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Abstract

Pre-trained language models (PLMs) have
achieved remarkable knowledge graph comple-
tion(KGC) success. However, previous meth-
ods derive KGC results mainly from triple-level
and text-described learning, which lack the ca-
pability of capturing long-term relational and
structural information. Moreover, the absence
of a visible reasoning process leads to poor in-
terpretability and credibility of the completions.
In this paper, we propose a path-enhanced
pre-trained language model-based knowledge
graph completion method (PEKGC), which em-
ploys multi-view generation to infer missing
facts in triple-level and path-level simultane-
ously to address lacking long-term relational
information and interpretability issues. Further-
more, a neighbor selector module is proposed
to filter neighbor triples to provide the adjacent
structural information. Finally, we propose a
fact-level re-evaluation and a heuristic fusion
ranking strategy for candidate answers to fuse
multi-view predictions. Extensive experiments
on the benchmark datasets demonstrate that our
model significantly improves the performance
of the KGC task.

1 Introduction

Knowledge graphs (KGs) are designed to store
knowledge in graph-structured format, as seen in
Freebase (Bollacker et al., 2008), WordNet (Miller,
1995), and NELL (Carlson et al., 2010). The exten-
sive application of various KGs has greatly bene-
fited numerous downstream tasks, such as question
answering, recommendation systems, and informa-
tion retrieval. However, due to the limited scale
of KGs, whether manually or automatically con-
structed, they invariably suffer from incomplete
coverage and fail to encompass the vast expanse of
real-world knowledge. This limitation has given
rise to the task of knowledge graph completion
(KGC), which involves predicting missing links by
understanding the existing triples within KGs.
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Figure 1: An example of PLM-based KGC in triple and
path levels. In this triple, (Tu Youyou, Nationality, ?) is
a query, and the answer is China.

Typically, most mainstream KGC methods fall
into two categories: embedding-based and path-
based. Embedding-based methods (Bordes et al.,
2013; Yang et al., 2015; Dettmers et al., 2018;
Vashishth et al., 2019) focus on mapping entities
and relations into a low-dimensional, continuous
vector space to capture intrinsic connections and
predict missing links in the vector space. By com-
parison, path-based methods (Das et al., 2018; Qu
et al., 2020; Zhu et al., 2021) aim to use paths be-
tween entities to predict and achieve more directly
interpretable results. Whereas, both approaches
aim to model all interactions among entities and
relations directly, they hardly adapt to large-scale
growth parameters and knowledge scenarios.

Recently, inspired by the success of pre-training
language models (PLMs), such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019),
and T5 (Raffel et al., 2020), in NLP tasks, en-
couraging increased interest in probing PLMs to
complete KGs. According to the structure of
the models, PLM-based models can be divided
into two categories: encoder-only models, such
as KG-BERT (Yao et al., 2019) and PKGC (Lv
et al., 2022), and encoder-decoder models, such
as KGT5 (Saxena et al., 2022) and KGS2S (Chen
et al., 2022). The encoder-only models encode both
the query and all candidate entities to calculate their
matching confidence, while the encoder-decoder
models encode the query and then decode possible



candidate entities. Overall, PLM-based KGC meth-
ods work by converting triples into serialized text
descriptions sentences and feeding the sentences
to PLMs to complete KGs. As illustrated in Fig-
ure 1, current PLM-based models (referred to as
triple-level PLM) encode the concatenated query
text, “Tu Youyou Nationality [MASK]”, from a “flat”
text-described view and directly generate the an-
swer entity, China.

However, current PLM-based models have flat-
tened triples into a simple triple-level text descrip-
tion presenting three significant limitations: (i) low
expressiveness. The embeddings of entities and
relations are learned at the triple level, which rep-
resents the embeddings as being focused only on
a local perspective (i.e., one-hop structure). Pre-
vious research has indicated that relying solely on
local relational information for KG learning is not
enough (Guo et al., 2019). (ii) inefficient infor-
mation propagation. These models depend exclu-
sively on one-hop neighbors for aggregating and
propagating information, which is inefficient for
transferring semantics and knowledge between en-
tities. (iii) lack of interpretability. KGC results
are generated directly in response to queries with-
out the necessary explanations or reasoning pro-
cess, which harms the credibility of completions.
Therefore, there is an urgent need to leverage rich
structural information of KGs to capture more com-
plex, long-term, or higher-level features to enhance
expressiveness, propagation, and interpretability.

To address the limitations above, in this paper,
we propose a Path-enhanced Pre-trained Language
Model-based Knowledge Graph Completion model
(PEKGC), which employs multi-view generation
by an encoder-decoder architecture to tackle lack-
ing long-term relational structures and poor inter-
pretability issues. To enable PLM-based models
to capture path-level knowledge and bridge long-
term gaps between entities, our model generates
possible entities with reasoning path chains, which
also serve as evidence for the generated answers in
response to queries. Besides, to extract local knowl-
edge, our model simultaneously generates answers
at a triple level. In this way, the model can focus on
multi-level knowledge simultaneously and can be
cross-validated occurring at both levels. To better
use the adjacent structural information and enhance
the inference ability of the model, we also design a
neighbor selector module, which is pre-trained to
filter the most relevant triples to the query as neigh-
borhood information. In addition, we use KG soft

prompts and position soft prompts to distinguish
between KG knowledge and textual knowledge, as
well as to mark the internal relationships of triples.
To further re-evaluate and re-rank the joint results
of both levels, we propose a fact-level re-evaluation
and a heuristic fusion ranking strategy, which can
re-calculate the confidence scores of candidate an-
swers and efficiently re-rank them. In summary,
the major contributions of this work are as follows:

* We propose a multi-level generation paradigm
for knowledge graph completion that can cap-
ture local triple-level knowledge and long-
term relational structures, and also model
the text and structural information, achieving
more directly interpretable results.

* We propose a heuristic fusion ranking strategy
for multi-view generation during inference,
further combining triple-level and path-level
results to achieve better ranking performance.

* Extensive experiments are conducted on
benchmark datasets, demonstrating that the
proposed method outperforms existing state-
of-the-art methods.

2 Related Work
2.1 Knowledge Graph Completion

Traditional KGC methods aim to map entities
and relations into a low-dimensional and contin-
uous vector space to capture inner connections.
These methods can be further subdivided into
translation-based methods (Bordes et al., 2013;
Sun et al., 2018), semantic matching methods
(Yang et al., 2015; Balazevi¢ et al., 2019), convo-
lutional neural network-based (CNN-based) meth-
ods (Dettmers et al., 2018; Ren et al., 2020), and
graph neural network-based (GNN-based) methods
(Schlichtkrull et al., 2018; Vashishth et al., 2019).
However, as the scale of KGs has increased, the
extraction and expression ability of these methods
has gradually encountered bottlenecks.

2.2 Path-based KGC

To bridge the long-term relational gaps between
entities and improve the interpretability of comple-
tion results, some methods introduce the multi-hop
paths into the KGC task, i.e., path-based methods.
These methods can be further subdivided into rule-
based methods (Qu et al., 2020; Sadeghian et al.,
2019), reinforcement learning-based (RL-based)



methods (Das et al., 2018; Lin et al., 2018; Jiang
et al., 2023), and propagation path-based meth-
ods (Zhu et al., 2021; Zhang et al., 2023). Rule-
based methods utilize logical inference and sym-
bolic rules to complete KGs. They usually suffer
from poor generalization and high complexity due
to their direct operation on symbols when applied
to large-scale KGs. RL-based methods frame multi-
hop path reasoning as a finite horizon determin-
istic partially observed Markov decision process
(MDP) and train an agent to navigate on KGs to
locate target entities. However, these methods are
also limited in the vast search space and sparse
rewards encountered during training. Propagation
path-based methods use relational paths to encode
and transmit the intermediate knowledge between
entities. Limited by the complexity of propagation,
their dimensions are generally small, resulting in
weak expression ability.

2.3 Pre-trained Language Model-based KGC

Recent research has focused on fine-tuning PLMs
for KGC tasks to leverage the implicit knowledge
of PLMs and the structured knowledge of KGs.
KG-BERT (Yao et al., 2019) is the first to use
BERT for KGC by simply concatenating triples’
names as text-based input. Subsequent methods
can be categorized into two main types based on
their model structures: encoder-only models and
encoder-decoder models. Encoder-only models
such as StAR (Wang et al., 2021), which integrates
graph embedding techniques to introduce struc-
tured knowledge, CoLE (Liu et al., 2022), which
distills selective knowledge between graph embed-
ding and PLMs, and PKGC (Lv et al., 2022), which
employs soft prompts to convert triples into nat-
ural prompt sentences Encoder-decoder models
such as KGT5 (Saxena et al., 2022), which uses
a Seq2Seq generative framework to encode query
and decode candidate entities, GenKGC (Xie et al.,
2022), which introduces entity-aware hierarchical
decoding for fast inference, and KG-S2S (Chen
et al., 2022), which unifies triples into “flat” text
and advance KG soft prompts.

3 Methodology

3.1 Notions

We formally represent a knowledge graph (KG)
as G = (E,R,T), where £ is the set of
entities, R is the set of relations, and 7T
is the set of triples in the KG. Each triple

can be expressed as I = (ep,re) € T.
For a triple [, there are a set of relational
paths p = {(ep,r1,€1,...,7t,€¢)|(ep,r1,€1) €
T,...,(et—1,7¢,€¢) € T} connecting the head en-
tity ey, and the tail entity e;. Following (Guo et al.,
2019), we use Biased Random Walks to generate
these paths. Given a query (Tu Youyou, nationality,
?), we can formalize it as (ep,r,?), where ey, is
the head entity of the query, and 7 is the relation
between the head entity and the tail entity. The task
of link prediction in KGC is to infer the tail entity
e; and, similarly, predict the head entity ej, for a
query (?,r, e;). Following previous work, for each
triple [, we add an inverse triple (e;, 7!, ep,) into
KG, where r~! is the inverse relation of r.

3.2 A Seq2Seq Architecture

As illustrated in Figure 2, the proposed PEKGC
model follows a sequence-to-sequence (Seq2Seq)
architecture comprising an encoder and a decoder.
To train the model to capture knowledge from multi-
views, we design two sub-tasks to train the model’s
capability at different levels (i.e., triple and path
levels). Overall, it can be represented as:

N

P(ylzg) = [ [ Pwrlzg y<r). (1)
k=1

where z, is the input sequence, consisting of the
concatenated query. For the triple-level generation,
y denotes the concatenated target entities’ names
and descriptions. For the path-level generation,
y denotes the concatenated multi-hop reasoning
relational paths, target entities’ names, and entities’
descriptions.

3.3 Two-level Generation

Triple-level Generation To avoid ambiguity is-
sues of entity names (Chen et al., 2022), we use
entity descriptions to enrich the context informa-
tion of entities. For a query (e, 7, ?), we concate-
nate the head entity’s name zj, the head entity’s
description dj,, and the relation’s name x, to form
its representation on the encoding side, that is:

zq = (Th, dn, [SEP], 2, [MASK]),  (2)

where [SEP] denotes a special separator token, and
[MASK] denotes the “?” at the corresponding po-
sition to distinguish the queries between (e, 7, ?)
and (7,7, e;).

On the decoding side, the triple-level task aims
to predict the target entity’s name and description
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Figure 2: Overview of proposed PEKGC model, where e, and r, represent entities and relations, respectively.

jointly,
Y = (w1, dy). (3)
Similar to tail entity predictions, the represen-
tations of query and answer for predicting head
entities, (7,1, e;), are as follows:

Lqg = ([MASK]7xT> [SEPL:Bhdt)a (4)
Yt = (xh7 dh) (5)

Path-level Generation The input of path-level
generation, x4, is the same as triple-level genera-
tion. The goal of its generation is to predict multi-
hop reasoning relational paths from source to target
entities, target entity’s name, and target entity’s de-
scription simultaneously,

yp - (ptuxtudt)) (6)

Yp = (Ph, T, dp), (7
where p; (pp,) is a concatenated sequence of the re-
lational reasoning paths (e, r1, €1, ..., ¢, e;) from
the source entity ey, to the target entity e;. This
sequence serves as a reasoning chain and evidence
for the answer,

bt = (xh7x7"1’x61a---ax7“m$t)v (8)

where x,, and ., represent the name texts of rela-
tions and entities in the path, respectively.

KG Soft Prompt  We insert KG soft prompts into
the encoder’s input to differentiate between KG and
text knowledge and emphasize structural knowl-
edge (Chen et al., 2022). Specifically, we define
a set of additional trainable prompt embeddings,
which are associated with relations of KG. It is
worth noting that the number of relations in the KG
is significantly smaller than that of entities, thus
minimizing the risk of excessive overhead. These
embeddings are denoted as P, € RI®I*? where d
is the dimension of the encoder. Each relation (r)
in the input sequence has a corresponding KG soft
prompt (py) that is inserted in front of it.

Position Soft Prompt We define position soft
prompts, P, € R3*?, to indicate and prompt the
positional relationships among the head entity, rela-
tion, and tail entity within a triple. This allows the
model to learn the internal positional relationship
of the triple and effectively distinguish between the
predicted head and tail entities.

Instructions Moreover, to further distinguish
two-level generation tasks, we insert two specific
instruction tags, I; and I,, at the beginning of the
input sequence: “Predict tail / head entity:” for
triple level and “Predict tail / head entity with path:”
for path level. Consequently, the input embedding
with soft prompts and instructions is updated to:

Lg = (IapUa:L‘hydham&plapraxrvp%xm)a (9)

where I denotes the instruction tag, x;, denotes the
head entity’s name, dj, denotes the head entity’s
description, x,- denotes the relation’s name, p, rep-
resents the KG soft prompt related to r, pg, p1 and
po are position soft prompts, and x5 and z,,, are
special tokens, [SEP] and [MASK], respectively.

Training Both triple-level and path-level genera-
tion goals are to predict the answer sequence y; or
yp. Therefore, the optimization objective is given
by:

Ly = —log P(y|zg). (10)

3.4 Neighbor Selector

To better use the adjacent structural information
around the query, we design an additional neighbor
selector module, which is pre-trained to filter the
most relevant triples to the query as neighborhood
information. For a query, (ep, r, ?), there are a k-th
order neighborhood subgraph,

(11)

Ny, :{(eh,r%,e%), ...(eh,r}n,ei),
(e1,73,€3), s (eh ] e}

,0<m<|R[,0<n<|E|



Subsequently, we can filter query-relevant neigh-
bors from N}, by a pre-trained encoder-decoder
selector. The input of encoder is:

x = (zp, xr, [MASK], [SEP], x4, xp, zc), (12)

where x;, and x, are entity and relation names of
the query repectively, and (x4, xp, ) is the name
of (€q,7p, €c) € Ny, which is a neighbor triple re-
lated to the source entity ep,. The prediction goal of
the selector is y € {yes, no}, where yes indicates
the target entity present in the neighbor triple, con-
sidered a positive sample, while conversely, it con-
stitutes a negative sample. Therefore, considering
reducing the sensitivity of the model in the learning
process to prevent over-fitting, the pre-training loss
of this module is:

L, = —log P(y|x)
+ log(1 +

(13)
Z e#(sz'*sj))

’iGQneg 7j€ons

)

where 41 is a margin value, €),,., denotes the decode
scores set of negative samples, and (2., denotes
the decode scores set of positive samples.

This selector allows us to filter the most relevant
triples, N/} C N}. Consequently, concatenating
N, to 4 of Equation 9 can be updated as:

a;’q = (xq,2n), (14)

where x’q is the final input to equation 1, and x,, rep-
resents the textualized representation of the filtered
neighbor triples NV} .

3.5 Re-evaluation and Fusion Ranking

Fact-level Re-evaluation To re-evaluate and re-
order the two group results generated by triple and
path levels, we also pre-train the encoder of model
at fact level. For instance, given a candidate triple
I = (ep,r, &) generated by triple or path level, its
confidence score is calculated as:

15)

¢(ehr7 ét) - COS(ehr, ét) = €epr - ét7

where ey, is the max pooling of the combination
encoding of e; and r, &; is the encoding of the
predicted candidate entity é;, and - denotes a dot
product operation.

As aresult, the training objective of the fact-level
encoder is to maximize the confidence scores of
the correct triples {(en, 7, et)|(en, 7, €e1) € T }:

argmax, é(en, er). (16)

Consequently, we take correct triples as positive
targets and the other entities as negative targets in
the same batch during training. Following (Chen
et al., 2020; Wang et al., 2022), we use the InfoNCE
loss to achieve this goal:

e(@lenren)—)/7

e(@(enr.e)—7)/7 L Zz]\;1 ed(enr.et)/T’

(17)
where v > 0 is a margin factor that encourages
the model to increase the confidence scores of the
correct triples, and 7 is a temperature factor to
adjust the relative importance of negatives. The
loss of head entity prediction is similar.

Lf = —log

Fusion Ranking Given the extra computing re-
sources consumed by re-evaluation operations, it
is necessary to prune this process. Consequently,
we propose a heuristic fusion ranking strategy to
eliminate unnecessary re-evaluations and improve
performance. First, we introduce two definitions:

Definition 1. (Consistent Prediction) Given a
query with triple-level predicted rank list Ay and
path-level predicted rank list Ap, it is a consistent
prediction if there exists flto = Apo, where flto
and Apo are highest ranking of their list. A set of
consistent predictions is given by:

Ac = {A Ay = Ap, - (18)
Definition 2. (Hard Prediction) Given a query with
triple-level predicted rank list Ay and path-level
predicted rank list /lp, it is a hard prediction if
there exists |A; N Ay| < a or |A| > B, a, 8 > 0.
A set of hard predictions is given by:

Ay = {A,UA||AnAy| < a,|Ay > BY. (19)

Consistency prediction indicates that the pre-
dicted entities from the two views are relatively
aligned, which is a simple prediction. Therefore,
we can directly select the path-level ranking as the
final result. Hard prediction indicates significant
discrepancies between the two views, suggesting
a more complex prediction. In these cases, it is
necessary to re-evaluate and re-order all the can-
didate entities using the fact-level evaluator. For
other cases that belong to general prediction, we
can use any rank or re-evaluation rank as the final
result. we also choose the path-level rank as the
final result to simplify the actual process.



WNI18RR FB15k-237
Methods
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

KG-BERT (Yao et al., 2019) 21.6 4.1 30.2 524 - - - 42.0
StAR (Wang et al., 2021) 40.1 24.3 49.1 70.9 29.6 20.5 322 48.2
GenKGC (Xie et al., 2022) - 28.7 40.3 53.5 - 19.2 35.5 43.9
KGTS5 (Saxena et al., 2022) 50.8 48.7 - 54.4 27.6 21.0 - 41.4
CoLE (Liu et al., 2022) 58.5 53.2 60.7 68.9 38.7 29.3 42.6 57.0
SimKGC (Wang et al., 2022) 66.6 58.7 71.7 80.0 33.6 24.9 36.2 51.1
KG-S2S (Chen et al., 2022) 57.4 53.1 59.5 66.1 33.6 25.7 37.3 49.8
CSProm-KG (Chen et al., 2023)  57.5 52.2 59.6 67.8 35.8 26.9 39.3 53.8
PDKGC (Geng et al., 2023) 57.7 50.5 60.9 71.3 37.9 28.5 41.5 56.6
BMKGC (Kong et al., 2024) 66.9 59.0 72.0 80.7 33.2 24.7 36.5 51.4
COSIGN (Li et al., 2024) 64.1 61.0 654 71.4 36.8 31.5 43.4 52.0
PEMLM (Qiu et al., 2024) 55.6 50.9 57.3 64.8 35.5 26.4 38.9 53.8
PEKGC (ours) 69.7 64.9 73.5 78.7 39.2 33.6 46.6 54.4

Table 1: The performance of PLM-based KGC models on the link prediction task. The Hits@ 1, Hits@3, Hits@10,
and MRR metrics are multiplied by 100. We highlight the best results and underline the second-best results.

4 Experiments

To investigate our model’s effectiveness and effi-
ciency, we evaluate the performance of proposed
model on KGC (link prediction) task, which aims
to produce a ranking list of all entities for a query
((ep,7,7) or (7,7,e)), on benchmark KGs. We
also conduct an ablation study to demonstrate the
impact of each proposed module. Additionally, we
present examples of reasoning paths in a case study
to illustrate that PEKGC effectively generates high-
quality reasoning paths.

4.1 Experiment Setup

Datasets We adopt two benchmark datasets for
the link prediction task, i.e., WN18RR (Toutanova
et al., 2015) and FB15k-237 (Dettmers et al., 2018).
Table 2 lists the details of these two datasets.

Metrics Similar to recent works, we use the mean
reciprocal rank (MRR) and Hits @k to evaluate the
performance of all models, where Hits@k repre-
sents the fraction of positive triples ranked in the
top k positions.

Baselines Based on link prediction task, we com-
pare our approach with twelve PLM-based KGC
methods: KG-BERT (Yao et al., 2019), StAR
(Wang et al., 2021), GenKGC (Xie et al., 2022),
KGTS5 (Saxena et al., 2022), CoLE (Liu et al.,
2022), SimKGC (Wang et al., 2022), KG-S2S
(Chen et al., 2022), CSProm-KG (Chen et al.,
2023), PDKGC (Geng et al., 2023), BMKGC
(Kong et al., 2024),COSIGN (Li et al., 2024), and
PEMLM (Qiu et al., 2024).

Datasets #Ent  #Rel #Tri #Degree
WNI8RR 40945 11 86835 2.19
FB15k-237 14505 237 272115 19.74

Table 2: Datasets are used in the experiments.

4.2 Main Results

Table 1 presents the link prediction results for PLM-
based models on the WN18RR and FB15k-237
datasets. The experimental results confirm that our
PEKGC model achieves satisfactory performance
compared to baseline models across most metrics.
Notably, our PEKGC improves the Hits@ 1 metric
by 6.4% and 6.7% on the WN18RR and FB15k-
237 datasets compared to the previous best PLM-
based models. We attribute this to Definition 1 of
the fusion ranking paradigm, which employs cross-
verification of two-level predictions on the top-one
results, further improving Hits@1, as evidenced
in Table 4. Additionally, the results in the table
also suggest that both definitions should be used
together to achieve more significant improvement.

We observe that the performance of PEKGC is
weaker than some models in Hits@ 10, which can
be attributed to common limitations of encoder-
decoder models. Since these models rely on gen-
erating candidate answers through a decoder, the
diversity of answers is constrained. As a result,
encoder-decoder models generally face a signifi-
cant disadvantage on larger rank scales compared
to encoder-only models, which can match all en-
tities of the KGs by calculating their matching
confidence scores. However, our proposed model
still outperforms previous encoder-decoder meth-



ID | Levels |

Answers

Query: (?, MemberOfDomainRegion, Facer[A dated Briticism]) = Answer: United Kingdom of Great Britain and
Northern Ireland

| Triple Level |

United Kingdom of Great Britain and Northern Ireland

1 Jfember omainRegion ™t asPart—1! . . ..
Path Level Facer M <mberOf Pomginkies England HasPart™" United Kingdom of Great Britain and
Northern Ireland
Query: (Telephone, VerbGroup, ?]) = Answer: Call
| Triple Level | Call
. . -1
‘ Path Level ‘ Telephone SynsetDomainTopicOf = qap
Query: (?, MusicArtistsGenre, Dio]) = Answer: Rock Music
| Triple Level | Hard Rock & Heavy Rock & Thrash Metal & Doom Metal
s s -1 JusicParentGenre .
‘ Path Level ‘ Dip MusteArtisteGenre " yard Rock M otereraptd Rock Music
Query: (Asheville, LocationTimeZones, ?) = Answer: Eastern Time Zone
| Triple Level | Eastern Time Zone
ntains L 7 ime .
‘ Path Level ‘ Asheville ““™%%*"" Buncombe County LocationTigneZones pastern Time Zone

Table 3: Four examples are predicted at triple and path levels, respectively. The first two queries come from the
WN18RR dataset, and the other two come from the FB15k-237 dataset. The inverse relations of existing relations

are denoted by ~*.

Datasets Models MRR Hits@1
PEKGC 69.7 64.9

WNI18RR -Definition 1 68.4 63.6
-Definition 2 67.8 62.3
PEKGC 39.2 33.6

FB15k-237 | -Definition 1 36.7 29.7

-Definition 2 37.2 30.6

Table 4: Comparison of MRR and Hits@1 between
PEKGC and models without partial fusion ranking.

ods across all indicators. These phenomena demon-
strate the effectiveness of the proposed PEKGC,
as it indeed improves the generation abilities of
encoder-decoder models.

4.3 Ablation Study

We conducted an ablation study on two benchmark
datasets to evaluate the effectiveness of the pro-
posed modules. As shown in Table 5, “-Path Level”
refers to training and predicting solely at the triple
level, “-Fact Level” indicates the exclusion of fact-
level re-evaluations, “-Soft Prompt” involves re-
moving KG and position prompts, and “-Fusion
Ranking” means eliminating the heuristic fusion
ranking paradigm and using fact-level re-evaluation
ranking as the final results in the inference stage, -
Neighbors” denotes the removal of neighbor triples.
We observe that removing any modules leads to a

Datasets Models MRR Hits@1
PEKGC 69.7 64.9
-Path Level 67.1 62.8

WNI8RR -Soft Prompt 68.5 63.9
-Fact Level 67.8 62.3
-Fusion Ranking ~ 65.8 60.9
-Neighbors 60.0 55.3
PEKGC 39.2 33.6
-Path Level 36.7 30.6

FB15k-237 | -Soft Prompt 38.2 32.7
-Fact Level 37.2 30.6
-Fusion Ranking ~ 36.7 29.7
-Neighbors 38.1 31.0

Table 5: Comparison of MRR and Hits@1 between
PEKGC and models without path-level generation, soft
prompt, fact-level re-evaluation, fusion ranking, or
neighbors.

significant performance drop across both datasets.
Additionally, the final performance is not good
when using only the fusion ranking without re-
evaluating hard predictions, further emphasizing
the necessity of re-evaluating hard predictions as
outlined in Definition 2. In brief, these ablations
validate the effectiveness of the proposed modules.

4.4 Case Study

We present four typical queries answered at both
the triple and path levels to gain insight into the dif-
ference between the two-level generation, as shown



in Table 3. Triple-level predictions provide entity
answers directly, while path-level prediction offers
both entity answers and reasoning paths, which
serve as reasoning chains.

In particular, the third query shows the differ-
ence in accuracy between the two-level genera-
tion. Although “Hard Rock” is a correct answer,
“Heavy Rock”, “Thrash Metal” and “Doom Metal”
are completely fabricated answers produced by the
triple-level generator. The reasons for this phe-
nomenon are twofold: 1) Encoder-decoder mod-
els adopt a teacher-forcing strategy during train-
ing, leading to reduced scalability when predicting
unseen triples, especially in 1-N or N-N triples.
ii) At times, predicting the correct results directly
can be challenging due to the lack of necessary
prior knowledge or a step-by-step reasoning pro-
cess. The paths between entities can provide the
required prior knowledge and serve as a reasoning
chain to address this issue. The above demonstrates
the necessity of introducing paths to enhance the
robustness and expansibility of completions. Addi-
tionally, the paths incorporated into the generation
process play a crucial role in providing human-
understandable interpretability.
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Figure 3: The further experimental results of PEKGC.
The last four figures are the results of the WN18RR
dataset.

4.5 Further Analysis

Running Efficiency Analysis To visualize the
efficiency of PEKGC, we compare its average run-
ning times to KG-S2S, as shown in Figure 3(a).
While PEKGC needs to consider path and struc-
tural information compared to KG-S28, its aver-
age runtime increases by 105ms and 49ms on two
datasets, respectively. However, under the condi-
tion of sacrificing acceptable runtime efficiency,
PEKGC’s Hits@1 performance is on average im-
proved by 22.2% and 30.7%, respectively, com-
pared to KG-S2S.

Hyperparameters of Fusion Ranking For the
two parameters in fusion ranking, a larger value
of o or a smaller value of 3 means more candi-
date triples must be re-evaluated. As shown in
Figure 3(b)-3(c), a smaller or too-large value of 3
cannot get better results. Consequently, choosing
the proper range for re-evaluation can reduce the
computational overhead and improve the results.

Path Numbers for Each Triple Figure 3(d)
shows the performance impact of using different
numbers of paths for each triple. We observe that
the introduction of paths improves the model’s per-
formance. However, when the number of paths
is > 2, there is no significant improvement. This
indicates that an appropriate number of paths is
sufficient for satisfactory improvement.

Neighbor Numbers for Each Triple As shown
in Figure 3(e), the addition of neighbor information
greatly improves the performance of the generative
model, but more neighbor triples will increase the
length of the input sequence and final running time.
We observed that when the number of neighbors is
set to 8, the recall rates and satisfactory results can
be achieved.

5 Conclusion

We propose a multi-view generation framework,
PEKGC, for KGC tasks that captures triple-level
knowledge, long-term path-level knowledge, and
structural neighborhoods, achieving more directly
interpretable results. We propose a heuristic fusion
ranking strategy for multi-view generation during
inference to further combine triple-level and path-
level results to achieve better ranking performance.
Experimental results demonstrate the effectiveness
of our approach. In future work, we aim to address
the challenges of diversity and generalization of
PLM-based models.



6 Limitations

Our proposed PEKGC model significantly im-
proves the performance of encoder-decoder KGC
models. However, three challenges remain for fu-
ture work: i) The diversity of generated results is
limited, resulting in a high number of identical and
homogeneous outputs, which affects the models’
universality and robustness; ii) Decoders tend to
favor generating seen entities, leading to challenges
in flexibility and generalization, especially in 1-N
and N-N triples.

7 Ethics Considerations

Our work adheres to the guidelines outlined in the
ACL Code of Ethics. As knowledge graph com-
pletion is a widely accepted and long-standing re-
search task, we do not see any significant ethical
concerns. As for the scientific artifacts used in
our experiments, we confirm to comply with the
corresponding intended use and licenses.
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A Implementation Details

A.1 Hyperparameter setting

We realize PEKGC on A100 GPU using the T5-
base model (Raffel et al., 2020) with the Adam
optimizer, and follow the standard TS5 unsuper-
vised training paradigm. Following KG-S2S (Chen
et al., 2022), we enclose the entities’ descriptions
in square brackets, wrap paths in parentheses, and
use the “|” token as a special separator. Answer
texts are also enclosed by the TS5 special tokens.
During the data preparation phase, we use Biased
Random Walks algorithm (Guo et al., 2019) to gen-
erate related paths for triples in the training set,
tuning the number of paths per triple within the
range of {1, 2, 3, 4}, and tuning the number of
neighbors per triple within the range of {2, 4, 6, §,
10}. In the training stage, the number of training
epochs is set to 100 and 20, with the entity descrip-
tion lengths set to 40 and 80 for the WN18RR and
FB15k-237 datasets, respectively. The mini-batch
size for the main tasks is chosen from {16, 32,
64}. To maximize the performance of fact-level
re-evaluation, we search for the optimal mini-batch
size within {256, 512, 1024}. The maximum in-
put token length for the encoder is set to 512. We
use a learning rate of 0.001, an encode sequence
dropout rate of 0.1, a margin factor of 0.02, and a
temperature factor of 0.05. In the inference stage,
the model generates the raw text without special
tokens. We set the maximum output length to 150
and the number of samples for beam search to 40.
For hard predictions, we search for « within {1, 2,
3,4,5, 10}, and 8 within {0, 5, 10, 20, 40}. The
optimal parameter values are shown in Table 6.

Values
Hyperparameters
WNI18RR FB15k-237
batch size 64 32
learning rate 0.001 0.001
dropout rate 0.1 0.1
beam size 40 40
margin value p 25 15
margin factor y 0.02 0.02
temperature factor 7 0.05 0.05
input max length 512 512
output max length 150 150
description max length 40 80

Table 6: The hyperparameters for two datasets.

A.2 Implementation Process

For the sake of clarity, we list the operation process
of our framework as follows: i) Use the Biased
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Random Walks algorithm to extract the correspond-
ing paths for all triples. ii) Pre-train the neighbor
selector referring to Section 3.4. However, as the
number of neighbor triples may be huge, we first
sample 500-800 neighbor triples and then use the
neighbor selector to filter them. iii) Pre-train the
fact-level re-evaluator referring to Section 3.5. iv)
Train PEKGC with the prepared data, referring to
Section 3.3. v) Use trained PEKGC to generate
results at the triple and path levels. vi) re-evaluate
and re-order referring to heuristic fusion ranking
strategy.

B More Analysis Results

As shown in Figure 4, the experimental results
on the FB15k-237 dataset is consistent with the
WN18RR dataset.
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Figure 4: The further experimental results of PEKGC
on the FB15k-237 dataset.
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