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ABSTRACT

Large Language Model (LLM) based agentic systems rely heavily on in-context
policy documents that encode diverse business rules. As business requirements
expand, these documents grow substantially, creating significant computational
overhead. This motivates the need for internalization methods that embed policy
documents into model priors while preserving performance. While prior prompt
compression research primarily targets generic prompts, we find that agentic pol-
icy documents span multiple levels of complexity and demand more intensive
reasoning, presenting greater internalization challenges. We first introduce CC-
Gen, an agentic benchmark generator with Controllable Complexity defined across
four levels, enabling systematic benchmarking of how well agents handle com-
plexities and provides a framework for comprehensive evaluation of policy in-
ternalization algorithms. Our initial analysis reveals that complex policy spec-
ifications governing agent workflows may pose the most significant reasoning
challenges. When supporting internalization with gold user–agent interaction tra-
jectories containing chain-of-thought (CoT) annotations through supervised fine-
tuning (SFT), we find that this baseline is highly data-intensive and its effective-
ness deteriorates markedly as policy document complexity increases. To mitigate
data burden and reasoning challenges, we propose Category-Aware Policy Contin-
ued Pretraining(CAP-CPT). Our automated pipeline analyzes policy documents to
extract key specifications, grouping them into factual, behavioral, and conditional
types. We further isolate complex conditions, which introduce high workflow
complexity and drive core reasoning difficulty. This categorization guides a tar-
geted therapy, synthesizing specialized training data for each specification type
and enabling agents to internalize policy information more effectively through an
autoregressive pretraining loss. Our extensive experiments demonstrate the ef-
fectiveness of the curated data and training objective. Combined with SFT, our
approach improves baseline across all data scenarios. It is especially effective
in data-sparse settings and under high policy complexity, yielding gains of up to
41% and 22% on Qwen-3-32B. Overall, we achieve up to 97.3% prompt length
reduction in our benchmark. Applied to τ -Bench, our approach further improves
performance and reduces input length with very limited SFT data. 1

1 INTRODUCTION

While Large Language Models (LLMs) exhibit strong instruction-following abilities (Ouyang et al.,
2022; Zhou et al., 2023; Zeng et al., 2023), LLM-based agents still depend heavily on in-context
policy documents to function as effective user assistants. For instance, as illustrated in Figure 1,
an airline policy document must be provided in context for the agent to perform its duties. How-
ever, these documents, which often encode extensive business rules and behavioral guidelines, can
consume a large portion of the input prompt. Even in simplified simulated environments such as
τ -Bench (Yao et al., 2024), they account for roughly 35% of the input tokens. In real-world applica-
tions, policy prompts expand with business growth and can already reach ∼50K tokens 2, dominating
the prompt relative to user inputs and in some cases exceeding the available context length. This cre-

1All data and code will be publicly released.
2Exact numbers are not disclosed due to the proprietary nature of system prompts.
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ates substantial computational overhead and highlights the need for efficient internalization methods
that embed policy documents into a model’s prior knowledge while preserving agent performance.

Checked Bag Allowance:

Policy Document (Airline)

- If the user is a silver member:1,2,3
free checked bags for basic,

economy, and busniess class.

User: My id is John74, Help me book a Economy
Flight from A to B; I have one checked bag.

.........

......... Agent Step 1: Use tools to get user details

Agent Step 2: Use Tools to book the flight

- One extra non-free checked bag have
an extra charge of 50$

Tool Return: Information for John74

User-id: John74; Membership: Silver

Gender: Male; Contact: +1 217-xxx-xxxx

<Tool>Book_Flight(User=John74,destination=B,Departure=A,
Class=Economy, Non-Free-Bags=1, Fee=50 </Tool>

- If the user is a regular member: ......

Wrong answer !
 The checked bag
should be free !

RQ2: How are these certain
complexities affecting

internalization appraoches?

RQ3: How to design policy
internalization algorithms to

overcome these challenges?

RQ1:How to categorize the
complexity dimensions in

agentic policy documents ?

Book Flight: 

   - The current time is 2024-05-15
15:00:00 EST.

.........

- The agent should ask if the user wants
to buy travel insurance,  .........

Figure 1: Even state-of-the-art LLM-based agents fail to reliably follow policy documents, and
our analysis shows that certain policy specifications are inherently complex, imposing substantial
reasoning demands. These observations motivate the central research questions we investigate in
this paper. A more detailed illustration of this failure case is provided in Appendix J.

While prior token-compression approaches typically treat all inputs as generic prompts (Zou et al.,
2024; Li et al., 2024), our observations show that models often struggle to follow specific policy
specifications, suggesting that internalizing policy documents poses distinct challenges. As shown
in Figure 1, evaluation on τ -bench reveals that even Claude-4-Sonnet (Bubeck et al., 2024) based
tool-using agents suffer severe performance degradation with policy documents as short as 1K to-
kens. To the best of our knowledge, no prior work has systematically examined what makes a policy
document easy or difficult to follow. To investigate the cause, we manually analyzed user–agent
interaction trajectories and found that certain policy specifications are inherently more complex,
imposing substantial reasoning demands that degrade performance (see concrete examples in Ap-
pendix J). These insights motivate us to categorize policy complexities, measure their impact on
internalization methods, and design algorithms to mitigate these challenges.

To address these challenges, we introduce CC-Gen, a benchmark generator that synthesizes pol-
icy documents and paired agentic tasks with predefined Controllable Complexity. It specifies four
levels of complexity: environmental, task level, workflow, and user query (see Appendix A for
definitions), allowing each to be independently manipulated to isolate its impact on agent perfor-
mance. CC-Gen further supports fine-grained synthesis of policy modifications and policy-centric
QAs, enabling systematic evaluation of both prompting-based and internalization approaches. Our
initial results reveal that workflow complexity induces the most severe performance degradation for
tool-using agents, followed by task-level complexity, highlighting the key challenges for effective
policy internalization. Building on these findings, we construct benchmarks with varied workflow
and task-level complexities to evaluate internalization methods across both standard task-oriented
queries and broader capabilities such as policy substitution, override, referral, and general instruction
following. As a baseline, we curate 1K–30K gold chain-of-thought trajectories for supervised fine-
tuning (SFT). Our results show that SFT remains highly data-intensive and suffers from substantial
performance gaps under high complexities, underscoring the need for more effective internalization
approaches to improve agent robustness and generalization.

To overcome the limitations of baseline approaches, we propose Category-Aware Policy Continued
Pretraining(CAP-CPT). Central to our method is an automated pipeline for policy complexity anal-
ysis. We leverage an LLM to categorize policy specifications into three types: factual, behavioral,
and conditional, further subdividing conditional specifications into simple and complex cases. Each
type presents distinct learning challenges, prompting us to generate tailored data for each category.
Across all policy specification categories, we construct policy paraphrases and question–answer
pairs to seed a compact understanding and durable recall of the documents. Since conditional spec-
ifications frequently govern agent workflows, we simulate diverse scenarios in which agents must
solve subproblems that hinge on these complex conditions. For behavioral specifications, we add
role-model agent demonstrations. We then combine all generated data with existing SFT trajecto-
ries, producing a dataset of five complementary data types. Finally, we apply continual pretraining
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with an autoregressive loss over all tokens, enabling the model to broadly acquire policy knowledge
and generalize across complexity levels.

Combining our approach with SFT, we improve baseline performance by over 10% across all sce-
narios on Qwen-3-32B. Notably, our method boosts performance by 44% in data-sparse settings
and reduces performance disparities between workflow complexity level (1) and level (3) by up
to 37%. Ablation studies confirm that our curated scenario-simulation data is crucial for handling
complexity and that our CPT-based training outperforms using the same data for SFT alone. Be-
yond task-oriented evaluations, our method achieves superior results on policy referral, substitution,
and override tasks (Comprehensive evaluation framework in Appendix E), while maintaining strong
general instruction-following ability (Zhou et al., 2023). Overall, our approach achieves up to 97.3%
input token compression on our synthetic benchmark and remains broadly applicable with minimal
assumptions about the policy document. Applied to τ -Bench, it further improves performance and
reduces input length even with very limited SFT data.

Overall, our contributions are: (1) We characterize complexity types in agentic policy documents
and construct benchmarks with controllable complexity, enabling systematic evaluation of internal-
ization methods and laying a foundation for future research. (2) Using these benchmarks, we analyze
what makes policy internalization challenging and identify complex workflows as the primary driver
of performance degradation. (3) We propose Category-Aware Policy Continued Pretraining, which
categorizes policy specifications, and curates targeted data for continual pretraining. Experiments
show that our approach delivers substantial performance gains across diverse scenarios and remains
broadly applicable with minimal assumptions about the policy document.

2 COMPLEXITY CHARACTERIZATION OF LLM-BASED AGENTIC TASKS

2.1 LLM-BASED AGENTIC TASK SETTING

To isolate the effect of policy complexity from confounding factors such as multimodal inputs (Xie
et al., 2024) or unstable user simulators in multi-turn dialogues (Wang et al., 2024; Zhu et al., 2024),
we focus on text-only, single-turn, LLM-based agentic tasks. The user provides a query q ∈ Q
that specifies potentially complex requirements and a target task. The agent receives a general
instruction I and a policy document P , a long text corpus defining tasks, completion rules, tool
usage instructions, few-shot demonstrations, and general prompts that guide the LLM as an agent.
At each step t, the agent maintains a history ht = (q, I,P, r<t, a<t, o<t) and applies a recursive
mapping (rt, at) = LLM(ht), where rt is the reasoning trace and at is an action from the tool set
defined in P . The action is executed by a tool function g ∈ G, producing an observation ot = g(at),
after which the history is updated. The external environment is restricted to database access to ensure
controlled workflows. The full trajectory is τ = {q, I,P, r1, a1, o1, . . . , rT , aT , oT } and terminates
when (rT , aT , oT ) resolves q under P or fails after reaching the iteration limit. We leave multimodal
and multi-turn extensions to future work (Appendix M).

2.2 CC-GEN : AGENTIC BENCHMARK GENERATOR WITH CONTROLLABLE COMPLEXITIES

Based on the above setting, we categorize policy-governed agentic tasks along four complexity di-
mensions: task-level complexity, reflecting the intricacy of predefined tasks determined by their
number and required arguments; workflow-level complexity, arising from the logical rules in pol-
icy documents, such as nested if–else structures, their depth, and branching factors; environmental-
level complexity, depending on the richness and scale of external databases accessible through tool
functions; and query-level complexity, originating from user queries that may impose special re-
quirements or additional reasoning constraints. Each dimension is quantified by a Complexity-Type
K, where larger K indicates higher complexity, with formal definitions and quantization provided
in Appendix C. Building on these complexity dimensions, we propose CC-Gen, a benchmark gen-
erator with fine-grained control over complexity. Given user-specified parameters and sample size,
CC-Gen produces benchmarks comprising a policy document P defining global attributes, rules,
interaction environment, tool usage instructions, and task specifications; a set of databases with ini-
tialized data and executable tools for agent-environment interaction; and a collection of user queries
mapped to one or more tasks, optionally with gold trajectories. As summarized in Table 1, the
benchmarks generated by CC-Gen offer three key advantages: (1) they provide sufficiently complex
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policy documents to serve as rich conditioning context for completing target tasks; (2) they expose
controllable complexity across all characterized dimensions, enabling systematic studies of their
individual and joint effects; and (3) they form a comprehensive testbed for evaluating policy inter-
nalization methods, supporting abundant training data as well as policy-referral and policy-override
tasks. These evaluation tasks are described in Section §4 and Appendix D. The generator work-
flow is illustrated in Figure 4, with further implementation details in Appendix A and concrete data
examples in Appendix B.

Table 1: Comparison of existing agentic benchmarks and those produced by our CC-Gen. CC-Gen
distinguishes itself by (1) supporting long, complex policy documents, (2) allowing for controllable
complexity to systematically study its effects, and (3) supporting more comprehensive internaliza-
tion training and evaluation, including policy-referral and policy-override tasks.

Agent Benchmark Data
Instances

Tool
Usage

Long Policy
Document

Complexity Study Internalization Evaluation
Characterization Control Policy-Referral Policy-Override

AgentIF Qi et al. (2025) 707 ✓ ✗ ✓ ✗ ✗ ✗
IFEval Zeng et al. (2023) 541 ✗ ✗ ✗ ✗ ✗ ✗
Tau-Bench Yao et al. (2024) 165 ✓ ✓ ✗ ✗ ✗ ✗
Follow-Bench Jiang et al. (2024) 820 ✗ ✗ ✗ ✗ ✗ ✗
AgentOrca Li et al. (2025) 663 ✓ ✗ ✗ ✗ ✗ ✗
Multi-IF He et al. (2024) 4501 ✗ ✗ ✗ ✗ ✗ ✗
ComplexBench Wen et al. (2024) 1150 ✓ ✗ ✓ ✗ ✗ ✗
Sys-Bench Qin et al. (2024) 500 ✗ ✗ ✗ ✗ ✗ ✗

Ours (CC-Gen) Unlimited ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Tool-using agent performance under varying complexity levels. For each setting, eval-
uation data are randomly sampled from CC-Gen. Workflow(K) and Task(K) denote the respective
complexity levels, with formal definitions in Section § 2.3. Model performance consistently declines
as task-level and workflow complexity increase, with some models dropping to zero under the most
challenging workflow settings.

Performance of Tool Using Agents under Different Complexities. Evaluation Metric: Success Rate

Model / Complexity Workflow (1) Workflow (2) Workflow (3)

Task (3) Task (5) Task (8) Task (12) Task (3) Task (5) Task (8) Task (12) Task (3) Task (5) Task (8) Task (12)

Gemma-3-27B 0.28 0.30 0.17 0.11 0.20 0.17 0.03 0.00 0.07 0.03 0.02 0.00
Qwen2.5-32B 0.26 0.07 0.02 0.01 0.03 0.04 0.00 0.00 0.01 0.01 0.00 0.00
Qwen-3-8B 0.62 0.59 0.52 0.44 0.54 0.36 0.16 0.13 0.40 0.33 0.10 0.07
Qwen-3-32B 0.83 0.82 0.75 0.71 0.79 0.62 0.47 0.25 0.68 0.53 0.42 0.11
Claude-3-5-Sonnet 0.84 0.75 0.71 0.47 0.58 0.35 0.13 0.03 0.64 0.06 0.08 0.00

2.3 BENCHMARKING AGENT PERFORMANCE WITH CONTROLLED COMPLEXITY

We conduct experiments (see Appendix A) to examine how complexity dimensions impact agent
performance and reasoning, motivated by the hypothesis that they likewise obstruct internalization.
Our experiments yields three main observations: (1) environmental complexity has minimal effect,
as it is not directly exposed to agents and only indirectly affects the number of required tools, caus-
ing slight performance variation; (2) task-level complexity causes a gradual performance decline,
whereas workflow-level complexity leads to a much sharper drop, underscoring their influence on
reasoning and internalization and motivating us to benchmark their effects; and (3) while query-
level complexity is crucial in practice, we leave it unconstrained to preserve user input flexibility;
accordingly, we randomly sample queries from the task space defined by P for benchmarking and
follow-up evaluation. Guided by these observations, we construct 12 benchmark settings with con-
trolled task-level and workflow-level complexities (as they appear to pose the greatest reasoning
challenges and most strongly degrade in-context and internalization performance). As shown in Ta-
ble 2, Task(N ) denotes a benchmark where the policy specifies N predefined tasks, each requiring N
correct arguments computed according to the policy rules, and Workflow(K) denotes a benchmark
where computing a task argument involves an if–else structure of depth K (see complexity quantifi-
cation in Appendix A and examples in Appendix B). Model performance consistently declines as
both dimensions increase. All models are sensitive to rising workflow complexity, but some degrade
sharply, even to zero in the most challenging settings, while others remain more robust. Notably, the
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Qwen-3 series shows significantly greater resilience, consistently outperforming Claude-3.5 under
high-complexity conditions.

3 INTERNALIZING COMPLEX AGENTIC POLICY DOCUMENTS

Based on the agent setting defined in Section §2.1, the goal of internalization is to partially or fully
remove the policy document P from the input. Viewing the agent as Mθ, full internalization corre-
sponds to enforcing the alignment Mθ(q, I,P) ∼ Mθ(q, I), meaning the model should produce
equivalent outputs without explicitly receiving P . In practice, a policy P may have multiple versions
across domains or situational requirements. To efficiently manage these and provide a recall anchor,
we assign each policy a unique identifier (e.g., <#Policy-1356X>), encouraging the model to
treat identifiers as retrieval cues that strengthen its ability to recall and apply the correct rules at
inference time. In deployment, such identifiers would be supplied by a routing or RAG system that
selects the relevant policy based on the user query. Let pid denote the identifier for policy P; our
objective becomes aligning Mθ(q, I,P) with Mθ(q, I, pid). We adopt this formulation throughout
training, with concrete examples of prompt formats and token usage provided in Appendix B.

3.1 BASELINE: SFT WITH GOLD COT-ENHANCED INTERACTION TRAJECTORIES

To capture the complex reasoning dynamics required by policy documents and to align model out-
puts with the desired behavior, we curate 1K–30K full interaction trajectories augmented with
manually constructed gold Chain-of-Thought (CoT). As described in Section §2.1, each trajec-
tory is formulated as τ = {q, I,P, r1, a1, o1, r2, a2, o2, . . . , rT , aT , oT }. To match the infer-
ence format, the policy P is replaced with an identifier pid, which in practice would be ob-
tained by a routing or RAG system. The reasoning steps {r1, . . . , rT } are manually curated to
ensure interpretability and logical consistency. The action sequence {a1, . . . , aT } corresponds
to ground-truth actions provided by our benchmark generator, while the observation sequence
{o1, . . . , oT } is deterministically produced through the tool set. This yields training data of the form
τ = {q, I, pid, r1, a1, o1, r2, a2, o2, . . . , rT , aT , oT }. We perform supervised fine-tuning (SFT) on
these trajectories by minimizing the standard autoregressive loss over reasoning and action tokens:
LSFT = −

∑
t log pθ(yt | y<t), yt ∈ {rt, at}. To study data sparsity, we train on datasets of size

1K, 5K, 10K, 20K, and 30K independently.

3.2 OUR APPROACH: CATEGORY-AWARE POLICY CONTINUED PRETRAINING

While training with Gold CoT-Enhanced Interaction Trajectories yields reasonable internalization
performance, our experiments reveal two major limitations. First, like other SFT methods, it is
highly data-intensive and fails in data-sparse settings, a critical issue in real-world scenarios where
collecting full interaction trajectories with exemplar Chain-of-Thought annotations is difficult. Sec-
ond, the approach struggles with the intensive reasoning demands of complex policy documents,
with performance dropping by up to 46% as workflow complexity increases from level (1) to level
(3) on Qwen-2.5-32B models (see Section§ 4). To address these challenges, we propose Category-
Aware Policy Continued Pretraining, which implements an automatic pipeline that analyzes policies,
categorizes their specifications into four types, and generates tailored data for continued pretraining.

Policy Document Analysis and Categorization Our core insight, drawn from the analysis in Sec-
tion §2.3, is that different policy specifications pose distinct challenges for reasoning and internal-
ization. To address this, we categorize elements of policy documents by how they are applied in the
agent reasoning process and how they affect internalization algorithms. Based on our observation for
real-world policies, we define four categories of specifications: Factual Policy Specifications, Be-
havioral Policy Specifications, Simple Conditional Specifications, and Complex Conditional Speci-
fications. Detailed definitions are provided in Appendix C. As shown in the upper part of Figure 2,
our pipeline begins with an LLM-based preprocessing step: the LLM is prompted to identify task
types in the policy, extract the corresponding specifications, and classify them into these four cate-
gories. In parallel, the LLM determines the valid scope of each specification to construct a complete
representation of the policy. For more complex cases in practice, this process may be enhanced by
an optional manual check to ensure the categorization is accurate.
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{
Step1: Policy Document Analysis and Categorization

(1) Factual (2) Behavioral  (3) Conditional (Simple)

Process Raw
Policy with LLM

(1) Identify Task Types and Policy Specifications.

(2) Classify Policy Specification and Valid Scope.

(4) Conditional (Complex)

(Optional)
Manual Check

Step2: Targeted Continue Pretraining Data Generation 

Policy Paraphrase (For all SpecificationTypes)

Policy Content QA (For all SpecificationTypes)

Scenario Simulation (For Type (3) and especially (4))
Trajectory Familiaration (Same data from SFT stage)

Behavior Demonstration (For Type (2))

Represent Policy with
Policy Identifier.

Model Generate CPT
data based on Category

(1) Sampling instances from
the environment database

Scenario Simulation helps
Complexity Most

(2) Policy & Valid
Scope-Based LLM

Template Simulation
(3) Get Large size of CPT
data focusing on resolve
complex specifications. 

Figure 2: Pipeline for our Category-Aware Policy Continued Pretraining (CAP-CPT).Top: An
LLM-centric pipeline analyzes policy documents and categorizes policy specifications into four
major types. Bottom: Based on this categorization, we generate targeted training data for each
specification type. In particular, scenario-simulation examples address conditional rules that require
complex reasoning, helping the model internalize and apply the most challenging policy knowledge.

Targeted Continued Pretraining Data Generation After policy analysis and categorization, our
pipeline leverages an LLM to generate targeted data for each specification type. In all cases, di-
rect references to the policy are replaced with the policy identifier pid. As illustrated in Figure 2,
we adopt a “targeted therapy” perspective: the data generation process is tailored to the distinct
complexity of each specification category. For factual specifications, the primary challenge is mem-
orization and accurate recall. To address this, we construct policy paraphrases and QA-style content
that strengthen the model’s ability to store and retrieve policy details. For behavioral specifications,
the challenge shifts from simple recall to demonstrating compliant behaviors under defined circum-
stances. Accordingly, we curate data where ground-truth responses act as role models: the LLM
generates scenarios requiring the application of behavioral rules, queries the agent, and produces re-
sponses that consistently reflect satisfactory and policy-aligned behavior. Conditional specifications
govern the workflow of the LLM and their influence increases with complexity. To support this,
we curate large volumes of scenario-simulation data that go beyond memorization, emphasizing the
practical application of policy rules and enabling the model to fully exercise its reasoning capabili-
ties. Unlike standard CPT data focused on rote recall, this simulation data operationalizes the policy
document, transforming abstract rules into executable workflows. An intuitive explanation of why
such data better facilitate model learning is provided in Appendix F. During this process, the LLM
synthesizes scenarios and samples concrete instances from the environment database. For example,
given the complex policy specification in Figure 1, the LLM can generate numerous queries by sam-
pling user and reservation details, then compute the correct number of non-free checked bags and the
corresponding total fee. Finally, we incorporate SFT trajectory data as an auxiliary source to better
prepare the model for downstream task solving. Although all curated data are structured in QA for-
mat, they are employed within a continued d pretraining (CPT) paradigm, where the objective is to
minimize the standard language modeling loss LCPT = −

∑T
t=1 logPθ(xt | x<t), with θ denoting

model parameters and xt the target token at position t. The CPT stage enhances the model’s ability
to internalize and reason over policy content, rather than merely memorizing query answer pairs.
We validate the effectiveness of our curated data and training objective in Section § 4.

4 EVALUATION OF POLICY DOCUMENT INTERNALIZATION

4.1 EXPERIMENT SETTINGS

Model and Data Settings We use Qwen-2.5-32B and Qwen-3-32B for policy document inter-
nalization, chosen for their strong prior knowledge and distinct performance when complex policy
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documents are provided in context. To evaluate complexity effects, we sample datasets that control
other dimensions while varying workflow complexity from level (1) to (3), as well as datasets that
vary task-level complexity with level (3), (5), (8), and (12) tasks. For SFT, we provide between
1K, 5K, and up to 30K training samples. We also apply our approach to τ -Bench, which offers
only 500 training samples with no CoT based reasoning. Using Qwen-3-32B, we self-generate CoT
trajectories and yield 282 SFT samples. More details are in Appendix D.

Evaluation Framework and Metrics The primary focus of our evaluation is task completion af-
ter policy internalization, where agents must follow the internalized policy document to execute
predefined tasks. To provide a more comprehensive assessment, we also consider scenarios in-
volving policy substitution or override, policy-referral QA grounded in the document, and general
instruction-following tests using IFeval (Zhou et al., 2023). Detailed settings are in Appendix E.
Task completion is measured by success rate (SR), policy QAs are scored on a 0–5 scale by a lan-
guage model and rescaled to 0–100, and instruction following is evaluated by average accuracy.

Table 3: Task-completion performance after policy internalization under varying workflow com-
plexities, with SFT trajectory sizes from 1K to 30K. Our CAP-CPT + SFT consistently outperforms
strong baselines, alleviates data sparsity, and reduces the gap between high- and low-complexity
scenarios. On Qwen-2.5-32B, it even surpasses agent performance with the full policy in context.

Model Complexity Prompting Internalization Approach Internalization Training Data Size
1K 5K 10K 20K 30K

Qwen2.5-32B

Task (5)
Workflow (1)

0.07 Gold CoT SFT 0.04 0.80 0.95 0.97 0.98
CAP-CPT + Gold CoT SFT 0.57 0.94 0.98 0.98 0.99

Task (5)
Workflow (2)

0.04 Gold CoT SFT 0.03 0.23 0.31 0.47 0.59
CAP-CPT + Gold CoT SFT 0.43 0.66 0.74 0.88 0.90

Task (5)
Workflow (3)

0.01 Gold CoT SFT 0.00 0.14 0.26 0.32 0.52
CAP-CPT + Gold CoT SFT 0.36 0.63 0.72 0.85 0.85

Qwen3-32B

Task (5)
Workflow (1)

0.82 Gold CoT SFT 0.03 0.41 0.55 0.71 0.78
CAP-CPT + Gold CoT SFT 0.44 0.67 0.72 0.74 0.80

Task (5)
Workflow (2)

0.62 Gold CoT SFT 0.02 0.18 0.23 0.35 0.42
CAP-CPT + Gold CoT SFT 0.27 0.35 0.46 0.53 0.57

Task (5)
Workflow (3)

0.53 Gold CoT SFT 0.01 0.13 0.17 0.31 0.36
CAP-CPT + Gold CoT SFT 0.16 0.27 0.39 0.41 0.47

Figure 3: Performance curves for internalizing policy documents with varying workflow complex-
ities on Qwen-2.5-32B, comparing the baseline with our method. Our approach consistently out-
performs the baseline across all settings and substantially narrows the performance gap in high-
complexity and data-sparse scenarios.

4.2 MAIN RESULTS

CAP-CPT Significantly Boosts Performance We evaluate agent task-completion performance
under varying workflow complexities in Table 3, with corresponding performance curves in Fig-
ure 7. Relying solely on Gold CoT–enhanced trajectory data for SFT is highly data-intensive and
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results in large disparities across complexity levels. In contrast, our CAP-CPT approach consis-
tently improves performance across all data splits, with particularly strong gains under data-sparse
conditions. Although the curated data is not explicitly optimized for task completion, it substantially
strengthens policy internalization and narrows performance gaps: CAP-CPT reduces the disparity
between high- and low-complexity scenarios by 37% on Qwen-2.5-32B and 21% on Qwen-3-32B,
even with abundant SFT data. This yields more robust and generalizable policy understanding.
Similar trends are observed under varying task-level complexities (Appendix D). Overall, our inter-
nalization achieves input token compression of up to 97.3%. Notably, internalization training on the
strongest base models does not yield gains over the prompting baseline or over training on originally
weaker models. We analyze this in Appendix F.

CAP-CPT Helps Under Broader Evaluation Settings We evaluate agent post-internalization
performance on policy-referral, policy-substitute, and policy-override tasks, as well as general in-
struction following. Results on Qwen-3-32B are shown in Table 4, with more comprehensive results
in Appendix D. Across all policy-related tasks, our method substantially outperforms SFT base-
lines but does not surpass the prompting baseline, indicating that these out-of-domain tasks remain
challenging and warrant further study. For policy-substitute and policy-override, both require bal-
ancing internalized rules with newly introduced ones, with full substitution proving more difficult
than partial override. Improving performance in these settings will likely require additional training
data. For policy-referral, the model immediately after continued pretraining achieves the highest
score, but its performance steadily declines as SFT data size increases, suggesting that SFT tends
to hard-code task solutions rather than really helps to understand policy rules and learn how to put
them into practice. Finally, general instruction-following ability is largely preserved, likely because
policy-focused training is orthogonal to generic instruction following.

Table 4: Comprehensive evaluation results on post-trained Qwen-3-32B across supportive
tasks—including Policy-Substitute, Policy-Override, Policy-Referral, and instruction following,
with further details in Appendix D. While our approach consistently outperforms SFT baselines
after internalization, performance on most tasks still lags behind in-context prompting, suggesting
that additional task-specific training data is needed to fully retain these specialized capabilities.

Model Complexity Prompting Internalization Approach Internalization Training Data Size
1K 5K 10K 20K 30K

Qwen-3-32B
(Substitute)

Task (5)
Workflow (3)

0.53 Gold CoT SFT 0.01 0.00 0.02 0.00 0.00

CAP-CPT + Gold CoT SFT 0.07 0.06 0.08 0.06 0.05

Qwen-3-32B
(Override)

Task (5)
Workflow (3)

0.53 Gold CoT SFT 0.00 0.00 0.00 0.00 0.00

CAP-CPT + Gold CoT SFT 0.09 0.12 0.17 0.22 0.25

Qwen-3-32B
(Referral)

Task (5)
Workflow (3)

0.76 Gold CoT SFT 0.00 0.00 0.00 0.00 0.00

CAP-CPT + Gold CoT SFT 0.59 0.31 0.23 0.20 0.13

Qwen-3-32B
(Ifeval)

Task (5)
Workflow (3)

0.44 Gold CoT SFT 0.45 0.43 0.46 0.42 0.45

CAP-CPT + Gold CoT SFT 0.44 0.45 0.44 0.47 0.43

4.3 ABATION STUDY

We assess the effectiveness of our approach by evaluating two variants of the complete method.
The first variant uses all generated Category-Aware QA-format data for SFT, while the second ex-
cludes the scenario-simulation data designed for complexity handling. As shown in Table 5, both
variants outperform the SFT baselines, but the full approach consistently achieves the strongest re-
sults across all data settings. This underscores the importance of jointly leveraging targeted data
and the CAP-CPT training objective. Additional analyses of the benefits and limitations of these
two variants are provided in Appendix H. Notably, both variants still yield substantial gains over
SFT-only baselines, further validating the effectiveness of our curated data. We also test our method
under multi-policy internalization; results indicate that internalization performance remains consis-
tent when applied across a number of distinct policies with different complexity levels. Details are
provided in Appendix G.
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Table 5: Demonstration of the effectiveness of our CAP-CPT approach. We validate the CPT train-
ing objective by applying the generated data for SFT and assess the scenario-simulation data’s ability
to handle complexity by selectively removing portions of it. Both variants yield suboptimal perfor-
mance compared to our full approach.

Model Complexity Prompting Internalization Approach Internalization Training Data Size
1K 5K 10K 20K 30K

Qwen-3-32B Task (5)
Workflow (3)

0.53

Gold CoT SFT 0.01 0.13 0.17 0.31 0.36
CAP-CPT + Gold CoT SFT 0.16 0.27 0.39 0.41 0.47

(CAP-CPT data + Gold CoT) for SFT 0.08 0.21 0.28 0.34 0.42
Remove Scenario Simulation Data 0.09 0.23 0.32 0.36 0.44

4.4 APPLICATION ON τ -BENCH

Finally, we evaluate our approach on τ -bench. Following the setup described in Section§ 2.1,
we mitigate potential user-simulator bias by modifying the protocol so that agents solve complete
queries directly rather than through multi-turn interaction. We prompt Qwen-3-32B to self-generate
responses for the 500 training samples provided by τ -bench, yielding 282 successful trajectories
with Self-CoT used for SFT. We subsequently perform policy analysis and synthesize CAP-CPT
data. As summarized in Table 14, the original Qwen-3-32B model with in-context policy achieves
a 26.96% success rate. After internalization using only SFT, performance slightly drops to 23.48%,
underperforming the prompting baseline. In contrast, our full approach surpasses the prompting
baseline, achieving a 28.70% success rate while reducing the overall input length by 34.8%. We
further evaluate the policy categorization stage of our pipeline and verify that these gains persist in
real-world settings without manual intervention. Notably, the policy analysis and data generation
steps are executed entirely by Qwen-3-32B, eliminating the need for any external LLM APIs. De-
tailed precision, recall, and F1 results from this policy analysis process are provided in Appendix I.

5 RELATED WORK

Deliberative alignment (Guan et al., 2024; Zhang et al., 2025a) is most closely related to our work.
This line of research aims to internalize general safety rules and behaviors into a model’s prior, ei-
ther through additional training (Guan et al., 2024) or test-time deliberation (Zhang et al., 2025a).
However, it remains focused on generic safety behaviors, overlooking the broader scope of agentic
policies and the complex reasoning challenges (e.g., workflow-level constraints) central to policy
internalization. Besides, our work also intersects with several research areas, including prompt
compression (Li et al., 2024; Chuang et al., 2024; Mu et al., 2024), knowledge injection and percep-
tion (Martino et al., 2023; Song et al., 2025a), and continued pretraining (Zhou et al., 2024). Owing
to space limitations, we provide further discussion of related work in these domains in Appendix K.

6 CONCLUSION

In this work, we examined the challenge of internalizing long, complex policy documents in LLM-
based agentic systems. We characterized distinct forms of policy complexity and introduced CC-
Gen, a controllable-complexity benchmark generator for systematically analyzing agents’ ability to
handle varying complexities and enabling comprehensive evaluation of internalization algorithms.
Our analysis identified workflow depth as a primary driver of performance degradation, highlighting
limits of in-context methods and data-intensive SFT-based approaches. To address these issues, we
internalize policy documents via explicit policy identifiers and an automated pipeline for policy anal-
ysis that generates Category-Aware Policy Continue Pretraining (CAP-CPT) data. This reduces SFT
data demands and mitigates the reasoning challenges posed by complex specifications. Empirically,
our approach yields consistent gains across scenarios and substantially narrows complexity-related
performance disparities. Overall, our findings underscore the importance of explicitly modeling
policy complexity and provide a scalable, effective solution for policy internalization. We hope
this work motivates further research into robust and generalizable internalization for LLM agents,
ultimately enabling more computationally efficient, reliable, and helpful AI assistants for all.
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7 REPRODUCIBILITY STATEMENT

We provide an anonymous source code archive in the supplementary material, which includes our
data generator as well as detailed training and evaluation instructions for reproducing the results in
this paper. We use LlamaFactory Zheng et al. (2024) to train Qwen-2.5-32B and Qwen-3-32B on
eight H100 GPUs. We will also publicly release the full codebase and data, including the benchmark
generator to further facilitate reproducibility. All reported experimental results are based on a single
run. Additional experimental details are provided in Section§ 4 and Appendix D.

8 ETHICS STATEMENT

This work focuses on fundamental research aimed at improving the internalization of complex policy
documents in language models. No human subjects or private user data were involved in this study.
The dataset introduced in this work consists entirely of synthetically generated user profiles and does
not contain or rely on any real user data. To the best of our knowledge, this research does not raise
any ethical concerns.
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A BENCHMARK DEVELOPMENT AND PROBING EXPERIMENTS

Step 1: Environment Simulation Step 2: Policy Generation Step 3: User Query Sampling

Input: Choose Customized Benchmark Complexity Argument

Environmental Complexity:  
{3 accessible databases } 

Task-Level Complexity: 
{5 Tasks with 5 arguments} 

WorkFlow Complexity: 
Decision Tree Depth = 2

Agent Execution Step:
{Total Steps less than 5}

(1) Initilize Policy Template(1) Sample Attributes of Data instances

(2) Generate Tools to access Database

Attribute_1: Primary Key 

Attribute_2: Random(A-Z) 

Attribute_3: Random(0,100) 

............

Attribute_k: Random(0,100) 

Attribute Types:

Primary Key

Lookup Values

Foreign Key

Other Attributes
(For comparison)

(Get other instance)

(Look up instance)

(Get current instance)

Get_Data_Instance_{1-3} 

Search_Data_Instance_{1-3} 

(2) Tool Use Specification

(4) Filter step range according to query.

Global Attributes Definition: ......

Environment Description: ..........

Tool Use Instructions: ................

Task Completion instructions: ...

General Rules Description: ........

 Five building
blocks

Constructs
Policy

Document

(3) Task Completion
##Available Tools: Get_Data_Instance_1: Use this
tool to directly access a specific data instance by its
primary key; When to use: ... Example call: ....
Finish_Task_5: Use this tool to complete the fifth
type of task with the computed arguments. When to
use: ... Example call: Finish_Task_5 (args_1= 3,
arg_2='str1', args_3=42, args_4='str2', args_5=89)

##Task Specifications:- The agent must access the
user's database instance and sequentially get the
following ... according to the user request to finish
Task_Type_1. The agent should pass the following
arguments to the Finish_Task_1: arg_1: The sum of
database_2_attribute_7 and 36, arg_2: The original
lookup value of  global_attribute 5, .....

(1) Sample Tasks to Finish.

(2) Sample the databases needing access.

(3) Form ground truth trajectories.

Figure 4: Pipeline of our CC-Gen benchmark generator.

Complexity Characterization We provide additional details of our CC-Gen benchmark genera-
tor, including its construction, usage, and output. As illustrated in Figure 4, the generator synthesizes
agentic benchmarks by composing four key components:

1. Pre-defined environments. Each environment typically consists of a collection of
databases, where every database has its own schema with primary keys, foreign keys,
lookup keys, and other attributes. The concrete attributes of the data instances are ran-
domly sampled.

2. Policy documents. Policies are instantiated from templates and tagged with explicit mark-
ers (e.g., <Airline #Policy-1356X>). Each policy specifies the set of tasks the
agent must complete, along with detailed guidelines, global attributes, general rules, envi-
ronment descriptions, and tool-use instructions.

3. Tool definitions. For every database, we provide two types of tools: one that retrieves a
single data instance by primary key, and another that supports flexible search over desig-
nated fields. There are also tools which are designed to help agent complete tasks or report
to human agents and ask for help.
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4. User queries and reference trajectories. A benchmark includes a collection of user
queries, their corresponding correct action sequences, and final answers. Users can inde-
pendently control the complexity of the environment, task-level specifications, and work-
flow structures when generating new benchmarks. They may also restrict user query com-
plexity, though in this paper we constrain our experiments accordingly.

We also present an example of tool-use specifications and task completion trajectories in Figure 4.
A complete sample benchmark generated by CC-Gen is provided in Appendix B

Complexity Quantification ‘To unify and simplify the computation of complexity dimensions in
agentic tasks, and to enable users to easily quantify complexity levels, we design a set of discrete
metrics for describing these dimensions. We denote Complexity-dimension (K) as the K-th level of
complexity within a given dimension, and define it as follows:

Environment (K): This captures the number of databases that the language model agent must in-
teract with. For τ -bench, the environmental complexity is set at K = 3, a setting we also adopt
for our main experiments. Although this number is relatively small, we validated that the impact
of environmental complexity is limited; therefore, higher values in real-world scenarios would not
significantly alter our evaluation.

Task-Level (K): This dimension reflects both the number of tasks and the number of arguments
required for computation in each task. While in practice, the complexity from multiple tasks and
individual task arguments can have distinct effects, we unify them into a single dimension. This is
because their increase jointly contributes to the overall task complexity.

Workflow-Level (K): This represents the complexity of the workflow needed to complete the target
task. Specifically, it accounts for the depth of logical structures (e.g., nested if–else conditions) that
the agent must reason through. For simplicity, we define workflow complexity as the depth of these
structures in each specification.

Although in real-world applications the complexity of each dimension may interact in more entan-
gled ways, we unify them in our benchmark to make the construction process more interpretable
and to better isolate the impact of each independent dimension. A discussion of this design choice
is provided in the limitation section M.

Probing Experiments We conducted comprehensive probing experiments on Qwen-3-8B models
to briefly have an insight on which complexity levels worth most attention. The experimental results
are shown in Table 6 ∼ Table 9. We evaluate with both task Success Rate (SR) and also Partial
Success Rate (PSR) for our probing experiments. SR is the fraction of tasks whose entire gold action
sequence is executed correctly. PSR measures argument-level accuracy for tool use: for each gold
action, when the agent invokes the correct tool, we compare its arguments with the gold specification
and compute the fraction that match; PSR is the average of this fraction across all matched tool calls
(averaged over tasks). Our experiments reveal that workflow complexity poses the most significant
reasoning challenges for LLM agents, followed by task-level complexity. In contrast, the impact of
environmental complexity is relatively minor, likely because agents interact with external resources
primarily through tools rather than directly. In practice, adding a large external database often
only introduces a few additional tool-use commands, without substantially increasing the reasoning
burden. We hypothesize that this explains why environmental complexity appears less influential in
our evaluations.

Table 6: Probing experimental results for different environmental complexity, where we control
the task level complexity and workflow level complexity. Results show that distinct environment
complexity does not matter much.

Model Environment (3) Environment (5) Environment (10)
Qwen-3-8B (SR) 0.91 0.87 0.88
Qwen-3-8B (PSR) 0.941 0.913 0.937
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Table 7: Probing experimental results for different task level complexity at Workflow (1), where
we control the environmental complexity. Results show that increasing task complexity leads to
noticeable performance degradation.

Model Task (3) Task (5) Task (8) Task (12)
Qwen-3-8B (SR) 0.92 0.85 0.67 0.60
Qwen-3-8B (PSR) 0.961 0.929 0.791 0.772

Table 8: Probing experimental results for different task level complexity at Workflow (2), where we
control the environmental complexity. Results show that higher task complexity markedly reduces
performance under deeper workflows.

Model Task (3) Task (5) Task (8) Task (12)
Qwen-3-8B (SR) 0.74 0.68 0.23 0.02
Qwen-3-8B (PSR) 0.876 0.842 0.578 0.298

B DATA EXAMPLES FOR GENERATED POLICY DOCUMENTS

We present several examples generated by our CC-Gen benchmark generator to demonstrate its
ability to produce agentic benchmarks with controllable complexity.

Real Policy Example Sampled from our Agentic Benchmark Generator CC-Gen

Complexity Level: Environmental(3); Task-Level(5); Workflow(1).

# Agent Policy Document #P71067

## General Instructions

The global attribute is currently: Global-Attribute-Value1 = 30, Global-Attribute-Value2
= 60, Global-Attribute-Value3 = 7. You are a helpful agent that can get access to profiles
and attributes at different layers and indexes. You can help users finish Task-Type-1,
Task-Type-2, Task-Type-3, Task-Type-4, Task-Type-5.

## Domain Basic

### Profile Structure

The jth profile instance at profile layer i has its primary key as profile-i-j There are 3 layers
of profiles, and each profile layer has a number of profile instances. All the profile instances
at the same layer have the same attributes.

- Each profile at layer 1 indexed j Profile-1-j has attributes: Profile-1-Attribute-1,
Profile-1-Attribute-2, Profile-1-Attribute-3, Profile-1-Attribute-4, Profile-1-Attribute-5,
Profile-1-Attribute-6, Profile-1-Attribute-7, Profile-1-Attribute-8

- Each profile at layer 2 indexed j Profile-2-j has attributes: Profile-2-Attribute-1,
Profile-2-Attribute-2, Profile-2-Attribute-3, Profile-2-Attribute-4, Profile-2-Attribute-5,
Profile-2-Attribute-6, Profile-2-Attribute-7, Profile-2-Attribute-8

- Each profile at layer 3 indexed j Profile-3-j has attributes: Profile-3-Attribute-1,
Profile-3-Attribute-2, Profile-3-Attribute-3, Profile-3-Attribute-4, Profile-3-Attribute-5,
Profile-3-Attribute-6, Profile-3-Attribute-7, Profile-3-Attribute-8
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Table 9: Probing experimental results for different task level complexity and workflow level com-
plexity, where we control the environmental complexity. Results show that higher workflow and
task levels jointly compound performance degradation.

Model Complexity Task (5) Task (8)

Qwen-3-8B (SR) Workflow (1) 0.85 0.67
Workflow (2) 0.68 0.23

Qwen-3-8B (PSR) Workflow (1) 0.929 0.791
Workflow (2) 0.842 0.578

### Attribute Definitions

The jth attribute at layer i is denoted as profile-attribute-i-j.

At layer 1: - The attribute-1 and attribute-2 and attribute-7 and attribute-8 can serve as
conditions - The attribute-4 contain the primary keys to access profiles at layer 1 - The
attribute-5 contain the primary keys to access profiles at layer 2 - The attribute-6 contain the
primary keys to access profiles at layer 3 - The attribute-3 can be used as an alternative way
to access the profiles while searching.

At layer 2: - The attribute-1 and attribute-2 and attribute-7 and attribute-8 can serve as
conditions - The attribute-4 contain the primary keys to access profiles at layer 2 - The
attribute-5 contain the primary keys to access profiles at layer 3 - The attribute-6 contain the
primary keys to access profiles at layer 1 - The attribute-3 can be used as an alternative way
to access the profiles while searching.

At layer 3: - The attribute-1 and attribute-2 and attribute-7 and attribute-8 can serve as
conditions - The attribute-4 contain the primary keys to access profiles at layer 3 - The
attribute-5 contain the primary keys to access profiles at layer 1 - The attribute-6 contain the
primary keys to access profiles at layer 2 - The attribute-3 can be used as an alternative way
to access the profiles while searching.

### Profile Access Pattern

When the user specifies a profile-k-id, you should understand that this means the user wants
to access the profile-k instance with the primary key’s index being the given value. When
the user specifies a profile-k-info, you should understand that this means the user wants to
access the profile-k instance with the lookup attribute value of the provided string. When
referring to a user’s profile-k, you should use the layer k-1 profile’s reference attribute to
get access to the primary keys of profile-k instances.

Relative Profile Access:

When the user specifies getting a ’relative profile’ or ’related profile’, this means accessing
other profile instances at the same layer as the current profile. To accomplish this, you
should use the reference attributes from the current profile instance to find the primary keys
of the target profile instances at the same layer. For example, if you are currently accessing
a profile at layer 2, and the user asks for a relative profile, you should use the reference
attributes in the current layer 2 profile to identify and access other layer 2 profile instances.

## Tool Calling Instructions

### General Rules
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- You should only make one tool call at a time, and if you make a tool call, you should not
respond to the user simultaneously. - If you respond to the user, you should not make a tool
call at the same time. - You should only call the tool Tool-Conflict when the request is not
able to be handled within the policy and the user specifications.

### Available Tools

#### Profile Access Tools

- Get-Profile-Layer-k: Use this tool to directly access a specific profile instance by its
primary key. - Parameter: ‘index-value‘ (string) - The full primary key of the profile
instance (e.g., ”profile-1-5”, ”profile-2-10”, ”profile-3-1”) - When to use: - When users
specify a profile-id, such as ”my profile-id is profile-1-5” or ”using profile-2-3” - When you
obtain a reference attribute value from another profile instance that contains the primary key
to access a different layer - Example call: Get-Profile-Layer-1(index-value=”profile-1-5”)

- Search-Profile-Layer-k: Use this tool to find profile instances by their lookup attribute
value. - Parameter: ‘key-value‘ (string) - The lookup attribute value to search for - When
to use: When users specify a profile-info, such as ”my profile-info is ’engineering’” or
”find profiles with lookup value ’sales’” - Example call: Search-Profile-Layer-1(key-
value=”engineering”)

#### Task Completion Tools

- finish-task-k: Use this tool to complete Task-Type-k with the computed arguments. -
Parameter: ‘attributes‘ (list) - A list of computed argument values in the order specified
by the task requirements - When to use: After accessing all required profile instances and
computing the task arguments according to task specifications - Example call: finish-task-
1(attributes=[25, 150, 42])

#### Conflict Resolution Tool

- Tool-Conflict: Use this tool when the user request cannot be handled within the policy
constraints. - Parameters: None - When to use: If the user request violates policy or cannot
be fulfilled with available tools and data - Example call: Tool-Conflict()

### Tool Parameter Mapping Guidelines

- profile-id references: When users mention ”my profile-id is profile-k-X” or ”profile-k-X”,
use the Get-Profile-Layer-k tool with index-value=”profile-k-X” - reference attribute usage:
When you access a profile instance and obtain reference attributes (e.g., reference-1,
reference-2, reference-3), use those primary key values with Get-Profile-Layer-k to access
the referenced profiles at the target layers - profile-info references: When users mention
”my profile-info is Y” or provide lookup values, use the Search-Profile-Layer-k tool
with key-value=”Y” - Task completion: Always pass computed arguments as a list to
finish-task-k tools, ensuring the order matches task specifications

### Usage Guidelines

The user will specify the instance index at the first layer, and the agent shall go through the
profile instances at different indexes and layers to obtain the attributes needed for the task.

## Policy Specifications

### General Policy 1
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The agent must first get access to the profile instance at layer 1 according to the user
specified primary key, alternatively, the agent may also search for the profile instance at
layer 1 when the user did not provide a profile instance at layer 1 and instead provided a
lookup field in profile layer 1.

### General Policy 2

The agent should always finish the task with the task required attribute combinations at one
time. If users specify multiple attribute combinations for the task (e.g., ’doing task i for all
the instances accessd in layer 1.’), the agent must call the finish task tool multiple times and
only address one attribute combination at a time.
## Task Specifications

### Task-Type-1

- The agent must access one profile instance at each of the layer 1, layer 2, layer 3 according
to the user request, - The agent should pass the following arguments into the finish-task-1
tool call: - arg-1: The average of all values: (layer-3-attribute-8 + 26 + 96) divided by
3 (integer division). - arg-2: The original lookup value of layer-1-attribute-3 from the
selected profile. - arg-3: The count of values greater than 50 among: layer-2-attribute-7,
layer-3-attribute-2, 90, 96. - arg-4: layer-3-attribute-1 if layer-3-attribute-1 ¿ 4, else 4. -
arg-5: The maximum among all values: layer-3-attribute-2, layer-2-attribute-7, 51, 59. -
Each task-1 completion requires exactly one profile from each of the specified layers. -
The agent should call the finish-task-1 tool with arguments from one instance per layer at a
time. - Multiple function calls may be needed if multiple profile combinations are requested.

### Task-Type-2

- The agent must access one profile instance at each of the layer 1 according to the user
request, - The agent should pass the following arguments into the finish-task-2 tool call:
- arg-1: The sum of all values: global-attribute-2, layer-1-attribute-7, 64, 56. - arg-2:
The original lookup value of layer-1-attribute-3 from the selected profile. - arg-3: The
average of all values: (global-attribute-3 + layer-1-attribute-1 + layer-1-attribute-2 + 63)
divided by 4 (integer division). - arg-4: The minimum among all values: global-attribute-3,
global-attribute-2, layer-1-attribute-7, 46, 40. - arg-5: The sum of even values among:
layer-1-attribute-8, layer-1-attribute-7, layer-1-attribute-1, 78. - The agent should call the
finish-task-2 tool with the arguments above for the selected profile instance.

### Task-Type-3

- The agent must access one profile instance at each of the layer 1, layer 2, layer 3 according
to the user request, - The agent should pass the following arguments into the finish-task-3
tool call: - arg-1: The maximum among all values: layer-3-attribute-7, 24, 14. - arg-2:
The result of (layer-2-attribute-1 + 2 + 73) modulo 100. - arg-3: The maximum between
layer-2-attribute-2 and 48. - arg-4: The original lookup value of layer-1-attribute-3 from
the selected profile. - arg-5: The sum of even values among: global-attribute-1, 5, 12. -
Each task-3 completion requires exactly one profile from each of the specified layers. -
The agent should call the finish-task-3 tool with arguments from one instance per layer at a
time. - Multiple function calls may be needed if multiple profile combinations are requested.

### Task-Type-4

- The agent must access one profile instance at each of the layer 1 according to the
user request, - The agent should pass the following arguments into the finish-task-4 tool
call: - arg-1: The maximum among all values: layer-1-attribute-1, 76, 65. - arg-2: The
product of global-attribute-3 and 8. - arg-3: The count of values greater than 50 among:
layer-1-attribute-8, layer-1-attribute-7, global-attribute-3, 22. - arg-4: The maximum
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among all values: global-attribute-2, 50, 66. - arg-5: The result of (layer-1-attribute-8 +
global-attribute-1 + 98 + 90) modulo 100. - The agent should call the finish-task-4 tool with
the arguments above for the selected profile instance.

### Task-Type-5

- The agent must access one profile instance at each of the layer 1, layer 2, layer 3 according
to the user request, - The agent should pass the following arguments into the finish-task-
5 tool call: - arg-1: The range (max - min) among: global-attribute-1, layer-3-attribute-8,
layer-2-attribute-2, 5, 99. - arg-2: The count of values greater than 50 among: layer-3-
attribute-8, global-attribute-1, layer-2-attribute-8, 49, 52. - arg-3: The original lookup value
of layer-1-attribute-3 from the selected profile. - arg-4: The average of all values: (layer-2-
attribute-7 + global-attribute-3 + layer-3-attribute-1 + 59) divided by 4 (integer division). -
arg-5: The sum of even values among: layer-2-attribute-2, global-attribute-2, 58, 79. - Each
task-5 completion requires exactly one profile from each of the specified layers. - The agent
should call the finish-task-5 tool with arguments from one instance per layer at a time. -
Multiple function calls may be needed if multiple profile combinations are requested.

C POLICY ANALYSIS DETAILS

We use the model itself (which still requires further internalization) as the LLM for policy analy-
sis, thereby avoiding potential knowledge distillation from stronger models. As described in Sec-
tion § 3.2, we categorize policy specifications into four major types based on their influence on agent
behavior:

1. Factual Type. The policy document states a fact that the agent must memorize and po-
tentially paraphrase when answering user queries. These specifications do not involve rea-
soning or decision-making, but require accurate recall. Example: “The refund will be
processed within 5–7 business days.”

2. Behavior Type. The policy prescribes or prohibits certain general behaviors, indepen-
dent of the workflow logic. Violating these rules does not change the structure of the task
but determines whether the agent’s behavior aligns with policy requirements. Example:
“Before taking any actions that update the booking database (booking, modifying flights,
editing baggage, upgrading cabin class, or updating passenger information), you must list
the action details and obtain explicit user confirmation (yes) to proceed.”

3. Conditional Type (Simple). The policy specifies simple conditional rules that directly
affect the agent’s workflow but require minimal reasoning to apply. The condition typically
involves a straightforward check on one variable or state. Example: “The agent can only
cancel the whole trip that is not flown.”

4. Conditional Type (Complex). The policy encodes nested or multi-branch conditional
logic that requires deeper reasoning to correctly apply. Such rules often involve multi-
ple attributes, role-specific constraints, or cumulative calculations, and thus present higher
complexity for the model. Example: “Checked bag allowance: If the booking user is a
regular member, 0 free checked bag for each basic economy passenger, 1 free checked bag
for each economy passenger, and 2 free checked bags for each business passenger. If the
booking user is a silver member, 1 free checked bag for each basic economy passenger, 2
free checked bag for each economy passenger, and 3 free checked bags for each business
passenger. If the booking user is a gold member, 2 free checked bag for each basic econ-
omy passenger, 3 free checked bag for each economy passenger, and 3 free checked bags
for each business passenger. Each extra baggage is 50 dollars.”

Prompt Used by LLMs to Perform Policy Analysis

You are a policy analysis assistant. Your task is to process the input policy document
according to the four steps below. For each step, you should follow the instruction, review
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the provided example, and output your results in the required format.

Step 1: Identify all available user-facing tasks defined in the policy. These should be
high-level actions users can request, such as ”Book Flight” or ”Cancel Flight” or ”Return
Item”. You should provide all the identified available tasks in a list, like the example below:

Example: Tasks: [’Book Flight’, ’Modify Flight’, ’Cancel Flight’, ’Process Refund’]

Based on the identified specification types, we design a pipeline for policy analysis and
the generation of Multi-Granular CPT data. The prompt used for Policy Analysis is shown
below.

Step 2: For each sentence or isolated specification from the policy document, identify
its type and scope. Types of the policy statements include: Fact Illustration, Behavior
Specification, Workflow Specification (Simple), Workflow Specification (Complex), and in-
context examples. You should output the complexity level if you identified the specification
as complex While scope refers to the relevant task the statement affects, for each isolated
statement, it’s valid scope can be among any of the above mentioned tasks. At last, you
should output all the identified Workflow Specification (Complex) types of specifications in
the policy in a list of dictionaries, which contains three fields for each dictionary, namely
content, complexity, and valid scope.

The descriptions and representative examples of each specification type are descibed and
listed as below:

Fact Illustration are types of specifications which provides factual information for future
usage. Here is a concrete example: Policy Document Content: The refund will go to
original payment methods in 5 to 7 business days.

Your output for this statement:

Fact Illustration:{Content: The refund will go to original payment methods in 5 to 7
business days. Valid Scope: [The tasks you identified as the valid scope of this policy.]}

Behavior Specification are types of specifications which cannot affect the agent’s workflow.
Here is a concrete example: Policy Document Content: Before take any action to update
database, you must you must list the action details and obtain explicit user confirmation
(yes) to proceed.

Your output for this statement:

Behavior Specification: {Content: Before take any action to update database, you must you
must list the action details and obtain explicit user confirmation (yes) to proceed. Valid
Scope: [The tasks you identified as the valid scope of this policy.]}

Workflow Specification (Simple) are types of specifications are specifications which can
affect the agent’s workflow, and this change is simple. There is usually just one speicifc
condition, which decides the next step. Here is a concrete example: Policy Document
Content: If the trip is flown, you cannot cancel the flight.

Your output for this statement:

Workflow Specification (Simple):{Content: Meal service eligibility: If the trip is flown,
you cannot cancel the flight.Valid Scope: [The tasks you identified as the valid scope of this
policy.]}
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Workflow Specification (Complex) are types of specifications are specifications which
can affect the agent’s workflow, and this change is complex and hierarchical. This usually
composes an if-else tree structure. The complexity level is decided upon the depth of
the if-else tree. Here is a concrete example: Policy Document Content: Meal service
eligibility: If the passenger is flying internationally and in business class, they are eligible
for a full-course meal and two beverages. If the passenger is flying internationally and in
economy class, they are eligible for a standard meal and one beverage. If the passenger is
flying domestically and the total flight time exceeds 3 hours, business class passengers are
eligible for a standard meal and one beverage, while economy passengers are eligible for
one snack and one beverage. If the passenger is flying domestically and the total flight time
is 3 hours or less, only business class passengers receive a complimentary snack; economy
passengers are not eligible for meal service.

Your output for this statement:

Workflow Specification (Complex): {Content: Meal service eligibility: If the passenger is
flying internationally and in business class, they are eligible for a full-course meal and two
beverages. If the passenger is flying internationally and in economy class, they are eligible
for a standard meal and one beverage. If the passenger is flying domestically and the total
flight time exceeds 3 hours, business class passengers are eligible for a standard meal and
one beverage, while economy passengers are eligible for one snack and one beverage. If
the passenger is flying domestically and the total flight time is 3 hours or less, only business
class passengers receive a complimentary snack; economy passengers are not eligible for
meal service. Complexity Level: 5 Valid Scope: [The tasks you identified as the valid scope
of this policy.]}
Note that you need to go through every single sentences in the policy document to make
sure that no Workflow Specification (Complex) are missed from your output. If you are
uncertian about the complexity level or the valid scope, you can output ’Uncertain’ for
these fields. Now you need to process the following policy document. Please organize your
complete output format as below:

Tasks: [Your Identified Tasks]

Fact Illustration: [”Content”: [Content of the Specification], ”Valid Scope”: [The list of
tasks you identified as the valid scope of this policy.], ”Content”: [Content of the Speci-
fication],”Valid Scope”: [The list of tasks you identified as the valid scope of this policy.], ...]

Behavior Specification: [”Content”: [Content of the Specification], ”Valid Scope”: [The list
of tasks you identified as the valid scope of this policy.], ”Content”: [Content of the Speci-
fication],”Valid Scope”: [The list of tasks you identified as the valid scope of this policy.], ...]

Workflow Specification (Simple) in the Policy Document: [”Content”: [Content of the
Specification], ”Valid Scope”: [The list of tasks you identified as the valid scope of this
policy.], ”Content”: [Content of the Specification],”Valid Scope”: [The list of tasks you
identified as the valid scope of this policy.], ...]

Workflow Specification (Complex) in the Policy Document: [”Content”: [Content of the
Specification], ”Complexity Level”: [Your Identified Complexity Level], ”Valid Scope”:
[The list of tasks you identified as the valid scope of this policy.], ”Content”: [Content of
the Specification], ”Complexity Level”: [Your Identified Complexity Level], ”Valid Scope”:
[The list of tasks you identified as the valid scope of this policy.], ...]

Note that the identification of a complex workflow should not be confused with cases where
there are multiple conditions but no branching hierarchy. For sentences like: If the user is
a platinum member or has booked a round-trip ticket, and experiences a missed connection
due to airline delay, the agent can offer lounge access at the next airport after confirming the
flight details. This sentence is of complexity 2. You need to work with the policy document
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and ensure that all the specifications and requirements specified in the document is fully
considered as one of these four types. Do not miss any specifications that is important. You
should not have any overlapped policy content between these categorizations.

You can simple treat the task as a split and classification. You should divide the policy
content into clear specification chunks, and categorize them into these four types.

Now you need to work with the following Policy Document:

{The Policy Document to be analyzed}

Due to the templated nature of our generated policy document. We could always easily analyze the
policy document successfully. However, for our later application on τ -bench. the policy analysis
can be inaccurate without human double check. We will report the F1 score of policy analysis in
Appendix I and analyze their effects for overall performance.

D MORE COMPREHENSIVE EXPERIMENTAL SETTINGS AND RESULTS

More Comprehensive Experimental Settings We use Qwen-2.5-32B and Qwen-3-32B for pol-
icy document internalization, selected for their strong prior knowledge and distinct performance
when complex policy documents are provided in context. To evaluate complexity effects, we con-
struct datasets that control for other factors while varying workflow complexity from level (1) to (3)
and task-level complexity across levels (3), (5), (8), and (12). For SFT, we train with between 1K
and 30K samples. We also apply our approach to τ -Bench, which provides only 500 training sam-
ples without CoT reasoning. Using Qwen-3-32B, we self-generate CoT trajectories, yielding 282
SFT samples. As noted in the main text, our SFT data ranges from 1K–30K samples. In terms of
CPT data size, we generate CPT data whose size depends on the specific policy document. For each
identified policy specification, we first generate paraphrases and QAs. We produce a limited number
of paraphrases and QAs for factual and behavioral specifications, while generating questions for all
branches of conditional specifications. This results in fewer than 1K QA pairs in total. Behavioral
role model data is relatively sparse, consisting of 1K sampled scenario-instance pairs for each iden-
tified behavioral specification. The largest portion of CPT data comes from scenario simulation,
where we generate 5K sampled pairs per conditional specification. For example, a policy document
with task-level (5) and workflow-level (2) can yield up to 125K scenario simulation samples, as it
contains five tasks, each with five arguments, and a workflow-level specification for each task. The
amount of trajectory familiarization data is kept consistent with the size of the SFT data.

For the smaller model Qwen-2.5-32B, the in-context performance on task completion is weak. With
sufficient SFT training data, performance can be boosted to a reasonable level. Despite this stronger
baseline after SFT, our CAP-CPT data and training still yield consistent improvements across all
scenarios. The gains are most evident in data-sparse settings, where the baseline remains marginal,
and in high-complexity scenarios, where performance is otherwise relatively low.

In contrast, for Qwen-3-32B, a much stronger model on agentic tasks, the SFT approach gener-
ally diminishes the model’s prior knowledge and provides limited gains regardless of training data
scale. Our CAP-CPT training continues to deliver improvements across scenarios, particularly in
data-sparse and high-complexity cases, but the final performance does not surpass Qwen-2.5-32B
and remains only comparable to the prompting baseline. However, we still achieve the goal of
internalization. We provide further details on this finding in Appendix F.

E EVALUATION FRAMEWORK OF POLICY DOCUMENT INTERNALIZATION

We designed a comprehensive evaluation framework for policy document internalization. Rather
than focusing solely on end tasks, where the model completes ordinary user queries under pol-
icy guidance, we introduce a broader set of tasks that better reflect real-world applications of this
approach. Specifically, our framework encompasses task completion, policy referral, policy sub-
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Figure 5: Performance curves for internalizing policy documents with varying workflow complex-
ities on Qwen-3-32B, comparing the baseline with our method. Our approach consistently out-
performs the baseline across all settings and substantially narrows the performance gap in high-
complexity and data-sparse scenarios. Note that while Qwen-3-32B is a model with stronger prior
knowledge, the internalization only yields comparable performance than prompting baseline. See
Appendix F for explanations.

Figure 6: Performance curves for internalizing policy documents with varying task-level complex-
ities on Qwen-2.5-32B, comparing the baseline with our method. Our approach consistently out-
performs the baseline across all settings and substantially narrows the performance gap in high-
complexity and data-sparse scenarios. The pattern is similar to the workflow complexity setting,
only the performance gap absolute values are a bit different.
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Figure 7: Performance curves for internalizing policy documents with varying workflow complex-
ities on Qwen-2.5-32B, comparing the baseline with our method. Our approach consistently out-
performs the baseline across all settings and substantially narrows the performance gap in high-
complexity and data-sparse scenarios.

Figure 8: Performance curves for internalizing policy documents with varying task-level complex-
ities on Qwen-3-32B, comparing the baseline with our method. Our approach consistently out-
performs the baseline across all settings and substantially narrows the performance gap in high-
complexity and data-sparse scenarios. The pattern is similar to the workflow complexity setting,
only the performance gap absolute values are a bit different. Note that while Qwen-3-32B is a
model with stronger prior knowledge, the internalization only yields comparable performance than
prompting baseline. See Appendix F for explanations.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 10: Task variants under Workflow (1) for Qwen3-32B and Qwen2.5-32B, comparing Gold
CoT SFT and CAP-CPT + Gold CoT SFT. Original Task (5) results are retained; new Task (3/8/12)
entries are added with blank cells for later fill. Prompting accuracy is shown when available.

Model Complexity Prompting Internalization Approach Internalization Training Data Size
1K 5K 10K 20K 30K

Qwen2.5-32B

Task (3)
Workflow (1)

0.26 Gold CoT SFT 0.15 0.82 0.95 0.97 0.97
CAP-CPT + Gold CoT SFT 0.61 0.96 0.97 0.98 0.99

Task (5)
Workflow (1)

0.07 Gold CoT SFT 0.04 0.80 0.95 0.97 0.98
CAP-CPT + Gold CoT SFT 0.57 0.94 0.98 0.98 0.99

Task (8)
Workflow (1)

0.02 Gold CoT SFT 0.07 0.67 0.82 0.86 0.92
CAP-CPT + Gold CoT SFT 0.55 0.86 0.91 0.94 0.96

Task (12)
Workflow (1)

0.01 Gold CoT SFT 0.03 0.61 0.73 0.81 0.87
CAP-CPT + Gold CoT SFT 0.47 0.77 0.88 0.90 0.91

Qwen3-32B

Task (3)
Workflow (1)

0.83 Gold CoT SFT 0.05 0.51 0.59 0.73 0.81
CAP-CPT + Gold CoT SFT 0.49 0.71 0.76 0.82 0.86

Task (5)
Workflow (1)

0.82 Gold CoT SFT 0.03 0.41 0.55 0.71 0.78
CAP-CPT + Gold CoT SFT 0.44 0.67 0.72 0.74 0.80

Task (8)
Workflow (1)

0.75 Gold CoT SFT 0.03 0.39 0.51 0.67 0.73
CAP-CPT + Gold CoT SFT 0.45 0.65 0.69 0.72 0.76

Task (12)
Workflow (1)

0.71 Gold CoT SFT 0.01 0.35 0.46 0.60 0.65
CAP-CPT + Gold CoT SFT 0.39 0.59 0.63 0.69 0.70

Figure 9: Average input token compression across different scenarios, varying from workflow (1)
complexity to workflow (3) complexity. The compression rate reaches up to 97.3% when the com-
plexity is high.

stitution, policy override, and general instruction following, as detailed below. In addition, we
provide exemplar templates for each evaluation task as well as a baseline prompting setup.

Illustrative Prompt Format for Baseline Prompting Evaluation

[General Instructions]
Based on the Policy document below, answer the user query.
Policy Document: [Complete Content of the Policy]
User query: [Content of the User Query (related to task solving)]
Model Response: [LLM Output]

Task Completion. At the core, we enhance the task completion capability of the LLM agent so it
can effectively serve as a user assistant. Given a user query tagged with the corresponding policy
identifier (special token), the model is expected to perform self-reasoning, tool calls, and multi-round
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observations, ultimately resolving the query with all actions correct. We measure performance using
the overall success rate (SR).

Illustrative Prompt Format for Task Completion Evaluation

[General Instructions]
Based on the policy document #P12301 you previously learnt about, answer the user query.
User query: [Content of the User Query (related to task solving]
Model Response: [LLM Output]

Policy Referral. To assess whether the LLM agent fully understands and internalizes the target
policy document, we design QA tasks that probe specific policy details: for example, asking how
to compute a parameter or complete a subtask. Since the answers are free-form generations, we
employ an evaluation LLM to assign a 0–5 score, which we rescale to 0–100.

Illustrative Prompt Format for Policy-referral Evaluation

[General Instructions]
Based on the Policy document #P12301 you have previously learnt about, answer questions
about the details of the policy.
User query: [Questions Regarding to Content of the Policy Document]
Model Response: [LLM Output]

Policy Substitution and Override. Real-world effectiveness requires models to handle policy
changes. Substitution refers to replacing the entire policy document with another, while override
refers to modifying only certain parts of a policy. For both settings, we evaluate task success rate.

Illustrative Prompt Format for Policy-substitute Evaluation

[General Instructions]
Based on the Policy document below, answer the user query.
Policy Document: [Complete Content of the New Policy Document (which was not inter-
nalized in the training stages before)]
User query: [Content of the User Query (related to task solving)]
Model Response: [LLM Output]

Illustrative Prompt Format for Policy-override Evaluation

[General Instructions]
Based on the policy document #P12301 you previously learnt about, note that the following
parts of the Policy has been changed: [Content of Overrided Policy]
User query: [Content of the User Query (related to task solving]
Model Response: [LLM Output]

General Instruction Following. To ensure that policy internalization does not compromise general
capabilities, we also evaluate the model on the IF-Eval benchmark (Table ??), which measures
adherence to a broad range of natural instructions.

Finally, we emphasize that such a comprehensive evaluation is rarely supported by prior bench-
marks. In contrast, our benchmark, generated using CC-Gen, offers unique advantages that enable
this broader and more rigorous evaluation.
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Table 11: Self-Generated CoT gives better performance for inherently strong models Perfor-
mance of Qwen-3-32B (Prompting = 0.53) on Task (3), Workflow (5). Self-generated CoT provides
noticeable gains, and when combined with Multi-Granular CPT, achieves the highest performance.

Model Task / Workflow promp ting Internalization Approach Internalization Training Data Size
1K 5K 10K 20K 30K

Qwen-3-32B Task (3)
Workflow (5) 0.53

Gold CoT SFT 0.01 0.13 0.17 0.31 0.36
Self-Generated CoT SFT 0.04 0.19 0.24 0.37 0.46

CAP-CPT + Gold CoT SFT 0.16 0.27 0.39 0.41 0.47
CAP-CPT + Self Generated CoT SFT 0.19 0.33 0.45 0.49 0.58

F INTUITIVE UNDERSTANDING OF OUR OBSERVATIONS

F.1 WHY OUR CAP-CPT APPROACH WORKS WELL

To understand why our Category-Aware Policy Continued Pretraining(CAP-CPT) approach is effec-
tive, it is important to examine the limitations of standard SFT and CPT methods. We summarize
the main challenges in handling policy complexity as follows:

(1) Data sparsity. Data sparsity (Bansal et al., 2022) has long been a dominant issue in deep
learning. Policy specifications involving complex reasoning often require substantially more data
to support effective learning. However, the common practice of sampling user–agent interaction
trajectories provides only random coverage of the interaction space. Given the length of policy doc-
uments and the breadth of business scenarios, such sampled trajectories rarely capture the nuanced
cases needed to train models on complex conditional specifications, even when the overall dataset is
large. In addition, SFT can lead to catastrophic forgetting (McCloskey & Cohen, 1989; Kirkpatrick
et al., 2017; Zhang & et al., 2019), a phenomenon especially pronounced in well-trained language
models (Zhang et al., 2025b).

(2) Limitations of common CPT approaches. Conventional continued pretraining (Zhou et al.,
2024) typically relies on paraphrases or QA pairs to improve memorization of specific content.
However, the objective of policy internalization extends beyond rote recall: the model must also
apply policies in practice, demonstrating appropriate behaviors and reasoning grounded in policy
content. As highlighted in knowledge-centric studies (Cohen et al., 2024; Liu et al., 2024a), training
with purely memorization-centric data fails to foster logical generalization, compositional reasoning,
or relation specificity, phenomena often described as ripple effects in knowledge perception.

Our CAP-CPT approach directly addresses these challenges by emphasizing the creation of
scenario-simulation data for complex conditional specifications. These specifications, which pose
the greatest workflow complexity, are represented with sufficient simulated data to generate diverse
and realistic usage examples, mitigating the limited coverage of SFT trajectories. Moreover, the
continued pretraining objective ensures balanced learning, reducing bias toward memorization and
alleviating catastrophic forgetting.

F.2 TRAINING WITH STRONGER MODELS DOES NOT YIELD BETTER PERFORMANCE

We conduct experiments on two models with different levels of prior knowledge and reasoning abil-
ity in agentic tasks: a stronger model, QWEN-3-32B, which already achieves high baseline accuracy
on policy reasoning, and a weaker model, QWEN-2.5-32B, which starts from a substantially lower
baseline. Interestingly, after applying our internalization method, we observe a clear divergence: the
stronger model remains close to its original performance even with large amounts of additional data,
whereas the weaker model exhibits dramatic improvement, approaching nearly 100% success rate.

We interpret this phenomenon through the lens of prior knowledge stability and learning dynam-
ics. The stronger model’s competence is largely anchored in its pretrained representations, leaving
limited room for further gains; moreover, its richer parametric knowledge makes it more fragile to
fine-tuning, where additional supervision can induce overfitting to synthetic trajectories or trigger
catastrophic forgetting of its broader capabilities (McCloskey & Cohen, 1989; Kirkpatrick et al.,
2017; Zhang & et al., 2019). By contrast, the weaker model’s prior knowledge is less entrenched,
allowing it to more flexibly incorporate the targeted Multi-Granular CPT data. Instead of overwriting
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strong existing reasoning patterns, fine-tuning serves to fill critical gaps and solidify policy-specific
knowledge, thereby yielding substantial performance gains.

As shown in Table 11, the QWEN-3-32B model achieves higher performance when trained with
Self-CoT data compared to using Gold CoT trajectories as SFT data. This suggests that QWEN-
3-32B benefits more from self-generated rationales that align closely with its existing knowledge,
making such information easier for the model to internalize.

G MULTIPLE POLICY INTERNALIZATION

While our main experiments focus on internalizing policies individually, we further demonstrate that
our approach can support the simultaneous internalization of multiple policies, regardless of their
complexity levels. To test this, we conduct experiments on QWEN-3-32B by mixing the training
data from four distinct policy documents of different task level complexities and jointly fine-tuning
the model on the combined dataset. As shown in Table 12, the model maintains strong performance
on each individual policy even under this mixed setting. However, we note that this experiment is
limited to only four policies, and scaling to a much larger number of policies remains challenging
due to the substantial computational cost.

Table 12: Internalization performance for Qwen3-32B with CAP-CPT + Gold CoT SFT. Second
block shows the same setting fine-tuned with mixed-policy.

Qwen3-32B — CAP-CPT + Gold CoT SFT (Single-Policy Fine-Tuning)

Model Complexity Prompting Internalization Approach Internalization Training Data Size
1K 5K 10K 20K 30K

Qwen3-32B

Task (3)
Workflow (1) 0.83 CAP-CPT + Gold CoT SFT 0.49 0.71 0.76 0.82 0.86

Task (5)
Workflow (1) 0.82 CAP-CPT + Gold CoT SFT 0.44 0.67 0.72 0.74 0.80

Task (8)
Workflow (1) 0.75 CAP-CPT + Gold CoT SFT 0.45 0.65 0.69 0.72 0.76

Task (12)
Workflow (1) 0.71 CAP-CPT + Gold CoT SFT 0.39 0.59 0.63 0.69 0.70

Qwen3-32B — CAP-CPT + Gold CoT SFT (Mixed-Policy Fine-Tuning)

Qwen3-32B

Task (3)
Workflow (1) 0.83 CAP-CPT + Gold CoT SFT 0.48 0.71 0.76 0.82 0.86

Task (5)
Workflow (1) 0.82 CAP-CPT + Gold CoT SFT 0.44 0.67 0.72 0.73 0.80

Task (8)
Workflow (1) 0.75 CAP-CPT + Gold CoT SFT 0.45 0.65 0.69 0.73 0.78

Task (12)
Workflow (1) 0.71 CAP-CPT + Gold CoT SFT 0.41 0.59 0.64 0.69 0.72

H MORE DETAILS ON ABLATION STUDY

We use two alternative settings to independently evaluate the effectiveness of our proposed training
data and algorithm. In Section§ 4, we have already shown that our approach achieves the best over-
all performance on completing user specified tasks. However, the alternatives also reveal interesting
side benefits. As shown in Table 13, excluding Scenario Simulation data during continued pretrain-
ing improves general performance on policy Override, while using the generated CAP-CPT data for
SFT yields a slight gain in policy Referral scores.

We attribute the former to the fact that reduced CPT training limits memorization of the policy
document, making the model less rigid when perform overriding. Conversely, the latter can be
explained by SFT’s stronger memorization of certain patterns, which helps directly answer referral-
style queries. In general, CPT training contributes more to global understanding and faithful memo-
rization of policy documents, whereas SFT-based approaches emphasize alignment with the training
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distribution. However, this alignment comes at the cost of limited generalization and a potential risk
of forgetting previously acquired knowledge.

Table 13: Ablation Study — notable benefits with both alternatives. Policy performance of
Qwen-3-32B (Prompting = 0.53). The first block (Override) shows the effect of discarding scenario
simulation data. The second block (Referral) shows the effect of using CPT data in the SFT stage.
Both variants reveal complementary benefits, with Multi-Granular CPT + SFT and CPT-based SFT
improving performance in different ways.

Model Complexity Prompting Internalization Approach Internalization Training Data Size
1K 5K 10K 20K 30K

Qwen-3-32B
(Override)

Task (5)
Workflow (3)

0.53
Gold CoT SFT 0.00 0.00 0.00 0.00 0.00

CAP-CPT + Gold CoT SFT 0.09 0.12 0.17 0.22 0.25
No Scenario Simulation CAP-CPT + SFT 0.11 0.13 0.19 0.22 0.27

Qwen-3-32B
(Referral)

Task (5)
Workflow (3)

0.76
Gold CoT SFT 0.00 0.00 0.00 0.00 0.00

CAP-CPT + Gold CoT SFT 0.59 0.31 0.23 0.20 0.13
CPT data used for SFT 0.68 0.63 0.67 0.66 0.61

I APPLICATION TO τ -BENCH

Table 14: Performance of our CAP-CPT on Qwen3-32B over τ -bench, compressing the overall
input by 34.8% while slightly improving performance compared to prompting.

Model Domain Prompting Self-CoT SFT CAP-CPT + Self-CoT SFT Prompt Compression
Qwen3-32B Retail 26.96 23.48 28.70 34.81%

We apply our approach to τ -bench (Yao et al., 2024) to further validate its effectiveness. The original
benchmark is evaluated in a user-simulator–plus–agent setting, where the language model serves
not only as the assistant but also as the simulated user. However, agent performance in this setup is
largely constrained by the quality of the simulator, which can introduce substantial errors. To better
isolate the agent’s reasoning ability, we curate τ -bench into a single-turn agentic benchmark: the
user specifies all requirements at the outset, and the LLM agent must then complete the task through
multi-round reasoning, tool use, and observation.

We first evaluate the F1 score of our policy analysis process on τ -Bench. We manually annotate
the specification types in τ -Bench policy documents and compare them with the predictions from
our analysis pipeline. Results show that the F1 score on high-complexity conditional specifications
is perfect (100%), while simple conditional specifications reach 87.5% F1, mainly due to their dis-
tinctive structure. In contrast, factual and behavioral specifications achieve high precision but suffer
from lower recall, often missing fine-grained requirements. Specifically, factual specifications yield
an F1 of 75% (precision 100%, recall 60%), and behavioral specifications reach 66.7% (precision
0.86, recall 0.55). We did not apply any manual correction when using these outputs for CAP-CPT
data generation and training, thereby reflecting the pipeline’s performance in more realistic settings.

Table 14 reports results of applying our approach on τ -bench. Although τ -bench includes complex-
ity annotations, the tasks are not highly complex—each policy document typically contains only one
or two workflow specifications. Moreover, the dataset is relatively small, with just 500 examples. To
generate trajectories for SFT, we let the LLM to be internalized perform the tasks itself, resulting in
282 training examples. While SFT trained on these examples underperforms compared to prompt-
ing alone, augmenting them with our CAP-CPT data and applying the combined CPT+SFT process
yields performance that surpasses prompting, achieving an input token internalization rate of up to
35%. These results highlight the utility of our approach, especially in data-sparse scenarios.

J ERROR EXAMPLES OF SOTA LLMS ON τ -BENCH

In this section, we present a complete error example where a state-of-the-art LLM fails on complex
τ -Bench specifications, highlighting the importance of addressing complex requirements in agent
policy documents.
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Claude-4-sonnet Error Example on Tau-bench

# Airline Agent Policy
The current time is 2024-05-15 15:00:00 EST.
As an airline agent, you can help users book, modify, or cancel flight reservations.
- Before taking any actions that update the booking database (booking, modifying flights,
editing baggage, upgrading cabin class, or updating passenger information), you must list
the action details and obtain explicit user confirmation (yes) to proceed.
- You should not provide any information, knowledge, or procedures not provided by the
user or available tools, or give subjective recommendations or comments.
- You should only make one tool call at a time, and if you make a tool call, you should not
respond to the user simultaneously. If you respond to the user, you should not make a tool
call at the same time.
- You should deny user requests that are against this policy.
- You should transfer the user to a human agent if and only if the request cannot be handled
within the scope of your actions.

## Domain Basic
- Each user has a profile containing user id, email, addresses, date of birth, payment
methods, reservation numbers, and membership tier.
- Each reservation has an reservation id, user id, trip type (one way, round trip), flights,
passengers, payment methods, created time, baggages, and travel insurance information.
- Each flight has a flight number, an origin, destination, scheduled departure and arrival time
(local time), and for each date:
- If the status is ävailable,̈ the flight has not taken off, available seats and prices are listed.
- If the status is d̈elayedör ön time,̈ the flight has not taken off, cannot be booked.
- If the status is f̈lying,̈ the flight has taken off but not landed, cannot be booked.

## Book flight
- The agent must first obtain the user id, then ask for the trip type, origin, destination.
- Passengers: Each reservation can have at most five passengers. The agent needs to collect
the first name, last name, and date of birth for each passenger. All passengers must fly the
same flights in the same cabin.
- Payment: each reservation can use at most one travel certificate, at most one credit card,
and at most three gift cards. The remaining amount of a travel certificate is not refundable.
All payment methods must already be in user profile for safety reasons.
- Checked bag allowance: If the booking user is a regular member, 0 free checked bag
for each basic economy passenger, 1 free checked bag for each economy passenger, and 2
free checked bags for each business passenger. If the booking user is a silver member, 1
free checked bag for each basic economy passenger, 2 free checked bag for each economy
passenger, and 3 free checked bags for each business passenger. If the booking user is a
gold member, 2 free checked bag for each basic economy passenger, 3 free checked bag for
each economy passenger, and 3 free checked bags for each business passenger. Each extra
baggage is 50 dollars. [High complexity part marked in red]
- Travel insurance: the agent should ask if the user wants to buy the travel insurance, which
is 30 dollars per passenger and enables full refund if the user needs to cancel the flight given
health or weather reasons.

## Modify flight
- The agent must first obtain the user id and the reservation id.
- Change flights: Basic economy flights cannot be modified. Other reservations can be
modified without changing the origin, destination, and trip type. Some flight segments can
be kept, but their prices will not be updated based on the current price. The API does not
check these for the agent, so the agent must make sure the rules apply before calling the
API!
- Change cabin: all reservations, including basic economy, can change cabin without
changing the flights. Cabin changes require the user to pay for the difference between their
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current cabin and the new cabin class. Cabin class must be the same across all the flights in
the same reservation; changing cabin for just one flight segment is not possible.
- Change baggage and insurance: The user can add but not remove checked bags. The user
cannot add insurance after initial booking.
- Change passengers: The user can modify passengers but cannot modify the number of
passengers. This is something that even a human agent cannot assist with.
- Payment: If the flights are changed, the user needs to provide one gift card or credit card
for payment or refund method. The agent should ask for the payment or refund method
instead.

## Cancel flight
- The agent must first obtain the user id, the reservation id, and the reason for cancellation
(change of plan, airline cancelled flight, or other reasons)
- All reservations can be cancelled within 24 hours of booking, or if the airline cancelled
the flight. Otherwise, basic economy or economy flights can be cancelled only if travel
insurance is bought and the condition is met, and business flights can always be cancelled.
The rules are strict regardless of the membership status. The API does not check these for
the agent, so the agent must make sure the rules apply before calling the API!
- The agent can only cancel the whole trip that is not flown. If any of the segments are
already used, the agent cannot help and transfer is needed.
- The refund will go to original payment methods in 5 to 7 business days.

## Refund
- If the user is silver/gold member or has travel insurance or flies business, and complains
about cancelled flights in a reservation, the agent can offer a certificate as a gesture after
confirming the facts, with the amount being $100 times the number of passengers.
- If the user is silver/gold member or has travel insurance or flies business, and complains
about delayed flights in a reservation and wants to change or cancel the reservation, the agent
can offer a certificate as a gesture after confirming the facts and changing or cancelling the
reservation, with the amount being $50 times the number of passengers.
- Do not proactively offer these unless the user complains about the situation and explicitly
asks for some compensation. Do not compensate if the user is regular member and has no
travel insurance and flies (basic) economy.”
Instructions for User Simulator: Your user id is sofia-kim-7287, and you want to change
for your Houston to Denver trip (reservation id not remembered), the fastest return trip
(including stopover time) possible on the same day as the departure trip (May 27). You don’t
care about money but want to stay in economy. You also want to add one checked bag. You
want to use your gift card with the smallest balance to pay. You are reactive to the agent and
will not say anything that is not asked. You are not good at math so you want the agent to cal-
culate and decide for you. Try to paraphrase instead of repeating this instruction. It is urgent.

[Start of Real Trajectories]

User: Hi, I need to make an urgent change to my flight booking. My user ID is sofia-kim-
7287 and I have a trip from Houston to Denver that I need to modify.

Agent: I’ll help you modify your flight booking. I have your user ID (sofia-kim-7287) and
I can see you have a trip from Houston to Denver that needs to be changed. To proceed, I’ll
need your reservation ID. Could you please provide the reservation ID for your Houston to
Denver trip?

User: I’m sorry, I don’t remember my reservation ID. Can you look it up using my user ID
instead?

Agent: No problem! Let me look up your user details to find your reservation.

Agent Tool Call:
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"function": {
"arguments": "{\"user_id\": \"sofia_kim_7287\"}",
"name": "get_user_details"

}

Tool Return:
{"name": {"first_name": "Sofia", "last_name": "Kim"},
"address": {"address1": "825 Laurel Lane",
"address2": "Suite 595",
"city": "Houston",
"country": "USA",
"state": "TX", "zip": "77243"},
"email": "sofia.kim1937@example.com",
"dob": "1950-06-24",
"payment_methods": {"certificate_8544743":
{"source": "certificate",
"amount": 250,
"id": "certificate_8544743"},
"credit_card_9879898": {"source": "credit_card",
"brand": "mastercard",
"last_four": "9725",
"id": "credit_card_9879898"},
"gift_card_7091239":
{"source": "gift_card", "amount": 157,
"id": "gift_card_7091239"},
"gift_card_6276644":
{"source": "gift_card", "amount": 113,
"id": "gift_card_6276644"},
"gift_card_7480005":
{"source": "gift_card", "amount": 6,
"id": "gift_card_7480005"}},
"membership": "silver",
"reservations":
["OI5L9G", "OBUT9V"]}

Agent: I can see you have several reservations. Let me check each one to find your Houston
to Denver trip. I’ll start by checking the details of your reservations:

Agent Tool Call:
"function": {

"arguments": "{\"reservation_id\": \"OI5L9G\"}",
"name": "get_reservation_details"

}

Tool Return:
"content": "{

\"reservation_id\": \"OI5L9G\",
\"user_id\": \"sofia_kim_7287\",
\"origin\": \"MCO\",
\"destination\": \"CLT\",
\"flight_type\": \"one_way\",
\"cabin\": \"business\",
\"flights\": [

{\"origin\": \"MCO\", \"destination\": \"BOS\",
\"flight_number\": \"HAT017\", \"date\": \"2024-05-25\",
\"price\": 523},
{\"origin\": \"BOS\", \"destination\": \"CLT\",
\"flight_number\": \"HAT277\", \"date\": \"2024-05-25\",
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\"price\": 501}
],
\"passengers\": [

{\"first_name\": \"Sofia\",
\"last_name\": \"Kim\", \"dob\": \"1950-06-24\"},
{\"first_name\": \"Mia\",
\"last_name\": \"Jackson\", \"dob\": \"1986-05-05\"}

],
\"payment_history\": [

{\"payment_id\": \"gift_card_6276644\", \"amount\": 2048}
],
\"created_at\": \"2024-05-01T09:08:54\",
\"total_baggages\": 2,
\"nonfree_baggages\": 0,
\"insurance\": \"no\"

}"

Agent Tool Call:
"function": {

"arguments": "{\"reservation_id\": \"OBUT9V\"}",
"name": "get_reservation_details"

}

Tool Return:
"content": "{

\"reservation_id\": \"OBUT9V\",
\"user_id\": \"sofia_kim_7287\",
\"origin\": \"IAH\",
\"destination\": \"DEN\",
\"flight_type\": \"round_trip\",
\"cabin\": \"economy\",
\"flights\": [

{\"origin\": \"IAH\", \"destination\": \"ORD\",
\"flight_number\": \"HAT078\", \"date\": \"2024-05-27\",
\"price\": 146},
{\"origin\": \"ORD\", \"destination\": \"DEN\",
\"flight_number\": \"HAT118\", \"date\": \"2024-05-27\",
\"price\": 167},
{\"origin\": \"DEN\", \"destination\": \"LAS\",
\"flight_number\": \"HAT084\", \"date\": \"2024-05-28\",
\"price\": 122},
{\"origin\": \"LAS\", \"destination\": \"IAH\",
\"flight_number\": \"HAT266\", \"date\": \"2024-05-28\",
\"price\": 131}

],
\"passengers\": [

{\"first_name\": \"Sofia\",
\"last_name\": \"Kim\", \"dob\": \"1950-06-24\"}

],
\"payment_history\": [

{\"payment_id\": \"gift_card_7091239\", \"amount\": 566}
],
\"created_at\": \"2024-05-07T16:32:35\",
\"total_baggages\": 1,
\"nonfree_baggages\": 0,
\"insurance\": \"no\"

}"
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Agent: Perfect! I found your Houston to Denver trip. Your reservation ID is **OBUT9V**.
Here are the details of your current reservation:
- **Reservation ID**: OBUT9V
- **Trip**: Houston (IAH) to Denver (DEN) - Round trip -
**Cabin**: Economy
- **Outbound**: May 27, 2024 - IAH to ORD on flight HAT078
- ORD to DEN on flight HAT118- **Return**: May 28, 2024
- DEN to LAS on flight HAT084 - LAS to IAH on flight HAT266
- **Passenger**: Sofia Kim
- **Baggage**: 1 checked bag (free)
What specific changes would you like to make to this reservation? You can:
- Change your flights (keeping the same origin/destination)
- Upgrade your cabin class
- Add more checked bags
Please let me know what modifications you need.

User: I need to change my return flight to the same day as my departure - May 27th. I want
the fastest return trip possible on that day, including any stopover time. I don’t care about
the cost but want to stay in economy. Also, I need to add one more checked bag.

Agent: I understand you want to: 1. Change your return flight from May 28th to May 27th
(same day as departure) 2. Find the fastest return option on May 27th 3. Stay in economy
class 4. Add one more checked bag (from 1 to 2 total bags) Let me search for available
return flights from Denver to Houston on May 27th to find the fastest option:

Agent Tool Call:
"function": {

"arguments": "{\"destination\": \"IAH\",
\"date\": \"2024-05-27\", \"origin\": \"DEN\"}",
"name": "search_onestop_flight"

},
Tool Return:
"content": "[[

{
\"flight_number\": \"HAT084\",
\"origin\": \"DEN\",
\"destination\": \"LAS\",
\"scheduled_departure_time_est\": \"04:00:00\",
\"scheduled_arrival_time_est\": \"06:00:00\",
\"status\": \"available\",
\"available_seats\": {

\"basic_economy\": 0,
\"economy\": 20,
\"business\": 20

},
\"prices\": {

\"basic_economy\": 50,
\"economy\": 112,
\"business\": 438

},
\"date\": \"2024-05-27\"

},
{

\"flight_number\": \"HAT175\",
\"origin\": \"LAS\",
\"destination\": \"IAH\",
\"scheduled_departure_time_est\": \"17:00:00\",
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\"scheduled_arrival_time_est\": \"20:00:00\",
\"status\": \"available\",
\"available_seats\": {

\"basic_economy\": 7,
\"economy\": 16,
\"business\": 1

},
\"prices\": {

\"basic_economy\": 95,
\"economy\": 170,
\"business\": 246

},
\"date\": \"2024-05-27\"

}
],
[

{
\"flight_number\": \"HAT084\",
\"origin\": \"DEN\",
\"destination\": \"LAS\",
\"scheduled_departure_time_est\": \"04:00:00\",
\"scheduled_arrival_time_est\": \"06:00:00\",
\"status\": \"available\",
\"available_seats\": {

\"basic_economy\": 0,
\"economy\": 20,
\"business\": 20

},
\"prices\": {

\"basic_economy\": 50,
\"economy\": 112,
\"business\": 438

},
\"date\": \"2024-05-27\"

},
{

\"flight_number\": \"HAT266\",
\"origin\": \"LAS\",
\"destination\": \"IAH\",
\"scheduled_departure_time_est\": \"13:00:00\",
\"scheduled_arrival_time_est\": \"16:00:00\",
\"status\": \"available\",
\"available_seats\": {

\"basic_economy\": 12,
\"economy\": 5,
\"business\": 8

},
\"prices\": {

\"basic_economy\": 80,
\"economy\": 130,
\"business\": 378

},
\"date\": \"2024-05-27\"

}
],
[

{
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\"flight_number\": \"HAT229\",
\"origin\": \"DEN\",
\"destination\": \"LAS\",
\"scheduled_departure_time_est\": \"11:00:00\",
\"scheduled_arrival_time_est\": \"13:00:00\",
\"status\": \"available\",
\"available_seats\": {

\"basic_economy\": 19,
\"economy\": 0,
\"business\": 5

},
\"prices\": {

\"basic_economy\": 80,
\"economy\": 109,
\"business\": 338

},
\"date\": \"2024-05-27\"

},
{

\"flight_number\": \"HAT175\",
\"origin\": \"LAS\",
\"destination\": \"IAH\",
\"scheduled_departure_time_est\": \"17:00:00\",
\"scheduled_arrival_time_est\": \"20:00:00\",
\"status\": \"available\",
\"available_seats\": {

\"basic_economy\": 7,
\"economy\": 16,
\"business\": 1

},
\"prices\": {

\"basic_economy\": 95,
\"economy\": 170,
\"business\": 246

},
\"date\": \"2024-05-27\"

}
],
{

"flight_number": "HAT084",
"origin": "DEN",
"destination": "LAS",
"scheduled_departure_time_est": "04:00:00",
"scheduled_arrival_time_est": "06:00:00",
"status": "available",
"available_seats": {

"basic_economy": 0,
"economy": 20,
"business": 20

},
"prices": {

"basic_economy": 50,
"economy": 112,
"business": 438

},
"date": "2024-05-27"

},
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{
"flight_number": "HAT266",
"origin": "LAS",
"destination": "IAH",
"scheduled_departure_time_est": "13:00:00",
"scheduled_arrival_time_est": "16:00:00",
"status": "available",
"available_seats": {

"basic_economy": 12,
"economy": 5,
"business": 8

},
"prices": {

"basic_economomy": 80,
"economy": 130,
"business": 378

},
"date": "2024-05-27"

}

Agent: ”Perfect! I found several return flight options for May 27th. Let me analyze the
fastest options:
**Available return flight options on May 27th (DEN to IAH):
**1. **FASTEST OPTION**: - DEN to LAS: HAT229 (11:00 AM - 1:00 PM) - LAS to
IAH: HAT266 (1:00 PM - 4:00 PM) - **Total travel time: 5 hours** (11:00 AM - 4:00 PM)
- No layover time needed (arrives and departs LAS at same time)
2. Second fastest: - DEN to LAS: HAT084 (4:00 AM - 6:00 AM) - LAS to IAH: HAT266
(1:00 PM - 4:00 PM) - Total travel time: 12 hours (4:00 AM - 4:00 PM) with 7-hour layover
3. Third option: - DEN to LAS: HAT290 (2:00 PM - 4:00 PM) - LAS to IAH: HAT175
(5:00 PM - 8:00 PM) - Total travel time: 6 hours (2:00 PM - 8:00 PM) with 1-hour layover
The **fastest option** is HAT229 + HAT266, arriving at 4:00 PM in Houston.
However, I notice that HAT229 shows 0 economy seats available. Let me recommend the
**third option** (HAT290 + HAT175) which is only 1 hour longer and has economy seats
available.
**Proposed changes:**
- **Flight changes**: Keep outbound flights, change return to HAT290 (DEN-LAS) +
HAT175 (LAS-IAH) on May 27th
-**Baggage**: Increase from 1 to 2 checked bags (1 additional bag = $50)
-**Cabin**: Stay in economy
Would you like me to proceed with these changes? I’ll need a payment method for the
additional baggage fee and any flight change costs.

User: Yes, please proceed with those changes. I want to use my gift card with the smallest
balance to pay for this. Can you help me figure out which one that would be and calculate
the total cost?

Agent: ”**Cost Breakdown:**
- **Flight change cost**: $59 (new flights $312 - current flights $253)
- **Additional baggage**: $50 (1 extra checked bag)
- **Total cost**: $109
**Your gift card balances:**
- gift-card-7480005: $6 (smallest balance)
- gift-card-6276644: $113
- gift-card-7091239: $157
Unfortunately, your gift card with the smallest balance ($6) won’t cover the total cost of
$109. You have these payment options:
- **gift-card-6276644** ($113) - would cover the full amount
- **gift-card-7091239** ($157) - would cover the full amount
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- **credit-card-9879898** (Mastercard ending in 9725)
Which payment method would you prefer to use for the $109 total cost?

User: Oh, you’re right - my smallest gift card won’t cover it. Please use the gift card with
$113 then, since that’s the next smallest one that will actually cover the cost.

Agent: ”Perfect! I’ll use gift-card-6276644 ($113) to cover the $109 total cost.
**Summary of changes to confirm:**
- **Reservation ID**: OBUT9V
- **Flight changes**:
- Keep outbound flights on May 27th (IAH - ORD - DEN)
- Change return flights to May 27th: HAT290 (DEN - LAS 2:00-4:00 PM) + HAT175 (LAS
- IAH 5:00-8:00 PM)
- **Baggage**: Increase from 1 to 2 checked bags
- **Cabin**: Stay in economy
- **Payment**: gift-card-6276644 ($113 balance)- **Total cost**: $109
Do you confirm these changes? Please respond with yes to proceed.”

User: Yes, I confirm these changes.
Agent Tool Call:
"function": {

"arguments": "{\
\"reservation_id\": \"OBUT9V\", \
\"cabin\": \"economy\", \
\"flights\": [\

{\"flight_number\": \"HAT078\",
\"date\": \"2024-05-27\"}, \
{\"flight_number\": \"HAT118\",
\"date\": \"2024-05-27\"}, \
{\"flight_number\": \"HAT290\",
\"date\": \"2024-05-27\"}, \
{\"flight_number\": \"HAT175\",
\"date\": \"2024-05-27\"}\

], \
\"payment_id\": \"gift_card_627644\"\

}",
"name": "update_reservation_flights"

}

Tool Return:
"content": "{

\"reservation_id\": \"OBUT9V\",
\"user_id\": \"sofia_kim_7287\",
\"origin\": \"IAH\",
\"destination\": \"DEN\",
\"flight_type\": \"round_trip\",
\"cabin\": \"economy\",
\"flights\": [

{
\"flight_number\": \"HAT078\",
\"date\": \"2024-05-27\",
\"price\": 146,
\"origin\": \"IAH\",
\"destination\": \"ORD\"

},
{

\"flight_number\": \"HAT118\",
\"date\": \"2024-05-27\",
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\"price\": 167,
\"origin\": \"ORD\",
\"destination\": \"DEN\"

},
{

\"flight_number\": \"HAT290\",
\"date\": \"2024-05-27\",
\"price\": 142,
\"origin\": \"DEN\",
\"destination\": \"LAS\"

},
{

\"flight_number\": \"HAT175\",
\"date\": \"2024-05-27\",
\"price\": 170,
\"origin\": \"LAS\",
\"destination\": \"IAH\"

}
],
\"passengers\": [

{
\"first_name\": \"Sofia\",
\"last_name\": \"Kim\",
\"dob\": \"1950-06-24\"

}
],
\"payment_history\": [

{
\"payment_id\": \"gift_card_7091239\",
\"amount\": 566

},
{

\"payment_id\": \"gift_card_6276644\",
\"amount\": 59

}
],
\"created_at\": \"2024-05-07T16:32:35\",
\"total_baggages\": 1,
\"nonfree_baggages\": 0,
\"insurance\": \"no\"

}"

Agent: Great! Your flight changes have been successfully updated. Now let me add the
additional checked bag.

By now, the agent has successfully updated the flights and everything is perfect,
however it made an error in the last step when updating the checked bags.

Agent Tool Call:
"function": {
"arguments": "{\

\"reservation_id\": \"OBUT9V\", \
\"total_baggages\": 2, \
\"nonfree_baggages\": 1, \
\"payment_id\": \"gift_card_6276644\"\

}",
"name": "update_reservation_baggages"

},
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The agent added one non-free baggage to the reservation because the user requested an
additional checked bag. However, according to the highlighted part of policy and the
user’s history, the user is a Silver member traveling in economy class and is entitled to
two free checked bags. By charging the user an extra checked bag fee, the agent made
an error.

K FULL LIST OF RELATED WORK

K.1 PROMPT COMPRESSION FOR LARGE LANGUAGE MODELS

Prompt compression (Li et al., 2024) aims to obtain a more compact representation of lengthy in-
puts while preserving the original outputs. Early approaches include hard prompting (Chuang et al.,
2024; Jiang et al., 2023; Li et al., 2023), which prune tokens that contribute little to the response
while retaining natural language or subword tokens, and soft prompting (Mu et al., 2024; Ge et al.,
2023; Chevalier et al., 2023), which replace the original prompt with learnable embeddings with
the help of trainable encoder-decoder architecture. While soft prompts often rely on non natural
language embeddings, they generally provide stronger generalization for handling diverse require-
ments. Our special token–based internalization (e.g., policy identifiers) combines the strengths of
both: it is interpretable and thus easier for real-world business management, while still supporting
flexible learning to enable generalization. PromptIntern (Zou et al., 2024) introduces a pipeline
for progressively internalizing input tokens, but it does not explicitly address the unique reasoning
challenges posed by the complex structure of policy documents.

K.2 DELIBERATE ALIGNMENT

Deliberative alignment proposes internalizing general safety rules and behaviors into a model’s prior,
reducing the need to specify them in-context via additional training (Guan et al., 2024) or test-time
deliberation (Zhang et al., 2025a). While related to our setting, this line of work is restricted to
general safety behaviors, overlooks the broader scope of agentic policies, and does not address
complex reasoning challenges central to policy internalization (e.g., workflow-level constraints).

K.3 CONTINUED PRETRAINING FOR LARGE LANGUAGE MODELS

Continued Pretraining (CPT) has become a critical paradigm for keeping large language models
(LLMs) up-to-date with evolving data distributions while mitigating catastrophic forgetting. Posi-
tioned at the top layer of the modern continual learning pipeline, CPT incrementally trains LLMs
on newly collected unlabeled corpora to retain general knowledge, acquire novel information, and
revise outdated facts, offering a more efficient alternative to full retraining (Shi et al., 2025). Exist-
ing approaches largely build on classical continual learning methods, such as replay-based rehearsal
of exemplars or pseudo-samples, parameter regularization techniques like Elastic Weight Consoli-
dation (EWC) (Kirkpatrick et al., 2017) and RecAdam (Chen et al., 2020) to constrain parameter
drift, and architecture-based strategies such as adapter modules, vocabulary expansion, and sparse
modular structures (e.g. Mixture-of-Experts) that help isolate new knowledge without overwriting
old representations (Shi et al., 2025; Zhou et al., 2024). In particular, modular expert-based designs
like DEMix layers (Gururangan et al., 2022) support mixing, adding, or removing domain-specific
experts to facilitate adaptation and reduce forgetting, and Lifelong-MoE (Chen et al., 2023) dy-
namically expands expert capacity during CPT to absorb new distributions while preserving prior
knowledge. Empirical results suggest CPT methods consistently improve downstream generaliza-
tion under gradual or correlated distribution shifts, though naive sequential updates can provoke sig-
nificant forgetting in temporally shifting domains (Shi et al., 2025). Replay-based methods may be
less effective in CPT due to overfitting risks, while parameter-efficient finetuning (LoRA, adapters)
and modular expansion techniques show stronger robustness to both temporal and content shifts,
making them attractive for scalable production pipelines (Zhou et al., 2024). Despite progress, cur-
rent surveys stress that CPT research is still in early stages: technique diversity remains limited,
long-horizon simulations are rare, and standardized evaluation benchmarks for vertical forgetting
are lacking, pointing to important directions for future work (Shi et al., 2025). In our approach, we
primarily rely on continued pretraining (CPT) to enable more generalizable learning and mitigate
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the catastrophic forgetting often observed in pure SFT methods, while incorporating targeted data
and policy-grounded question–answer pairs to better facilitate downstream adaptation.

K.4 KNOWLEDGE INJECTION FOR LARGE LANGUAGE MODELS

Knowledge injection techniques aim to enhance the domain expertise of large language models
(LLMs) by integrating external or structured knowledge into their training or inference process,
thereby bridging the gap between general-purpose reasoning and specialized applications (Song
et al., 2025b). Existing methods are broadly categorized into four paradigms: dynamic knowl-
edge injection, which retrieves knowledge at inference time and augments the input context—often
using retrieval-augmented generation (RAG) with semantic search or knowledge graphs (Zhang
et al., 2024); static knowledge embedding, which encodes domain information into model param-
eters via continued pretraining or fine-tuning, enabling faster inference but risking catastrophic
forgetting when knowledge evolves; modular adapters, which introduce trainable modules such
as K-Adapters to store domain knowledge while keeping backbone parameters frozen, providing
parameter-efficient updates and preserving general capabilities (Wang et al., 2021; He et al., 2021);
and prompt optimization, which relies on carefully designed or learned prompts to guide the model
without parameter updates (Peng et al., 2025; Liu et al., 2024b). Recent work demonstrates that hy-
brid approaches, such as combining retrieval with prompt optimization or adapters (e.g., KnowGPT
and StructTuning), yield strong performance by balancing flexibility, scalability, and computational
efficiency (Liu et al., 2024b; Zhang et al., 2024). Empirical comparisons in biomedical and financial
domains show that static embedding often achieves the highest task-specific accuracy, while dy-
namic injection provides superior adaptability and up-to-date knowledge coverage, highlighting the
importance of choosing injection strategies based on application requirements (Song et al., 2025b).
In our work, the internalization of policy documents is related to, but distinct from, knowledge injec-
tion. Our task emphasizes deep understanding and practical application of policy rules rather than
mere memorization, which also requires extensive reasoning. To address these unique challenges,
we characterize the specific complexities of policy interpretation and propose a CPT-based approach
tailored to this setting. Among the aforementioned approaches, ours bears the closest resemblance
to prompt optimization.

L ETHICAL STATEMENT ON LLM ASSISTANCE

In addition to the reported uses of large language models (LLMs) for running experiments, we
primarily use ChatGPT-5 as a tool for language refinement, including polishing text and improving
clarity. All model-generated content is thoroughly reviewed and rewritten by human authors to
ensure accuracy, originality, and adherence to research integrity standards.

M LIMITATION AND FUTURE WORK

In this section, we discuss the limitations of our work and outline future directions.

(1) Scope of the benchmark. Our study uses a text-only, single-turn agent setting (Section§ 2.1);
consequently, our complexity characterization primarily reflects the policy-document dimension and
its associated agentic tasks. In practice, complexity also arises from intricate user intents, multi-
turn planning and repair, and multimodal inputs (e.g., screenshots, receipts, instructional videos).
Extending CC-Gen and the evaluation suite to multi-turn and multimodal settings, while explicitly
modeling a distribution over user intents is an important next step.

(2) Training recipe. Our approach emphasizes category-aware policy structure and applies contin-
ued pretraining (CPT) followed by SFT, underscoring that explicit complexity characterization is
indispensable. We did not incorporate reinforcement-learning stages (e.g., GRPO/PPO-style objec-
tives) that could leverage our trajectories. Adding an RL fine-tuning stage on top of CAP-CPT+SFT
for improved alignment is a promising extension.

(3) Challenging task variants. Despite strong average gains, models remain brittle on policy-
substitute, policy-override, and policy-referral. These practical extensions of the core internalization
task helps to extend the robustness and safety of the overall system. Simply scaling training data
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may lift scores on a fixed evaluation set but yields limited gains more broadly because override gran-
ularity (what to override, scope, validity window) and referral formats are under-specified. Future
work includes targeted data generation with controllable override or referral schemas, counterfactual
training, and evaluation protocols that explicitly balance base performance, adaptation fidelity, and
robustness. While context engineering approaches for safe and reliable output (Wang et al., 2025)
are also under consideration.

(4) Fragility of strong priors. We find that stronger reasoning models can be more prone to policy-
specific interference and forgetting. Although CAP-CPT with self-generated CoT mitigates this (Ap-
pendix F), we lack guarantees against negative transfer or regressions in general instruction follow-
ing. Future work should investigate selective internalization via policy identifiers, prior-preservation
regularizers, and continual-learning safeguards for safe deployment.

Future Work An important direction is to integrate retrieval-augmented generation (RAG) with
our CAP-CPT framework to achieve more fine-grained and context-aware internalization, allowing
models to dynamically ground their policy reasoning in high-precision retrieved evidence. Another
promising avenue is to leverage reinforcement learning to further refine the internalization process,
enabling models to explore policy-consistent behaviors and optimize long-horizon adherence re-
wards. We also plan to study methods for mitigating forgetting during continual policy updates,
ensuring that newly internalized rules do not overwrite previously aligned behaviors. Beyond the
current policy set, we aim to generalize to unseen policy documents by explicitly encoding over-
riding relationships between policy sources. Finally, we will explore parallel policy internalization,
enabling models to internalize multiple, potentially interacting policies simultaneously and resolve
conflicts through structured reasoning.

N POLICY DOCUMENTS CLOSER TO THE REAL WORLD

In this section, we extend our policy documents to a group of new policies which is written in a
completely different way compared to those policy documents generated by our {CC-Gen} bench-
mark. These policies are human written and polished by Large Language Models like GPT-5. We
used them and corersponding QAs for a more in-depth evaluation of our approach in real-world
scenarios. We show the complete content of one of these policy documents as below:

Human written real-world Policy Evaluation

# Airline Agent Policy

The current time is 2025-10-31 23:42:08 EST.

As an airline agent, you can help users book, modify, cancel, or query flight reservations.

- Before taking any actions that update the booking database (booking, modifying flights,
editing baggage, upgrading cabin class, or updating passenger information), you must list
the action details and obtain explicit user confirmation (yes) to proceed.

- You should not provide any information, knowledge, or procedures not provided by the
user or available tools, or give subjective recommendations or comments.

- You should only make one tool call at a time, and if you make a tool call, you should not
respond to the user simultaneously. If you respond to the user, you should not make a tool
call at the same time.

- You should deny user requests that are against this policy.

- You should transfer the user to a human agent if and only if the request cannot be handled
within the scope of your actions.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

## Domain Basic

### Profile Structure

**Passengers Profile**
The agent should use the {Username} and {PaxID} as conditions to access and locate the
profile existence of the specific passenger. This profile also includes {membership level},
{payment methods}, {saved passengers}, and {reservations} of the passenger. Among
these attributes, {reservations} will be the primary key to Profile {Reservations}. The
attribute {email} can be used as an alternative way to access the profiles {Passenger} while
searching.

**Reservations Profile** Each reservation contains {reservation id}, {user id},
{origin}, {destination}, {flight type} (one way, round trip), {flights}, {passengers},
{payment history}, {created at}, {total baggages}, and {nonfree baggages}. Among
these attributes, {user id} links back to the Passengers profile, and {flights} contains
{flight number} which links to the Flights profile.

**Flights Profile** Each flight has {flight number}, {origin}, {destination},
{scheduled departure time est}, {scheduled arrival time est}, and for each {date}:
- If the status is ”available”, the flight has not taken off, {available seats} and {prices} for
each cabin are listed. - If the status is ”delayed”, the flight has not taken off but is delayed,
with {new departure time est} and {delay reason}. - If the status is ”landed”, the flight
has already landed with {actual departure time est} and {actual arrival time est}. - If the
status is ”cancelled”, the flight has been cancelled with {cancellation reason}.

### Membership Tiers and Benefits

- **Basic**: 0% discount, limited baggage allowance
- **Silver**: 10% discount on flights, enhanced baggage allowance
- **Gold**: 15% discount on flights, premium baggage allowance
- **Platinum**: 20% discount on flights, premium baggage allowance

### Cabin Types

- **basic economy**: Lowest price, most restrictions
- **economy**: Standard service
- **business**: Premium service, most flexibility

## Task 1: BookFlight

### Step 1: User Identity Verification

**Input Parameters**: {user id} for booking user and {companions} list with each
companion’s {user id}

**Process**: The agent verifies each user exists in the Passengers profile by looking up
their {user id}. For each user, retrieve their {membership} level (platinum/gold/silver/ba-
sic) and {payment methods}.

**Output**: {membership} for each passenger, {payment methods} for booking user

**Policy Rules**: All user IDs must exist in the system. If any user ID is invalid, terminate
the booking process.

### Step 2: Flight Information Verification
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**Input Parameters**: {origin}, {destination}, {departure time}, {arrive time}, {cabin}
for each passenger

**Process**: Search the Flights profile for flights matching the route and time require-
ments. The flight must have status ”available” and sufficient {available seats} in the
requested {cabin} type for all passengers.

**Output**: {flight number}, {prices} dictionary containing prices for basic economy,
economy, and business cabins.

**Policy Rules**:
- Only flights with status ”available” can be booked
- Flight departure time must be after {departure time}
- Flight arrival time must be before {arrive time}
- Available seats in requested cabin must be ¿= number of passengers requesting that cabin

### Step 3: Calculate Total Airfare Cost

**Input Parameters**: {cabin} for each passenger, {prices} from flight, {membership}
for each passenger

**Process**: For each passenger, calculate their ticket cost as: cabin price × (1 - member-
ship discount). Sum all passenger costs to get total airfare.

**Output**: {airfare cost} (total for all passengers)

**Policy Rules - Membership Discounts**:

- Platinum members: 20% discount
- Gold members: 15% discount
- Silver members: 10% discount
- Basic members: 0% discount

### Step 4: Calculate Checked Baggage Cost

**Input Parameters**: {luggage number} (total bags for all passengers), {membership}
of booking user, {cabin} of booking user

**Process**: Determine free baggage allowance based on booking user’s membership and
cabin. Calculate excess baggage count and multiply by $50 per bag.

**Output**: {baggage cost}, {free allowance}, {excess bags}

**Policy Rules - Free Baggage Allowance**:

- Basic membership: 0 free bags (basic economy), 1 bag(s) (economy), 2 bags (business)
- Silver membership: 1 free bag(s) (basic economy), 2 bags (economy), 3 bags (business)
- Gold membership: 2 free bags (basic economy), 3 bags (economy), 3 bags (business)
- Platinum membership: 2 free bags (basic economy), 3 bags (economy), 3 bags (business)
- Excess baggage fee: $50 per bag beyond free allowance

### Step 5: Calculate Travel Insurance Cost

**Input Parameters**: {insurance} status (yes/no) for each passenger

**Process**: Count passengers who selected insurance and multiply by $30 per passenger.
**Output**: {insurance cost}
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**Policy Rules**:
- Insurance price: $30 per passenger
- Insurance coverage: Enables full refund if cancellation is due to health or weather reasons
- Insurance cannot be added after booking is completed

### Step 6: Payment Method Verification

**Input Parameters**: {payment methods} selected by user, {final cost} (sum of airfare
+ baggage + insurance)
**Process**: Verify all selected payment methods exist in the booking user’s profile.
Check that payment method combination follows policy limits.

**Output**: Validation result (pass/fail)

**Policy Rules - Payment Method Limits**:

- Maximum 1 travel certificate per reservation - Maximum 1 credit card per reservation -
Maximum 3 gift cards per reservation - All payment methods must already exist in user’s
profile for security - Travel certificate remaining balance is non-refundable

### Step 7: Confirmation and Execution

**Input Parameters**: All booking details including {user ids}, {flight number},
{passengers}, {final cost}, {payment methods}

**Process**: Display complete booking summary including flight details, passenger
list, price breakdown (airfare, baggage, insurance), and total cost. Request explicit user
confirmation.

**Output**: {reservation id} if confirmed, or cancellation if user declines

**Policy Rules**:
- Must display all booking details before confirmation - Require explicit ”yes” confirmation
from user - Only create reservation after receiving confirmation

## Task 2: ModifyFlight

### Step 1: User Identity Verification

**Input Parameters**: {user id}, {reservation id}

**Process**: Verify the user exists in Passengers profile and retrieve their {membership},
{payment methods}, and {reservations} list. Confirm that {reservation id} exists in the
user’s {reservations} list.

**Output**: {membership}, {payment methods}, validation result

**Policy Rules**: - User must exist in the system - Reservation must belong to the user
(reservation id must be in user’s reservations list) - If validation fails, terminate modification
process

### Step 2: Reservation Status Check

**Input Parameters**: {reservation id}

**Process**: Retrieve complete reservation details from Reservations profile in-
cluding {flight type}, {flights}, {passengers}, {total baggages}, {nonfree baggages},
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{payment history}, {created at}.

**Output**: All reservation details, {hours until departure}

**Policy Rules**: - Flight date must be in the future (not expired) - Reservation status
must be ”confirmed” (not already used) - Time until departure must be ¿ 2 hours (applies to
all cabin types) - If any rule violated, cannot modify reservation

### Step 3: Modification Eligibility Check

**Input Parameters**: {passengers} list with each passenger’s {cabin}, {flights} list

**Process**: Check if any passenger has basic economy cabin. Calculate modification
fees based on cabin types.

**Output**: {can modify} (boolean), {total modification fee}

**Policy Rules**: - If ANY passenger has basic economy cabin → Cannot modify flights
(terminate process) - Economy passengers: $75 modification fee per person - Business
passengers: $0 modification fee (free) - Cannot change {origin} or {destination} (must
cancel and rebook instead) - Can only change {departure time} and {arrive time} (same
route, different flight)

### Step 4: New Flight Verification

**Input Parameters**: {origin}, {destination}, {departure time}, {arrive time},
{passengers} with cabin requirements

**Process**: Search Flights profile for available flights matching criteria. Verify sufficient
seats in each required cabin type.

**Output**: {new flights} list with {flight number}, {prices}, {available seats}

**Policy Rules**: - New flights must have status ”available” - Must have enough available
seats in each cabin for all passengers - Origin and destination must match original reservation

### Step 5: Price Difference Calculation

**Input Parameters**: {passengers} with {membership}, {flights} (original),
{new flights}, {total modification fee}

**Process**: For each passenger, calculate original flight cost and new flight cost with
membership discounts applied. Sum the differences and add modification fees.

**Output**: {price difference} (positive = payment needed, negative = refund),
{total new cost}, {total original cost}

**Policy Rules**: - Apply membership discounts to both original and new flight costs -
Membership discounts: Platinum 20- Final price difference = (new cost - original cost) +
modification fees

### Step 6: Payment Verification

**Input Parameters**: {payment methods}, {price difference}

**Process**: If price difference ¿ 0, verify payment method available. If price difference ¡
0, process refund to original payment method. Display modification summary and request
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confirmation.

**Output**: Payment validation result, {reservation id} (updated)

**Policy Rules**: - If payment required: Must use valid payment method from user profile
- If refund: Return to original payment method - Must show complete modification details
before confirmation - Require explicit ”yes” confirmation

### Step 7: Confirmation and Execution

**Input Parameters**: {reservation id}, {new flights}, {price difference},
{payment methods}

**Process**: Display complete modification summary and execute the flight change after
user confirmation.

**Output**: Updated {reservation id}

**Policy Rules**: - Must display all modification details before confirmation - Require
explicit ”yes” confirmation from user - Only update reservation after receiving confirmation

## Task 3: ModifyPassengers

### Step 1: User Identity Verification

**Input Parameters**: {user id}, {reservation id}

**Process**: Verify the user exists in Passengers profile and retrieve their {membership},
{payment methods}, and {reservations} list. Confirm that {reservation id} exists in the
user’s {reservations} list.

**Output**: {membership}, {payment methods}, validation result

**Policy Rules**: - User must exist in the system - Reservation must belong to the user -
If validation fails, terminate modification process

### Step 2: Reservation Status Check

**Input Parameters**: {reservation id}

**Process**: Retrieve complete reservation details from Reservations profile in-
cluding {flight type}, {flights}, {passengers}, {total baggages}, {nonfree baggages},
{payment history}, {created at}.

**Output**: All reservation details, {hours until departure}

**Policy Rules**: - Flight date must be in the future (not expired) - Reservation status
must be ”confirmed” (not already used) - Time until departure must be ¿ 2 hours - If any
rule violated, cannot modify reservation

### Step 3: Passenger Limit Check

**Input Parameters**: {current passenger count}, {add passengers} list,
{remove passengers} list, {user id} (booking user)
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**Process**: Calculate new passenger count after additions/removals. Verify limits and
restrictions.

**Output**: {new passenger count}, validation result

**Policy Rules**: - Maximum 5 passengers per reservation - Minimum 1 passenger
(cannot remove all passengers) - Cannot remove booking user (user id of reservation
owner) - new passenger count = current count + add count - remove count - Must satisfy:
1 ≤ new passenger count ≤ 5

### Step 4: Remove Passenger Processing

**Input Parameters**: {remove passengers} list with {user id} for each, {passengers}
current list, {flights}

**Process**: For each passenger being removed, calculate their flight cost with member-
ship discount applied. Calculate refund as 80% of flight cost. If passenger had insurance,
refund full $30 insurance cost.

**Output**: {refund amount}, {removed passenger details}

**Policy Rules**: - Refund policy: 80% of flight cost per removed passenger - Insurance
refund: 100% ($30) if passenger had insurance - Baggage fees: Non-refundable (no refund
for baggage) - Apply membership discounts when calculating original flight cost

### Step 5: Add Passenger Processing

**Input Parameters**: {add passengers} list with {user id}, {cabin}, {insurance},
{luggage number} for each, {flights}

**Process**: For each new passenger, verify user id exists, check flight seat availability in
requested cabin, calculate costs (flight + insurance + baggage with membership discounts
and free allowances).

**Output**: {additional cost}, {added passenger details}

**Policy Rules**: - All new passenger user ids must exist in Passengers profile - Flights
must have available seats in requested cabins - Calculate flight cost with membership
discount - Insurance: $30 per passenger if requested - Baggage: Apply free allowance based
on passenger’s membership and cabin, charge $50 per excess bag

### Step 6: Total Cost Calculation

**Input Parameters**: {refund amount}, {additional cost}

**Process**: Calculate net cost (additional cost - refund amount).

**Output**: {total price difference}

**Policy Rules**: - Net cost = additional cost - refund amount - If net cost ¿ 0: Payment
required - If net cost ¡ 0: Refund to original payment method

### Step 7: Payment Verification

**Input Parameters**: {payment methods}, {total price difference}
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**Process**: If positive cost, verify payment. If negative, process refund. Display
passenger change summary and request confirmation.

**Output**: Payment validation result

**Policy Rules**: - Must display all passenger changes and costs before confirmation -
Require explicit ”yes” confirmation

### Step 8: Confirmation and Execution

**Input Parameters**: {reservation id}, {add passengers}, {remove passengers},
{total price difference}

**Process**: Display complete passenger modification summary and execute changes
after user confirmation.

**Output**: Updated {reservation id}

**Policy Rules**: - Must display complete modification details - Require explicit ”yes”
confirmation from user - Only update reservation after receiving confirmation

## Task 4: ModifyCabin

### Step 1: User Identity Verification

**Input Parameters**:{user id}, {reservation id}

**Process**: Verify the user exists in Passengers profile and retrieve their {membership},
{payment methods}, and {reservations} list. Confirm that {reservation id} exists in the
user’s {reservations} list.

**Output**: {membership}, {payment methods}, validation result

**Policy Rules**: - User must exist in the system - Reservation must belong to the user -
If validation fails, terminate modification process

### Step 2: Reservation Status Check

**Input Parameters**: {reservation id}

**Process**: Retrieve complete reservation details from Reservations profile including
{flight type}, {flights}, {passengers}, {total baggages}, {payment history}, {created at}.

**Output**: All reservation details, {hours until departure}

**Policy Rules**: - Flight date must be in the future (not expired) - Reservation status
must be ”confirmed” (not already used) - Time until departure must be ¿ 2 hours - If any
rule violated, cannot modify reservation

### Step 3: Cabin Change Eligibility Check

**Input Parameters**: {passenger user id}, {original cabin}, {new cabin}, {flights}

**Process**: Verify cabin change is allowed (upgrade or downgrade with restrictions).
Check all flights have available seats in new cabin.
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**Output**: {can change} (boolean), {change type} (upgrade/downgrade)

**Policy Rules - Allowed Changes**: - Upgrades allowed: basic economy → econo-
my/business, economy → business - Downgrades allowed with partial refund: - business →
economy or basic economy: Refund 80% of price difference - economy → basic economy:
Refund 50% of price difference - Must change all flight segments together (cannot change
only one flight in round trip) - All flights must have available seats in new cabin

### Step 4: Cabin Price Difference Calculation

**Input Parameters**: {passenger user id}, {original cabin}, {new cabin}, {flights},
{current luggage number}

**Process**: Calculate price difference between cabins with membership discount.
Recalculate baggage allowance and fees based on new cabin.

**Output**: {cabin price difference}, {luggage cost difference}, {new free allowance}

**Policy Rules**: - Apply passenger’s membership discount to both original and new
cabin prices - For upgrades: price difference = new cabin cost - original cabin cost - For
downgrades: price difference = -(original cabin cost - new cabin cost) × refund percentage
- Recalculate free baggage allowance based on new cabin and membership - Recalculate
excess baggage fees: (luggage number - new free allowance) × $50

### Step 5: Baggage Allowance Adjustment

**Input Parameters**: {passenger user id}, {membership}, {new cabin},
{current luggage number}

**Process**: Calculate new free baggage allowance and any additional fees or refunds.

**Output**: {new free allowance}, {baggage adjustment}

**Policy Rules**: - New free allowance based on membership and new cabin - If new
allowance ¿ old allowance: May receive partial refund for previously paid bags - If new
allowance ¡ old allowance: May owe additional fees

### Step 6: Payment Verification

**Input Parameters**: {payment methods}, {cabin price difference},
{luggage cost difference}

**Process**: Calculate total cost (cabin price difference + luggage cost difference).
Process payment or refund. Display cabin change summary and request confirmation.

**Output**: {total cost}, {reservation id} (updated)

**Policy Rules**: - Total cost = cabin price difference + luggage cost difference - Must
display cabin change details, price breakdown, and baggage allowance changes - Require
explicit ”yes” confirmation

### Step 7: Confirmation and Execution

**Input Parameters**: {reservation id}, {passenger user id}, {new cabin}, {total cost}
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**Process**: Display complete cabin modification summary and execute changes after
user confirmation.

**Output**: Updated {reservation id}

**Policy Rules**: - Must display all modification details before confirmation - Require
explicit ”yes” confirmation from user - Only update reservation after receiving confirmation

## Task 5: ModifyInsurance

### Step 1: User Identity Verification

**Input Parameters**: {user id}, {reservation id}

**Process**: Verify the user exists in Passengers profile and retrieve their {membership},
{payment methods}, and {reservations} list. Confirm that {reservation id} exists in the
user’s {reservations} list.

**Output**: {membership}, {payment methods}, validation result

**Policy Rules**: - User must exist in the system - Reservation must belong to the user -
If validation fails, terminate modification process

### Step 2: Reservation Status Check

**Input Parameters**: {reservation id}

**Process**: Retrieve complete reservation details from Reservations profile including
{flight type}, {flights}, {passengers}, {payment history}, {created at}.

**Output**: All reservation details, {hours until departure}

**Policy Rules**: - Flight date must be in the future (not expired) - Reservation status
must be ”confirmed” (not already used) - Time until departure must be ¿ 2 hours - If any
rule violated, cannot modify reservation

### Step 3: Insurance Modification Validation

**Input Parameters**: {passenger user id}, {original insurance}, {new insurance}

**Process**: Verify insurance modification is allowed (only additions permitted). Calcu-
late insurance cost if adding.

**Output**: {insurance cost}, validation result

**Policy Rules**: - Can ONLY ADD insurance (no → yes transition allowed) - CANNOT
REMOVE insurance (yes → no transition forbidden) - If already has insurance (yes → yes):
No change needed, return error - Insurance price: $30 per passenger - Insurance coverage:
Full refund for health/weather cancellation reasons

### Step 4: Insurance Cost Calculation

**Input Parameters**: {passenger user id}, {new insurance}

**Process**: Calculate insurance cost for the passenger.
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**Output**: {insurance cost}

**Policy Rules**: - Insurance cost: $30 per passenger - Must process payment before
adding insurance

### Step 5: Payment Verification

**Input Parameters**: {payment methods}, {insurance cost}

**Process**: Verify payment method and process payment for insurance. Display
insurance addition summary and request confirmation.

**Output**: Payment validation result

**Policy Rules**: - Must use valid payment method from user profile - Must display
insurance details and cost before confirmation - Require explicit ”yes” confirmation

### Step 6: Confirmation and Execution

**Input Parameters**: {reservation id}, {passenger user id}, {insurance cost}

**Process**: Display complete insurance modification summary and execute changes after
user confirmation.

**Output**: Updated {reservation id}

**Policy Rules**: - Must display all modification details before confirmation - Require
explicit ”yes” confirmation from user - Only update reservation after receiving confirmation
- Insurance cannot be removed once added

## Task 6: ModifyLuggage

### Step 1: User Identity Verification

**Input Parameters**: {user id}, {reservation id}

**Process**: Verify the user exists in Passengers profile and retrieve their {membership},
{payment methods}, and {reservations} list. Confirm that {reservation id} exists in the
user’s {reservations} list.

**Output**: {membership}, {payment methods}, validation result

**Policy Rules**: - User must exist in the system - Reservation must belong to the user -
If validation fails, terminate modification process

### Step 2: Reservation Status Check

**Input Parameters**: {reservation id}

**Process**: Retrieve complete reservation details from Reservations profile in-
cluding {flight type}, {flights}, {passengers}, {total baggages}, {nonfree baggages},
{payment history}, {created at}.

**Output**: All reservation details, {hours until departure}

**Policy Rules**: - Flight date must be in the future (not expired) - Reservation status
must be ”confirmed” (not already used) - Time until departure must be ¿ 2 hours - If any
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rule violated, cannot modify reservation

### Step 3: Luggage Modification Validation

**Input Parameters**: {passenger user id}, {original luggage number},
{new luggage number}, {cabin}, {total baggages}

**Process**: Verify baggage modification is allowed (only additions). Check limits.

**Output**: {can modify} (boolean), validation result

**Policy Rules**: - Can ONLY ADD baggage (new luggage number must be ¿
original luggage number) - CANNOT REMOVE baggage (already added baggage is
non-refundable) - Maximum 8 bags per passenger - Maximum 8 bags per reservation total -
If limits exceeded, cannot modify

### Step 4: Additional Luggage Cost Calculation

**Input Parameters**: {passenger user id}, {membership}, {cabin},
{original luggage number}, {new luggage number}

**Process**: Calculate free allowance based on passenger’s membership and cabin.
Calculate additional baggage cost.

**Output**: {additional luggage cost}, {new total baggages}

**Policy Rules**: - Calculate free allowance based on membership and cabin -
Additional cost = (new paid bags - original paid bags) × $50 - new paid bags =
max(0, new luggage number - free allowance) - original paid bags = max(0, origi-
nal luggage number - free allowance)

### Step 5: Payment Verification

**Input Parameters**: {payment methods}, {additional luggage cost}

**Process**: Verify payment method and process payment for additional luggage. Display
luggage addition summary and request confirmation.

**Output**: Payment validation result

**Policy Rules**: - Must use valid payment method from user profile - Must display
luggage details and cost before confirmation - Require explicit ”yes” confirmation

### Step 6: Confirmation and Execution

**Input Parameters**: {reservation id}, {passenger user id}, {new luggage number},
{additional luggage cost}

**Process**: Display complete luggage modification summary and execute changes after
user confirmation.

**Output**: Updated {reservation id}

**Policy Rules**: - Must display all modification details before confirmation - Require
explicit ”yes” confirmation from user - Only update reservation after receiving confirmation
- Luggage cannot be removed once added
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## Task 7: CancelFlight

### Step 1: User Identity Verification

**Input Parameters**: {user id}, {reservation id}

**Process**: Verify user exists in Passengers profile and retrieve {membership},
{payment methods}, and {reservations} list. Confirm {reservation id} is in user’s reserva-
tions.

**Output**: {membership}, {payment methods}, validation result

**Policy Rules**: - User must exist in the system - Reservation must belong to the user -
If validation fails, terminate cancellation process

### Step 2: Reservation Status Check

**Input Parameters**: {reservation id}

**Process**: Retrieve complete reservation details including {flight type}, {flights},
{passengers}, {total baggages}, {payment history}, {created at}.

**Output**: All reservation details, {hours until departure}

**Policy Rules**: - Flight date must be in the future (not expired) - Reservation sta-
tus must be ”confirmed” (not already used) - If flight already departed or used, cannot cancel

### Step 3: Cancellation Eligibility Check

**Input Parameters**: {passengers} with {cabin} for each, {flights}, {created at},
{hours until departure}

**Process**: Check each passenger’s cabin type to determine cancellation eligibility and
fees. Calculate time-based restrictions and additional fees.

**Output**: {can cancel} (boolean), {total cancellation fee}, {has basic economy}

**Policy Rules - Cancellation Fees by Cabin**: - basic economy: Non-refundable
($0 refund) - economy: Refundable with $200 cancellation fee per passenger - business:
Refundable with $75 cancellation fee per passenger

**Policy Rules - Time Restrictions**: - Less than 2 hours until departure: Cannot cancel
(terminate process) - 2-24 hours until departure: Additional $50 emergency cancellation fee
(applied once per reservation) - More than 24 hours until departure: Normal cancellation
fees only

**Policy Rules - Warnings**: - If any passenger has basic economy: Display warning
”Reservation includes Basic Economy cabin, that portion is non-refundable”

### Step 4: Refund Amount Calculation

**Input Parameters**: {passengers} with {cabin}, {insurance}, {membership} for each,
{flights}, {cancel reason}, {total cancellation fee}, {hours until departure}

**Process**: For each passenger, calculate their original flight cost with membership
discount. Determine refund based on cabin type and cancellation reason. Add insurance
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refund if applicable. Subtract emergency fee if within 24 hours.

**Output**: {total refund}, {refund breakdown} (per passenger details)

**Policy Rules - Refund Calculation**: - basic economy passengers: $0 refund (non-
refundable) - Special cancellation reasons (weather/health): Full refund of flight cost (no
cancellation fee) - Normal cancellation (personal/schedule change): - economy: flight cost
- $200 cancellation fee - business: flight cost - $75 cancellation fee - Insurance refund: - If
cancel reason is weather or health: Refund $30 per passenger with insurance - Otherwise:
$0 insurance refund - Emergency cancellation fee: Subtract $50 if hours until departure ¡ 24
- Baggage fees: Non-refundable (no refund for any baggage fees paid) - Apply membership
discounts when calculating original flight costs

### Step 5: Refund Method Confirmation

**Input Parameters**: {payment history}, {total refund}

**Process**: Determine refund destination based on original payment method used.

**Output**: {refund method}, {refund destination}

**Policy Rules - Refund Methods**: - If paid with credit card: Refund to the same credit
card - If paid with travel certificate: Issue new travel certificate for refund amount - If
paid with gift card: Refund to new gift card - Refund processing time: 5-7 business days -
Refund goes to original payment method(s) in reverse order of use

### Step 6: Confirmation and Execution

**Input Parameters**: {reservation id}, {total refund}, {cancel reason},
{payment history}, {refund breakdown}

**Process**: Display complete cancellation summary including flight details, each
passenger’s refund breakdown, cancellation fees, total refund amount, and refund method.
Request explicit user confirmation.

**Output**: Cancellation confirmation, {reservation id} (cancelled status)

**Policy Rules**: - Must display complete cancellation details before confirmation - Show
per-passenger refund breakdown - Show all fees (cancellation fees, emergency fees) - Show
refund method and expected processing time - Require explicit ”yes” confirmation from
user - Only process cancellation after receiving confirmation

## Task 8: QueryFlight

### Query Type 1: Search Available Flights

**Step 1: Parameter Validation**

**Input Parameters**: {origin}, {destination}, {departure date}, {return date} (op-
tional), {cabin} (optional), {passenger count} (optional, default 1)

**Process**: Validate all input parameters to ensure they meet requirements for flight
search.

**Output**: Validation result (pass/fail)
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**Policy Rules**: - {origin} and {destination} must be valid 3-letter airport codes -
{origin} cannot equal {destination} - {departure date} must be a future date (not in the
past) - If {return date} provided, it must be later than {departure date} - {passenger count}
must be positive integer (1-5)

**Step 2: Search Outbound Flights**

**Input Parameters**: {origin}, {destination}, {departure date}, {cabin} (optional),
{passenger count}

**Process**: Query Flights profile for all flights matching the route on the specified date.
Filter for flights with status ”available” and sufficient seats. Sort results by departure time.

**Output**: {outbound flights} list with {flight number}, {departure time},
{arrival time}, {available seats}, {prices} for each flight

**Policy Rules**: - Only include flights with status ”available” - If {cabin} specified:
Only include flights with available seats[cabin] ¿= passenger count - If {cabin} not
specified: Include all flights with any cabin having sufficient seats - Sort flights by
{expected departure time est} in ascending order

**Step 3: Search Return Flights (if round trip)**

**Input Parameters**: {destination}, {origin}, {return date}, {cabin} (optional),
{passenger count}

**Process**: If {return date} provided, search for return flights using same logic as
outbound search, but with origin and destination swapped.

**Output**: {return flights} list (same structure as outbound flights)

**Policy Rules**: Same as Step 2, applied to return route

**Step 4: Format and Return Results**

**Input Parameters**: {outbound flights}, {return flights} (if applicable)

**Process**: Format search results into readable display showing all flight options with
details.

**Output**: Formatted flight search results

**Policy Rules - Display Format**: - Show search criteria (origin, destination, dates,
passenger count) - For each flight, display: - Flight number - Departure and arrival times -
Available seats by cabin type (basic economy, economy, business) - Prices by cabin type -
Indicate if no flights found matching criteria

### Query Type 2: Check Reservation Details

**Step 1: User Identity Verification**

**Input Parameters**: {user id}, {reservation id}

**Process**: Verify user exists and that the reservation belongs to them.

**Output**: Validation result
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**Policy Rules**: - User must exist in Passengers profile - {reservation id} must be in
user’s {reservations} list - If validation fails, deny access to reservation details

**Step 2: Get Reservation Information**

**Input Parameters**: {reservation id}

**Process**: Retrieve complete reservation details from Reservations profile including all
fields.

**Output**: {reservation info} with {user id}, {origin}, {destination}, {flight type},
{flights}, {passengers}, {payment history}, {total baggages}, {nonfree baggages},
{created at}

**Policy Rules**: Return all reservation data without modification

**Step 3: Get Flight Real-time Status**

**Input Parameters**: {flights} list from reservation

**Process**: For each flight in the reservation, query Flights profile to get current real-time
status.

**Output**: {flight statuses} list with {status}, {expected departure time},
{expected arrival time}, and status-specific fields

**Policy Rules**: Retrieve current status for each flight from Flights profile

**Step 4: Format and Return Details**

**Input Parameters**: {reservation info}, {flight statuses}

**Process**: Format complete reservation details into readable display.

**Output**: Formatted reservation details

**Policy Rules - Display Format**: - Show reservation ID and booking user - Show
booking time and status - For each flight: flight number, route, date, times, current status -
For each passenger: name, cabin, insurance status - Show baggage information (total bags,
paid bags) - Show payment information (methods used, amounts)

### Query Type 3: Check Flight Status

**Step 1: Parameter Validation**

**Input Parameters**: {flight number}, {date}

**Process**: Validate that flight number and date are in correct format.

**Output**: Validation result

**Policy Rules**: - {flight number} must be valid format (3-letter airline code + 3-4 digit
number) - {date} must be valid date format (YYYY-MM-DD)

**Step 2: Get Flight Information**
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**Input Parameters**: {flight number}, {date}

**Process**: Query Flights profile for the specified flight and date. Retrieve all available
information.

**Output**: {flight details} with {origin}, {destination}, {scheduled departure time},
{scheduled arrival time}, {status}, and status-specific fields

**Policy Rules**: - If flight number not found: Return error ”Flight number does not
exist” - If date not found for flight: Return error ”No flight information for this date” -
Return all available information for the flight on that date

**Step 3: Format and Return Status**

**Input Parameters**: {flight details}

**Process**: Format flight status information into readable display based on current status.

**Output**: Formatted flight status

**Policy Rules - Display Format**: - Show flight number, date, and route - Show sched-
uled departure and arrival times - Show current status (available/delayed/landed/cancelled)
- If status is ”available”: Show expected times, available seats by cabin, prices by cabin -
If status is ”delayed”: Show new expected times and delay reason - If status is ”landed”:
Show actual departure and arrival times - If status is ”cancelled”: Show cancellation reason

### Query Type 4: Check User Information

**Step 1: User Identity Verification**

**Input Parameters**: {user id}

**Process**: Verify user exists and retrieve complete profile from Passengers profile.

**Output**: {user info} with {PaxID}, {name}, {email}, {dob}, {address},
{membership}, {payment methods}, {saved passengers}, {reservations}

**Policy Rules**: - User must exist in Passengers profile - If user not found: Return error
”User ID invalid” - Return all user profile information

**Step 2: Get User Reservation History**

**Input Parameters**: {reservations} list from user profile

**Process**: For each reservation ID in user’s reservations list, retrieve summary informa-
tion from Reservations profile.

**Output**: {reservation summary} list with {reservation id}, {route}, {date}, {status},
{passenger count} for each reservation

**Policy Rules**: Retrieve summary (not full details) for each reservation

**Step 3: Format and Return User Info**

**Input Parameters**: {user info}, {reservation summary}
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**Process**: Format complete user information into readable display.

**Output**: Formatted user information

**Policy Rules - Display Format**: - Show passenger ID and name - Show email and date
of birth - Show address (full address with city, state, zip, country) - Show membership level
and benefits - Show payment methods (type, last 4 digits for cards, amount for certificates)
- Show saved passengers list - Show reservation history with summary for each reservation

We evaluated our internalization approach on this single policy document with Qwen-3-8B, observ-
ing a performance gain with our CAP-CPT approach. More comprehensive evaluation on different
policy documents are leaved for future work.
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