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Abstract— Grounding spatiotemporal navigation commands
to structured task specifications enables autonomous robots
to understand a broad range of natural language and solve
long-horizon tasks with safety guarantees. Prior works mostly
focus on grounding spatial or temporally extended language
for robots. We propose Lang2LTL-2, a modular system that
leverages pretrained large language and vision-language models
and multimodal semantic information to ground spatiotemporal
navigation commands in novel city-scaled environments without
retraining. Lang2LTL-2 achieves 93.53% language grounding
accuracy on a dataset of 21,780 semantically diverse natural
language commands in unseen environments. We run an abla-
tion study to validate the need for different modalities. We also
show that a physical robot equipped with the same system with-
out modification can execute 50 semantically diverse natural
language commands in both indoor and outdoor environments.

I. INTRODUCTION

When giving directions, humans often use natural lan-
guage that describes goals, as well as temporal and spatial
constraints. For example, consider the command “Visit the
Starbucks, only then go to the red car to the right of the
building, and always avoid the crowded restaurant near the
cafe.” An autonomous robot following this spatiotemporal
command must understand that it specifies a temporally
extended task of visiting two locations in a strict order while
avoiding the third throughout the execution. The robot must
ground the three referring expressions, i.e., “the Starbucks,”
“the car,” and “the crowded restaurant,” to specific locations
with respect to other landmarks in the environment.

Existing approaches focus on developing the robot’s spa-
tial or temporal reasoning ability separately. Many works
develop systems to ground natural language commands that
contain rich spatial relations in indoor [1, 2, 3] and outdoor
[4, 5] environments. Their approaches use a map that con-
tains multimodal semantic information to identify various
target landmarks with respect to others in the environment,
yet they cannot handle complex temporal constraints. Sep-
arately, structured task specifications, like linear temporal
logic (LTL), can capture a wide range of semantically diverse
temporal patterns [6] and enable the synthesis of verifiable
robot behaviors with safety guarantees. However, systems
that can ground complex temporal language have limited
spatial reasoning capability [7, 8, 9].

To achieve the best of both worlds, we introduce a mod-
ular language grounding system, Lang2LTL-2, that grounds
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Fig. 1: Our system Lang2LTL-2 grounds spatiotemporal nav-
igation commands in indoor and outdoor environments. The
spatial and temporal components of the example commands
are highlighted in blue and red, respectively.

spatiotemporal navigation commands for robots. Lang2LTL-
2 uses large language models (LLMs) to recognize spatial
referring expressions, like “the red car to the right of the
building,” and to translate language commands to LTL task
specifications, which are compatible with many planning
and reinforcement learning algorithms [10, 11, 12, 13, 14].
Using pretrained vision-language models (VLMs) and text
embedding, Lang2LTL-2 grounds referring expressions to
specific locations in novel city-scaled environments without
retraining, given a semantic database of textual and visual
descriptions of the landmarks.

We evaluated Lang2LTL-2 on a dataset of 21,780 se-
mantically diverse spatiotemporal commands with 1,723
spatial referring expressions, 19 spatial relations, and 15
temporal patterns. We also ran an ablation study and
showed that using multimodal semantic information for
spatiotemporal language grounding outperforms using any
modality alone. Finally, we demonstrated that a mobile
robot equipped with the same system without modifica-
tion could execute 50 semantically diverse spatiotempo-
ral commands in both indoor and outdoor environments.
Code, datasets, videos, and supplementary materials are
at spatiotemporal-ground.github.io.

II. PRELIMINARIES

A. Large Language Models and Vision-Language Models

Large language models (LLMs) are transformer neural
networks [15] trained to maximize the probability of a
successive token given a context window. They achieve state-
of-the-art (SoTA) performance on a wide variety of natural
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language processing tasks [16]. Pretrained LLMs can also
produce high-dimensional embedding vectors of text. We can
measure the semantic similarity of two pieces of text by
computing the cosine similarity of their embeddings. In this
work, we used OpenAI’s GPT-4 model [17] and embedding
API for text completion and text embedding, respectively,
and a fine-tuned T5-base model [18] to translate natural
language commands to temporal task specification.

Vision-language models (VLMs) are multimodal models
jointly trained on text and images [19]. They produce SoTA
results on many language-conditioned vision tasks [20], e.g.,
open-vocabulary object detection [21, 22], image caption-
ing [23], image retrieval [24], and visual question answer-
ing [25]. In this work, we prompted the GPT-4V(ision)
model [26] to generate captions for images of landmarks
and objects.

B. Temporal Task Specification

Linear temporal logic (LTL) [27] is a promising task
specification language for human-centered specification elic-
itation [7, 28, 29, 30], planning [29, 14], and reinforcement
learning [10, 31]. The syntax of LTL is defined through the
following recursive grammar:

φ := α | ¬φ | φ1 ∨ φ2 | Xφ | φ1 U φ2 (1)

Here α represents an atomic Boolean proposition, and
φ, φ1, φ2 are any valid LTL formulas. The operators ¬
(not) and ∨ (or) are identical to propositional logic operators.
The formula Xφ holds if φ holds at the next time step, and
φ1 U φ2 holds if φ1 holds at least until φ2 first holds,
which must happen at the current or a future time. LTL
syntax also admits abbreviated operators defined through the
compositions of the primitive operators. In this work, we
use the operators ∧ (and), F (read “finally” or “eventually”),
and G (read “globally” or “always”). Fφ specifies that the
formula φ must hold at least once in the future, and Gφ
specifies that φ must always hold.

C. Task Execution for Temporal Task Specification

Our language grounding system Lang2LTL-2 is compat-
ible with many planning and reinforcement learning algo-
rithms that solve LTL tasks [10, 11, 32, 12, 13, 14]. We can
transform LTL formulas to Büchi automata [33, 34]. Transi-
tions in the environment induce transitions in the automaton,
so we can track task progress by tracking the automaton’s
state transition. We can then compute a policy on the product
MDP of the task automaton and the environment MDP.

III. PROBLEM DEFINITION

Our language grounding system Lang2LTL-2 receives a
natural language utterance u from the user that specifies a
navigation task in an environment modeled as ⟨S,A, T ⟩,
where S and A represent the robot’s states and actions,
and T (s, a) → s′ captures the transition dynamics. In this
work, we consider navigational actions that transition a robot
from one location to another in the environment represented
as a semantic map. We assume the robot has access to a

Fig. 2: An example of an input spatiotemporal navigation
command whose spatial and temporal components are high-
lighted in blue and red, respectively, an output LTL formula
whose propositions are grounded to physical landmarks, and
an execution trajectory in the environment.

multimodal semantic database D = {p : (d, f)}, where p
is a proposition that uniquely represents a landmark in the
environment, d is a semantic description of the landmark,
and f : S → {0, 1} is a Boolean-valued function that
determines the true value of the proposition in a given state.
The semantic description of a landmark can be a piece of text
(including its name, amenity, street address, etc.), an image,
or both. Lang2LTL-2 translates the input command to a linear
temporal logic (LTL) formula φ and grounds its propositions
to landmarks in the real world. We assume the robot can track
its state in a semantic map and has access to an automated
planner that, given an LTL formula as task specification,
produces a trajectory in the semantic map. Many planning
and reinforcement learning algorithms [10, 11, 12, 13, 14]
are compatible with LTL task specification. We use the AP-
MDP planner [12]. Figure 2 shows an example execution by
the full system, i.e., language grounding and planning.

IV. LANG2LTL-2: SPATIOTEMPORAL LANGUAGE
GROUNDING

We approach the problem of spatiotemporal language
grounding with a modular design, where we extract spatial
referring expressions and translate temporal commands using
large language models, and ground referring expressions to
physical landmarks using a vision-language model and text
embedding. Our system Lang2LTL-2 produces a grounded
temporal task specification with grounded referring expres-
sions and spatial relations. Figure 3 shows an overview of
our language grounding system.

A. Spatial Referring Expression Recognition (SRER)

The spatial referring expression recognition (SRER) mod-
ule identifies spatial referring expressions in a given language
command. Referring expressions (REs) are noun phrases,
pronouns, and proper names that refer to some entity in
an environment, such as landmarks and objects [35]. In this



Fig. 3: Lang2LTL-2 Language Grounding System Overview:
input and output are in yellow blocks; modules are in blue
blocks; pretrained and fine-tuned models are in green blocks.

work, we only consider noun phrases and proper names and
leave the coreference resolution problem to future work. Spa-
tial referring expressions (SREs) are phrases where referring
expressions are connected by a spatial relation. For example,
in the language command “Go to the red car to the right of
the bakery,” the SRE “the red car to the right of the bakery”
contains two REs, “the red car” and “the bakery,” termed
the figure ef and the ground eg , respectively, by Landau
and Jackendoff [36]. The figure ef and the ground eg are
connected by the spatial relation r “to the right of.” We
define a diverse set R of 19 spatial relations, such as near, in
front of, behind, to the left of, to the right of, between, and
four cardinal directions. The SRER module extracts referring
expressions and their spatial relations from a spatiotemporal
language command by prompting an LLM. We use GPT-
4 [17]. The output of the SRER module is a spatial predicate
denoted by {r : (ef , eg)}. Please see the supplementary
materials for the complete set of spatial relations and the
prompt used for SRER.

B. Referring Expression Grounding (REG)

To ground the referring expressions (REs) ef and eg to
physical landmarks in the environment, we use a multimodal
semantic database with textual and visual descriptions of
landmarks. Having both modalities enables the referring ex-
pression grounding (REG) module to ground more complex
REs and improves grounding accuracy. For certain REs, one
modality is more descriptive than the other. For example,
a textual description including a landmark’s amenity and
cuisine type better matches the RE “the vegan restaurant”
than an image of the restaurant front. The REG module is
important for identifying possible candidates for each RE,
especially when the environment contains multiple similar
landmarks or objects.

In practice, detailed textual descriptions of objects are not
always available, e.g., “the red car,” but can be extracted

from images. We prompt a pretrained vision-language model
(VLM) to generate captions of images with the question,
“What is the most obvious object in this image?” In this
work, we use GPT-4V(ision) [26]. We then use an LLM to
generate text embeddings for the image captions, the textual
descriptions of landmarks in the semantic database, and the
query REs (i.e., ef and eg) extracted from the language
command. Finally, we use the cosine similarity between text
embeddings to find the landmarks that best match the query
REs. Let gcaption : i → t be the function that generates a
caption t for image i parameterized by the weights of the
VLM, and gembed : t → z be the function that computes an
n-dimensional embedding z of a text string t parameterized
by the weights of the LLM. The cosine similarity score is
defined as follows,

score(ef/g, t) =
gembed(ef/g)

T gembed(t)

||gembed(ef/g)|| · ||gembed(t)||
, (2)

where we substitute t = gcaption(i) when the semantic
description of the landmark is an image i, and ef/g denotes
the query RE being the figure ef or the ground eg .

We also explored using CLIP’s text and image en-
coders [19] to encode text and images, then the cosine
similarity of the text and image embeddings to find the best
matching landmark for a query RE. However, we discovered
that the gap between the text and image embedding spaces
is large for the pretrained CLIP model. Liang et al. [37]
documented this phenomenon in more detail. Instead of
training another neural network to align the text and image
embedding spaces, we use a pretrained VLM to transcribe
images to text and work solely in the text embedding space.

C. Spatial Predicate Grounding (SPG)

After grounding the figure ef and the ground eg to
candidate landmarks, we perform spatial predicate grounding
(SPG) to identify the most likely landmark referred to by
ef given eg and the spatial relation r. We assume that
users give commands with respect to the robot’s initial
location. For each spatial referring expression (SRE) and
its corresponding spatial predicate {r : (ef , eg)}, we rank

Fig. 4: An illustration of the ground vector and the figure
vector, depicted as the green and the red arrow, respectively,
computed by the spatial predicate grounding (SPG) module
(Section IV-C) to resolve the spatial referring expression “the
red car to the right of the bakery.”



all the candidate landmarks of ef based on the product of
the similarity scores computed by the referring expression
grounding (REG) module for the candidate landmarks of
ef and eg , then select the proposition pf with the highest
product score,

p∗f = argmax
pf :(df , )∈D,pg :(dg, )∈D

score(ef , df ) · score(eg, dg).

(3)
To validate each pair of candidate landmarks, we first

compute a ground vector from the ground landmark to the
robot, which serves as an anchor for computing the range
where the figure landmark should be. We then compute
a figure vector from the ground landmark to the figure
landmark. Based on the spatial relation, we compute a range
where the figure vector should lie relative to the ground
vector. Figure 4 illustrates the ground and the figure vectors
for the SRE “the red car to the right of the bakery.”

For each known spatial relation r ∈ R, we specify a set
of rules to validate a pair of candidate landmarks for ef and
eg . In the example of “the red car to the right of the bakery,”
the spatial relation “to the right of” means the figure vector
must lie within the half circle between the ground vector
and 180 degrees counterclockwise from the ground vector.
Please see the supplementary materials for the definition of
all spatial relations. We also specify a distance threshold
in meters between a figure and the ground to eliminate
candidate figures too far from the ground. To resolve an
unseen spatial relation, we use LLM text embedding and
cosine similarity to find the most semantically similar spatial
relation r ∈ R.

D. Lifted Translation (LT)

After the SRER module extracts all the spatial referring
expressions (SREs) from a given command, we transform
it into a lifted command by substituting the SREs with
symbols, which are grounded to physical landmarks by the
REG (Section IV-B) and the SPG (Section IV-C) modules.
For example, the input command “Go to the red car to the
right of the bakery” is transformed to a lifted command “Go
to a” where the symbol a substitutes the SRE “the red car to
the right of the bakery.” We then translate the lifted command
to a lifted LTL formula compatible with many planning and
reinforcement learning algorithms [10, 11, 12, 13, 14]. We
evaluate the following models for lifted translation.

Fine-tuned LLM: Liu et al. [8] tested four models that
use LLMs for lifted translation. The T5-Base (220M pa-
rameters) model [18] fine-tuned on the semantically diverse
dataset they collected overperformed the fine-tuned GPT-
3 [38], the Prompt GPT-3 [38] and the Prompt GPT-4 [17]
models. Thus, we use their best-performing model fine-tuned
T5-Base through HuggingFace’s Transformer library [39].

Retrieval Augmented Generation (RAG): We evaluate
retrieval augmented generation (RAG), which dynamically
constructs a prompt to an LLM based on the query [40] for
lifted translation. To translate a lifted command to a lifted
LTL formula with RAG, we use cosine similarity of text

embeddings to find semantically similar commands from the
lifted dataset collected in [8], then use these commands and
their corresponding LTL formulas as in-context examples to
query GPT-4 [17]. We test varying numbers of in-context
examples. Please see the supplementary materials for an
example prompt used for RAG.

V. EVALUATION OF LANGUAGE GROUNDING

We conducted three sets of evaluations of our spatiotem-
poral language grounding system Lang2LTL-2: 1) a modular
evaluation, where we tested the performance of individual
modules introduced in Section IV, 2) a full system evalua-
tion, where we evaluated the final output of our system, and
3) an ablation study of the text and the image modality.

A. Language Grounding Dataset

Our evaluation used four city-scaled environments with an
increasing number of landmarks, i.e., 9, 34, 44, and 175. The
landmarks were described by text from OpenStreetMap [41]
(e.g., names, street addresses, amenities, and GPS coordi-
nates, etc.) and images from Google StreetView [42]. Having
a dataset where landmarks are described by both modalities
helps evaluate whether the referring expression grounding
(REG) module can use a proper modality to ground referring
expressions to the correct landmarks.

To obtain semantically diverse spatiotemporal navigation
commands, we first collected 1,723 spatial referring ex-
pressions (SREs) with respect to the robot’s initial location
from human users, then substituted the SREs in the 1,089
lifted natural language commands provided by Liu et al.
[8]. The lifted commands cover 15 temporal patterns for
common robotic tasks, each with 20 to 38 lifted commands.
For example, given the lifted command “Visit a only then
go to b”, we can substitute the symbols a and b with
the SREs “the vegan restaurant west of the bakery” and
“the red car,” respectively, to obtain the grounded natural
language command “Visit the vegan restaurant west of the
bakery only then go to the red car.” We constructed 21,780
unique spatiotemporal language commands using five seeds
to sample SREs for substitution. The commands contain
varying numbers of SREs ranging from one to five.

B. Modular Evaluation

We first evaluated each module introduced in Section IV
on the semantically diverse dataset introduced in Section V-
A. All results were averaged over five seeds.

Spatial Referring Expression Recognition (SRER): We
evaluated the LLM’s ability to correctly extract all spa-
tial referring expressions (SREs) from a natural language
command and identify their spatial predicates described in
Section IV-A, i.e., {r : (ef , eg)} with spatial relation r, figure
ef and ground eg . As shown in Table I, the SRER module
can reliably recognize SREs and their corresponding spatial
predicates in language commands from unseen environments.
Figure 5a further demonstrates that SRER achieves nearly
perfect performance across commands with varying numbers
of SREs. Occasionally, the SRER module fails to parse an



TABLE I: Modular Performance

Module Accuracy (averaged over five seeds)

City 1 (9 landmarks) City 2 (34 landmarks) City 3 (44 landmarks) City 4 (175 landmarks) Average

SRER 99.45± 0.12% 99.43± 0.26% 99.56± 0.63% 99.39± 0.21% 99.46± 0.34%

REG
Top-1 99.68± 0.72% 97.98± 1.07% 88.74± 2.14% 78.35± 1.97% 91.19± 8.84%
Top-5 100.00± 0.00% 100.00± 0.00% 99.56± 0.24% 99.15± 0.34% 99.68± 0.41%

Top-10 100.00± 0.00% 100.00± 0.00% 99.70± 0.17% 99.98± 0.05% 99.92± 0.15%

SPG 100.00± 0.00% 100.00± 0.00% 99.53± 0.33% 99.35± 1.46% 99.72± 0.75%

LT
Finetuned T5-base 99.45± 0.00% 99.45± 0.00% 99.45± 0.00% 99.45± 0.00% 99.45± 0.00%

RAG-10 69.33± 0.25% 70.34± 0.13% 69.65± 0.58% 70.39± 0.84% 69.93± 0.62%
RAG-50 83.79± 0.06% 83.93± 0.12% 83.75± 0.52% 83.93± 0.65% 83.85± 0.33%
RAG-100 88.20± 0.58% 88.25± 1.04% 87.79± 0.39% 87.70± 0.13% 87.98± 0.54%

SRE to the correct spatial predicate for an input command
containing five long SREs.

Referring Expression Grounding (REG): We evaluated
the REG module’s ability to ground referring expressions,
i.e., figures ef ’s and grounds eg’s, to the correct physical
landmarks described by text and images in the semantic map.
We observe in Table I that the top-1 accuracy decreases as
the number of landmarks increases from City 1 to City 4.
Cities with more landmarks contain more instances that share
similar textual or visual features. For example, there may be
multiple cafe shops or red bicycles in a large environment.
However, as we increase the number of top candidates from 1
to 10, REG achieves nearly perfect accuracy. Since the REG
module provides candidate landmarks of figures and grounds
to the SPG module (evaluated next), we hypothesize that as
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(a) SRER Accuracy vs. Utterance Complexity
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(b) REG Accuracy vs. RE Complexity

Fig. 5: Figure 5a shows the accuracies of the spatial referring
expression recognition (SRER) module as the complexity
of utterances (measured by the number of SREs in an
utterance) increases. Figure 5b shows the top-10 accuracy
of the referring expression grounding (REG) module as the
complexity of REs (measured by string length) increases.

long as the correct landmark is among the top candidates,
our system can still ground figures to the correct landmarks.
We used 10 as the number of candidates for REG. Figure 5b
shows that as the complexity of REs increases, the REG
module consistently achieves near-perfect top-10 accuracies.
These results align with those reported by Liu et al. [8].

Spatial Predicate Grounding (SPG): We evaluated
whether the SPG module could identify the correct figure
landmarks using spatial reasoning described in Section IV-
C. As shown in Table I, the SPG module performs uniformly
well across all environments. The few failure cases were due
to the instances where the distance between the figure and
the ground landmarks was larger than the search threshold.
Please see the supplementary materials for a breakdown of
the accuracy per spatial relation.

Lifted Translation (LT): Liu et al. [8] conducted a
comprehensive evaluation of the generalization capability of
various fine-tuned and pretrained LLMs for lifted translation.
We compared the accuracies of the best-performing model
in [8], i.e., T5-base fine-tuned on a large composed dataset,
and retrieval augmented generation (RAG) [40] with vary-
ing numbers of in-context examples. The fine-tuned model
achieved the highest accuracies across all environments. As
we increase the number of in-context examples for RAG
from 10 to 100, the maximum tokens allowed by GPT-4 [17],
we observe that the accuracy increases but is lower than
that of the fine-tuned model. Thus, we used the fine-tuned
T5-base model for lifted translation in our system. For cost
effective reasons, we averaged the RAG results over two
seeds per city.

C. Full System Evaluation and Ablation Study

We tested the overall performance of our language ground-
ing system Lang2LTL-2, which takes a spatiotemporal nav-
igation command as input and produces an LTL formula
whose propositions are grounded to physical landmarks in
the environment. The full system achieved an accuracy of
93.53 ± 4.33% on a dataset of 21,780 randomly sampled
semantically diverse language commands.

To evaluate the effectiveness of using multimodal se-
mantic information for language grounding, we conducted
an ablation study where we only used one modality, i.e.,
text or images, in the referring expression grounding (REG)
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Fig. 6: A comparison of the average accuracies of spatiotem-
poral language grounding systems using different modalities
across four environments and five seeds per environment.

module. As shown in Figure 6, the full system using both
modalities significantly outperformed the text-only and the
image-only systems because either modality alone often did
not provide enough semantic information. For example, an
image of a restaurant front does not specify its cuisine
being vegan, thus it will not be useful for grounding the
referring expression “the vegan restaurant.” However, the
additional visual features provided by images can further
disambiguate similar landmarks. For example, colors can
help disambiguate a red and a yellow bicycle. In practice,
detailed textual descriptions of landmarks are not always
available, e.g., “the red brick building,” but can be easily
extracted from images by querying a pretrained VLM for
image captions. Note that the text-only system is the same as
Lang2LTL [8] with an additional spatial reasoning capability.
Liu et al. [8] showed that Lang2LTL outperforms Code-
as-Policies [43], a prominent system that grounds natural
language instructions to Python code directly executable on
robots.

The accuracy of the spatial predicate grounding (SPG)
module when given the top-10 candidate groundings from the
referring expression grounding (REG) module was 97.26 ±
2.07%. It supports our hypothesis that if the correct ground-
ing landmark is among the top candidates output by the
REG module, the SPG module can identify the correct figure
landmark based on spatial reasoning.

VI. ROBOT DEMONSTRATION

To demonstrate Lang2LTL-2’s ability to inform an auto-
mated planner and enable the execution of spatiotemporal
commands, we deploy the same system without modification
at the task planning level on a quadruped robot Spot [44]
in an indoor and outdoor environment. These environments
contain nine and five objects, respectively, with multiple
objects and landmarks that have similar textual or visual
features, e.g., tables, couches, buildings, dumpsters, and cars.

We use Spot’s GraphNav software to build a semantic
map of the environment and capture images of landmarks
and objects of interest. We only use the image modality
for indoor experiments. For the outdoor environment, we
additionally download textual descriptions of landmarks in
the region from OpenStreetMap [41]. Given a grounded LTL
task specification output by our language grounding system
Lang2LTL-2, we use the AP-MDP planner [12] to produce a
sequence of locations through the semantic map and Spot’s
onboard motion planner to move between two locations.
We executed 50 semantically diverse spatiotemporal natural
language commands on the physical robot. With the formal
safety guarantee offered by LTL and the AP-MDP planner,
the robot was able to abort the execution when a given task
was infeasible. Please see the supplementary materials for
the list of all the language commands.

VII. RELATED WORK

Most existing robotic language grounding works focus
on either spatial or temporal commands, with a few papers
on grounding spatiotemporal commands to a limited capac-
ity [45, 46].

A. Grounding Spatial Commands for Robots

SLOOP [3] is a system that grounds spatial commands
in partially observable environments by using the spatial
relations between a target object and multiple landmarks
to construct an initial belief for a POMDP planner. Lan-
guageRefer [47] is a learned transformer-based model that
takes as inputs a spatial language command, a 3D point cloud
of the scene, and bounding boxes of objects, then predicts
the target object. RoboHop [48] builds a topological map
of the environment with image segments as nodes. Like our
work, RoboHop uses an LLM to extract referring expressions
(REs) from a language command then a VLM to ground REs
to nodes in the topological map.

B. Grounding Temporal Commands for Robots

Linear temporal logic (LTL) [27] is a mathematically pre-
cise language that can specify robotic tasks and provide sat-
isfaction guarantees, especially for long-horizon, temporally-
extended tasks with non-Markovian rewards. Early work of
using LTL for temporal command grounding was limited to
structured language [49]. Gopalan et al. [7] trained a Seq2Seq
network [50] on natural language and LTL pairs in every new
environment to ground language commands for navigation
and manipulation. Like our work, Berg et al. [28] and Hsiung
et al. [51] first translated commands to lifted LTL formulas
then grounded the propositions to landmarks or objects but
used a Seq2Seq network with limited capabilities.

To mitigate the lack of training data, Pan et al. [52]
used an LLM to paraphrase structured language commands
constructed from algorithmically generated LTL formulas.
Patel et al. [53] and Wang et al. [54] proposed weakly
supervised methods that use executed trajectories instead of
LTL annotations to guide language grounding. Lang2LTL [8]



is also a modular system that uses LLMs to ground tempo-
rally extended navigation commands in indoor and outdoor
environments without retraining, given a text-based semantic
database. However, Lang2LTL cannot ground spatial refer-
ring expressions or landmarks with visual descriptions. Our
system Lang2LTL-2 improves upon Lang2LTL by incorpo-
rating spatial reasoning and using a VLM to process images.

C. Grounding Spatiotemporal Commands for Robots
Language commands from existing works of indoor [1,

2, 3, 55] and outdoor [4, 5] navigation are rich in spatial
relations, but lack diverse temporal patterns. LM-Nav [5]
uses an LLM to extract a sequence of referring expressions
(REs) from a navigation command, then a VLM to ground
the REs to images of physical landmarks. LM-Nav only
grounds language commands of the sequenced visit type
defined in [6]. VLMaps [56] fuses pretrained vision-language
features with depth information to construct a spatial map of
the environment then directly indices a sequence of spatial
referring expressions (SREs) extracted by an LLM in the
map. LIMP [55] uses RGB-D information, an LLM, and a
VLM to construct a 3D semantic map conditioned on the in-
put language for motion planning to solve indoor mobile ma-
nipulation tasks. It translates free-form language commands
to one of three temporal patterns using an LLM. Our system
Lang2LTL-2 can ground language commands containing
15 temporal patterns commonly used in robotics [6]. An
additional advantage of Lang2LTL-2 is its ability to ground
REs that are not easily represented by visual description, e.g.,
generic referring expressions like “the vegan restaurant,” and
proper names like “Wildflour” (the name of a bakery) by us-
ing additional textual description from OpenStreetMap [41]
in grounding city-scaled navigation commands.

VIII. CONCLUSION

We propose a modular language grounding system that
consists of pretrained large language and vision-language
models to ground spatiotemporal navigation commands to
landmarks described by text and images in a semantic map
of novel indoor and outdoor environments. We evaluate the
individual modules and the full language grounding system
on a semantically diverse dataset of 21,780 spatiotemporal
navigation commands in four novel city-scaled environments.
Our system achieved 93.53% accuracy, outperforming the
previous SoTA. An autonomous robot with access to a
semantic map and position tracking can use the same system
without modification to follow spatiotemporal navigation
commands in novel indoor and outdoor environments. We
envision incorporating interaction with human users to fur-
ther improve spatiotemporal language grounding.
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