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Abstract

Statistical biases in the training data may
lead to fragility in neural models that makes
choices in multiple-choice natural language
reasoning problems without referring to the
context or premises. To encourage the models
to pay more attention to the relations between
the premise and the choices, we propose two
biologically inspired operations that can gen-
erate new training data that “forces” the model
to look at the premises and reducing short cir-
cuits. They can augment any type of multiple
choice reasoning dataset, and can be applied to
any supervised learning models. Results show
that models trained with the augmented data
become more robust against both stress test
and original test.

1 Introduction

Large-scale neural networks have been applied
extensively to natural language reasoning (NLR)
tasks such as causal reasoning (Gordon et al.,
2012), story ending prediction (Mostafazadeh et al.,
2017), argument reasoning comprehension (Haber-
nal et al., 2017), and reading comprehension (Yu
et al., 2020). Many of the current benchmarks of
these NLR tasks take the form of multiple-choice
questions (MCQs) which are made up of a premise
and two or more choices. Below is an example
taken from COPA (Gordon et al., 2012), which
tests commonsense causal reasoning.

Example 1 An MCQ from COPA:

Premise: The man hurt his back.
Choice 1: He stayed in bed for several days.
Choice 2: He went to see a psychiatrist. X

Usually, models are trained on the training data
and tested with the standard validation-test split
paradigm. While accuracy on held-out data is a use-
ful indicator, held-out datasets are often not diverse
enough and may contain the same biases in the
training data (McCoy et al., 2019). Furthermore,

as simple aggregated statistics, accuracy on the test
set doesn’t show the robustness of the model, or
why a question is answered correctly. There has
been speculation (Sharma et al., 2018; Zellers et al.,
2018) that many models did not really “understand”
the semantical and logical connection between the
premise and the choices, but do well only due to
spurious statistical features in the choices, which
means the models are actually fragile.

Such fragility can be observed by both white-box
and black-box tests. In a white-box test (Vig, 2019),
attention map between the words in the full ques-
tion from the final encoder layer of the model can
reveal the connection, or the lack of one, between
the premise and the choices. Figure 1, which is a
plot for Example 1, clearly shows that there’s virtu-
ally no connection between the first choice and the
premise (highlighted by the red box) when BERT is
processing the full question. While the attention be-
tween the words within the first choice remains the
same when the model processes only the choices
without the premise. We call such a phenomenon
“short circuit” in multiple-choice NLR in this paper.
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Figure 1: Attention map showing that BERT short-
circuits on a COPA question.

Furthermore, two kinds of black-box tests have
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been attempted. One is called “ending-only tests
in some literature (Sharma et al., 2018; Bras et al.,
2020), which we refer to as “choice-only test” here
since our focus is on MCQs. For example, BERT,
when fine-tuned on the COPA data, can answer the
question in Example 1 correctly. When we remove
the premise from the same question and feed it to
the model, it still gets the correct answer (Choice
1). This result from the “choice-only” test seems to
suggest that the model can make correct predictions
without even looking at the premise. The other
blackbox test is a kind of stress test (Ribeiro et al.,
2020), which tests if the model is short-circuiting
toward (or against) certain linguistic features such
as named entities, typos, and negations. In this
work, we apply many stress test cases of several cat-
egories, and observe that many models are fragile
with low accuracies. Through the above tests, we
are able to confirm that three popular deep models,
i.e., BERT, XLNet (Yang et al.) and RoBERTa (Liu
et al., 2019¢c), when applied to multiple-choice
NLR, all suffer from the “short-circuit” problem.

One straightforward way to reduce the model
short circuits is to train the models with hard cases
that look like the stress tests. However, many stress
tests are constrained by the way choices are con-
structed, which limits the quantity of cases to auto-
matically generate, and consequently their ability
to serve as general data augmentation methods. Be-
sides, most of the stress tests are feature specific
and hard to generalize. To this end, we propose
crossover and mutation operators, which can eas-
ily generate abundant data and encourage models
to pay more attention to the premise. We apply
crossover and mutation to augment the three mod-
els on ROC (Mostafazadeh et al., 2017), COPA,
ARCT (Habernal et al., 2017), and RECLOR (Yu
et al., 2020) and see up to 42% increase in accuracy
on the stress tests and 10% increase in the origi-
nal test data, beating the previous strong baseline
back-translation (Xie et al., 2019).

This paper makes the following contributions: i)
we propose the crossover and mutation operations
to augment training data that teaches the models to
pay attention to the premises in questions; ii) exper-
iments show that the augmented models perform
substantially better on diverse stress tests while
maintaining their accuracies on the original tests,
demonstrating reduced short circuits; iii) we pro-
vide evidence to show that method indeed reduces
short-circuits in these models, thus confirming the

validity of our approach.

2 Approach

We first present stress test operators which are used
to create stress test cases for measuring model
fragility, then propose two novel operations to aug-
ment training data to reduce short circuits in mod-
els.

2.1 Stress Test Operators

To evaluate the extent of model short circuits, we
create these stress test cases using the operators in
Table 1. Most of the operators have been proposed
previously (Ribeiro et al., 2020), except for PR and
PI, which are newly introduced in this work. We
create a stress test instance from a specific MCQ
by keeping the right choice and creating a wrong
choice by applying one of the stress operators to
the original right choice. This new wrong choice is
grammatically correct but logically incorrect under
the particular context. Besides, the new wrong
choice contains the same content as the right choice
except for the tested feature. These stress test cases
with similar choices can evaluate whether models
are considering the connection between the premise
and choices, or in other words “short-circuiting.’
For example, if a model doesn’t comprehend the
consistency of the NER name ‘“Mary” in Table
3 which has been mentioned in both the premise
context and the right choice, then the model can be
easily confused by a similar wrong choice.

)

Oper. | Description and Example
Add negation (r—w)

Neg+ Input: They called the police to come to my house.
Output: They didn’t call the police to come to my house. X
Remove negation (r—w)

Neg- Input: Ben never starts working out.

Output: Ben starts working out. X
Randomly replace person names (r—w)
NER Input: A big wave knocked Mary down.
Output: A big wave knocked Kia down. X
Switch pronoun by gender or quantity (r—w)
PR Input: She had a great time.

Output: He had a great time. X

Instantiate pronoun by random person (r—w)

PI Input: They gave Tom a new latte with less ice.
Output: Nathanael gave Tom a new latte with less ice. X
Swap subject and object (r—w)

Voice Input: Kara asked the neighbors not to litter in their yard.

Output: the neighbors asked Kara not to litter in their yard. X

Table 1: Stress test operators considered in this paper.
The first line in each cell describes the operation, and
the remaining lines in the cell give examples of how
the operators work. r—w indicates the operator turns a
right choice into a wrong choice.



2.2 Improving Model Robustness by Data
Augmentation

To decrease short circuits in models, one natural
thought is to generate more challenging training
data that forces the models to focus on the relation-
ship between the premise and choices. A straight
forward way to do this is to modify existing train-
ing data so that the right and wrong choices become
similar to each other. For example, we could mod-
ify the right choice in an MCQ by changing the
named entity in it into another arbitrarily named en-
tity and thus create a new wrong choice that shares
most of the features with the right choice. But such
an approach has two challenges: i) the modification
operations are typically restricted to a particular
linguistic feature, and hence it is hard to create data
with good coverage of diverse linguistic features;
and ii) because some of the linguistic features may
be sparse in the training data, the number of addi-
tional questions generated using these features may
be very limited, which means the data augmenta-
tion doesn’t scale.

To overcome the above issues, we propose two
genetically inspired operators, namely crossover
and mutation, which are more scalable and univer-
sally applicable for data augmentation of any kind
of MCQs. These two operators are not only simple
but also not limited to fine-grained features.

2.2.1 Crossover

Crossover is illustrated in Figure 2. It operates on
two randomly selected MCQs. We substitute the
wrong choice of one MCQ with the right choice
from the other MCQ to generate a new MCQ. The
substituted choice is almost certainly wrong in the
new MCQ. For example, the green choice in the
original question B is the right choice, but wrong
for the original question A. With this rule, we can
get two augmented questions: augmented question
A and augmented question B. We only consider
swapping the right choices between two questions
rather than the wrong ones. This is because if the
model was short-circuiting, then it is likely to rely
on some spurious features correlated with the true
label in the right choices. By substituting these
right choices into another question to make them
wrong, this operation can disrupt such correlations.
Hence, to tell if one choice is better than the other,
the model is encouraged to consider the premise.
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Figure 2: Crossover: the rights choice of both questions
are used to replace the wrong choices of these questions
to create two new questions. Circles symbolize tokens
in the sentences.

2.2.2 Mutation

Mutation is illustrated in Figure 3. It is also de-
signed to teach models to pay more attention to the
relationship between the premise and the choices.
Different from crossover which makes the choices
very different, mutation makes the two choices of
a question very similar except for the order of the
words. This forces the model to look to the premise
to avoid short-circuit problems.

We reserve the right choice and augment data
by changing the wrong choice. Mutation operation
swaps two consecutive words ! either in the right
choice or wrong choice of the original MCQ, each
with 50% probability, to make a new wrong choice.
The mutation operator should not be confused with
the random token swapping (RS) operator (Artetxe
et al., 2017; Lample et al., 2017). RS seeks to per-
turb a choice in the question without changing its
label, whereas mutating the right choice (mutation)
converts it to a wrong choice because the perturbed
choice is “less right” than the original one. Mu-
tating the wrong choice has a similar effect as RS.
Intuitively, mutation has the potential to reduce
short circuits: it not only encourages the model to
look into the premise due to its two very similar
choices (see the two choices of Al in Figure 3),
but also makes the model more sensitive to the dif-
ferences in word orders and enhances the model’s
pre-existing grammatical knowledge (see the two
choices in A2).

3 Experiments

We evaluate the effectiveness of the proposed aug-
mentation methods on four popular natural lan-
guage reasoning tasks. Three transformer-based
models are employed as the main targets for our

"The words are tokenized with NLTK.



Dataset \ Premise Choices Training size  Test size
COPA I pushed the door. The door opened. 500 500
The door locked. X
Sarah was home alone.
ROC She wanted to stay busy. Sarah then happily watche‘d the show. 1871 1871
She turned on the TV. Sarah could not find anything to watch. X
She found a reality show to watch.
Reason: Milk isn’t a gateway drug even though ML e i I
ARCT | most people drink it as children, Warrant 1: Milk is similar to m‘“”)“(““d' 1210 444
Claim: Marijuana is not a gateway drug. Warrant 2: Milk is not marijuana.
X X . A: ignores the fact that in... the family ’s prosperity.
Context:In a business...to financial prosperity. B: presumes. without... the family’s prosperity. X
RECLOR Question:The reasoning in the argument . p ? o ysp X perty. X 4638 500
is flawed because the argument C: ignores the fact... even if they pay high wages.
D: presumes, without providing...can succeed. X

Table 2: Examples for all 4 datasets considered in this paper.
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Figure 3: Mutation: the right choice of a question is
used to replace the wrong choices of this question to
create new questions. Circles symbolizes tokens.

experiments. We first show the experimental setup.
Then, we compare different augmentation methods
on three models by the end-to-end tests, which
contain the stress test and original test of the
four datasets, and demonstrate the advantage of
crossover and mutation. After that, we apply
choice-only tests on the same set of models com-
pared in the last step, to reconfirm that performance
gain in the end-to-end tests is due to the reduction
of short-circuit problems. Finally, we use a case
study to discover the reason for the model improve-
ment by the white-box test.

3.1 Experimental Setup
3.1.1 Datasets

We experiment on 4 datasets from four different
tasks:

ROC is a story ending prediction dataset.
The task is to identify the correct ending of a
four-sentence story premise from two alternative
choices.

COPA is a causal reasoning dataset, an exam-
ple is previously shown in Section 1. Given a
premise, COPA requires choosing the more plausi-
ble, causally related choice.

ARCT is an argument reasoning comprehension

dataset. There may exist an alternative warrant
choice in which the reason is connected to the
claim.

RECLOR is a reading comprehension dataset
that requires logical reasoning.

Examples and statistics of them are shown in Ta-
ble 2.

3.1.2 Stress Test Cases

Stress ‘ ROC COPA ARCT RECLOR
Neg+ 1,797 492 297 375
Neg- 94 2 152 119
NER 362 0 5 0

PR 1,073 328 71 72

PI 861 219 56 91
Voice 1,014 246 174 263
Total ‘ 8,943 2,287 1,643 1,920

Table 3: Number of stress test cases generated by dif-
ferent operators for the four datasets.

Different operators generate different but suffi-
cient number of cases as shown in Table 3.

To guarantee the correctness of questions in the
stress test, we sample 100 stress cases generated by
each operation and annotate whether the cases are
correct or not. The correctness of these questions is
100% which indicates the reliability of these stress
tests.

We evaluate the effectiveness and short circuits
of all data augmentation methods by the accuracy
of the stress test set and the original test set.

3.1.3 Models

We investigate three popular pre-trained language
models: BERT, RoBERTa, and XLNet. To fine-
tune the language models for an MCQ task, we feed
LM’s final hidden vector to an MLP to compute
the probability of the right choice. We conduct all
experiments on a server: a GeForce GTX 1080Ti



GPU with 11G RAM and Intel(R) Xeon(R) CPU
E5-2630 with 128G of RAM.

Besides the original models (marked as w/0), we
also train these three models with four competing
data augmentation methods: back-translation (Xie
et al., 2019) (B), crossover (C), mutation (M), and
the mixture of crossover and mutation with equal
proportion (C+M). For each MCQ in the original
training set, we create a new question using either
one of these 4 methods, yielding 4 augmented train-
ing sets the same size as the original one.

We use back-translation as our baseline because
itis popularly used in NLU tasks. While there exist
promising data augmentation methods (Qu et al.,
2020; Chen et al., 2021) that are based on dynamic
perturbation of hidden states, back-translation is by
far the most effective data augmentation method
that operates on the input level. To this end, we
generate a new question by conducting a round-trip
English-to-French and French-to-English transla-
tion over each wrong choice. The translation model
we utilized is mBART.

Since crossover and mutation are operators for
data augmentation, the modified questions do not
need to be strictly correct. We also sampled 100
cases for each operator. 98% and 97% of the cases
turned out to be correct for crossover and mutation.

To ensure fairness, the training data augmented
with +B, +C, +M, and +C+M are all the same size.
In +C+M, the extra data by +C and +M are equal
in size.

3.2 End-to-end Test

In this subsection, we explore the capabilities of
models with different data augmentation meth-
ods, i.e., back-translation, crossover, and mutation,
from overall and fine-grained perspectives. The
overall perspective shows the accuracy results from
the stress test set and the overall original tests. Fine-
grained perspective shows the stress test accuracy
results by different stress operators. We train each
model 3 times with different seeds and calculate
their average score as the reusults of each test.

3.2.1 Overall results

In Table 4 and Table 5, we can find that vanilla
BERT, XLNet, and RoBERTa are mostly not robust
on stress tests across all datasets. Compared to the
original test data, the accuracy on the stress tests
has dropped substantially for models without data
augmentation. For example, BERT (w/0) model
on ROC task achieves 88.49 % accuracy result

Model | ROC | COPA | ARCT | RELOR
BT(w/o) | 77.48 | 6226 | 33.07 | 2283
BT+B 8235 | 7717 | 4475 | 24.94
BT+C 8535 | 7645 | 53.87 | 49.89
BT+M 87.60 | 81.87 | 7182 | 46.08
BT+C+M | 9131 | 8638 | 7022 | 53.14
XL(wlo) | 73.95 | 62.18 | 5320 | 2453
XL+B 7530 | 64.85 | 5400 | 3337
XL+C 8538 | 8213 | 6071 48.87
XL+M 88.02 | 7621 | 69.73 | 5455
XL+C+M | 9235 | 90.77 | 73.07 | 5647
RB(wlo) | 77.58 | 68.56 | 49.20 18.15
RB+B 7617 | 7751 | 5338 | 2203
RB+C 88.46 | 91.28 | 5672 | 5191
RB+M 88.55 | 8565 | 7333 | 60.53
RB+C+M | 9439 | 9315 | 7413 | 5577

Table 4: Overall stress test on 4 models with or with-
out(w/o) data augmentation. All numbers are percent-
ages (%). +B = augmented with back-translation, +C =
augmented with crossover, +M = augmented with mu-
tation.

Model | ROC | COPA | ARCT | RELOR
BT(w/o) | 8849 | 6460 | 61.94 | 45.60
BT+B 8842 | 754 | 7170 | 4860
BT+C 87.60 | 7573 | 7080 | 47.00
BT+M 87.69 | 69.53 | 6592 | 4680
BT+C+M | 87.47 | 732 | 6854 | 43.60
XL(wlo) | 90.88 | 63.40 | 77.85 | 56.00
XL+B 90.88 | 64.80 | 77.70 | 57.00
XL+C 90.52 | 7460 | 7860 | 54.40
XL+M 90.08 | 6680 | 7545 | 53.60
XLAC+M | 9040 | 7293 | 7695 | 5420
RB(wlo) | 9216 | 72.00 | 77.10 | 50.40
RB+B 92.16 | 7407 | 8093 | 51.00
RB+C 9168 | 7707 | 79.05 | 5040
RB+M 9191 | 7047 | 7823 | 5200
RB+C+M | 9246 | 75.67 | 77.78 | 4840

Table 5: Overall original test on 4 models with or with-
out(w/o) data augmentation. The best results for each
dataset on each model are highlighted.

(in Table 5) but only achieves 77.48 % (in Table
4) which drops by about 11%. On average, the
accuracy drops by 16.21% for BERT (w/o0), 12.04%
for XLLNet (w/0) and 19.54% for RoBERTa (w/0).
It confirms that the original models are fragile with
short-circuits and can be confused by questions that
require a stronger connection between the premise
and the choice.

For the stress tests in Table 4, crossover (+C),
mutation (+M), and especially their combination
(+C+M) improve the vanilla models substantially.
For example, the performance improved by 27.06%
for BT+C, 23.25% for BT+M and 30.31% for
BT+C+M on RECLOR dataset. Besides, the perfor-
mance gap between the stress test and the original
test all narrows. +C, +M, and +C+M also con-
sistently outperform back-translation (only gains
3.47% on stress test with XL+B). It shows that



these crossover and mutation are effective for re-
ducing short circuits in the models and improving
the generalization of the models. Besides, they
can complement each other. We can also observe
that models with +M sometimes get the best perfor-
mance in the stress test, like BERT+M on ARCT
and RoBERTa+M on RECLOR. Because mutation
can enhance grammatical knowledge for models,
and voice stress test which accounted for a large
proportion in all stress cases for ARCT and RE-
CLOR can also test grammatical capability. We
have statistical analysis for the 12 experiments (3
models on 4 datasets) in Table 4: according to
t-tests, with p < 0.05, +C, +M and +C+M are sig-
nificantly more accurate than (w/o) and +B in the
stress test of all 12 experiments which indicates our
improvements are stable.

For the original test in Table 5, +C+M is signifi-
cantly better than (w/0) in 4 of 12 experiments. For
example, we get an 8.6% improvement for BERT
on COPA. In 4 of 12 experiments, there are no
significant differences between +C+M and (w/0).
In the remaining 4 experiments, the performance
differences against (w/0) are within 2%. Overall,
crossover and mutation don’t hurt the model per-
formance on the original test cases heavily and can
even make improvements.

3.2.2 Fine-grained results

We proceed to break down the results in Table 4
into accuracies on stress tests created by different
operators. COPA and RECLOR datasets do not
show all six operators because some of the opera-
tors generate too little data for them, as shown in
Table 3. The corresponding results are presented
in Figure 4. We observe that the vanilla model in
purple and back-translation in green show worse re-
sults across different aspects than other lines. The
models trained with data augmented by crossover
and mutation (the red lines) are generally more ro-
bust than others. Please refer to Appendix A. for
complete results.

Since every type of stress tests can evaluate if
a model is robust, particularly if it considers the
premise by giving it two very similar choices, the
above results on the stress tests of all types show
that our two methods do reduce short-circuits, and
may even encourage the models to look toward the
premises. We will provide additional pieces of evi-
dence to confirm this in the next two subsections.

3.3 Choice-only Test

The end-to-end test has shown the success of our
data augmentation methods. To further explore the
reason behind the performance gain, we also use
choice-only test here.

In choice-only test, we only feed choices into
a model without a premise which is replaced by
an empty string. This way, models cannot utilize
the relationship between premise and choices. Un-
der normal conditions, we would expect the model
to make arbitrary choices. However, if a model
can easily “guess” the “right” choice which nor-
mally requires the relationship between premise
and choices, one possibility is that this model
cheats on evaluation procedure and may be fragile.
Thus, the higher score may indicate more use of
short-circuits.

In Figure 5, we observe that in choice-only tests,
the accuracy of models augmented with crossover
and mutation (red line) drops the most. Sometimes
the performances are similar to random selection,
e.g., RB+C+M on ARCT (56.38%), which indi-
cates that models are no longer cheating. In other
words, models augmented by crossover and muta-
tion are more likely to consider the premises. The
results on the choice-only tests provide another per-
spective for us to re-assure that models augmented
with crossover and mutation can reduce short cir-
cuits and thus model fragility.

However, one may argue that even if a model can
choose or “guess” correctly given only the choices
but no premise, it may still have the ability to look
at the premise if it’s given one, like in the end-to-
end test. Therefore, next we conduct an additional
case study to show that short-circuit does take place
and our augmentation methods alleviate it.

3.4 Case Study

Our case study is a series of white-box tests that
demonstrate the change in attention patterns.

We take an example from ROC which is shown
in Table 2. We explore BERT-based models by an-
alyzing their attention maps on this question in Fig-
ure 6. In this example, the word “show” in the
premise is strongly related to the token ‘“reality
show” in the right choice from human knowledge.
The attention map is visualized via an off-the-shelf
tool (Vig, 2019).

There is no positive attention value in front of
the fourth sentence, so we intercept it from where it
is worth. BERT trained on the original training set
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Figure 4: Fine-grained stress test with different aspects on 4 different tasks. The x-axis in the figures indicates
different stress test aspects and the y-axis indicates model accuracy in percentage.
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Figure 5: Choice-only test: Accuracies of different data
augmentation methods with 3 models on 4 tasks. The
detailed numbers are in Appendix B.

fails to pick up the right choice likely due to there
being virtually no attention connection between
words in the choice and words in the premise. Af-
ter training with crossover data augmentation, the
model learns to pay attention to the premise and
the relationship between premise and choices. i.e.,
“show” in this example. Similar trends also exist
for the mutation operation in Figure 6¢ and the
combination of crossover and mutation operation
in Figure 6d. The rationale behind such a change
of attention pattern is that, in an MCQ created by
crossover operation (Figure 6b), mutation(Figure
6¢), and the combination of them (Figure 6d), the
model needs to combine the information in the

premise to effectively distinguish the true “right”
choice from the wrong one. However, the light
and sparse attention color blocks on the attention
map for back-translation in Figure 6a indicate back-
translation can not help BERT connect the choice
and premise very well in this question. These obser-
vations empirically demonstrate the effectiveness
of our methods in encouraging the model to pay
attention to the premise to reduce short circuits. We
provide additional cases in Appendix C.

4 Related Work

Data Augmentation. Data augmentation refers
to strategies for increasing the diversity of training
examples without explicitly collecting new data.
It has received active attention in recent machine
learning research such as UDA (Xie et al., 2020),
which used back-translation (Sennrich et al., 2016),
AutoAugment (Cubuk et al., 2018), RandAug-
ment (Cubuk et al., 2020), and MIXUP (Zhang
et al., 2017). These are often first explored in com-
puter vision, and it seems secondary and compara-
tively underexplored for NLP. It is perhaps due to
challenges presented by the discrete nature of lan-
guage, which rules out continuous noise and makes
it more difficult to maintain invariance. To augment
more data in NLP tasks, previous work constructed
more data with one kind of feature or rule have im-
proved accuracy on that particular case, but didn’t
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Figure 6: Attention map on a ROC example for BERT-
based models.

generalize to other cases, suggesting that models
overfit to the augmentation set (Iyyer et al., 2018;
Liuetal., 2019b). In particular, McCoy et al. found
that augmentation with HANS examples may gen-
eralize to a different word overlap challenge set,
but only for examples similar in length to HANS
examples. We reduce the choice-only short circuit
inference behavior of models via several simple yet
feature-agnostic augmentation methods aiming at
teaching models to reason over relations between
context and choices.

Model Probing. Ever since the emergence of
large pretrained language models, many works
have focused on the analysis of their inner work-
ings. As a result, a considerable amount of lin-
guistic properties are shown to be encoded in
the contextualized representations and attention
heads (Goldberg, 2019; Clark et al., 2019; Liu et al.,
2019a; Tenney et al.). In contrast, we are concerned
with the model’s higher-level reasoning capability.
To prob what specific linguistic capabilities models
get, one approach is to create challenging datasets.
Some work (Belinkov and Glass, 2019) has noted
benefits of this approach, such as systematic control

over data, as well as drawbacks, such as small scale
and lack of resemblance to “real” data. Further,
they note that the majority of challenge sets are for
Natural Language Inference. Our stress test which
can also be called short-circuit test is not aimed to
replace the challenge or benchmark datasets, but to
complement them to test whether really have the in-
ference capability, in particular the short circuiting
behavior. The behavior is reflected in downstream
performance through diagnostic stress tests.
Spurious Feature Analysis. Prior stud-
ies (Sharma et al., 2018; Zellers et al., 2018) have
discovered that NLP models can achieve surpris-
ingly good accuracy on natural language under-
standing tasks in MCQs form even without looking
at the context. Such phenomenon is identified via
the so-called “hypothesis-only” test. Sanchez et al.
further showed that models sometimes bear insen-
sitivity to certain slight but semantically significant
perturbations in the hypothesis, leading to suspi-
cions that the high hypothesis-only performance
stems from statistical correlations between spurious
cues in the hypothesis and the label. Such spurious
cues can be categorized into lexicalized (Naik et al.,
2018) and unlexicalized (Bowman et al., 2015): the
former mainly contains n-gram and cross-ngram
spans that are indicative of certain labels, while
the latter involves word overlap, sentence length
and BLUE score between the premise and the hy-
pothesis. Instead of unearthing the specific cues
in the dataset, we directly diagnose if models are
exploiting the short circuit in hypothesis alone and
mitigate such reasoning behavior accordingly.

5 Conclusion

We observe that models can select correctly with-
out a premise and pay little attention to the premise
on the attention map. Inspired by speculation that
models can short circuit the premises on MCQs and
become fragile, we propose two data augmentation
methods crossover and mutation. Our experimental
results show that, while the proposed methods do
not always improve results on the original datasets,
they significantly and consistently increase the ac-
curacy on stress tests. They improve the model’s
robustness and generalization capability. We also
confirm the reason for this improvement is the re-
duction of short-circuits with choice-only tests and
case study. We conclude that our data augmenta-
tion methods can indeed encourage models to pay
more attention to the premise of questions.



Limitations

There are some limitations in this work that could
be addressed in future work.

First, though our work can reduce short circuits
in multiple choice reasoning models, there are still
more opportunities to apply crossover or mutation
to other text generation models for enhancing their
performance.

Second, the short circuit is only one kind of
weakness for reasoning models. The approach out-
lined here only attacks short circuits. To tackle
other types of model fragility, more clear interpre-
tations of what models learn are required.
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A Details of Stress Tests

Table 6 tells more detailed numbers 2 about stress
test results with different aspects in Figure 4. (Sec-
tion 3.2.2)

B Details of Choice-only test

In Table 7, we show specific numbers for Figure
5 which describe the choice-only results. (Section
3.3)

C Extra Cases

We have shown an example in Section 3.4 for the
case study. In this section of the appendix, we
provide extra 3 cases for further illustrating that
crossover and mutation encourage models to build
contextual reasoning by attending to relevant con-
cepts in the premise.

Example 2 An MCQ from COPA:

Premise: I pushed the door.
Choice 1: The door opened.
Choice 2: The door locked. X

In Example 2, we explore RoBERTa-based mod-
els by analyzing their attention maps on this ques-
tion in Figure 7. In this example, the word “pushed”
in the premise is strongly related with the word
“opened” in the right choice from human knowl-
edge. The relationship between these two words is
the key to answering this question. We explore dif-
ferent models with the augmentation method with
attention map to visualize if these two words have
a relationship or not.

In Figure 7, RoBERTa trained on the origi-
nal training set fails to pick up the relation be-
tween “pushed” and “opened”. After training with
crossover data augmentation, the model learns to
build contextual reasoning by attending to relevant
concepts in the premise. Similar trends also ex-
ist for the combination of crossover and mutation
operation in Figure 7d. These observations empiri-
cally demonstrate the effectiveness of our methods
to encouraging the model to pay attention to the
premise so as to improve model robustness. On
the contrary, back-translation in Figure 7b seems
to have not enhanced such abilities.

Example 3 An MCQ from COPA:

’The dashes in Table 6 are caused by limited test cases
which sizes are too small.
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Figure 7: Attention map on a COPA example for mod-
els.

Premise: I was furious.

Choice 1: I slammed the door upon leaving the
house.

Choice 2: I checked the mailbox upon leaving the
house. X

In human cognition, the word “furious” in
premise and “slammed” in the right choice have a
strong causal relationship in Example 3. However,
from the attention map of the vanilla XLNet model
in Figure 8, it is difficult to observe that they are
related. In Figure 8, we also observe that the ability
of XLNet to use relationships has been strength-
ened by adding augmented data with all methods
we mentioned. Back-translation is worse than the
other methods with lighter color blocks.

Example 4 An MCQ from ARCT:

Premise: 1 would be happy to support free
community college so those who can’t afford it can
get educated. College should be free.

Choice 1: I would be happy to pay tuition for
everyone , even some rich kids.

Choice 2: I would not be happy to pay for some
rich kids tuition at the same time.

In Example 4, the claim and reason are “College
should be free” and “I would be happy to support
... who can’t afford it can get educated” separately.
The word “free” is very important for the claim.
It should be very related to the information in the
correct warrant, such as “tuition” or “pay” from the
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Figure 8: Attention map on a
XLNet-based models.

COPA example for

knowledge of commonsense reasoning. Unfortu-
nately, “free” has little relationship with the war-
rant in Figure 9a through the vanilla BERT model.
Consistent with our previous conclusion, the im-
provement effect of crossover and mutation is more
obvious than back-translation. Besides, we also ob-
serve that the performance of data augmentation
methods is not as obvious as the first two examples.
One reason may be that analyzing with this white-
box method is not completely reliable. The other
may be that the ability of these data augmentation
methods to reduce short circuits and to improve the
stability of the model is limited. We will continue
to study the reason in the future.
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[SEP] '
t
afford
it
can
get
educated
college
should
be
free
[SEF]
(a) BT(w/0)
i [cLs]
would i i [CLs]
be would would i
happy be be would
to happy happy be
pay to to happy
tuition support pay to
for fide tuition support
everyone Gommunity for free
) college everyone community
even so i college
some those - o
rich who some those
) rich who
e ean kids can
i [SEP] i
[SEP] t .
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[SEP] [SEP]
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[SEP] : [SEP] s
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[SEP] [SEP]
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Figure 9: Attention map on an ARCT example for
BERT-based models.



Dataset Model Original Neg+ Neg- NER PR PI Voice All
BT(w/o) 88.49 80.24  60.99 8490 7847 89.47 6026 77.48
BT+B 88.42 86.99 68.79 86.00 8276 8897  68.02 8235
BT+C 87.60 80.73 6276  99.63 9142 99.03 7252 8535
BT+M 87.69 7836  85.10 9337 87.64 9539 9550  87.60
BT+C+M 87.47 8299 8191 99.17 9360 9892 9523 9131
XL(w/o) 90.88 8694 60.99 88.03 5250 94.00 5276  73.95
XL+B 90.88 8739  57.09 9236 5399 9644 5408 7530

ROC XL+C 90.52 88.65 57.09 99.45 89.03 9930 6147 8538
XL+M 90.08 86.98 76.60 9429 7092 9729 98.88  88.02
XL+C+M 90.40 85.61 81.21 9935 9171  99.62 9737 9235
RB(w/0) 92.16 8750 6135 77.62 6599 8897 64.10 7758
RB+B 92.16 88.56 6489 7799 6191  90.05 57.89  76.17
RB+C 91.68 88.24 7057  99.63 9236 98.68 7370  88.46
RB+M 91.91 8796 8156 9521 7136 9628 99.48  88.55
RB+C+M 92.46 87.67 8262 99.72  96.02 99.61 9934  94.39
BT(w/0) 64.60 56.03 - - 69.41 7489 5393  62.26
BT+B 75.40 72.70 - - 85.16 7154 8049  77.17
BT+C 75.73 68.83 - - 91.87 77.02 70.60  76.45
BT+M 69.53 74.26 - - 82.01 8143 9729  81.87
BT+C+M 73.20 77.31 - - 9248 8630 96.47  86.38
XL(w/0) 63.40 57.99 - - 5559 7854 6477  62.18
XL+B 64.80 69.71 - - 5874  79.15 50.54 64.85

COPA XL+C 74.60 73.04 - - 91.16  96.65 7534  82.13
XL+M 66.80 68.97 - - 63.01 85.84 9973  76.21
XL+C+M 72.93 83.67 - - 89.64 98.18  99.86  90.77
RB(w/0) 72.00 72.69 - - 6036 7565 6491 6856
RB+B 74.07 81.71 - - 65.44 8265 80.63 7751
RB+C 77.07 88.28 - - 9421  97.41 87.94  91.28
RB+M 70.47 82.59 - - 73.07 9574  99.59  85.65
RB+C+M 75.67 85.23 - - 9573  99.54  99.86  93.15
BT(w/0) 61.94 11.78  80.26 - 5211 4226 1743 33.07
BT+B 71.70 49.83  67.10 - 43.66 3572 1992 4475
BT+C 70.80 3513 83.33 - 6948 7798 4598  53.87
BT+M 65.92 4220 9452 - 84.51 8393 9348  71.82
BT+C+M 68.54 38.94 9539 - 81.69 9226  89.85  70.22
XL(w/0) 77.85 4388  80.26 - 41778 4286 5345 5320
XL+B 71.70 46.57  80.92 - 4413 57.14  46.17  54.00

ARCT XL+C 78.60 45.68  81.58 - 66.20 8453 5824  60.71
XL+M 75.45 4455  91.01 - 62.91 81.55  93.10  69.73
XL+C+M 76.95 45.68  93.86 - 7559 9583 9329  73.07
RB(w/0) 77.10 36.92 80.04 - 4695 60.12  40.61  49.20
RB+B 80.93 48.71 7873 - 4460 60.71 4042  53.38
RB+C 79.05 4489  83.55 - 66.67 8095 41.57 56.71
RB+M 78.23 52.41 93.64 - 68.07 7738 9214 7333
RB+C+M 717.78 49.05  92.54 - 79.34 9583  91.76  74.13
BT(w/o0) 45.60 25.87  36.13 - 19.56 2491 13.81 23.08
BT+B 48.60 28.71  33.61 - 26.09  30.77 17.24  26.06
BT+C 47.00 23.64 4874 - 4312 5385 31.81 3394
BT+M 46.80 21.24 5378 - 4384 3260 5032  36.81
BT+C+M 43.60 23.47  54.90 - 4746 5092 47091 39.29
XL(w/0) 56.00 30.58 5294 - 3224  39.19 2028  31.52
XL+B 57.00 31.29 4342 - 31.16 4395 2776  33.05

RECLOR  XL+C 54.40 3147  63.87 - 47.83 6227 3422 4092
XL+M 53.60 29.78  64.71 - 5072 5494  56.65  46.20
XL+C+M 54.20 30.31 6891 - 5543  62.64 5818  48.58
RB(w/0) 50.40 2533 48.46 - 27.53  38.46 16.73  27.34
RB+B 51.00 19.82  40.62 - 2427  27.10 8.88 20.53
RB+C 50.40 30.66  58.54 - 4638 4506 3574 3854
RB+M 52.00 2996  60.78 - 50.73 4396  54.12  44.01
RB+C+M 48.40 3022 64.71 - 5399 57.88 5323  46.03

Table 6: Detailed Breakdown of Stress Tests on 4 models with or without(w/o) data augmentation. +B = aug-
mented with backtranslation, +C = augmented with crossover, +M = augmented with mutation. Stress Tests in-
cludes the following stress tests: Neg+=negation-add, Neg-=negation-remove, NER, PR=pronoun-replacement,
PI=Pronoun-instantiation, Adv=adverbial, Voice, Syn=synonym.
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Model | ROC COPA ARCT RECLOR
BT(w/o) | 64.10  51.67  59.01 35.60
BT+B 6490 5507 6547 35.13
BT+C 59.99 5067  6L71 28.67
BT+M | 6244 5753 5931 31.80
BT+C+M | 60.82 5287 5638 30.93
XL(w/o) | 73.12 5747  68.09 35.13
XL+B 7288 5767 61.72 3573
XL+C 6501 5953 6164 29.53
XL+M | 7169 5893 644l 3593
XL+C+M | 6772 5853  6L.I1 32.00
RB(w/o) | 7623 6033  69.75 32.60
RB+B 7463 6047 7110 38.00
RB+C 7273 5733 6112 3387
RB+M | 7128 5440  64.04 3653
RB+C+M | 7335 5740 6501 3353

Table 7: Choice-only test for transformer-based models

on 4 datasets. All numbers are percentages (%)
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