Under review as a conference paper at ICLR 2021

HAMILTONIAN ()-LEARNING: LEVERAGING
IMPORTANCE-SAMPLING FOR DATA EFFICIENT RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-free reinforcement learning (RL), in particular Q-learning is widely used
to learn optimal policies for a variety of planning and control problems. However,
when the underlying state-transition dynamics are stochastic and high-dimensional,
@-learning requires a large amount of data and incurs a prohibitively high compu-
tational cost. In this paper, we introduce Hamiltonian ()-Learning, a data efficient
modification of the )-learning approach, which adopts an importance-sampling
based technique for computing the ) function. To exploit stochastic structure of
the state-transition dynamics, we employ Hamiltonian Monte Carlo to update @)
function estimates by approximating the expected future rewards using () values
associated with a subset of next states. Further, to exploit the latent low-rank struc-
ture of the dynamic system, Hamiltonian ()-Learning uses a matrix completion
algorithm to reconstruct the updated () function from () value updates over a much
smaller subset of state-action pairs. By providing an efficient way to apply Q-
learning in stochastic, high-dimensional problems, the proposed approach broadens
the scope of RL algorithms for real-world applications, including classical control
tasks and environmental monitoring.

1 INTRODUCTION

In recent years, reinforcement learning (Sutton & Barto, [2018)) have achieved remarkable success
with sequential decision making tasks especially in complex, uncertain environments. RL algorithms
have been widely applied to a variety of real world problems, such as resource allocation (Mao et al.|
2016), chemical process optimization (Zhou et al.l 2017), automatic control (Duan et al.,|2016), and
robotics (Kober et al.,2013). Existing RL techniques often offer satisfactory performance only when
it is allowed to explore the environment long enough and generating a large amount of data in the
process (Mnih et al.| 2015} Kamthe & Deisenrothl 2018} Yang et al.| 2020a)). This can be prohibitively
expensive and thereby limits the use of RL for complex decision support problems.

@-Learning (Watkins|, |1989; Watkins & Dayanl|[1992) is a model-free RL framework that captures
the salient features of sequential decision making, where an agent, after observing current state of
the environment, chooses an action and receives a reward. The action chosen by the agent is based
on a policy defined by the state-action value function, also called the () function. Performance of
such policies strongly depends on the accessibility of a sufficiently large data set covering the space
spanned by the state-action pairs. In particular, for high-dimensional problems, existing model-free
RL methods using random sampling techniques leads to poor performance and high computational
cost. To overcome this challenge, in this paper we propose an intelligent sampling technique that
exploits the inherent structures of the underlying space related to the dynamics of the system.

It has been observed that formulating planning and control tasks in a variety of dynamical systems
such as video games (Atari games), classical control problems (simple pendulum, cart pole and
double integrator) and adaptive sampling (ocean sampling, environmental monitoring) as -Learning
problems leads to low-rank structures in the () matrix (Ong, 2015} [Yang et al.,|2020b; |Shah et al.,
2020). Since these systems naturally consist of a large number of states, efficient exploitation of
low rank structure of the () matrix can potentially lead to significant reduction in computational
complexity and improved performance. However, when the state space is high-dimensional and
further, the state transition is probabilistic, high computational complexity associated with calculating
the expected () values of next states renders existing (J-Learning methods impractical.



Under review as a conference paper at ICLR 2021

A potential solution for this problem lies in approximating the expectation of () values of next states
with the sample mean of ) values over a subset of next states. A natural way to select a subset of next
states is by drawing IID samples from the transition probability distribution. However, this straight
forward approach becomes challenging when the state transition probability distribution is high-
dimensional and is known only up to a constant. We address this problem by using Hamilton Monte
Carlo (HMC) to sample next states; HMC draws samples by integrating a Hamiltonian dynamics
governed by the transition probability (Neal et al.||2011). We improve the data efficiency further by
using matrix completion methods to exploit the low rank structure of a () matrix.

RELATED WORK

Data efficient Reinforcement Learning: The last decade has witnessed a growing interest in
improving data efficiency in RL methods by exploiting emergent global structures from underlying
system dynamics. [Deisenroth & Rasmussen| (201 1)); [Pan & Theodorou|(2014); [Kamthe & Deisenroth
(2018)); Buckman et al.|(2018)) have proposed model-based RL methods that improve data efficiency
by explicitly incorporating prior knowledge about state transition dynamics of the underlying sys-
tem. Dearden et al.| (1998)); [Koppel et al.| (2018)); Jeong et al.[|(2017) propose Baysean methods to
approximate the @) function. |Ong|(2015) and|Yang et al.| (2020b) consider a model-free RL approach
that exploit structures of state-action value function. The work by [Ong| (2015) decomposes the )
matrix into a low-rank and sparse matrix model and uses matrix completion methods (Candes & Plan|
2010; 'Wen et al., [2012} |Chen & Chil 2018) to improve data efficiency. A more recent work by |Yang
et al|(2020b) has shown that incorporation of low rank matrix completion methods for recovering )
matrix from a small subset of ) values can improve learning of optimal policies. At each time step
the agent chooses a subset of state-action pairs and update their () value according to the Bellman
optimally equation that considers a discounted average between reward and expectation of the )
values of next states. |Shah et al.| (2020) extends this work by proposing a novel matrix estimation
method and providing theoretical guarantees for the convergence to a e-optimal () function. On the
other hand, entropy regularization (Ahmed et al.,|2019;|Yang et al., 2019} |Smirnova & Dohmatob,
2020), by penalizing excessive randomness in the conditional distribution of actions for a given state,
provides an alternative means to implicitly exploit the underlying low-dimensional structure of the
value function. Lee et al.|(2019) proposes an approach that samples a whole episode and then updates
values in a recursive, backward manner.

CONTRIBUTION

The main contribution of this work is three-fold. First, we introduce a modified -learning framework,
called Hamiltonian @)-learning, which uses HMC sampling for efficient computation of () values.
This innovation, by proposing to sample ) values from the region with the dominant contribution
to the expectation of discounted reward, provides a data-efficient approach for using @)-learning in
real-world problems with high-dimensional state space and probabilistic state transition. Furthermore,
integration of this sampling approach with matrix-completion enables us to update ) values for only
a small subset of state-action pairs and thereafter reconstruct the complete () matrix. Second, we
provide theoretical guarantees that the error between the optimal @) function and the () function
obtained by updating @) values using HMC sampling can be made arbitrarily small. This result also
holds when only a handful of () values are updated using HMC and the rest are estimated using matrix
completion. Further, we provide theoretical guarantee that the sampling complexity of our algorithm
matches the mini-max sampling complexity proposed by [Tsybakov|(2008). Finally, we demonstrate
the effectiveness of Hamiltonian ()-learning by applying it to a cart-pole stabilization problem and
an adaptive ocean sampling problem. Our results also indicate that our proposed approach becomes
more effective with increase in state space dimension.

2 PRELIMINARY CONCEPTS

In this section, we provide a brief background on ()-Learning, HMC sampling and matrix completion,
as well as introduce the mathematical notations. In this paper, |Z| denotes the cardinality of a set Z.
Moreover, R represent the real line and A7 denotes the transpose of matrix A.

2.1 (@Q-LEARNING

Markov Decision Process (MDP) is a mathematical formulation that captures salient features of
sequential decision making (Bertsekas, [1995)). In particular, a finite MDP is defined by the tuple
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(S, A,P,r,~y), where S is the finite set of system states, .4 is the finite set of actions, P : Sx A xS —
[0, 1] is the transition probability kernel, r : S x A — R is a bounded reward function, and v € [0, 1)
is a discounting factor. Without loss of generality, states s € S and actions a € A can be assumed to
be D,-dimensional and D,,-dimensional real vectors, respectively. Moreover, by letting s* denote the
ith element of a state vector, we define the range of state space in terms of the following intervals
[d;,d}] such that s* € [d],d] Vi € {1,...,Ds}. Ateachtime t € {1,...,T} over the decision
making horizon, an agent observes the state of the environment s, € S and takes an action a;
according to some policy m which maximizes the discounted cumulative reward. Once this action
has been executed, the agent receives a reward 7(s;, a;) from the environment and the state of
the environment changes to s;11 according to the transition probability kernel P (+|s;, a;). The @
function, which represents the expected discounted reward for taking a specific action at the current
time and following the policy thereafter, is defined as a mapping from the space of state-action pairs
to the real line, i.e. Q : S x A — R. Then, by letting Q? represent the () matrix at time ¢, i.e. the
tabulation of @) function over all possible state-action pairs associated with the finite MDP, we can
express the () value iteration over time steps as

Q" (51, a0) = S P (slstsar) (r(st ) + v max Q'(s,a) ). (M
sES “
Under this update rule, the () function converges to its unique optimal value Q* (Melo, 2001)). But
computing the sum (T)) over all possible next states is computationally expensive in certain problems;
in these cases taking the summation over a subset of the next states provides an efficient alternative
for updating the () values.

2.2 HAMILTONIAN MONTE CARLO

Hamiltonian Monte Carlo is a sampling approach for drawing samples from probability distributions
known up to a constant. It offers faster convergence than Markov Chain Monte Carlo (MCMC)
sampling (Neal et al., 201 1; Betancourt; Betancourt et al.l 2017; Neklyudov et al}[2020). To draw
samples from a smooth target distribution P(s), which is defined on the Euclidean space and assumed
to be known up to a constant, HMC extends the target distribution to a joint distribution over the
target variable s (viewed as position within the HMC context) and an auxiliary variable v (viewed as
momentum within the HMC context). We define the Hamiltonian of the system as
H(s,v) = —logP(s,v) = —logP(s) —logP(v|s) = U(s) + K (v, s),

A

where U(s) £ —logP(s) and K (v,s) £ —log P(v|s) = $vT M ~'v represent the potential and
kinetic energy, respectively, and M is a suitable choice of the mass matrix.

HMC sampling method consists of the following three steps — (i) a new momentum variable v
is drawn from a fixed probability distribution, typically a multivariate Gaussian; (ii) then a new
proposal (s’,v") is obtained by generating a trajectory that starts from (s, v) and obeys Hamiltonian
dynamics, i.e. § = %—f, v = —%—g; and (iii) finally this new proposal is accepted with probability
min {1,exp (H(s,v) — H(s', —v"))} following the Metropolis—Hastings acceptance/rejection rule.

2.3 LOW-RANK STRUCTURE IN (J-LEARNING AND MATRIX COMPLETION

Prior work (Johns & Mahadevan, 2007; |Geist & Pietquinl 2013} |Ong, 2015} |Shah et al., [2020) on
value function approximation based approaches for RL has implicitly assumed that the state-action
value functions are low-dimensional and used various basis functions to represent them, e.g. CMAC,
radial basis function, etc. This can be attributed to the fact that the underlying state transition and
reward function are often endowed with some structure. More recently, | Yang et al.|(2020b)) provide
empirical guarantees that the (Q-matrices for benchmark Atari games and classical control tasks
exhibit low-rank structure.

Therefore, using matrix completion techniques (Xu et al.| 2013} |Chen & Chil, 2018]) to recover

Q € RISIXIAl from a small number of observed () values constitutes a viable approach towards
improving data efficiency. As low-rank matrix structures can be recovered by constraining the nuclear

norm, the () matrix can be reconstructed from its observed values (Q) by solving

@ = argmin ||C§H* subject to HQ(@) =32(Q), 2)
QeRISIxIA|
where || - || denotes the nuclear norm (i.e., the sum of its singular values), (2 is the observed set of

elements, and J, is the observation operator, i.e. Jo(x) = z if z € Q and zero otherwise.
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3 HAMILTONIAN (Q-LEARNING

A large class of real world sequential decision making problems - for example, board/video games,
control of robots’ movement, and portfolio optimization - involves high-dimensional state spaces and
often has large number of distinct states along each individual dimension. As using a )-Learning
based approach to train RL-agents for these problems typically requires tens to hundreds of millions
of samples (Mnih et al., 2015} Silver et al.| |2017), there is a strong need for data efficient algorithms
for (Q-Learning. In addition, state transition in such systems is often probabilistic in nature; even when
the underlying dynamics of the system is inherently deterministic; presence of external disturbances
and parameter variations/uncertainties lead to probabilistic state transitions.

Learning an optimal @* function through value iteration methods requires updating () values of
state-action pairs using a sum of the reward and a discounted expectation of @) values associated with
next states. In this work, we assume the reward to be a deterministic function of state-action pairs.
However, when the reward is stochastic, these results can be extended by replacing the reward with
its expectation. Subsequently, we can express (1) as

Qt+1(8t7 at) = T(staat) + 'Y]E (m(?XQt(&a')) ) (3)

where E denotes the expectation over the discrete probability measure P. When the underlying state
space is high-dimensional and has large number of states, obtaining a more accurate estimate of
the expectation is computationally very expensive. The complexity increases quadratically with the
number of states and linearly with number of actions, rendering the existing algorithms impractical.

In this work, we propose a solution to this issue by introducing an importance-sampling based method
to approximate the aforementioned expectation from a sample mean of () values over a subset of next
states. A natural way to sample a subset from the set of all possible next states is to draw identically
and independently distributed (IID) samples from the transition probability distribution P(+|s¢, at).
However, when the transition probability distribution is high-dimensional and known only up to a
constant, drawing IID samples incurs a very high computation cost.
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Figure 1: The first row illustrates that, as the dimension of the space increases, the relative volume inside
a partition compared to the volume outside of the partition decreases. When the dimension increases from 1
through 3, the relative volume of red partition decreases as 1/3, 1/9 and 1/27, respectively. The second row
illustrates that the HMC samples are concentrated in the region that maximizes probability mass. Here P(s),
SMode and ds represent probability density, mode of the distribution and volume, respectively.

3.1 DATA EFFICIENCY THROUGH HMC SAMPLING

A number of importance-sampling methods (Liul [1996; Betancourt) have been developed for estimat-
ing the expectation of a function by drawing samples from the region with the dominant contribution
to the expectation. HMC is one such importance-sampling method that draws samples from the typi-
cal set, i.e., the region that maximizes probability mass, which provides the dominated contribution
to the expectation. As shown in the second row of Figure[I] most of the samples in a limited pool
of HMC samples indeed concentrate around the region with high probability mass. Since the decay
in @ function is significantly smaller compared to the typical exponential or power law decays in
transition probability function, HMC provides a better approximation for the expectation of the @
value of the next states (Yang et al., 2020b; [Shah et al., 2020). Then by letting H; denote the set of
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HMC samples drawn at time step ¢, we update the Q values as:

Q" (styar) = r(se, ar) + IH | Z maXQt (s,a). 4)

SEH:

HMC for a smooth truncated target distribution: Recall that region of states is a subset of a
Euclidean space given as s € [dy,d] x ... x [dop s ds, Jc RP=. Thus the main challenge to using
HMC sampling is to define a smooth continuous target distribution P(s|st, a;) which is defined on
RP: with a sharp decay at the boundary of the region of states (Yi & Doshi-Velez, 2017; (Chevallier
et al., 2018)). In this work, we generate the target distribution by first defining the transition probability
kernel from the conditional probability distribution defined on R+ and then multiplying it with a
smooth cut-off function.

We first consider a probability distribution P(-|s;, a;) : RP+ — R such that the following holds

s+e
P(s|s¢, ar) o / P(s|s¢, ar)ds (5)
for some arbitrarily small € > 0. Then the target distribution can be defined as
D
T 1 1

=P . 6
Plslst, ar) (s]se, a1) Zl;[l 1+ exp(—,‘i(di+ — ') 1+ exp(—r(s' —d;)) ©)

Note that there exists a large x > 0 such that if s € [d} ,d]] x ... x [dﬂ_Dyd%S] then P(s|s¢, ar)

P(s|s¢, at) and P(s|st, ar) = 0 otherwise. Let p1(s¢, at), X(st, at) be the mean and covariance of the
transition probability kernel. In this paper we consider transition probability kernels of the form

P(sst, ar) o< exp <—;(5 — (56, a0)) T (50, a0) (s — pa(se, at))) : (7

Then from (5) the corresponding mapping can be given as a multivariate Gaussian P(s|s;, a;) =
N(p (s¢,ai), 5(s¢, ar)) . Thus from (6) it follows that the target distribution is

1
= 8
P(Slstaat) N(:u’ (Staat Stvat g 1+ exp (dJr )) 1+ exp(—/i(si — df)) ( )

Choice of potential energy, kinetic energy and mass matrix: Recall that the target distribution
P(s|s¢, a;) is defined over the Euclidean space RP+. For brevity of notation we drop the explicit
dependence on (s¢,a;) and denote the target distribution as P(s). As explained in Section
we choose the potential energy U(s) = —log (P(s)). We consider an Euclidean metric M that
induces the distance between 3, 5 as d(3, 3) = (5 — 5)TM(3 — 5). Then we define M € RP=*P:
as a diagonal scaling matrix and M, € RP=*Ps as a rotation matrix in dimension D,. With
this we can define M as M = M, M MMIMYT. Thus, any metric M that defines an Euclidean
structure on the target variable space induces an inverse structure on the momentum variable space as
d(9,v) = (0—v)T M ~1(9—9). This generates a natural family of multivariate Guassian distributions
such that P(v|s) = N'(0, M) leading to the kinetic energy K (v,s) = —log P(v|s) = 30T M 1o
where M~ is the covariance of the target distribution.

3.2 (@Q-LEARNING WITH HMC AND MATRIX COMPLETION

In this work we consider problems with a high-dimensional state space and large number of distinct
states along individual dimensions. Although these problems admit a large () matrix, we can exploit
low rank structure of the () matrix to further improve the data efficiency.

At each time step ¢ we randomly sample a subset 2; of state-action pairs (each state-action pair is
sampled independently with some probability p) and update the @) function for state-action pairs in

Q. Let Q'+ be the updated ) matrix at time t. Then from (4) we have

Q" (51, a1) = (51, a) + |’H | Z maxQ s, a), V(st, ar) € Q. )
seHy
Then we recover the complete matrix QQ'*! by using the method given in . Thus we have
Q' = argmin [|Q""'|. subjectto Jo, (@t“) =Ja, (@Hl) . (10)

Qt+1cRISIXIAl
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Algorithm 1 Hamiltonian @)-Learning

Inputs: Discount factor ~y; Range of state space; Time horizon T’;
Initialization: Randomly initialize Q°
fort =1to T do
Step 1: Randomly sample a subset of state-action pairs €2,
Step 2: HMC sampling phase - Sample a set of next states #{; according to the target distribu-

tion defined in (6)

Step 3: Update phase - For all (s, a;) € €

Q" (st,ar) = (st ar) + pry D sen, Maxe Q'(s, a)

Step 4: Matrix Completion phase

Q" = argming. i1 cpisixial IQ“![|.  subjectto Ja, (@Hl) =Jo, (@Hl)
end for

Similar to the approach used by [Yang et al.| (2020b), we approximate the rank of the () matrix as the
minimum number of singular values that are needed to capture 99% of its nuclear norm.

3.3 CONVERGENCE, BOUNDEDNESS AND SAMPLING COMPLEXITY

In this section we provide the main theoretical results of this paper. First, we formally introduce the
following regularity assumptions:

(A1) The state space S C R+ and the action space A C RP= are compact subsets.

(A2) The reward function is bounded, i.e., r(s,a) € [Rumin, Rmax] forall (s,a) € S x A.

(A3) The optimal value function QQ* is C-Lipschitz, i.e.

@ (s,0) = Q"(s',0)| < C(lls = #'lli + lla — ||

where || - || is the Frobenius norm (which is same as the Euclidean norm for vectors).

We provide theoretical guarantees that Hamiltonian (Q-Learning converges to an e-optimal () function

with O (%%) number of samples. This matches the mini-max lower bound €2 (m)
proposed in [Tsybakov| (2008)). First we define a family of e-optimal () functions as follows.

Definition 1 (e-optimal ) functions). Let Q* be the unique fixed point of the Bellman optimality
equation given as (TQ)(s',a") = > s P(s|s',a’) (r(s',a’) + ymax, Q(s,a)) V(s',a’) e Sx A
where T denotes the Bellman operator. Then, under update rule (3)), the Q function almost surely
converges to the optimal Q*. We define e-optimal @ functions as the family of functions Q. such that
1Q' — Qoo < € whenever Q' € Q..

As [|Q" — Q" ||oo = max(sq)esxa ||Q'(s,a) — Q*(s,a)||, any e-optimal ) function is element wise
e-optimal. Our next result shows that under HMC sampling rule given in Step 3 of the Hamiltonian
Q-Learning algorithm (Algorithm([T), the @ function converges to the family of e-optimal @ functions.
Theorem 1 (Convergence of () function under HMC). Let T be an optimality operator under
HMC given as (TQ)(s',a") = r(s',a') + gy Xoseq maxa Q(s, a), V(s',a') € S x A, where H is
a subset of next states sampled using HMC from the target distribution given in ({6). Then, under
update rule (4) and for any given ¢ > 0, there exists ny,t' > 0 such that ||Q* — Q*||oo < eVt > 1.

Refer Appendix [AT]for proof of this theorem. The next theorem shows that the ) matrix estimated
via a suitable matrix completion technique lies in the e-neighborhood of the corresponding ) function
obtained via exhaustive sampling.

Theorem 2 (Bounded Error under HMC with Matrix Completion). Let Qt;l (s¢,ap) =
r(se,at) + 7D es P55, ar) max, QL(s,a),Y(st,ar) € S x A be the update rule under ex-
haustive sampling, and Q* be the Q function updated according to Hamiltonian Q-Learning @)-@)
Then, for any given € > 0, there exists nyy = min, [H,|, ¢ > 0, such that ||Q" — Q%||cc < €Vt > 1.

Please refer Appendix [A.2] for proof of this theorem. Finally we provide guarantees on sampling
complexity of Hamiltonian ()-Learning algorithm.

Theorem 3. (Sampling complexity of Hamiltonian ()-Learning) Let Ds, D, be the dimension
of state space and action space, respectively. Consider the Hamiltonian Q-Learning algorithm
presented in Algorithm[l| Then, under a suitable matrix completion method, the Q function convergea
to the family of e-optimal Q) functions with O (e_(DS“'D“"'Q)) number of samples.
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Proof of Theorem[3]is given in Appendix [B]

4 EXPERIMENTS
4.1 EMPIRICAL EVALUATION FOR CART-POLE

Experimental setup: By letting 6, 0 denote the angle and angular velocity of the pole and z,
denote the position and velocity of the cart, the 4-dimensional state vector for the cart-pole system
can be defined as s = (6,0, x,%). After defining the range of state space as 6 € [—7/2,7/2],

0 € [-3.0,3.0], z € [-2.4,2.4] and & € [—3.5, 3.5], we define the range of the scalar action as
a € [—10, 10]. Then each state space dimension is discretized into 5 distinct values and the action
space into 10 distinct values. This leads to a () matrix of size 625 x 10. To capture parameter
uncertainties and external disturbances, we assume that the probabilistic state transition is governed
by a multivariate Gaussian with zero mean and covariance 3 = diag[0.143,0.990, 0. 635 1.346].
drive the pole to an upright position, we define the reward function as (s, a) = cos (150)
2020b). After initializing the Q) matrix using randomly chosen values from [0, 1], we sample
state-action pairs independently with probability p = 0.5 at each iteration. Additional experimental
details and results are provided in Appendix [C|

Results: As it is difficult to visualize a heat map for a 4-dimensional state space, we show results for
the first two dimensions 6, 6 with fixed x, £. The color in each cell of the heat maps shown in Figures
[2l(a), 2Jb) and Z{c) indicates the value of optimal action associated with that state. These figures
illustrate that the policy heat map for Hamiltonian ()-Learning is closer to the policy heat map for
Q-Learning with exhaustive sampling. The two curves in Figure J{d), that show the Frobenius norm
of the difference between the learned () function and the optimal Q* , illustrate that Hamiltonian
@-Learning achieves better convergence than ()-Learning with IID sampling. We also show that the
sampling efficiency of any ()-Learning algorithm can be significantly improved by incorporating
Hamiltonian @-Learning. We illustrate this by incorporating Hamiltonian ()-Learning with vanilla
Q-Learning, DQN, Dueling DQN and DDPG. Figure [3] shows how Frobenius norm of the error
between () function and the optimal QQ* varies with increase in the number of samples. Red solid
curves correspond to the case with exhaustive sampling and black dotted curves correspond to the
case with Hamiltonian @-Learning. These results illustrate that Hamiltonian )-Learning converges
to an e optimal () function with significantly smaller number of samples than exhaustive sampling.
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Figure 2: Figure Eka) lb) and Ekc) show policy heat maps for QQ-Learning with exhaustive sampling, Hamil-
tonian @Q-Learning and Q-Learning with IID sampling, respectively. Figure[2(d) provides a comparison for
convergence of () function with Hamiltonian Q-Learning and ()-Learning with IID sampling.
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Figure 3: Mean square error vs number of samples of @) function with exhaustive sampling and Hamiltonian
Q-Learning for vanila Q-Learning, DQN, Dueling DQN and DDPG.

4.2 EMPIRICAL EVALUATION FOR ACROBOT (I.E., DOUBLE PENDULUM)

Experimental setup: By letting 61, 01,05, 6 denote the angle of the first pole, angular velocity
of the first pole, angle of the second pole and angular velocity of the second pole, respectively, the

4-dimensional state vector for the acrobot can be defined as s = (61, 01, 0, 02) After defining the
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range of state space as 61 € [—m, 7], 01 € [—3.0,3.0], 63 € [—7, 7] and b € [—3.0, 3.0], we define
the range of the scalar action as a € [—10, 10]. Then each state space dimension is discretized into 5
distinct values and the action space into 10 distinct values. This leads to a () matrix of size 625 x 10.
Furthermore, we assume that the probabilistic state transition is governed by a multivariate Gaussian
with zero mean and covariance ¥ = diag[0.143,0.990, 0.635, 1.346]. Following [Sutton & Barto
(2018)), we define an appropriate reward function for stabilizing the acrobot to the upright position.
After initializing the () matrix using randomly chosen values from [0, 1], we sample state-action pairs
independently with probability p = 0.5 at each iteration.

Results:  Figure[]illustrates how Frobenius norm of the error between @ function and the optimal
@™ varies with the number of samples. Red solid curves correspond to the case with exhaustive
sampling and black dotted curves correspond to the case with Hamiltonian (-Learning. These results
show that for the same level of error Hamiltonain ()-Learning requires a significantly smaller number
of samples compared to exhaustive sampling.
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Figure 4: Mean square error vs number of samples of @ function with exhaustive sampling and Hamiltonian
Q-Learning for vanila Q-Learning, DQN, Dueling DQN and DDPG.

4.3 APPLICATION TO OCEAN SAMPLING

Ocean sampling plays a major role in a variety of science and engineering problems, ranging from
modeling marine ecosystems to predicting global climate. Here, we consider the problem of using an
under water glider to obtain measurements of a scalar field (e.g., temperature, salinity or concentration
of a certain zooplankton) and illustrate how the use of Hamiltonian (-Learning in planning the glider
trajectory can lead to measurements that minimize the uncertainty associated with the field.

States, actions and state transition: By assuming that the glider’s motion is restricted to an
horizontal plane (Refael & Deganil, 2019), we let =, y and 6 denote its center of mass position and
heading angle, respectively. Then we can define the 6-dimensional state vector for this system as s =
(x,y,%,9,0,0) and the action a as a scalar control input to the glider. Also, to accommodate dynamic
perturbations due to the ocean current, other external disturbances and parameter uncertainties, we
assume that the probabilistic state transition is governed by a multivariate Gaussian.

Reward: As ocean fields often exhibit temporal and spatial correlations (Leonard et al., [2007)),
this work focuses on spatially correlated scalar fields. Following the approach of [Leonard et al.
(2007), we define ocean statistic correlation between two positions q = (z,y) and q' = (2/,y’)
as B(q,q’) = exp(—|lq — d'||?/o?), where o is the spatial decorrelation scale. The goal of the
task is to take measurements that reduce the uncertainty associated with the field. Now we assume
that the glider takes N measurements at positions {qy, ..., qy}. Then covariance of the collected
data set can be given by a NV x N matrix W such that its th row and the jth column element
is: W;; = nd;; + B(qs, q;), where ¢;; is the Dirac delta and 7 is the variance of the uniform and
uncorrelated measurement noise. Then using objective analysis data assimilation scheme (Kalnay,
2003} Bennett, 2005)), the total reduction of uncertainty of the field after the measurements at positions
9 =1{qu,...,qn} can be expressed as

N

U=Y > Bla,a)W;; ' Blajq). (11)
q€Qi,j=1

By substituting the formulas from (Kalnay] 2003 Bennett, 2003) into (TT), this formulation can be

generalized to Gaussian measurement noise.

Recall that the task objective is to guide the glider to take measurements at multiple locations/positions
which maximize the reduction in uncertainty associated with the scalar field. Therefore the reward
assigned to each state-action pair (s, a) is designed to reflect the amount of uncertainty that can
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be reduced by taking a measurement at the position corresponding to the state and at the positions
that correspond to the set of maximally probable next states, i.e., arg max,, P(s'|s,a). Then, by
letting Z5 = {s} U{Uaca{argmax, P(s'|s,a)}} denote the set of current state s and the maximally
probable next states for all possible actions, the reward function associated with reducing uncertainty
can be given as

T'u(sa a) = Z Z B(qa qz)Wz_le(q]v q)
qeQijeZ,
Without loss of generality, we assume that the glider is deployed from g = (0, 0) and retrieving the
glider incurs a cost depending on its position. To promote trajectories that do not incur a high cost for
glider retrieval, we define the following reward function

’I"C(S, a) = _qTGq

where © = €T > (. Then we introduce the total reward that aims to reduce uncertainty of the scalar
field while penalizing the movements away from the origin, and define it as

T(S7 a) = Tu(sa a) + Tc(sv (I) = 7)\qTeq + Z Z B(q7 q?)Wz_le(qj; q)a
qcQi,j€Z,
where A > 0 is a trade-off parameter that maintains a balance between these two objectives.

Experimental setup We define the range of state and action space as z,y € [—10,10], ,y €
[—25,25],0 € [-m, @], 6 € [-3,3],and a € [—1, 1], respectively and then discretizing each state
dimension into 5 distinct values and the action space into 5 distinct values, we have a () matrix of size
15625 x 5. Also, we assume that the state transition kernel is given by a multivariate Gaussian with
zero mean and covariance ¥ = diag[11.111, 69.444,11.111, 69.444, 0.143,0.990]. After initializing
the () matrix using randomly chosen values from [0, 1], we sample state-action pairs independently
with probability p = 0.5 at each iteration. Also, we assume o = 2.5, A = 0.1, C = diag[1,0].
Additional experimental details and results are provided in Appendix

100 100 ~ 100
10.0 5 10.0] - 10.0 J - w
075 075 075 = \ 10
0.50 0.50 0.50
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5.0 . ~050 5] . -050 5.0 ~0.50 = \-.\‘
075 075 e R ot et
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0 50 0050 100 0 50 00 50 100 0 50 00 50 100 Time (t)
(a) Exhaustive Sampling. (b) HMC Sampling. (¢) 1D Sampling. (d) Q-function Error.

Figure 5: Figure a), b) and c) show policy heat maps for Q-Learning with exhaustive sampling, Hamil-
tonian ()-Learning and Q-Learning with IID sampling respectively. Figure [5|d) provides a comparison for
convergence of () function with Hamiltonian Q-Learning and ()-Learning with IID sampling.

Results Figures Eka), BIb) and[5|c) show the policy heat map over first two dimensions z,y with
fixed @, 9,0 and 6. The color of each cell indicates the value of optimal action associated with
that state. These figures illustrate that the difference between policy heat maps associated with
Hamiltonian @-Learning and )-Learning with exhaustive sampling is smaller than the difference
between policy heat maps associated with ()-Learning with IID sampling and )-Learning with
exhaustive sampling. The two curves in Figure[5(d), that show the Frobenius norm of the difference
between the learned @) function and the optimal Q*, illustrate that Hamiltonian ()-Learning achieves
better convergence than ()-Learning with IID sampling. A comparison between results of the ocean
sampling problem and the cart-pole stabilization problem indicates that Hamiltonian ()-Learning
provides increasingly better performance with increase in state space dimension.

5 DISCUSSION AND CONCLUSION

Here we have introduced Hamiltonian Q-Learning which utilizes HMC sampling with matrix
completion methods to improve data efficiency. We show, both theoretically and empirically, that
the proposed approach can learn very accurate estimates of the optimal () function with much fewer
data points. We also demonstrate that Hamiltonian ()-Learning performs significantly better than
@-Learning with IID sampling when the underlying state space dimension is large. By building
upon this aspect, future works will investigate how importance-sampling based methods can improve
data-efficiency in multi-agent Q-learning with agents coupled through both action and reward.
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A CONVERGENCE AND BOUNDEDNESS RESULTS

We proceed to prove theorem by stating convergence properties for HMC as follows. In the initial
sampling stage, starting from the initial position Markov chain converges towards to the typical
set. In the next stage Markov chain quickly traverse the typical set and improves the estimate by
removing the bias. In the last stage Markov chain refine the exploration of typical the typical set
provide improved estimates. The number of samples taken during the last stage is referred as effective
sample size.

A.1 PROOF OF THEOREM

Theorem 1. Let T be an optimality operator under HMC given as (TQ)(s',a') = r(s',a’) +
ﬁ Y ey Max, Q(s,a), V(s',a") € S x A, where H is a subset of next states sampled using HMC
from the target distribution given in ([6). Then, under update rule (@) and for any given € > 0, there
exists ny, t' > 0 such that || Q" — Q*||oc < €Vt > t.

Proof of Theorem 1. Let Q(s,a) = ﬁ max, Q'(s,a),V(s,a) € S x A. Here we consider ny to
be the effective number of samples. Let EpQ?, VarpQ® be the expectation and covariance of Q*
with respect to the target distribution. From Central Limit Theorem for HMC we have

(s [T
ny

Since () function does not decay fast we provide a proof for the case where Q* is C-Lipschitz. From
Theorem 6.5 in (Holmes et al.,[2014) we have that, there exists a ¢ > 0 such that

[|1Q" — EpQ'|| < co. (12)

12
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Recall that Bellman optimality operator 7 is a contraction mapping. Thus from triangle inequality

we have
/
‘r(s |H1 g maXQ1 s, a)

—r(s',a’) \7'[2 Zmang s a)H

seS

gl gl ‘ ‘
—_— max Q1(s,a) — —— max s,a
‘|H1|;S. pt Ql( ) ‘HQ‘g Py Q2( )
Let |H1| = |Hz| = ny;. Then using triangle inequality we have

H‘TQl - 7Q2H < maxy [HQ1 _E”PQIH + HQ2 - EPQ2m +I§}&}L§<WHEPQ1 _EPQ2H
Since () function almost surely converge under exhaustive sampling we have

IQI}%),VYH]EPQI_EPQ2H SVHQl—QzH (13)

From equation[T2]and equation [I3] we have after ¢ time steps

HTQl —TQ2HOO < 2co +’YHQ1 - Q2HOC

Let R,,,4. and R,,,;, be the maximum and minimum reward values. Then we have that

H7Q1 - ‘TQ2H < max
0 s',a’

< max
s’,a’

7
‘ ’Ql Q2 ‘ ‘ R77L(1.L - R’rnin~
Thus for any € > by choosing a 7y such there exists a t’ such that V¢ > ¢/
Q" — Q"o < ¢

This concludes the proof of Theorem 1] CJ
A.2  PROOF OF THEOREM[2]

Theorem 2. Let Q% (sy, ar) = r(se,ar) + 7Y 5 P(s]se, ar) max, QL (s, a),V(sy,a) €S x A
be the update rule under exhaustive sampling, and Q' be the Q function updated according to
Hamiltonian Q-Learning, i.e. by (9)-(10). Then, for any given é > 0, there exists ny,t' > 0, such
that || Q" — QL |lec < €VE> 1.

Proof of Theorem 2. Note that at each time step we attempt to recover the matrix Q%, i.e., Q
function time time ¢ under exhaustive sampling though a matrix completion method starting from Q?,
which is the ) updated function at time ¢ using Hamiltonian ()-Learning. From Theorem 4 in (Chen
& Chil, 2018)) we have that V¢ > ¢’ there exists some constant § > 0 such that when the updated Q
function a Q* satisfy

At t
@ —qe]|_<e
o0
where ¢ is some positive constant then reconstructed (completed) matrix Q? satiesfies
t t At t
@ -qt|| <olQ-q (14)

for some § > 0. This implies that when the initial matrix used for matrix completion is sufficiently
close to the matrix we are trying to recover matrix completion iterations converge to a global optimum.
From the result of Theoremwe have for any given € > 0, there exists ng¢, ¢’ > 0 such that V¢ > ¢/

H@t—Q <e (15)

Recall that under the update equation Q%" (¢, ar) = (s, ar)+7 Y o max, QL (s, a), V(s¢, ar) €
S x A we have that Q¢ almost surely converge to the optimal Q*. Thus there exists a ¢! such that
vt >t

@t -
Let t¥ = max{t', #'}. Then from triangle inequality we have that

@ -t

13
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Thus from equation[T4] we have that
e -t

This concludes the proof of Theorem 2] [J

< 26¢

B SAMPLING COMPLEXITY

In this section we provide theoretical results on sampling complexity of Hamiltonian )-Learning. For
brevity of notation we define MQ(s) = max, Q(s, a). Note that we have the following regularity
conditions on the MDP studied in this paper.

Regularity Conditions

1. Spaces S and A (state space and action space) are compact subsets of RP+ and RP=
respectively.

2. All the rewards are bounded such that (s, a) € [Ruin, Rmax], forall (s,a) € S x A.
3. The optimal Q* is C-Lipschitz such that

Q*(& CL) - Q*(S,>a,)

<C(lls =5l +lla—a'l|r)

Now we prove some useful lemmas for proving sampling complexity of Hamiltonian ()-Learning

Lemma 1. For some constant cy, if
max {|S[2, | AP }|S||AD, D,
log (Ds + D,)

|Qt| >

with ‘ ’@t(s7 a) —Q*(s,a) ‘ ’ < € then there exists a constant co such that
oo

HQt(s,a) — Q*(s,a)Hoo < cq€

Proof of Lemma 1. Recall that in order to complete a low rank matrix using matrix estimation
methods, the matrix can not be sparse. This condition can be formulated using the notion of
incoherence. Let ) be a matrix of rank ¢ with the singular value decomposition Q@ = US V™. Let

T, be the orthogonal projection of () € R!SIXIl to its column space. Then incoherence parameter
of ¢(Q) can be give as
S| o Al 2
= — Tyeillp, — Tye; }
6(@Q) =max {2 max |[Tyellf, = ma, |[Toeif:
where e; are the standard basis vectors. Recall that )* is the matrix generated in matrix completion
phase from (). From Theorem 4 in |Chen & Chi| (]2018|) we have that for some constant C'; if a fraction
of p elements are observed from the matrix such that
2r2D,D,
p> 0, frrePDa
log (Ds + D,)
where ¢ is the coherence parameter of Q! then with probability at least 1 — Co(D, + D,)~* for

some constant Cy with H@f(s, a) — Q*(s,a) H < ¢ there exists a constant ¢, such that
oo

HQt(s,a) — Q*(s,a)Hoo < coe
€2

Note that p ~ TSTIAT- Further we have for some constant c3

$213D,D, maX{ISIQ, IAIQ}DsDa
log(D. +D.) °  log(Ds+ D,)
Thus it follows that for some constant ¢; if

max { ISP, |42 }|5|| 41D, D,
log (Ds + D)

Q4| = c1

14
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with Hét(s, a) — Q*(s,a) H < ¢ then there exists a constant ¢y such that

) HQt(s,a) — Q*(s,a)Hoo < cq€

This concludes the proof of Lemmal[T} OJ

Lemma 2. Let 1 — & be the spectral gap of Markov chain under Hamiltonian sampling where
£ €10,1]. Let AR = Riax — Ruin be the maximum reward gap. ThenV(s',a’) € S x A we have
Q(s',a') = Q*(s', )

that
2 2
g 1 + 5 2 P)/Rmax 2
< AR — 1 = .
T 1l-y +\/1—§I“fi|<1—v %5
with at least probability 1 — 0.

Proof of Lemma 2. Let Q(s',d/) = r(s',d’) + |%‘ Y scy Max, Q(s,a). Recall that MQ(s) =
,ay=r

max, Q(s,a). Then we have that @(3’ ) (s',a") + I%\ > scp MQ(s). Then it follows that
|@(5’, a)—Q*(s',d)| = |r(s,d) + |;/T| Z MQ(s) —r(s',a") = YEpMQ"(s)
seEH
il

= |’:T| ZMQ(&) - ’YEPMQ*(‘S)
i=1

|H] IH

| sy -
= mém( i) |H|;MQ( )

||
+ | oM@ (1)~ 1ERMQ ) (16)
i=1

Recall that all the rewards are bounded such that (s, a) € [Ruin, Rmax|, for all (s,a) € S x A.
Thus for all s, a we have that MQ(s) < ﬁRmax. Let AR = Riax — Rmin. Then we have that
<: T_AR. (17)

7] %]
g g
o 2 MQ(si) — 7 > MQ™(s:)
P e -
Let ¢ € [0, 1] be a constant such that 1 — £ is the spectral gap of the Markov chain under Hamiltonian

sampling. Then from (2018) we have that

|H| 2
1 . . 1—& [H|9? (11—«
P wi;MQ (si) —EpMQ*(s) >0 | <exp <_1+§2R12nax < 5 ) )

2

2
Let § = exp (—1_5 [4]9% (1_—7> ) . Then we have that

1+e2RZ__ \ o
'19— 1+§l ’YRmax 210 g
“Vicem 1) 2(5)
Thus we see that
II%MQ*( ) —E MQ*()‘< L+E 2 (YRuax)”, (2 )
H| = T N=V1—em 1= ) ®\5

with at least probability 1 — 4. Thus it follows from equations equation[I6} equation[T7)and equation[T8§|

that
2 1+¢6 2 (4R z 2
//_*//<’YAR e max \ oo (2
Q') =@ < Lo AR T o (T2 ) g (5
with at least probability 1 — ¢. This concludes the proof of Lemma[2} [J
Lemma 3. Forall (s,a) € S x A we have that

2
£ Rmax
Q' (s,0) — Q" (s, )| < 201

with probability at least 1 — §
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Proof of Lemma 3. From Lemma and |Shah et al.|(2020) we have that for all (s, a) €
~ 2 1 2 (YRumax \ 7, (21T
Q" (s, a) — Q*(s,a)‘ < 17 AR + \/ & (“) log ((;|> (19)

-7 I=&H \ 1=~
with probability at least 1 — %. Thus we have that
2 146 2 [YRmax\’ 2/ |T
t ¥ < Y AR + max 1 t )
Q(5,0) = Q" (50| < s AR T e (T ) s (T
with probability at least 1 — %. Froall 1 <t < T letting

1+¢€2 2/ |T
= ———1
[Hel 1—§v2 Og( 0
we obtain
2 1 2 Runax \ > 2|0, |T

R s e 2 (V ) log( || )

-7 Tl \ 1=~ 5
Thus we have,

2
Rmax
Q' (s5,0) = Q" (s,0)| < 20 T

with probability at least 1 — 4. Recall that V(s,a) € S x A we have MQ(s,a) < Vﬁ—?. Thus this
also proves that

Q'(s,0) = Q"(s,0)| £201791Q" " (s,0) ~ Q" (s,0)
This concludes the proof of Lemmal[3] OJ

Now we proceed to prove the main theorem for sampling complexity as follows.

Theorem 3. Let Dy, D, be the dimension of state space and action space respectively. Consider the
Hamiltonian Q-Learning algorithm presented in Algorithm([I| Under a suitable matrix completion
method sampling complexity of the algorithm, @ function converge to the family of e-optimal Q

functions with O (e=PHPat2)) number of samples.

Proof of Theorem 3. Note that sample complexity of Hamiltonian ()-Learning can be given as

Te
S IQlHe < TelO,

t=1

. . . . 1 YRmax
Let /3¢ be the discretization parameter at time ¢ and T, = M Then from Lemmas and

tog (7 )
T _ 1
> Iulir| = 0 (W>

t=1
This concludes the proof of Theorem 3] [J

Hr.

it follows that

C ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS FOR CART-POLE

Let 6, 0 be the angle and angular velocity of the pole, respectively. Let z, & be the position and linear
velocity of the cart, respectively. Let a be the control force applied to the cart. Then, by defining m,
M, [ and g as the mass of the pole, mass of the cart, length of the pole and gravitational acceleration,
respectively, the dynamics of cart-pole system can be expressed as

. 12 &
. gsinf — WCOS@

i) "
a+ml (92 sinﬁ—écose)
m—+ M

T =
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State space of cart-pole system is 4-dimensional (D; = 4) and any state s € S is given by s =
(0,0, z, ). We define the range of state space as 0 € [—pi/2,7/2],0 € [-3.0,3.0],x € [-2.4,2.4]
and & € [—3.5,3.5]. We consider action space to be a 1-dimensional (D, = 1) space such that
a € [—10,10]. We discretize each dimension in state space into 5 values and action space into 10
values. This forms a () matrix of dimensions 625 x 10.

Although the differential equations (20) governing the dynamics of the pendulum on a cart system
are deterministic, uncertainty of the parameters and external disturbances to the system causes the
cart pole to deviate from the defined dynamics leading to a stochastic state transition. Following the
conventional approach we model these parameter uncertainties and external disturbances using a
multivariate Gaussian perturbation (Maithripala et al., 2016} [Madhushani et al., [2017; McAllister]
& Rasmussen|, 2017). Here we consider the co-variance of the Gaussian perturbation to be 3 =
diag[0.143,0.990, 0.635, 1.346].

Let s; = (6, ét, x4, &¢) and a; be the state and the action at time ¢. Then the state transition
probability kernel and corresponding target distribution can be given using (7) and (8), respectively,
with mean pu(sg, ar) = (6 + 0,70, + 0,7, x4 + dy7, Dy + Z47), where 0,, i can be obtained from
by substituting 6;, ét, at, and co-variance X (s, ay) = X.

Our simulation results use the following value for the system parameters - m = 0.1kg, M = 1kg,
I =0.5m and g = 9.8ms~2. We take 100 HMC samples during the update phase. We use trajectory
length L = 100 and step size ! = 0.02. We randomly initialize the () matrix using values between O

and 1. We provide additional comparison heat maps for first two dimensions 6, 0 with fixed z, .

10.0
7.5
5.0
2.5

S 00 o 00 g 0.0
=25 -2.5 -2.5
=5.0 =5.0 1.5 =5.0
=75 =75 =75

3.0 - 3.0 — 3.0
-10.0 -10.0 -10.0
-1.57 -0.78 0.0 0.78 157 -1.57 -0.78 0.0 0.78 157 -1.57 -0.78 0.0 0.78 157
6 6 6
(a) Exhaustive Sampling (b) HMC Sampling (c) 1D Sampling

Figure 6: Figure Eka),@b) andEkc) show policy heat maps for (Q-Learning with exhaustive sampling, Hamilto-
nian @)-Learning and )-Learning with IID sampling, respectively.

Further, we provide additional comparison heat maps for last two dimensions z, @ with fixed 6, 0.

10.0 X
35 75 35 .
5.0 ] X
1.75 1.75
25 .
x 0.0 0.0 x gp 0 -
-25 .
175 50 175 .
-75 i
35 W -3.5)
-10.0
24 12 00 12 24 24 12 00 12 24
X X

(a) Exhaustive Sampling (b) HMC Sampling (c) 1D Sampling

Figure 7: Figure Eka),lzkb) andc) show policy heat maps for Q-Learning with exhaustive sampling, Hamilto-
nian @Q-Learning and Q)-Learning with IID sampling, respectively.
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10.0
7.5
5.0

25

10.0
7.5
5.0
25
0.0
=25
=5.0
=75

3.5

0.0

1.75

- . - . - 75

. . 5.0

. . 25

. < 0, 1 0 x . 0.0
-25
-1 -1 -1 -5.0
-7.5
35 —100 —100 -10.0

x 0.0 0.0
-25
-5.0
-75
24 12 00 12 24 24 12 00 12 24 24 12 00 12 24
X X X

(a) Exhaustive Sampling (b) HMC Sampling (c) 1D Sampling

Figure 8: Figure a),b) a.ndc) show policy heat maps for Q-Learning with exhaustive sampling, Hamilto-
nian @Q-Learning and Q)-Learning with IID sampling, respectively.

D ADDITIONAL DETAILS FOR OCEAN SAMPLING APPLICATION

Glider dynamics By assuming that the glider’s motion is restricted to an horizontal plane (Refael
2019), we let z, y and 6 denote its center of mass position and heading angle, respectively.
Then we can define the 6-dimensional state vector for this system as s = (,y, &, 9, 6, 0) and the
action a as a scalar control input to the glider. Also, to accommodate dynamic perturbations due
to the ocean current, other external disturbances and parameter uncertainties, we assume that the
probabilistic state transition is governed by a multivariate Gaussian. We consider that the motion of

the glider is restricted to a horizontal plane. Let x, y and 6 be the coordinates of the center of mass of
glider and heading angle respectively. By introducing ¢ = [z ¥ Q]T, the dynamics of the glider
can be expressed as

Mi=RFs+Fy+T1

where
m cosf) —sinf 0
M = diag m ; R=|sinf cosf 0
Tin + ZLout 0 0 1
arf?sgn(0) sin(B + 1) z 0
Fy = a 0% cos(B+ ) i By = —ap/ 2?2 4 2 y] ;o T= 0
0 0 —prsgn(0)0* — Lina

2
of = %pCfde <7~2 + (5) —H“Lcosw> ;o My =y (s —I—rcosw) ;o= %debm“
op = 0.005; oy =0.062; py=0.0074; o =2.5.

Our simulation results use system parameter values from Table[I] We define the range of state and
action space as x,y € [—10,10], &,y € [-25,25], 0 € [-m,n], 0 € [-3,3], and a € [-1,1],
respectively and then discretizing each state dimension into 5 distinct values and the action
space into 5 distinct values, we have a () matrix of size 15625 x 5. Also, we assume that
the state transition kernel is given by a multivariate Gaussian with zero mean and covariance
Y = diag[11.111,69.444,11.111,69.444,0.143,0.990]. After initializing the () matrix using ran-
domly chosen values from [0, 1], we sample state-action pairs independently with probability p = 0.5
at each iteration. Also, we assume o = 2.5, A = 0.1, € = diag[1, 0]. We take 100 HMC samples
during the update phase. We use trajectory length L = 100 and step size 6] = 0.02.

Additional experimental results
dimensions z, y with fixed &, v, 6, 6.

: We provide additional comparison heat maps for first two
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Table 1: Notations

Notations  Description Value

m total mass 1.03 kg

Z; inner body moment of inertia 0.5 kgm?
Tout outer body moment of inertia 0.174 kg m?
r radius 0.08 m

L length of the flap 0.09m

ds submersible depth of the flap 0.044m

dy submersible depth of the body 0.02m

B angular location of the flap 30°

P maximum open angle of the flap  20°

Cy drag coefficient of the flap 2

Cyp drag coefficient of the body 2

P water density 1027 kg m?

0.25 0.25 0.25

0.00 000 > g9 0.00

-0.25 -0.25 -0.25

-0.50 -0.50 -0.50

-0.75 -0.75 -0.75

-1.00 -1.00 -1.00

-10.0 -5.0 0.0 5.0 10.0
X X

-10.0 -5.0 0.0 5.0 10.0 5.0 10.0

(a) Exhaustive Sampling (b) HMC Sampling (¢) 1D Sampling

Figure 9: Figure Eka),Ekb) andEkc) show policy heat maps for Q-Learning with exhaustive sampling, Hamilto-

nian @Q-Learning and )-Learning with IID sampling, respectively.
1.00 1.00 1.00
B 0.75 B 0.75 B 0.75
0.50 0.50 0.50
' 025 ' 025 ' 025
0. 0.00 0. 0.00 0. 0.00
-0.25 -0.25 -0.25
o -0.50 o -0.50 -2 -0.50
-0.75 -0.75 -0.75
. -1.00 . -1.00 . -1.00
-10.0 -5.0 0.0 5.0 10.0 -10.0 -5.0 0.0 5.0 10.0 -10.0 -5.0 0.0 5.0 10.0
X X X

(a) Exhaustive Sampling (b) HMC Sampling (¢) 1D Sampling

Figure 10: Figure a), b) and c) show policy heat maps for Q-Learning with exhaustive sampling,
Hamiltonian Q-Learning and @)-Learning with IID sampling, respectively.
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- 0.75
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' 025
0. 0.00
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-0.75
- -1.00
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X

(a) Exhaustive Sampling (b) HMC Sampling (c) 1D Sampling

Figure 11: Figure a), b) and c) show policy heat maps for Q-Learning with exhaustive sampling,
Hamiltonian Q-Learning and @)-Learning with IID sampling, respectively.

E APPLICATION OF HMC SAMPLING FOR (Q-LEARNING: FURTHER DETAILS

1.00 1.00

0.75 0.75
0.50 0.50
0.25 0.25
0.00 0.00
-0.25 -0.25
-0.50 -0.50

-0.75 -0.75

-1.00 -1.00

-10.0 -5.0 0.0 5.0 10.0 -10.0 -5.0 0.0 5.0 10.0
X X

In this section we provide a detailed explanation on drawing HMC samples from a given state
transition probability distribution. Let (s, a;) be the current state action pair. Let p(s¢, at), 2(s¢, ar)
be the mean and covariance of the transition probability kernel. In order to draw HMC samples
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we are required to define the corresponding potential energy and kinetic energy of the system. Let
P(s]s¢, at) be the smooth target state transition distribution.

Potential energy, kinetic energy and mass: In this work we consider P(s|s;, a;) to be a truncated
multivariate Gaussian as given in equation[§] Thus potential energy can be explicitly given as,

U(s) = ~Toa(P(s)) = (s — w2 s — ) — 1 lo ((2m)* det(5) )

~ i [log (1+ exp(—r(d — ) ) +log (1 + exp(~n(s' — d;)))]

where, 1 and ¥ correspond to the mean and variance of the transition probability kernel. In the
context of HMC s is referred to as the position variable. Then we chose kinetic energy can be given
as

1 1
K(v) = —log(P(v]s)) = §vTM‘1v = §uTzv.

where v is the momentum variable and M = X~ corresponds to the mass/inertia matrix associated
with the Hamiltonian.

Hamiltonian Dynamics: As the Hamiltonian is the sum of the kinetic and the potential energy, i.e.
H(s,v) = U(s) + K (v), the Hamiltonian dynamics can be expressed as

5= aa—fj =3v
and
, ou 1 . _
b= 0= 5 s )+ R [S(R(d* —5)) — S(—r(s — )]
where S(&1,--+ ,&p,) = [S(&), - ,S({DS)]T denotes element wise sigmoid function of the

vector £&. We initialize HMC sampling by drawing a random sample s from the transition probability
distribution and a new momentum variable v from the multivariate Gaussian A'(0, > ~!). We integrate
the Hamiltonian dynamics for L steps with step size Al to generate the trajectory from (s,v) to
(s',v"). To ensure that the Hamiltonian is conserved along the trajectory, we use a volume preserving
symplectic integrator, in particular a leapfrog integrator which uses the following update rule to go
from step [ to [ + Al:

oU (s)
Js

aU (s)

v, a1 = v — 0.5A1 .
3 ZCENITN

, SI+Al = S|+ AIE’UH_%, Vi4Al = V] — 0.5Al

l

Acceptance of the new proposal: Then, following the Metropolis—Hastings acceptance/rejection
rule, this new proposal is accepted with probability

min{l,m}.

Updating () function using HMC samples: Let 7{; be the set of next states obtained via HMC

sampling, i.e., position variables from the accepted set of proposals. Then we update Q(s¢, a;) using
equation 9]
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