query208

and decode candidate entities, GenKGC (Xie et al.,209

2022), which introduces entity-aware hierarchical210

decoding for fast inference, and KG-S2S (Chen211

et al., 2022), which unifies triples into “flat” text212

and advance KG soft prompts.213

3 Methodology214

3.1 Notions215

We formally represent a knowledge graph (KG)216

as G = (E ,R, T ), where E is the set of217

entities, R is the set of relations, and T218

is the set of triples in the KG. Each triple219

can be expressed as l = (eh, r, et) ∈ T . 220

For a triple l, there are a set of relational 221

paths p = {(eh, r1, e1, ..., rt, et)|(eh, r1, e1) ∈ 222

T , ..., (et−1, rt, et) ∈ T } connecting the head en- 223

tity eh and the tail entity et. Following (Guo et al., 224

2019), we use Biased Random Walks to generate 225

these paths. Given a query (Tu Youyou, nationality, 226

?), we can formalize it as (eh, r, ?), where eh is 227

the head entity of the query, and r is the relation 228

between the head entity and the tail entity. The task 229

of link prediction in KGC is to infer the tail entity 230

et and, similarly, predict the head entity eh for a 231

query (?, r, et). Following previous work, for each 232

triple l, we add an inverse triple (et, r
−1, eh) into 233

KG, where r−1 is the inverse relation of r. 234

3.2 A Seq2Seq Architecture 235

As illustrated in Figure 2, the proposed PEKGC 236

model follows a sequence-to-sequence (Seq2Seq) 237

architecture comprising an encoder and a decoder. 238

To train the model to capture knowledge from multi- 239

views, we design two sub-tasks to train the model’s 240

capability at different levels (i.e., triple and path 241

levels). Overall, it can be represented as: 242

P (y|xq) =
N∏
k=1

P (yk|xq, y<k), (1) 243

where xq is the input sequence, consisting of the 244

concatenated query. For the triple-level generation, 245

y denotes the concatenated target entities’ names 246

and descriptions. For the path-level generation, 247

y denotes the concatenated multi-hop reasoning 248

relational paths, target entities’ names, and entities’ 249

descriptions. 250

3.3 Two-level Generation 251

Triple-level Generation To avoid ambiguity is- 252

sues of entity names (Chen et al., 2022), we use 253

entity descriptions to enrich the context informa- 254

tion of entities. For a query (eh, r, ?), we concate- 255

nate the head entity’s name xh, the head entity’s 256

description dh, and the relation’s name xr to form 257

its representation on the encoding side, that is: 258

xq = (xh, dh, [SEP], xr, [MASK]), (2) 259

where [SEP] denotes a special separator token, and 260

[MASK] denotes the “?” at the corresponding po- 261

sition to distinguish the queries between (eh, r, ?) 262

and (?, r, et). 263

On the decoding side, the triple-level task aims 264

to predict the target entity’s name and description 265
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Encoder

Instruction

Tu Youyou Nationality <MASK>

Query: (Tu Youyou, Nationality, ?)

Decoder

Path Level

Triple Level

Fact-Level
Re-evaluation

Fusion Ranking

Hard Predictions

I   <Predict tail entity:>                          OR
  <Predict tail entity with path:>

[Neighbors]

Figure 2: Overview of proposed PEKGC model, where e∗ and r∗ represent entities and relations, respectively.

jointly,266

yt = (xt, dt). (3)267

Similar to tail entity predictions, the represen-268

tations of query and answer for predicting head269

entities, (?, r, et), are as follows:270

xq = ([MASK], xr, [SEP], xt, dt), (4)271
272

yt = (xh, dh). (5)273

Path-level Generation The input of path-level274

generation, xq, is the same as triple-level genera-275

tion. The goal of its generation is to predict multi-276

hop reasoning relational paths from source to target277

entities, target entity’s name, and target entity’s de-278

scription simultaneously,279

yp = (pt, xt, dt), (6)280
281

yp = (ph, xh, dh), (7)282

where pt (ph) is a concatenated sequence of the re-283

lational reasoning paths (eh, r1, e1, ..., rt, et) from284

the source entity eh to the target entity et. This285

sequence serves as a reasoning chain and evidence286

for the answer,287

pt = (xh, xr1 , xe1 , ..., xrt , xt), (8)288

where xr∗ and xe∗ represent the name texts of rela-289

tions and entities in the path, respectively.290

KG Soft Prompt We insert KG soft prompts into291

the encoder’s input to differentiate between KG and292

text knowledge and emphasize structural knowl-293

edge (Chen et al., 2022). Specifically, we define294

a set of additional trainable prompt embeddings,295

which are associated with relations of KG. It is296

worth noting that the number of relations in the KG297

is significantly smaller than that of entities, thus298

minimizing the risk of excessive overhead. These299

embeddings are denoted as Pr ∈ R|R|×d, where d300

is the dimension of the encoder. Each relation (r)301

in the input sequence has a corresponding KG soft302

prompt (pr) that is inserted in front of it.303

Position Soft Prompt We define position soft 304

prompts, Po ∈ R3×d, to indicate and prompt the 305

positional relationships among the head entity, rela- 306

tion, and tail entity within a triple. This allows the 307

model to learn the internal positional relationship 308

of the triple and effectively distinguish between the 309

predicted head and tail entities. 310

Instructions Moreover, to further distinguish 311

two-level generation tasks, we insert two specific 312

instruction tags, It and Ip, at the beginning of the 313

input sequence: “Predict tail / head entity:” for 314

triple level and “Predict tail / head entity with path:” 315

for path level. Consequently, the input embedding 316

with soft prompts and instructions is updated to: 317

xq = (I, p0, xh, dh, xs, p1, pr, xr, p2, xm), (9) 318

where I denotes the instruction tag, xh denotes the 319

head entity’s name, dh denotes the head entity’s 320

description, xr denotes the relation’s name, pr rep- 321

resents the KG soft prompt related to r, p0, p1 and 322

p2 are position soft prompts, and xs and xm are 323

special tokens, [SEP] and [MASK], respectively. 324

Training Both triple-level and path-level genera- 325

tion goals are to predict the answer sequence yt or 326

yp. Therefore, the optimization objective is given 327

by: 328

Lg = − logP (y|xq). (10) 329

3.4 Neighbor Selector 330

To better use the adjacent structural information 331

around the query, we design an additional neighbor 332

selector module, which is pre-trained to filter the 333

most relevant triples to the query as neighborhood 334

information. For a query, (eh, r, ?), there are a k-th 335

order neighborhood subgraph, 336

Nh ={(eh, r11, e11), ...(eh, r1m, e1n), ... (11) 337

, (e11, r
2
2, e

2
2), ..., (e

k−1
n−1, r

k
m, ekn)} 338

, 0 ≤ m ≤ |R|, 0 ≤ n ≤ |E|. 339
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Subsequently, we can filter query-relevant neigh-340

bors from Nh by a pre-trained encoder-decoder341

selector. The input of encoder is:342

x = (xh, xr, [MASK], [SEP], xa, xb, xc), (12)343

where xh and xr are entity and relation names of344

the query repectively, and (xa, xb, xc) is the name345

of (ea, rb, ec) ∈ Nh, which is a neighbor triple re-346

lated to the source entity eh. The prediction goal of347

the selector is y ∈ {yes, no}, where yes indicates348

the target entity present in the neighbor triple, con-349

sidered a positive sample, while conversely, it con-350

stitutes a negative sample. Therefore, considering351

reducing the sensitivity of the model in the learning352

process to prevent over-fitting, the pre-training loss353

of this module is:354

Ln =− logP (y|x) (13)355

+ log(1 +
∑

i∈Ωneg ,j∈Ωpos

eµ(si−sj)),356

where µ is a margin value, Ωneg denotes the decode357

scores set of negative samples, and Ωpos denotes358

the decode scores set of positive samples.359

This selector allows us to filter the most relevant360

triples, N ′
h ⊂ Nh. Consequently, concatenating361

N ′
h to xq of Equation 9 can be updated as:362

x′q = (xq, xn), (14)363

where x′q is the final input to equation 1, and xn rep-364

resents the textualized representation of the filtered365

neighbor triples N ′
h.366

3.5 Re-evaluation and Fusion Ranking367

Fact-level Re-evaluation To re-evaluate and re-368

order the two group results generated by triple and369

path levels, we also pre-train the encoder of model370

at fact level. For instance, given a candidate triple371

l̂ = (eh, r, êt) generated by triple or path level, its372

confidence score is calculated as:373

ϕ(ehr, êt) = cos(ehr, êt) = ehr · êt, (15)374

where ehr is the max pooling of the combination375

encoding of eh and r, êt is the encoding of the376

predicted candidate entity êt, and · denotes a dot377

product operation.378

As a result, the training objective of the fact-level379

encoder is to maximize the confidence scores of380

the correct triples {(eh, r, et)|(eh, r, et) ∈ T }:381

argmaxtϕ(ehr, et). (16)382

Consequently, we take correct triples as positive 383

targets and the other entities as negative targets in 384

the same batch during training. Following (Chen 385

et al., 2020; Wang et al., 2022), we use the InfoNCE 386

loss to achieve this goal: 387

Lf = − log
e(ϕ(ehr,et)−γ)/τ

e(ϕ(ehr,et)−γ)/τ +
∑N

i=1 e
ϕ(ehr,e

′
t)/τ

,

(17) 388

where γ > 0 is a margin factor that encourages 389

the model to increase the confidence scores of the 390

correct triples, and τ is a temperature factor to 391

adjust the relative importance of negatives. The 392

loss of head entity prediction is similar. 393

Fusion Ranking Given the extra computing re- 394

sources consumed by re-evaluation operations, it 395

is necessary to prune this process. Consequently, 396

we propose a heuristic fusion ranking strategy to 397

eliminate unnecessary re-evaluations and improve 398

performance. First, we introduce two definitions: 399

Definition 1. (Consistent Prediction) Given a 400

query with triple-level predicted rank list Ât and 401

path-level predicted rank list Âp, it is a consistent 402

prediction if there exists Ât0 = Âp0 , where Ât0 403

and Âp0 are highest ranking of their list. A set of 404

consistent predictions is given by: 405

AC = {Ât|Ât0 = Âp0}. (18) 406

Definition 2. (Hard Prediction) Given a query with 407

triple-level predicted rank list Ât and path-level 408

predicted rank list Âp, it is a hard prediction if 409

there exists |Ât ∩ Âp| ≤ α or |Ât| ≥ β, α, β ≥ 0. 410

A set of hard predictions is given by: 411

AH = {Ât ∪ Âp||Ât ∩ Âp| ≤ α, |Ât| ≥ β}. (19) 412

Consistency prediction indicates that the pre- 413

dicted entities from the two views are relatively 414

aligned, which is a simple prediction. Therefore, 415

we can directly select the path-level ranking as the 416

final result. Hard prediction indicates significant 417

discrepancies between the two views, suggesting 418

a more complex prediction. In these cases, it is 419

necessary to re-evaluate and re-order all the can- 420

didate entities using the fact-level evaluator. For 421

other cases that belong to general prediction, we 422

can use any rank or re-evaluation rank as the final 423

result. we also choose the path-level rank as the 424

final result to simplify the actual process. 425
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Methods WN18RR FB15k-237

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

KG-BERT (Yao et al., 2019) 21.6 4.1 30.2 52.4 - - - 42.0
StAR (Wang et al., 2021) 40.1 24.3 49.1 70.9 29.6 20.5 32.2 48.2
GenKGC (Xie et al., 2022) - 28.7 40.3 53.5 - 19.2 35.5 43.9
KGT5 (Saxena et al., 2022) 50.8 48.7 - 54.4 27.6 21.0 - 41.4
CoLE (Liu et al., 2022) 58.5 53.2 60.7 68.9 38.7 29.3 42.6 57.0
SimKGC (Wang et al., 2022) 66.6 58.7 71.7 80.0 33.6 24.9 36.2 51.1
KG-S2S (Chen et al., 2022) 57.4 53.1 59.5 66.1 33.6 25.7 37.3 49.8
CSProm-KG (Chen et al., 2023) 57.5 52.2 59.6 67.8 35.8 26.9 39.3 53.8
PDKGC (Geng et al., 2023) 57.7 50.5 60.9 71.3 37.9 28.5 41.5 56.6
BMKGC (Kong et al., 2024) 66.9 59.0 72.0 80.7 33.2 24.7 36.5 51.4
COSIGN (Li et al., 2024) 64.1 61.0 65.4 71.4 36.8 31.5 43.4 52.0
PEMLM (Qiu et al., 2024) 55.6 50.9 57.3 64.8 35.5 26.4 38.9 53.8

PEKGC (ours) 69.7 64.9 73.5 78.7 39.2 33.6 46.6 54.4

Table 1: The performance of PLM-based KGC models on the link prediction task. The Hits@1, Hits@3, Hits@10,
and MRR metrics are multiplied by 100. We highlight the best results and underline the second-best results.

4 Experiments426

To investigate our model’s effectiveness and effi-427

ciency, we evaluate the performance of proposed428

model on KGC (link prediction) task, which aims429

to produce a ranking list of all entities for a query430

((eh, r, ?) or (?, r, et)), on benchmark KGs. We431

also conduct an ablation study to demonstrate the432

impact of each proposed module. Additionally, we433

present examples of reasoning paths in a case study434

to illustrate that PEKGC effectively generates high-435

quality reasoning paths.436

4.1 Experiment Setup437

Datasets We adopt two benchmark datasets for438

the link prediction task, i.e., WN18RR (Toutanova439

et al., 2015) and FB15k-237 (Dettmers et al., 2018).440

Table 2 lists the details of these two datasets.441

Metrics Similar to recent works, we use the mean442

reciprocal rank (MRR) and Hits@k to evaluate the443

performance of all models, where Hits@k repre-444

sents the fraction of positive triples ranked in the445

top k positions.446

Baselines Based on link prediction task, we com-447

pare our approach with twelve PLM-based KGC448

methods: KG-BERT (Yao et al., 2019), StAR449

(Wang et al., 2021), GenKGC (Xie et al., 2022),450

KGT5 (Saxena et al., 2022), CoLE (Liu et al.,451

2022), SimKGC (Wang et al., 2022), KG-S2S452

(Chen et al., 2022), CSProm-KG (Chen et al.,453

2023), PDKGC (Geng et al., 2023), BMKGC454

(Kong et al., 2024),COSIGN (Li et al., 2024), and455

PEMLM (Qiu et al., 2024).456

Datasets #Ent #Rel #Tri #Degree

WN18RR 40945 11 86835 2.19
FB15k-237 14505 237 272115 19.74

Table 2: Datasets are used in the experiments.

4.2 Main Results 457

Table 1 presents the link prediction results for PLM- 458

based models on the WN18RR and FB15k-237 459

datasets. The experimental results confirm that our 460

PEKGC model achieves satisfactory performance 461

compared to baseline models across most metrics. 462

Notably, our PEKGC improves the Hits@1 metric 463

by 6.4% and 6.7% on the WN18RR and FB15k- 464

237 datasets compared to the previous best PLM- 465

based models. We attribute this to Definition 1 of 466

the fusion ranking paradigm, which employs cross- 467

verification of two-level predictions on the top-one 468

results, further improving Hits@1, as evidenced 469

in Table 4. Additionally, the results in the table 470

also suggest that both definitions should be used 471

together to achieve more significant improvement. 472

We observe that the performance of PEKGC is 473

weaker than some models in Hits@10, which can 474

be attributed to common limitations of encoder- 475

decoder models. Since these models rely on gen- 476

erating candidate answers through a decoder, the 477

diversity of answers is constrained. As a result, 478

encoder-decoder models generally face a signifi- 479

cant disadvantage on larger rank scales compared 480

to encoder-only models, which can match all en- 481

tities of the KGs by calculating their matching 482

confidence scores. However, our proposed model 483

still outperforms previous encoder-decoder meth- 484
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ID Levels Answers

Query: (?, MemberOfDomainRegion, Facer[A dated Briticism]) ⇒ Answer: United Kingdom of Great Britain and
Northern Ireland

1

Triple Level United Kingdom of Great Britain and Northern Ireland

Path Level Facer
MemberOfDomainRegion−1

−→ England HasPart−1

−→ United Kingdom of Great Britain and
Northern Ireland

Query: (Telephone, VerbGroup, ?]) ⇒ Answer: Call

2
Triple Level Call

Path Level Telephone
SynsetDomainTopicOf−1

−→ Call

Query: (?, MusicArtistsGenre, Dio]) ⇒ Answer: Rock Music

3
Triple Level Hard Rock & Heavy Rock & Thrash Metal & Doom Metal

Path Level Dio MusicArtistsGenre−1

−→ Hard Rock MusicParentGenre−→ Rock Music

Query: (Asheville, LocationTimeZones, ?) ⇒ Answer: Eastern Time Zone

4
Triple Level Eastern Time Zone

Path Level Asheville Contains−1

−→ Buncombe County LocationTimeZones−→ Eastern Time Zone

Table 3: Four examples are predicted at triple and path levels, respectively. The first two queries come from the
WN18RR dataset, and the other two come from the FB15k-237 dataset. The inverse relations of existing relations
are denoted by −1.

Datasets Models MRR Hits@1

WN18RR
PEKGC 69.7 64.9
-Definition 1 68.4 63.6
-Definition 2 67.8 62.3

FB15k-237
PEKGC 39.2 33.6
-Definition 1 36.7 29.7
-Definition 2 37.2 30.6

Table 4: Comparison of MRR and Hits@1 between
PEKGC and models without partial fusion ranking.

ods across all indicators. These phenomena demon-485

strate the effectiveness of the proposed PEKGC,486

as it indeed improves the generation abilities of487

encoder-decoder models.488

4.3 Ablation Study489

We conducted an ablation study on two benchmark490

datasets to evaluate the effectiveness of the pro-491

posed modules. As shown in Table 5, “-Path Level”492

refers to training and predicting solely at the triple493

level, “-Fact Level” indicates the exclusion of fact-494

level re-evaluations, “-Soft Prompt” involves re-495

moving KG and position prompts, and “-Fusion496

Ranking” means eliminating the heuristic fusion497

ranking paradigm and using fact-level re-evaluation498

ranking as the final results in the inference stage, “-499

Neighbors” denotes the removal of neighbor triples.500

We observe that removing any modules leads to a501

Datasets Models MRR Hits@1

WN18RR

PEKGC 69.7 64.9
-Path Level 67.1 62.8
-Soft Prompt 68.5 63.9
-Fact Level 67.8 62.3
-Fusion Ranking 65.8 60.9
-Neighbors 60.0 55.3

FB15k-237

PEKGC 39.2 33.6
-Path Level 36.7 30.6
-Soft Prompt 38.2 32.7
-Fact Level 37.2 30.6
-Fusion Ranking 36.7 29.7
-Neighbors 38.1 31.0

Table 5: Comparison of MRR and Hits@1 between
PEKGC and models without path-level generation, soft
prompt, fact-level re-evaluation, fusion ranking, or
neighbors.

significant performance drop across both datasets. 502

Additionally, the final performance is not good 503

when using only the fusion ranking without re- 504

evaluating hard predictions, further emphasizing 505

the necessity of re-evaluating hard predictions as 506

outlined in Definition 2. In brief, these ablations 507

validate the effectiveness of the proposed modules. 508

4.4 Case Study 509

We present four typical queries answered at both 510

the triple and path levels to gain insight into the dif- 511

ference between the two-level generation, as shown 512

7



in Table 3. Triple-level predictions provide entity513

answers directly, while path-level prediction offers514

both entity answers and reasoning paths, which515

serve as reasoning chains.516

In particular, the third query shows the differ-517

ence in accuracy between the two-level genera-518

tion. Although “Hard Rock” is a correct answer,519

“Heavy Rock”, “Thrash Metal” and “Doom Metal”520

are completely fabricated answers produced by the521

triple-level generator. The reasons for this phe-522

nomenon are twofold: i) Encoder-decoder mod-523

els adopt a teacher-forcing strategy during train-524

ing, leading to reduced scalability when predicting525

unseen triples, especially in 1-N or N-N triples.526

ii) At times, predicting the correct results directly527

can be challenging due to the lack of necessary528

prior knowledge or a step-by-step reasoning pro-529

cess. The paths between entities can provide the530

required prior knowledge and serve as a reasoning531

chain to address this issue. The above demonstrates532

the necessity of introducing paths to enhance the533

robustness and expansibility of completions. Addi-534

tionally, the paths incorporated into the generation535

process play a crucial role in providing human-536

understandable interpretability.537

0 50 100 150 200 250 300

FB15k-237

WN18RR

Running time (ms)

KG-S2S
PEKGC

(a) Running times.
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Figure 3: The further experimental results of PEKGC.
The last four figures are the results of the WN18RR
dataset.

4.5 Further Analysis 538

Running Efficiency Analysis To visualize the 539

efficiency of PEKGC, we compare its average run- 540

ning times to KG-S2S, as shown in Figure 3(a). 541

While PEKGC needs to consider path and struc- 542

tural information compared to KG-S2S, its aver- 543

age runtime increases by 105ms and 49ms on two 544

datasets, respectively. However, under the condi- 545

tion of sacrificing acceptable runtime efficiency, 546

PEKGC’s Hits@1 performance is on average im- 547

proved by 22.2% and 30.7%, respectively, com- 548

pared to KG-S2S. 549

Hyperparameters of Fusion Ranking For the 550

two parameters in fusion ranking, a larger value 551

of α or a smaller value of β means more candi- 552

date triples must be re-evaluated. As shown in 553

Figure 3(b)-3(c), a smaller or too-large value of β 554

cannot get better results. Consequently, choosing 555

the proper range for re-evaluation can reduce the 556

computational overhead and improve the results. 557

Path Numbers for Each Triple Figure 3(d) 558

shows the performance impact of using different 559

numbers of paths for each triple. We observe that 560

the introduction of paths improves the model’s per- 561

formance. However, when the number of paths 562

is ≥ 2, there is no significant improvement. This 563

indicates that an appropriate number of paths is 564

sufficient for satisfactory improvement. 565

Neighbor Numbers for Each Triple As shown 566

in Figure 3(e), the addition of neighbor information 567

greatly improves the performance of the generative 568

model, but more neighbor triples will increase the 569

length of the input sequence and final running time. 570

We observed that when the number of neighbors is 571

set to 8, the recall rates and satisfactory results can 572

be achieved. 573

5 Conclusion 574

We propose a multi-view generation framework, 575

PEKGC, for KGC tasks that captures triple-level 576

knowledge, long-term path-level knowledge, and 577

structural neighborhoods, achieving more directly 578

interpretable results. We propose a heuristic fusion 579

ranking strategy for multi-view generation during 580

inference to further combine triple-level and path- 581

level results to achieve better ranking performance. 582

Experimental results demonstrate the effectiveness 583

of our approach. In future work, we aim to address 584

the challenges of diversity and generalization of 585

PLM-based models. 586
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6 Limitations587

Our proposed PEKGC model significantly im-588

proves the performance of encoder-decoder KGC589

models. However, three challenges remain for fu-590

ture work: i) The diversity of generated results is591

limited, resulting in a high number of identical and592

homogeneous outputs, which affects the models’593

universality and robustness; ii) Decoders tend to594

favor generating seen entities, leading to challenges595

in flexibility and generalization, especially in 1-N596

and N-N triples.597

7 Ethics Considerations598

Our work adheres to the guidelines outlined in the599

ACL Code of Ethics. As knowledge graph com-600

pletion is a widely accepted and long-standing re-601

search task, we do not see any significant ethical602

concerns. As for the scientific artifacts used in603

our experiments, we confirm to comply with the604

corresponding intended use and licenses.605
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A Implementation Details805

A.1 Hyperparameter setting806

We realize PEKGC on A100 GPU using the T5-807

base model (Raffel et al., 2020) with the Adam808

optimizer, and follow the standard T5 unsuper-809

vised training paradigm. Following KG-S2S (Chen810

et al., 2022), we enclose the entities’ descriptions811

in square brackets, wrap paths in parentheses, and812

use the “|” token as a special separator. Answer813

texts are also enclosed by the T5 special tokens.814

During the data preparation phase, we use Biased815

Random Walks algorithm (Guo et al., 2019) to gen-816

erate related paths for triples in the training set,817

tuning the number of paths per triple within the818

range of {1, 2, 3, 4}, and tuning the number of819

neighbors per triple within the range of {2, 4, 6, 8,820

10}. In the training stage, the number of training821

epochs is set to 100 and 20, with the entity descrip-822

tion lengths set to 40 and 80 for the WN18RR and823

FB15k-237 datasets, respectively. The mini-batch824

size for the main tasks is chosen from {16, 32,825

64}. To maximize the performance of fact-level826

re-evaluation, we search for the optimal mini-batch827

size within {256, 512, 1024}. The maximum in-828

put token length for the encoder is set to 512. We829

use a learning rate of 0.001, an encode sequence830

dropout rate of 0.1, a margin factor of 0.02, and a831

temperature factor of 0.05. In the inference stage,832

the model generates the raw text without special833

tokens. We set the maximum output length to 150834

and the number of samples for beam search to 40.835

For hard predictions, we search for α within {1, 2,836

3, 4, 5, 10}, and β within {0, 5, 10, 20, 40}. The837

optimal parameter values are shown in Table 6.838

Hyperparameters Values

WN18RR FB15k-237

batch size 64 32
learning rate 0.001 0.001
dropout rate 0.1 0.1
beam size 40 40

margin value µ 25 15
margin factor γ 0.02 0.02

temperature factor τ 0.05 0.05
input max length 512 512

output max length 150 150
description max length 40 80

Table 6: The hyperparameters for two datasets.

A.2 Implementation Process839

For the sake of clarity, we list the operation process840

of our framework as follows: i) Use the Biased841

Random Walks algorithm to extract the correspond- 842

ing paths for all triples. ii) Pre-train the neighbor 843

selector referring to Section 3.4. However, as the 844

number of neighbor triples may be huge, we first 845

sample 500-800 neighbor triples and then use the 846

neighbor selector to filter them. iii) Pre-train the 847

fact-level re-evaluator referring to Section 3.5. iv) 848

Train PEKGC with the prepared data, referring to 849

Section 3.3. v) Use trained PEKGC to generate 850

results at the triple and path levels. vi) re-evaluate 851

and re-order referring to heuristic fusion ranking 852

strategy. 853

B More Analysis Results 854

As shown in Figure 4, the experimental results 855

on the FB15k-237 dataset is consistent with the 856

WN18RR dataset. 857
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Figure 4: The further experimental results of PEKGC
on the FB15k-237 dataset.
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