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Abstract

Statistical biases in the training data may001
lead to fragility in neural models that makes002
choices in multiple-choice natural language003
reasoning problems without referring to the004
context or premises. To encourage the models005
to pay more attention to the relations between006
the premise and the choices, we propose two007
biologically inspired operations that can gen-008
erate new training data that “forces” the model009
to look at the premises and reducing short cir-010
cuits. They can augment any type of multiple011
choice reasoning dataset, and can be applied to012
any supervised learning models. Results show013
that models trained with the augmented data014
become more robust against both stress test015
and original test.016

1 Introduction017

Large-scale neural networks have been applied018

extensively to natural language reasoning (NLR)019

tasks such as causal reasoning (Gordon et al.,020

2012), story ending prediction (Mostafazadeh et al.,021

2017), argument reasoning comprehension (Haber-022

nal et al., 2017), and reading comprehension (Yu023

et al., 2020). Many of the current benchmarks of024

these NLR tasks take the form of multiple-choice025

questions (MCQs) which are made up of a premise026

and two or more choices. Below is an example027

taken from COPA (Gordon et al., 2012), which028

tests commonsense causal reasoning.029

Example 1 An MCQ from COPA:030

031

Premise: The man hurt his back.032

Choice 1: He stayed in bed for several days. !033

Choice 2: He went to see a psychiatrist. %034

Usually, models are trained on the training data035

and tested with the standard validation-test split036

paradigm. While accuracy on held-out data is a use-037

ful indicator, held-out datasets are often not diverse038

enough and may contain the same biases in the039

training data (McCoy et al., 2019). Furthermore,040

as simple aggregated statistics, accuracy on the test 041

set doesn’t show the robustness of the model, or 042

why a question is answered correctly. There has 043

been speculation (Sharma et al., 2018; Zellers et al., 044

2018) that many models did not really “understand” 045

the semantical and logical connection between the 046

premise and the choices, but do well only due to 047

spurious statistical features in the choices, which 048

means the models are actually fragile. 049

Such fragility can be observed by both white-box 050

and black-box tests. In a white-box test (Vig, 2019), 051

attention map between the words in the full ques- 052

tion from the final encoder layer of the model can 053

reveal the connection, or the lack of one, between 054

the premise and the choices. Figure 1, which is a 055

plot for Example 1, clearly shows that there’s virtu- 056

ally no connection between the first choice and the 057

premise (highlighted by the red box) when BERT is 058

processing the full question. While the attention be- 059

tween the words within the first choice remains the 060

same when the model processes only the choices 061

without the premise. We call such a phenomenon 062

“short circuit” in multiple-choice NLR in this paper. 063

Figure 1: Attention map showing that BERT short-
circuits on a COPA question.

Furthermore, two kinds of black-box tests have 064

1



been attempted. One is called “ending-only tests”065

in some literature (Sharma et al., 2018; Bras et al.,066

2020), which we refer to as “choice-only test” here067

since our focus is on MCQs. For example, BERT,068

when fine-tuned on the COPA data, can answer the069

question in Example 1 correctly. When we remove070

the premise from the same question and feed it to071

the model, it still gets the correct answer (Choice072

1). This result from the “choice-only” test seems to073

suggest that the model can make correct predictions074

without even looking at the premise. The other075

blackbox test is a kind of stress test (Ribeiro et al.,076

2020), which tests if the model is short-circuiting077

toward (or against) certain linguistic features such078

as named entities, typos, and negations. In this079

work, we apply many stress test cases of several cat-080

egories, and observe that many models are fragile081

with low accuracies. Through the above tests, we082

are able to confirm that three popular deep models,083

i.e., BERT, XLNet (Yang et al.) and RoBERTa (Liu084

et al., 2019c), when applied to multiple-choice085

NLR, all suffer from the “short-circuit” problem.086

One straightforward way to reduce the model087

short circuits is to train the models with hard cases088

that look like the stress tests. However, many stress089

tests are constrained by the way choices are con-090

structed, which limits the quantity of cases to auto-091

matically generate, and consequently their ability092

to serve as general data augmentation methods. Be-093

sides, most of the stress tests are feature specific094

and hard to generalize. To this end, we propose095

crossover and mutation operators, which can eas-096

ily generate abundant data and encourage models097

to pay more attention to the premise. We apply098

crossover and mutation to augment the three mod-099

els on ROC (Mostafazadeh et al., 2017), COPA,100

ARCT (Habernal et al., 2017), and RECLOR (Yu101

et al., 2020) and see up to 42% increase in accuracy102

on the stress tests and 10% increase in the origi-103

nal test data, beating the previous strong baseline104

back-translation (Xie et al., 2019).105

This paper makes the following contributions: i)106

we propose the crossover and mutation operations107

to augment training data that teaches the models to108

pay attention to the premises in questions; ii) exper-109

iments show that the augmented models perform110

substantially better on diverse stress tests while111

maintaining their accuracies on the original tests,112

demonstrating reduced short circuits; iii) we pro-113

vide evidence to show that method indeed reduces114

short-circuits in these models, thus confirming the115

validity of our approach. 116

2 Approach 117

We first present stress test operators which are used 118

to create stress test cases for measuring model 119

fragility, then propose two novel operations to aug- 120

ment training data to reduce short circuits in mod- 121

els. 122

2.1 Stress Test Operators 123

To evaluate the extent of model short circuits, we 124

create these stress test cases using the operators in 125

Table 1. Most of the operators have been proposed 126

previously (Ribeiro et al., 2020), except for PR and 127

PI, which are newly introduced in this work. We 128

create a stress test instance from a specific MCQ 129

by keeping the right choice and creating a wrong 130

choice by applying one of the stress operators to 131

the original right choice. This new wrong choice is 132

grammatically correct but logically incorrect under 133

the particular context. Besides, the new wrong 134

choice contains the same content as the right choice 135

except for the tested feature. These stress test cases 136

with similar choices can evaluate whether models 137

are considering the connection between the premise 138

and choices, or in other words “short-circuiting.” 139

For example, if a model doesn’t comprehend the 140

consistency of the NER name “Mary” in Table 141

3 which has been mentioned in both the premise 142

context and the right choice, then the model can be 143

easily confused by a similar wrong choice.

Oper. Description and Example

Neg+
Add negation (r→w)
Input: They called the police to come to my house. !
Output: They didn’t call the police to come to my house. %

Neg-
Remove negation (r→w)
Input: Ben never starts working out. !
Output: Ben starts working out. %

NER
Randomly replace person names (r→w)
Input: A big wave knocked Mary down. !
Output: A big wave knocked Kia down. %

PR
Switch pronoun by gender or quantity (r→w)
Input: She had a great time.!
Output: He had a great time. %

PI
Instantiate pronoun by random person (r→w)
Input: They gave Tom a new latte with less ice. !
Output: Nathanael gave Tom a new latte with less ice. %

Voice
Swap subject and object (r→w)
Input: Kara asked the neighbors not to litter in their yard. !
Output: the neighbors asked Kara not to litter in their yard. %

Table 1: Stress test operators considered in this paper.
The first line in each cell describes the operation, and
the remaining lines in the cell give examples of how
the operators work. r→w indicates the operator turns a
right choice into a wrong choice.

144
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2.2 Improving Model Robustness by Data145

Augmentation146

To decrease short circuits in models, one natural147

thought is to generate more challenging training148

data that forces the models to focus on the relation-149

ship between the premise and choices. A straight150

forward way to do this is to modify existing train-151

ing data so that the right and wrong choices become152

similar to each other. For example, we could mod-153

ify the right choice in an MCQ by changing the154

named entity in it into another arbitrarily named en-155

tity and thus create a new wrong choice that shares156

most of the features with the right choice. But such157

an approach has two challenges: i) the modification158

operations are typically restricted to a particular159

linguistic feature, and hence it is hard to create data160

with good coverage of diverse linguistic features;161

and ii) because some of the linguistic features may162

be sparse in the training data, the number of addi-163

tional questions generated using these features may164

be very limited, which means the data augmenta-165

tion doesn’t scale.166

To overcome the above issues, we propose two167

genetically inspired operators, namely crossover168

and mutation, which are more scalable and univer-169

sally applicable for data augmentation of any kind170

of MCQs. These two operators are not only simple171

but also not limited to fine-grained features.172

2.2.1 Crossover173

Crossover is illustrated in Figure 2. It operates on174

two randomly selected MCQs. We substitute the175

wrong choice of one MCQ with the right choice176

from the other MCQ to generate a new MCQ. The177

substituted choice is almost certainly wrong in the178

new MCQ. For example, the green choice in the179

original question B is the right choice, but wrong180

for the original question A. With this rule, we can181

get two augmented questions: augmented question182

A and augmented question B. We only consider183

swapping the right choices between two questions184

rather than the wrong ones. This is because if the185

model was short-circuiting, then it is likely to rely186

on some spurious features correlated with the true187

label in the right choices. By substituting these188

right choices into another question to make them189

wrong, this operation can disrupt such correlations.190

Hence, to tell if one choice is better than the other,191

the model is encouraged to consider the premise.192

Premise 2

Premise 1 Premise 2

Premise 1

Original question A Original question B

Augmented question A Augmented question B

Figure 2: Crossover: the rights choice of both questions
are used to replace the wrong choices of these questions
to create two new questions. Circles symbolize tokens
in the sentences.

2.2.2 Mutation 193

Mutation is illustrated in Figure 3. It is also de- 194

signed to teach models to pay more attention to the 195

relationship between the premise and the choices. 196

Different from crossover which makes the choices 197

very different, mutation makes the two choices of 198

a question very similar except for the order of the 199

words. This forces the model to look to the premise 200

to avoid short-circuit problems. 201

We reserve the right choice and augment data 202

by changing the wrong choice. Mutation operation 203

swaps two consecutive words 1 either in the right 204

choice or wrong choice of the original MCQ, each 205

with 50% probability, to make a new wrong choice. 206

The mutation operator should not be confused with 207

the random token swapping (RS) operator (Artetxe 208

et al., 2017; Lample et al., 2017). RS seeks to per- 209

turb a choice in the question without changing its 210

label, whereas mutating the right choice (mutation) 211

converts it to a wrong choice because the perturbed 212

choice is “less right” than the original one. Mu- 213

tating the wrong choice has a similar effect as RS. 214

Intuitively, mutation has the potential to reduce 215

short circuits: it not only encourages the model to 216

look into the premise due to its two very similar 217

choices (see the two choices of A1 in Figure 3), 218

but also makes the model more sensitive to the dif- 219

ferences in word orders and enhances the model’s 220

pre-existing grammatical knowledge (see the two 221

choices in A2). 222

3 Experiments 223

We evaluate the effectiveness of the proposed aug- 224

mentation methods on four popular natural lan- 225

guage reasoning tasks. Three transformer-based 226

models are employed as the main targets for our 227

1The words are tokenized with NLTK.
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Dataset Premise Choices Training size Test size

COPA I pushed the door. The door opened. !
The door locked. %

500 500

ROC

Sarah was home alone.
She wanted to stay busy.
She turned on the TV.
She found a reality show to watch.

Sarah then happily watched the show. !
Sarah could not find anything to watch. %

1871 1871

ARCT
Reason: Milk isn’t a gateway drug even though
most people drink it as children.
Claim: Marijuana is not a gateway drug.

Warrant 1: Milk is similar to marijuana. !
Warrant 2: Milk is not marijuana.%

1210 444

RECLOR
Context:In a business...to financial prosperity.
Question:The reasoning in the argument
is flawed because the argument

A: ignores the fact that in... the family ’s prosperity.!
B: presumes, without... the family’s prosperity.%
C: ignores the fact... even if they pay high wages.%
D: presumes, without providing...can succeed.%

4638 500

Table 2: Examples for all 4 datasets considered in this paper.

Premise 1 1 2 3 Mut
ate

 rig
ht cho

ice

Premise 1 1 2 3

2 1 3

Augmented question A1

Premise 1 1 2 3

4 6 5

4 5 6

Augmented question A2

Mutate wrong choiceOriginal question A 

Figure 3: Mutation: the right choice of a question is
used to replace the wrong choices of this question to
create new questions. Circles symbolizes tokens.

experiments. We first show the experimental setup.228

Then, we compare different augmentation methods229

on three models by the end-to-end tests, which230

contain the stress test and original test of the231

four datasets, and demonstrate the advantage of232

crossover and mutation. After that, we apply233

choice-only tests on the same set of models com-234

pared in the last step, to reconfirm that performance235

gain in the end-to-end tests is due to the reduction236

of short-circuit problems. Finally, we use a case237

study to discover the reason for the model improve-238

ment by the white-box test.239

3.1 Experimental Setup240

3.1.1 Datasets241

We experiment on 4 datasets from four different242

tasks:243

ROC is a story ending prediction dataset.244

The task is to identify the correct ending of a245

four-sentence story premise from two alternative246

choices.247

COPA is a causal reasoning dataset, an exam-248

ple is previously shown in Section 1. Given a249

premise, COPA requires choosing the more plausi-250

ble, causally related choice.251

ARCT is an argument reasoning comprehension252

dataset. There may exist an alternative warrant 253

choice in which the reason is connected to the 254

claim. 255

RECLOR is a reading comprehension dataset 256

that requires logical reasoning. 257

Examples and statistics of them are shown in Ta- 258

ble 2. 259

3.1.2 Stress Test Cases 260

Stress ROC COPA ARCT RECLOR

Neg+ 1,797 492 297 375
Neg- 94 2 152 119
NER 362 0 5 0
PR 1,073 328 71 72
PI 861 219 56 91

Voice 1,014 246 174 263

Total 8,943 2,287 1,643 1,920

Table 3: Number of stress test cases generated by dif-
ferent operators for the four datasets.

Different operators generate different but suffi- 261

cient number of cases as shown in Table 3. 262

To guarantee the correctness of questions in the 263

stress test, we sample 100 stress cases generated by 264

each operation and annotate whether the cases are 265

correct or not. The correctness of these questions is 266

100% which indicates the reliability of these stress 267

tests. 268

We evaluate the effectiveness and short circuits 269

of all data augmentation methods by the accuracy 270

of the stress test set and the original test set. 271

3.1.3 Models 272

We investigate three popular pre-trained language 273

models: BERT, RoBERTa, and XLNet. To fine- 274

tune the language models for an MCQ task, we feed 275

LM’s final hidden vector to an MLP to compute 276

the probability of the right choice. We conduct all 277

experiments on a server: a GeForce GTX 1080Ti 278
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GPU with 11G RAM and Intel(R) Xeon(R) CPU279

E5-2630 with 128G of RAM.280

Besides the original models (marked as w/o), we281

also train these three models with four competing282

data augmentation methods: back-translation (Xie283

et al., 2019) (B), crossover (C), mutation (M), and284

the mixture of crossover and mutation with equal285

proportion (C+M). For each MCQ in the original286

training set, we create a new question using either287

one of these 4 methods, yielding 4 augmented train-288

ing sets the same size as the original one.289

We use back-translation as our baseline because290

it is popularly used in NLU tasks. While there exist291

promising data augmentation methods (Qu et al.,292

2020; Chen et al., 2021) that are based on dynamic293

perturbation of hidden states, back-translation is by294

far the most effective data augmentation method295

that operates on the input level. To this end, we296

generate a new question by conducting a round-trip297

English-to-French and French-to-English transla-298

tion over each wrong choice. The translation model299

we utilized is mBART.300

Since crossover and mutation are operators for301

data augmentation, the modified questions do not302

need to be strictly correct. We also sampled 100303

cases for each operator. 98% and 97% of the cases304

turned out to be correct for crossover and mutation.305

To ensure fairness, the training data augmented306

with +B, +C, +M, and +C+M are all the same size.307

In +C+M, the extra data by +C and +M are equal308

in size.309

3.2 End-to-end Test310

In this subsection, we explore the capabilities of311

models with different data augmentation meth-312

ods, i.e., back-translation, crossover, and mutation,313

from overall and fine-grained perspectives. The314

overall perspective shows the accuracy results from315

the stress test set and the overall original tests. Fine-316

grained perspective shows the stress test accuracy317

results by different stress operators. We train each318

model 3 times with different seeds and calculate319

their average score as the reusults of each test.320

3.2.1 Overall results321

In Table 4 and Table 5, we can find that vanilla322

BERT, XLNet, and RoBERTa are mostly not robust323

on stress tests across all datasets. Compared to the324

original test data, the accuracy on the stress tests325

has dropped substantially for models without data326

augmentation. For example, BERT (w/o) model327

on ROC task achieves 88.49 % accuracy result328

Model ROC COPA ARCT RELOR

BT(w/o) 77.48 62.26 33.07 22.83
BT+B 82.35 77.17 44.75 24.94
BT+C 85.35 76.45 53.87 49.89
BT+M 87.60 81.87 71.82 46.08
BT+C+M 91.31 86.38 70.22 53.14

XL(w/o) 73.95 62.18 53.20 24.53
XL+B 75.30 64.85 54.00 33.37
XL+C 85.38 82.13 60.71 48.87
XL+M 88.02 76.21 69.73 54.55
XL+C+M 92.35 90.77 73.07 56.47

RB(w/o) 77.58 68.56 49.20 18.15
RB+B 76.17 77.51 53.38 22.03
RB+C 88.46 91.28 56.72 51.91
RB+M 88.55 85.65 73.33 60.53
RB+C+M 94.39 93.15 74.13 55.77

Table 4: Overall stress test on 4 models with or with-
out(w/o) data augmentation. All numbers are percent-
ages (%). +B = augmented with back-translation, +C =
augmented with crossover, +M = augmented with mu-
tation.

Model ROC COPA ARCT RELOR

BT(w/o) 88.49 64.60 61.94 45.60
BT+B 88.42 75.4 71.70 48.60
BT+C 87.60 75.73 70.80 47.00
BT+M 87.69 69.53 65.92 46.80
BT+C+M 87.47 73.2 68.54 43.60

XL(w/o) 90.88 63.40 77.85 56.00
XL+B 90.88 64.80 77.70 57.00
XL+C 90.52 74.60 78.60 54.40
XL+M 90.08 66.80 75.45 53.60
XL+C+M 90.40 72.93 76.95 54.20

RB(w/o) 92.16 72.00 77.10 50.40
RB+B 92.16 74.07 80.93 51.00
RB+C 91.68 77.07 79.05 50.40
RB+M 91.91 70.47 78.23 52.00
RB+C+M 92.46 75.67 77.78 48.40

Table 5: Overall original test on 4 models with or with-
out(w/o) data augmentation. The best results for each
dataset on each model are highlighted.

(in Table 5) but only achieves 77.48 % (in Table 329

4) which drops by about 11%. On average, the 330

accuracy drops by 16.21% for BERT (w/o), 12.04% 331

for XLNet (w/o) and 19.54% for RoBERTa (w/o). 332

It confirms that the original models are fragile with 333

short-circuits and can be confused by questions that 334

require a stronger connection between the premise 335

and the choice. 336

For the stress tests in Table 4, crossover (+C), 337

mutation (+M), and especially their combination 338

(+C+M) improve the vanilla models substantially. 339

For example, the performance improved by 27.06% 340

for BT+C, 23.25% for BT+M and 30.31% for 341

BT+C+M on RECLOR dataset. Besides, the perfor- 342

mance gap between the stress test and the original 343

test all narrows. +C, +M, and +C+M also con- 344

sistently outperform back-translation (only gains 345

3.47% on stress test with XL+B). It shows that 346
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these crossover and mutation are effective for re-347

ducing short circuits in the models and improving348

the generalization of the models. Besides, they349

can complement each other. We can also observe350

that models with +M sometimes get the best perfor-351

mance in the stress test, like BERT+M on ARCT352

and RoBERTa+M on RECLOR. Because mutation353

can enhance grammatical knowledge for models,354

and voice stress test which accounted for a large355

proportion in all stress cases for ARCT and RE-356

CLOR can also test grammatical capability. We357

have statistical analysis for the 12 experiments (3358

models on 4 datasets) in Table 4: according to359

t-tests, with p < 0.05, +C, +M and +C+M are sig-360

nificantly more accurate than (w/o) and +B in the361

stress test of all 12 experiments which indicates our362

improvements are stable.363

For the original test in Table 5, +C+M is signifi-364

cantly better than (w/o) in 4 of 12 experiments. For365

example, we get an 8.6% improvement for BERT366

on COPA. In 4 of 12 experiments, there are no367

significant differences between +C+M and (w/o).368

In the remaining 4 experiments, the performance369

differences against (w/o) are within 2%. Overall,370

crossover and mutation don’t hurt the model per-371

formance on the original test cases heavily and can372

even make improvements.373

3.2.2 Fine-grained results374

We proceed to break down the results in Table 4375

into accuracies on stress tests created by different376

operators. COPA and RECLOR datasets do not377

show all six operators because some of the opera-378

tors generate too little data for them, as shown in379

Table 3. The corresponding results are presented380

in Figure 4. We observe that the vanilla model in381

purple and back-translation in green show worse re-382

sults across different aspects than other lines. The383

models trained with data augmented by crossover384

and mutation (the red lines) are generally more ro-385

bust than others. Please refer to Appendix A. for386

complete results.387

Since every type of stress tests can evaluate if388

a model is robust, particularly if it considers the389

premise by giving it two very similar choices, the390

above results on the stress tests of all types show391

that our two methods do reduce short-circuits, and392

may even encourage the models to look toward the393

premises. We will provide additional pieces of evi-394

dence to confirm this in the next two subsections.395

3.3 Choice-only Test 396

The end-to-end test has shown the success of our 397

data augmentation methods. To further explore the 398

reason behind the performance gain, we also use 399

choice-only test here. 400

In choice-only test, we only feed choices into 401

a model without a premise which is replaced by 402

an empty string. This way, models cannot utilize 403

the relationship between premise and choices. Un- 404

der normal conditions, we would expect the model 405

to make arbitrary choices. However, if a model 406

can easily “guess” the “right” choice which nor- 407

mally requires the relationship between premise 408

and choices, one possibility is that this model 409

cheats on evaluation procedure and may be fragile. 410

Thus, the higher score may indicate more use of 411

short-circuits. 412

In Figure 5, we observe that in choice-only tests, 413

the accuracy of models augmented with crossover 414

and mutation (red line) drops the most. Sometimes 415

the performances are similar to random selection, 416

e.g., RB+C+M on ARCT (56.38%), which indi- 417

cates that models are no longer cheating. In other 418

words, models augmented by crossover and muta- 419

tion are more likely to consider the premises. The 420

results on the choice-only tests provide another per- 421

spective for us to re-assure that models augmented 422

with crossover and mutation can reduce short cir- 423

cuits and thus model fragility. 424

However, one may argue that even if a model can 425

choose or “guess” correctly given only the choices 426

but no premise, it may still have the ability to look 427

at the premise if it’s given one, like in the end-to- 428

end test. Therefore, next we conduct an additional 429

case study to show that short-circuit does take place 430

and our augmentation methods alleviate it. 431

3.4 Case Study 432

Our case study is a series of white-box tests that 433

demonstrate the change in attention patterns. 434

We take an example from ROC which is shown 435

in Table 2. We explore BERT-based models by an- 436

alyzing their attention maps on this question in Fig- 437

ure 6. In this example, the word “show” in the 438

premise is strongly related to the token “reality 439

show” in the right choice from human knowledge. 440

The attention map is visualized via an off-the-shelf 441

tool (Vig, 2019). 442

There is no positive attention value in front of 443

the fourth sentence, so we intercept it from where it 444

is worth. BERT trained on the original training set 445
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Figure 4: Fine-grained stress test with different aspects on 4 different tasks. The x-axis in the figures indicates
different stress test aspects and the y-axis indicates model accuracy in percentage.

 30

 40

 50

 60

 70

 80

BT(
RO
C)

BT(
CO
PA)

BT(
AR
CT
)

BT(
RE
CLO
R)

XL(
RO
C)

XL(
CO
PA)

XL(
AR
CT
)

XL(
RE
CLO
R)

RB
(RO
C)

RB
(CO
PA)

RB
(AR
CT
)

RB
(RE
CLO
R)

w/o
+B

+C
+M

+C+M

Figure 5: Choice-only test: Accuracies of different data
augmentation methods with 3 models on 4 tasks. The
detailed numbers are in Appendix B.

fails to pick up the right choice likely due to there446

being virtually no attention connection between447

words in the choice and words in the premise. Af-448

ter training with crossover data augmentation, the449

model learns to pay attention to the premise and450

the relationship between premise and choices. i.e.,451

“show” in this example. Similar trends also exist452

for the mutation operation in Figure 6c and the453

combination of crossover and mutation operation454

in Figure 6d. The rationale behind such a change455

of attention pattern is that, in an MCQ created by456

crossover operation (Figure 6b), mutation(Figure457

6c), and the combination of them (Figure 6d), the458

model needs to combine the information in the459

premise to effectively distinguish the true “right” 460

choice from the wrong one. However, the light 461

and sparse attention color blocks on the attention 462

map for back-translation in Figure 6a indicate back- 463

translation can not help BERT connect the choice 464

and premise very well in this question. These obser- 465

vations empirically demonstrate the effectiveness 466

of our methods in encouraging the model to pay 467

attention to the premise to reduce short circuits. We 468

provide additional cases in Appendix C. 469

4 Related Work 470

Data Augmentation. Data augmentation refers 471

to strategies for increasing the diversity of training 472

examples without explicitly collecting new data. 473

It has received active attention in recent machine 474

learning research such as UDA (Xie et al., 2020), 475

which used back-translation (Sennrich et al., 2016), 476

AutoAugment (Cubuk et al., 2018), RandAug- 477

ment (Cubuk et al., 2020), and MIXUP (Zhang 478

et al., 2017). These are often first explored in com- 479

puter vision, and it seems secondary and compara- 480

tively underexplored for NLP. It is perhaps due to 481

challenges presented by the discrete nature of lan- 482

guage, which rules out continuous noise and makes 483

it more difficult to maintain invariance. To augment 484

more data in NLP tasks, previous work constructed 485

more data with one kind of feature or rule have im- 486

proved accuracy on that particular case, but didn’t 487

7



(a) BT+B (b) BT+C

(c) BT+M (d) BT+C+M

Figure 6: Attention map on a ROC example for BERT-
based models.

generalize to other cases, suggesting that models488

overfit to the augmentation set (Iyyer et al., 2018;489

Liu et al., 2019b). In particular, McCoy et al. found490

that augmentation with HANS examples may gen-491

eralize to a different word overlap challenge set,492

but only for examples similar in length to HANS493

examples. We reduce the choice-only short circuit494

inference behavior of models via several simple yet495

feature-agnostic augmentation methods aiming at496

teaching models to reason over relations between497

context and choices.498

Model Probing. Ever since the emergence of499

large pretrained language models, many works500

have focused on the analysis of their inner work-501

ings. As a result, a considerable amount of lin-502

guistic properties are shown to be encoded in503

the contextualized representations and attention504

heads (Goldberg, 2019; Clark et al., 2019; Liu et al.,505

2019a; Tenney et al.). In contrast, we are concerned506

with the model’s higher-level reasoning capability.507

To prob what specific linguistic capabilities models508

get, one approach is to create challenging datasets.509

Some work (Belinkov and Glass, 2019) has noted510

benefits of this approach, such as systematic control511

over data, as well as drawbacks, such as small scale 512

and lack of resemblance to “real” data. Further, 513

they note that the majority of challenge sets are for 514

Natural Language Inference. Our stress test which 515

can also be called short-circuit test is not aimed to 516

replace the challenge or benchmark datasets, but to 517

complement them to test whether really have the in- 518

ference capability, in particular the short circuiting 519

behavior. The behavior is reflected in downstream 520

performance through diagnostic stress tests. 521

Spurious Feature Analysis. Prior stud- 522

ies (Sharma et al., 2018; Zellers et al., 2018) have 523

discovered that NLP models can achieve surpris- 524

ingly good accuracy on natural language under- 525

standing tasks in MCQs form even without looking 526

at the context. Such phenomenon is identified via 527

the so-called “hypothesis-only” test. Sanchez et al. 528

further showed that models sometimes bear insen- 529

sitivity to certain slight but semantically significant 530

perturbations in the hypothesis, leading to suspi- 531

cions that the high hypothesis-only performance 532

stems from statistical correlations between spurious 533

cues in the hypothesis and the label. Such spurious 534

cues can be categorized into lexicalized (Naik et al., 535

2018) and unlexicalized (Bowman et al., 2015): the 536

former mainly contains n-gram and cross-ngram 537

spans that are indicative of certain labels, while 538

the latter involves word overlap, sentence length 539

and BLUE score between the premise and the hy- 540

pothesis. Instead of unearthing the specific cues 541

in the dataset, we directly diagnose if models are 542

exploiting the short circuit in hypothesis alone and 543

mitigate such reasoning behavior accordingly. 544

5 Conclusion 545

We observe that models can select correctly with- 546

out a premise and pay little attention to the premise 547

on the attention map. Inspired by speculation that 548

models can short circuit the premises on MCQs and 549

become fragile, we propose two data augmentation 550

methods crossover and mutation. Our experimental 551

results show that, while the proposed methods do 552

not always improve results on the original datasets, 553

they significantly and consistently increase the ac- 554

curacy on stress tests. They improve the model’s 555

robustness and generalization capability. We also 556

confirm the reason for this improvement is the re- 557

duction of short-circuits with choice-only tests and 558

case study. We conclude that our data augmenta- 559

tion methods can indeed encourage models to pay 560

more attention to the premise of questions. 561

8



Limitations562

There are some limitations in this work that could563

be addressed in future work.564

First, though our work can reduce short circuits565

in multiple choice reasoning models, there are still566

more opportunities to apply crossover or mutation567

to other text generation models for enhancing their568

performance.569

Second, the short circuit is only one kind of570

weakness for reasoning models. The approach out-571

lined here only attacks short circuits. To tackle572

other types of model fragility, more clear interpre-573

tations of what models learn are required.574
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A Details of Stress Tests705

Table 6 tells more detailed numbers 2 about stress706

test results with different aspects in Figure 4. (Sec-707

tion 3.2.2)708

B Details of Choice-only test709

In Table 7, we show specific numbers for Figure710

5 which describe the choice-only results. (Section711

3.3)712

C Extra Cases713

We have shown an example in Section 3.4 for the714

case study. In this section of the appendix, we715

provide extra 3 cases for further illustrating that716

crossover and mutation encourage models to build717

contextual reasoning by attending to relevant con-718

cepts in the premise.719

Example 2 An MCQ from COPA:720

721

Premise: I pushed the door.722

Choice 1: The door opened. !723

Choice 2: The door locked. %724

In Example 2, we explore RoBERTa-based mod-725

els by analyzing their attention maps on this ques-726

tion in Figure 7. In this example, the word “pushed”727

in the premise is strongly related with the word728

“opened” in the right choice from human knowl-729

edge. The relationship between these two words is730

the key to answering this question. We explore dif-731

ferent models with the augmentation method with732

attention map to visualize if these two words have733

a relationship or not.734

In Figure 7, RoBERTa trained on the origi-735

nal training set fails to pick up the relation be-736

tween “pushed” and “opened”. After training with737

crossover data augmentation, the model learns to738

build contextual reasoning by attending to relevant739

concepts in the premise. Similar trends also ex-740

ist for the combination of crossover and mutation741

operation in Figure 7d. These observations empiri-742

cally demonstrate the effectiveness of our methods743

to encouraging the model to pay attention to the744

premise so as to improve model robustness. On745

the contrary, back-translation in Figure 7b seems746

to have not enhanced such abilities.747

Example 3 An MCQ from COPA:748

749

2The dashes in Table 6 are caused by limited test cases
which sizes are too small.

(a) RB(w/o) (b) RB+B

(c) RB+C (d) RB+C+M

Figure 7: Attention map on a COPA example for mod-
els.

Premise: I was furious. 750

Choice 1: I slammed the door upon leaving the 751

house. ! 752

Choice 2: I checked the mailbox upon leaving the 753

house. % 754

In human cognition, the word “furious” in 755

premise and “slammed” in the right choice have a 756

strong causal relationship in Example 3. However, 757

from the attention map of the vanilla XLNet model 758

in Figure 8, it is difficult to observe that they are 759

related. In Figure 8, we also observe that the ability 760

of XLNet to use relationships has been strength- 761

ened by adding augmented data with all methods 762

we mentioned. Back-translation is worse than the 763

other methods with lighter color blocks. 764

Example 4 An MCQ from ARCT: 765

766

Premise: I would be happy to support free 767

community college so those who can’t afford it can 768

get educated. College should be free. 769

Choice 1: I would be happy to pay tuition for 770

everyone , even some rich kids. ! 771

Choice 2: I would not be happy to pay for some 772

rich kids tuition at the same time. % 773

In Example 4, the claim and reason are “College 774

should be free” and “I would be happy to support 775

... who can’t afford it can get educated” separately. 776

The word “free” is very important for the claim. 777

It should be very related to the information in the 778

correct warrant, such as “tuition” or “pay” from the 779
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(a) XL(w/o)

(b) XL+B (c) XL+C

(d) XL+M (e) XL+C+M

Figure 8: Attention map on a COPA example for
XLNet-based models.

knowledge of commonsense reasoning. Unfortu-780

nately, “free” has little relationship with the war-781

rant in Figure 9a through the vanilla BERT model.782

Consistent with our previous conclusion, the im-783

provement effect of crossover and mutation is more784

obvious than back-translation. Besides, we also ob-785

serve that the performance of data augmentation786

methods is not as obvious as the first two examples.787

One reason may be that analyzing with this white-788

box method is not completely reliable. The other789

may be that the ability of these data augmentation790

methods to reduce short circuits and to improve the791

stability of the model is limited. We will continue792

to study the reason in the future.793

(a) BT(w/o)

(b) BT+B (c) BT+C

(d) BT+M (e) BT+C+M

Figure 9: Attention map on an ARCT example for
BERT-based models.
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Dataset Model Original Neg+ Neg- NER PR PI Voice All

ROC

BT(w/o) 88.49 80.24 60.99 84.90 78.47 89.47 60.26 77.48
BT+B 88.42 86.99 68.79 86.00 82.76 88.97 68.02 82.35
BT+C 87.60 80.73 62.76 99.63 91.42 99.03 72.52 85.35
BT+M 87.69 78.36 85.10 93.37 87.64 95.39 95.50 87.60
BT+C+M 87.47 82.99 81.91 99.17 93.60 98.92 95.23 91.31
XL(w/o) 90.88 86.94 60.99 88.03 52.50 94.00 52.76 73.95
XL+B 90.88 87.39 57.09 92.36 53.99 96.44 54.08 75.30
XL+C 90.52 88.65 57.09 99.45 89.03 99.30 61.47 85.38
XL+M 90.08 86.98 76.60 94.29 70.92 97.29 98.88 88.02
XL+C+M 90.40 85.61 81.21 99.35 91.71 99.62 97.37 92.35
RB(w/o) 92.16 87.50 61.35 77.62 65.99 88.97 64.10 77.58
RB+B 92.16 88.56 64.89 77.99 61.91 90.05 57.89 76.17
RB+C 91.68 88.24 70.57 99.63 92.36 98.68 73.70 88.46
RB+M 91.91 87.96 81.56 95.21 71.36 96.28 99.48 88.55
RB+C+M 92.46 87.67 82.62 99.72 96.02 99.61 99.34 94.39

COPA

BT(w/o) 64.60 56.03 - - 69.41 74.89 53.93 62.26
BT+B 75.40 72.70 - - 85.16 71.54 80.49 77.17
BT+C 75.73 68.83 - - 91.87 77.02 70.60 76.45
BT+M 69.53 74.26 - - 82.01 81.43 97.29 81.87
BT+C+M 73.20 77.31 - - 92.48 86.30 96.47 86.38
XL(w/o) 63.40 57.99 - - 55.59 78.54 64.77 62.18
XL+B 64.80 69.71 - - 58.74 79.15 50.54 64.85
XL+C 74.60 73.04 - - 91.16 96.65 75.34 82.13
XL+M 66.80 68.97 - - 63.01 85.84 99.73 76.21
XL+C+M 72.93 83.67 - - 89.64 98.18 99.86 90.77
RB(w/o) 72.00 72.69 - - 60.36 75.65 64.91 68.56
RB+B 74.07 81.71 - - 65.44 82.65 80.63 77.51
RB+C 77.07 88.28 - - 94.21 97.41 87.94 91.28
RB+M 70.47 82.59 - - 73.07 95.74 99.59 85.65
RB+C+M 75.67 85.23 - - 95.73 99.54 99.86 93.15

ARCT

BT(w/o) 61.94 11.78 80.26 - 52.11 42.26 17.43 33.07
BT+B 71.70 49.83 67.10 - 43.66 35.72 19.92 44.75
BT+C 70.80 35.13 83.33 - 69.48 77.98 45.98 53.87
BT+M 65.92 42.20 94.52 - 84.51 83.93 93.48 71.82
BT+C+M 68.54 38.94 95.39 - 81.69 92.26 89.85 70.22
XL(w/o) 77.85 43.88 80.26 - 41.78 42.86 53.45 53.20
XL+B 77.70 46.57 80.92 - 44.13 57.14 46.17 54.00
XL+C 78.60 45.68 81.58 - 66.20 84.53 58.24 60.71
XL+M 75.45 44.55 91.01 - 62.91 81.55 93.10 69.73
XL+C+M 76.95 45.68 93.86 - 75.59 95.83 93.29 73.07
RB(w/o) 77.10 36.92 80.04 - 46.95 60.12 40.61 49.20
RB+B 80.93 48.71 78.73 - 44.60 60.71 40.42 53.38
RB+C 79.05 44.89 83.55 - 66.67 80.95 41.57 56.71
RB+M 78.23 52.41 93.64 - 68.07 77.38 92.14 73.33
RB+C+M 77.78 49.05 92.54 - 79.34 95.83 91.76 74.13

RECLOR

BT(w/o) 45.60 25.87 36.13 - 19.56 24.91 13.81 23.08
BT+B 48.60 28.71 33.61 - 26.09 30.77 17.24 26.06
BT+C 47.00 23.64 48.74 - 43.12 53.85 31.81 33.94
BT+M 46.80 21.24 53.78 - 43.84 32.60 50.32 36.81
BT+C+M 43.60 23.47 54.90 - 47.46 50.92 47.91 39.29
XL(w/o) 56.00 30.58 52.94 - 32.24 39.19 20.28 31.52
XL+B 57.00 31.29 43.42 - 31.16 43.95 27.76 33.05
XL+C 54.40 31.47 63.87 - 47.83 62.27 34.22 40.92
XL+M 53.60 29.78 64.71 - 50.72 54.94 56.65 46.20
XL+C+M 54.20 30.31 68.91 - 55.43 62.64 58.18 48.58
RB(w/o) 50.40 25.33 48.46 - 27.53 38.46 16.73 27.34
RB+B 51.00 19.82 40.62 - 24.27 27.10 8.88 20.53
RB+C 50.40 30.66 58.54 - 46.38 45.06 35.74 38.54
RB+M 52.00 29.96 60.78 - 50.73 43.96 54.12 44.01
RB+C+M 48.40 30.22 64.71 - 53.99 57.88 53.23 46.03

Table 6: Detailed Breakdown of Stress Tests on 4 models with or without(w/o) data augmentation. +B = aug-
mented with backtranslation, +C = augmented with crossover, +M = augmented with mutation. Stress Tests in-
cludes the following stress tests: Neg+=negation-add, Neg-=negation-remove, NER, PR=pronoun-replacement,
PI=Pronoun-instantiation, Adv=adverbial, Voice, Syn=synonym.
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Model ROC COPA ARCT RECLOR

BT(w/o) 64.10 51.67 59.01 35.60
BT+B 64.90 55.07 65.47 35.13
BT+C 59.99 50.67 61.71 28.67
BT+M 62.44 57.53 59.31 31.80

BT+C+M 60.82 52.87 56.38 30.93

XL(w/o) 73.12 57.47 68.09 35.13
XL+B 72.88 57.67 67.72 35.73
XL+C 65.01 59.53 61.64 29.53
XL+M 71.69 58.93 64.41 35.93

XL+C+M 67.72 58.53 61.11 32.00

RB(w/o) 76.23 60.33 69.75 32.60
RB+B 74.63 60.47 71.10 38.00
RB+C 72.73 57.33 67.12 33.87
RB+M 71.28 54.40 64.04 36.53

RB+C+M 73.35 57.40 65.01 33.53

Table 7: Choice-only test for transformer-based models
on 4 datasets. All numbers are percentages (%)
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