
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ANALYZING AND INTERNALIZING COMPLEX POLICY
DOCUMENTS FOR LLM AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model (LLM) based agentic systems rely heavily on in-context
policy documents that encode diverse business rules. As business requirements
expand, these documents grow substantially, creating significant computational
overhead. This motivates the need for internalization methods that embed policy
documents into model priors while preserving performance. While prior prompt
compression research primarily targets generic prompts, we find that agentic pol-
icy documents span multiple levels of complexity and demand more intensive
reasoning, presenting greater internalization challenges. We first introduce CC-
Gen, an agentic benchmark generator with Controllable Complexity defined across
four levels, enabling systematic benchmarking of how well agents handle com-
plexities and provides a framework for comprehensive evaluation of policy in-
ternalization algorithms. Our initial analysis reveals that complex policy spec-
ifications governing agent workflows may pose the most significant reasoning
challenges. When supporting internalization with gold user–agent interaction tra-
jectories containing chain-of-thought (CoT) annotations through supervised fine-
tuning (SFT), we find that this baseline is highly data-intensive and its effective-
ness deteriorates markedly as policy document complexity increases. To mitigate
data burden and reasoning challenges, we propose Category-Aware Policy Contin-
ued Pretraining(CAP-CPT). Our automated pipeline analyzes policy documents to
extract key specifications, grouping them into factual, behavioral, and conditional
types. We further isolate complex conditions, which introduce high workflow
complexity and drive core reasoning difficulty. This categorization guides a tar-
geted therapy, synthesizing specialized training data for each specification type
and enabling agents to internalize policy information more effectively through an
autoregressive pretraining loss. Our extensive experiments demonstrate the ef-
fectiveness of the curated data and training objective. Combined with SFT, our
approach improves baseline across all data scenarios. It is especially effective
in data-sparse settings and under high policy complexity, yielding gains of up to
41% and 22% on Qwen-3-32B. Overall, we achieve up to 97.3% prompt length
reduction in our benchmark. Applied to τ -Bench, our approach further improves
performance and reduces input length with very limited SFT data. 1

1 INTRODUCTION

While Large Language Models (LLMs) exhibit strong instruction-following abilities (Ouyang et al.,
2022; Zhou et al., 2023; Zeng et al., 2023), LLM-based agents still depend heavily on in-context
policy documents to function as effective user assistants. For instance, as illustrated in Figure 1,
an airline policy document must be provided in context for the agent to perform its duties. How-
ever, these documents, which often encode extensive business rules and behavioral guidelines, can
consume a large portion of the input prompt. Even in simplified simulated environments such as
τ -Bench (Yao et al., 2024), they account for roughly 35% of the input tokens. In real-world applica-
tions, policy prompts expand with business growth and can already reach ∼50K tokens 2, dominating
the prompt relative to user inputs and in some cases exceeding the available context length. This cre-

1All data and code will be publicly released.
2Exact numbers are not disclosed due to the proprietary nature of system prompts.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ates substantial computational overhead and highlights the need for efficient internalization methods
that embed policy documents into a model’s prior knowledge while preserving agent performance.

Checked Bag Allowance:

Policy Document (Airline)

- If the user is a silver member:1,2,3
free checked bags for basic,

economy, and busniess class.

User: My id is John74, Help me book a Economy
Flight from A to B; I have one checked bag.

.........

......... Agent Step 1: Use tools to get user details

Agent Step 2: Use Tools to book the flight

- One extra non-free checked bag have
an extra charge of 50$

Tool Return: Information for John74

User-id: John74; Membership: Silver

Gender: Male; Contact: +1 217-xxx-xxxx

<Tool>Book_Flight(User=John74,destination=B,Departure=A,
Class=Economy, Non-Free-Bags=1, Fee=50 </Tool>

- If the user is a regular member:

Wrong answer !
 The checked bag
should be free !

RQ2: How are these certain
complexities affecting

internalization appraoches?

RQ3: How to design policy
internalization algorithms to

overcome these challenges?

RQ1:How to categorize the
complexity dimensions in

agentic policy documents ?

Book Flight:

 - The current time is 2024-05-15
15:00:00 EST.

.........

- The agent should ask if the user wants
to buy travel insurance,

Figure 1: Even state-of-the-art LLM-based agents fail to reliably follow policy documents, and
our analysis shows that certain policy specifications are inherently complex, imposing substantial
reasoning demands. These observations motivate the central research questions we investigate in
this paper. A more detailed illustration of this failure case is provided in Appendix J.

While prior token-compression approaches typically treat all inputs as generic prompts (Zou et al.,
2024; Li et al., 2024), our observations show that models often struggle to follow specific policy
specifications, suggesting that internalizing policy documents poses distinct challenges. As shown
in Figure 1, evaluation on τ -bench reveals that even Claude-4-Sonnet (Bubeck et al., 2024) based
tool-using agents suffer severe performance degradation with policy documents as short as 1K to-
kens. To the best of our knowledge, no prior work has systematically examined what makes a policy
document easy or difficult to follow. To investigate the cause, we manually analyzed user–agent
interaction trajectories and found that certain policy specifications are inherently more complex,
imposing substantial reasoning demands that degrade performance (see concrete examples in Ap-
pendix J). These insights motivate us to categorize policy complexities, measure their impact on
internalization methods, and design algorithms to mitigate these challenges.

To address these challenges, we introduce CC-Gen, a benchmark generator that synthesizes pol-
icy documents and paired agentic tasks with predefined Controllable Complexity. It specifies four
levels of complexity: environmental, task level, workflow, and user query (see Appendix A for
definitions), allowing each to be independently manipulated to isolate its impact on agent perfor-
mance. CC-Gen further supports fine-grained synthesis of policy modifications and policy-centric
QAs, enabling systematic evaluation of both prompting-based and internalization approaches. Our
initial results reveal that workflow complexity induces the most severe performance degradation for
tool-using agents, followed by task-level complexity, highlighting the key challenges for effective
policy internalization. Building on these findings, we construct benchmarks with varied workflow
and task-level complexities to evaluate internalization methods across both standard task-oriented
queries and broader capabilities such as policy substitution, override, referral, and general instruction
following. As a baseline, we curate 1K–30K gold chain-of-thought trajectories for supervised fine-
tuning (SFT). Our results show that SFT remains highly data-intensive and suffers from substantial
performance gaps under high complexities, underscoring the need for more effective internalization
approaches to improve agent robustness and generalization.

To overcome the limitations of baseline approaches, we propose Category-Aware Policy Continued
Pretraining(CAP-CPT). Central to our method is an automated pipeline for policy complexity anal-
ysis. We leverage an LLM to categorize policy specifications into three types: factual, behavioral,
and conditional, further subdividing conditional specifications into simple and complex cases. Each
type presents distinct learning challenges, prompting us to generate tailored data for each category.
Across all policy specification categories, we construct policy paraphrases and question–answer
pairs to seed a compact understanding and durable recall of the documents. Since conditional spec-
ifications frequently govern agent workflows, we simulate diverse scenarios in which agents must
solve subproblems that hinge on these complex conditions. For behavioral specifications, we add
role-model agent demonstrations. We then combine all generated data with existing SFT trajecto-
ries, producing a dataset of five complementary data types. Finally, we apply continual pretraining

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

with an autoregressive loss over all tokens, enabling the model to broadly acquire policy knowledge
and generalize across complexity levels.

Combining our approach with SFT, we improve baseline performance by over 10% across all sce-
narios on Qwen-3-32B. Notably, our method boosts performance by 44% in data-sparse settings
and reduces performance disparities between workflow complexity level (1) and level (3) by up
to 37%. Ablation studies confirm that our curated scenario-simulation data is crucial for handling
complexity and that our CPT-based training outperforms using the same data for SFT alone. Be-
yond task-oriented evaluations, our method achieves superior results on policy referral, substitution,
and override tasks (Comprehensive evaluation framework in Appendix E), while maintaining strong
general instruction-following ability (Zhou et al., 2023). Overall, our approach achieves up to 97.3%
input token compression on our synthetic benchmark and remains broadly applicable with minimal
assumptions about the policy document. Applied to τ -Bench, it further improves performance and
reduces input length even with very limited SFT data.

Overall, our contributions are: (1) We characterize complexity types in agentic policy documents
and construct benchmarks with controllable complexity, enabling systematic evaluation of internal-
ization methods and laying a foundation for future research. (2) Using these benchmarks, we analyze
what makes policy internalization challenging and identify complex workflows as the primary driver
of performance degradation. (3) We propose Category-Aware Policy Continued Pretraining, which
categorizes policy specifications, and curates targeted data for continual pretraining. Experiments
show that our approach delivers substantial performance gains across diverse scenarios and remains
broadly applicable with minimal assumptions about the policy document.

2 COMPLEXITY CHARACTERIZATION OF LLM-BASED AGENTIC TASKS

2.1 LLM-BASED AGENTIC TASK SETTING

To isolate the effect of policy complexity from confounding factors such as multimodal inputs (Xie
et al., 2024) or unstable user simulators in multi-turn dialogues (Wang et al., 2024; Zhu et al., 2024),
we focus on text-only, single-turn, LLM-based agentic tasks. The user provides a query q ∈ Q
that specifies potentially complex requirements and a target task. The agent receives a general
instruction I and a policy document P , a long text corpus defining tasks, completion rules, tool
usage instructions, few-shot demonstrations, and general prompts that guide the LLM as an agent.
At each step t, the agent maintains a history ht = (q, I,P, r<t, a<t, o<t) and applies a recursive
mapping (rt, at) = LLM(ht), where rt is the reasoning trace and at is an action from the tool set
defined in P . The action is executed by a tool function g ∈ G, producing an observation ot = g(at),
after which the history is updated. The external environment is restricted to database access to ensure
controlled workflows. The full trajectory is τ = {q, I,P, r1, a1, o1, . . . , rT , aT , oT } and terminates
when (rT , aT , oT) resolves q under P or fails after reaching the iteration limit. We leave multimodal
and multi-turn extensions to future work (Appendix M).

2.2 CC-GEN : AGENTIC BENCHMARK GENERATOR WITH CONTROLLABLE COMPLEXITIES

Based on the above setting, we categorize policy-governed agentic tasks along four complexity di-
mensions: task-level complexity, reflecting the intricacy of predefined tasks determined by their
number and required arguments; workflow-level complexity, arising from the logical rules in pol-
icy documents, such as nested if–else structures, their depth, and branching factors; environmental-
level complexity, depending on the richness and scale of external databases accessible through tool
functions; and query-level complexity, originating from user queries that may impose special re-
quirements or additional reasoning constraints. Each dimension is quantified by a Complexity-Type
K, where larger K indicates higher complexity, with formal definitions and quantization provided
in Appendix C. Building on these complexity dimensions, we propose CC-Gen, a benchmark gen-
erator with fine-grained control over complexity. Given user-specified parameters and sample size,
CC-Gen produces benchmarks comprising a policy document P defining global attributes, rules,
interaction environment, tool usage instructions, and task specifications; a set of databases with ini-
tialized data and executable tools for agent-environment interaction; and a collection of user queries
mapped to one or more tasks, optionally with gold trajectories. As summarized in Table 1, the
benchmarks generated by CC-Gen offer three key advantages: (1) they provide sufficiently complex

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

policy documents to serve as rich conditioning context for completing target tasks; (2) they expose
controllable complexity across all characterized dimensions, enabling systematic studies of their
individual and joint effects; and (3) they form a comprehensive testbed for evaluating policy inter-
nalization methods, supporting abundant training data as well as policy-referral and policy-override
tasks. These evaluation tasks are described in Section §4 and Appendix D. The generator work-
flow is illustrated in Figure 4, with further implementation details in Appendix A and concrete data
examples in Appendix B.

Table 1: Comparison of existing agentic benchmarks and those produced by our CC-Gen. CC-Gen
distinguishes itself by (1) supporting long, complex policy documents, (2) allowing for controllable
complexity to systematically study its effects, and (3) supporting more comprehensive internaliza-
tion training and evaluation, including policy-referral and policy-override tasks.

Agent Benchmark Data
Instances

Tool
Usage

Long Policy
Document

Complexity Study Internalization Evaluation
Characterization Control Policy-Referral Policy-Override

AgentIF Qi et al. (2025) 707 ✓ ✗ ✓ ✗ ✗ ✗
IFEval Zeng et al. (2023) 541 ✗ ✗ ✗ ✗ ✗ ✗
Tau-Bench Yao et al. (2024) 165 ✓ ✓ ✗ ✗ ✗ ✗
Follow-Bench Jiang et al. (2024) 820 ✗ ✗ ✗ ✗ ✗ ✗
AgentOrca Li et al. (2025) 663 ✓ ✗ ✗ ✗ ✗ ✗
Multi-IF He et al. (2024) 4501 ✗ ✗ ✗ ✗ ✗ ✗
ComplexBench Wen et al. (2024) 1150 ✓ ✗ ✓ ✗ ✗ ✗
Sys-Bench Qin et al. (2024) 500 ✗ ✗ ✗ ✗ ✗ ✗

Ours (CC-Gen) Unlimited ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Tool-using agent performance under varying complexity levels. For each setting, eval-
uation data are randomly sampled from CC-Gen. Workflow(K) and Task(K) denote the respective
complexity levels, with formal definitions in Section § 2.3. Model performance consistently declines
as task-level and workflow complexity increase, with some models dropping to zero under the most
challenging workflow settings.

Performance of Tool Using Agents under Different Complexities. Evaluation Metric: Success Rate

Model / Complexity Workflow (1) Workflow (2) Workflow (3)

Task (3) Task (5) Task (8) Task (12) Task (3) Task (5) Task (8) Task (12) Task (3) Task (5) Task (8) Task (12)

Gemma-3-27B 0.28 0.30 0.17 0.11 0.20 0.17 0.03 0.00 0.07 0.03 0.02 0.00
Qwen2.5-32B 0.26 0.07 0.02 0.01 0.03 0.04 0.00 0.00 0.01 0.01 0.00 0.00
Qwen-3-8B 0.62 0.59 0.52 0.44 0.54 0.36 0.16 0.13 0.40 0.33 0.10 0.07
Qwen-3-32B 0.83 0.82 0.75 0.71 0.79 0.62 0.47 0.25 0.68 0.53 0.42 0.11
Claude-3-5-Sonnet 0.84 0.75 0.71 0.47 0.58 0.35 0.13 0.03 0.64 0.06 0.08 0.00

2.3 BENCHMARKING AGENT PERFORMANCE WITH CONTROLLED COMPLEXITY

We conduct experiments (see Appendix A) to examine how complexity dimensions impact agent
performance and reasoning, motivated by the hypothesis that they likewise obstruct internalization.
Our experiments yields three main observations: (1) environmental complexity has minimal effect,
as it is not directly exposed to agents and only indirectly affects the number of required tools, caus-
ing slight performance variation; (2) task-level complexity causes a gradual performance decline,
whereas workflow-level complexity leads to a much sharper drop, underscoring their influence on
reasoning and internalization and motivating us to benchmark their effects; and (3) while query-
level complexity is crucial in practice, we leave it unconstrained to preserve user input flexibility;
accordingly, we randomly sample queries from the task space defined by P for benchmarking and
follow-up evaluation. Guided by these observations, we construct 12 benchmark settings with con-
trolled task-level and workflow-level complexities (as they appear to pose the greatest reasoning
challenges and most strongly degrade in-context and internalization performance). As shown in Ta-
ble 2, Task(N) denotes a benchmark where the policy specifies N predefined tasks, each requiring N
correct arguments computed according to the policy rules, and Workflow(K) denotes a benchmark
where computing a task argument involves an if–else structure of depth K (see complexity quantifi-
cation in Appendix A and examples in Appendix B). Model performance consistently declines as
both dimensions increase. All models are sensitive to rising workflow complexity, but some degrade
sharply, even to zero in the most challenging settings, while others remain more robust. Notably, the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Qwen-3 series shows significantly greater resilience, consistently outperforming Claude-3.5 under
high-complexity conditions.

3 INTERNALIZING COMPLEX AGENTIC POLICY DOCUMENTS

Based on the agent setting defined in Section §2.1, the goal of internalization is to partially or fully
remove the policy document P from the input. Viewing the agent as Mθ, full internalization corre-
sponds to enforcing the alignment Mθ(q, I,P) ∼ Mθ(q, I), meaning the model should produce
equivalent outputs without explicitly receiving P . In practice, a policy P may have multiple versions
across domains or situational requirements. To efficiently manage these and provide a recall anchor,
we assign each policy a unique identifier (e.g., <#Policy-1356X>), encouraging the model to
treat identifiers as retrieval cues that strengthen its ability to recall and apply the correct rules at
inference time. In deployment, such identifiers would be supplied by a routing or RAG system that
selects the relevant policy based on the user query. Let pid denote the identifier for policy P; our
objective becomes aligning Mθ(q, I,P) with Mθ(q, I, pid). We adopt this formulation throughout
training, with concrete examples of prompt formats and token usage provided in Appendix B.

3.1 BASELINE: SFT WITH GOLD COT-ENHANCED INTERACTION TRAJECTORIES

To capture the complex reasoning dynamics required by policy documents and to align model out-
puts with the desired behavior, we curate 1K–30K full interaction trajectories augmented with
manually constructed gold Chain-of-Thought (CoT). As described in Section §2.1, each trajec-
tory is formulated as τ = {q, I,P, r1, a1, o1, r2, a2, o2, . . . , rT , aT , oT }. To match the infer-
ence format, the policy P is replaced with an identifier pid, which in practice would be ob-
tained by a routing or RAG system. The reasoning steps {r1, . . . , rT } are manually curated to
ensure interpretability and logical consistency. The action sequence {a1, . . . , aT } corresponds
to ground-truth actions provided by our benchmark generator, while the observation sequence
{o1, . . . , oT } is deterministically produced through the tool set. This yields training data of the form
τ = {q, I, pid, r1, a1, o1, r2, a2, o2, . . . , rT , aT , oT }. We perform supervised fine-tuning (SFT) on
these trajectories by minimizing the standard autoregressive loss over reasoning and action tokens:
LSFT = −

∑
t log pθ(yt | y<t), yt ∈ {rt, at}. To study data sparsity, we train on datasets of size

1K, 5K, 10K, 20K, and 30K independently.

3.2 OUR APPROACH: CATEGORY-AWARE POLICY CONTINUED PRETRAINING

While training with Gold CoT-Enhanced Interaction Trajectories yields reasonable internalization
performance, our experiments reveal two major limitations. First, like other SFT methods, it is
highly data-intensive and fails in data-sparse settings, a critical issue in real-world scenarios where
collecting full interaction trajectories with exemplar Chain-of-Thought annotations is difficult. Sec-
ond, the approach struggles with the intensive reasoning demands of complex policy documents,
with performance dropping by up to 46% as workflow complexity increases from level (1) to level
(3) on Qwen-2.5-32B models (see Section§ 4). To address these challenges, we propose Category-
Aware Policy Continued Pretraining, which implements an automatic pipeline that analyzes policies,
categorizes their specifications into four types, and generates tailored data for continued pretraining.

Policy Document Analysis and Categorization Our core insight, drawn from the analysis in Sec-
tion §2.3, is that different policy specifications pose distinct challenges for reasoning and internal-
ization. To address this, we categorize elements of policy documents by how they are applied in the
agent reasoning process and how they affect internalization algorithms. Based on our observation for
real-world policies, we define four categories of specifications: Factual Policy Specifications, Be-
havioral Policy Specifications, Simple Conditional Specifications, and Complex Conditional Speci-
fications. Detailed definitions are provided in Appendix C. As shown in the upper part of Figure 2,
our pipeline begins with an LLM-based preprocessing step: the LLM is prompted to identify task
types in the policy, extract the corresponding specifications, and classify them into these four cate-
gories. In parallel, the LLM determines the valid scope of each specification to construct a complete
representation of the policy. For more complex cases in practice, this process may be enhanced by
an optional manual check to ensure the categorization is accurate.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

{
Step1: Policy Document Analysis and Categorization

(1) Factual (2) Behavioral (3) Conditional (Simple)

Process Raw
Policy with LLM

(1) Identify Task Types and Policy Specifications.

(2) Classify Policy Specification and Valid Scope.

(4) Conditional (Complex)

(Optional)
Manual Check

Step2: Targeted Continue Pretraining Data Generation

Policy Paraphrase (For all SpecificationTypes)

Policy Content QA (For all SpecificationTypes)

Scenario Simulation (For Type (3) and especially (4))
Trajectory Familiaration (Same data from SFT stage)

Behavior Demonstration (For Type (2))

Represent Policy with
Policy Identifier.

Model Generate CPT
data based on Category

(1) Sampling instances from
the environment database

Scenario Simulation helps
Complexity Most

(2) Policy & Valid
Scope-Based LLM

Template Simulation
(3) Get Large size of CPT
data focusing on resolve
complex specifications.

Figure 2: Pipeline for our Category-Aware Policy Continued Pretraining (CAP-CPT).Top: An
LLM-centric pipeline analyzes policy documents and categorizes policy specifications into four
major types. Bottom: Based on this categorization, we generate targeted training data for each
specification type. In particular, scenario-simulation examples address conditional rules that require
complex reasoning, helping the model internalize and apply the most challenging policy knowledge.

Targeted Continued Pretraining Data Generation After policy analysis and categorization, our
pipeline leverages an LLM to generate targeted data for each specification type. In all cases, di-
rect references to the policy are replaced with the policy identifier pid. As illustrated in Figure 2,
we adopt a “targeted therapy” perspective: the data generation process is tailored to the distinct
complexity of each specification category. For factual specifications, the primary challenge is mem-
orization and accurate recall. To address this, we construct policy paraphrases and QA-style content
that strengthen the model’s ability to store and retrieve policy details. For behavioral specifications,
the challenge shifts from simple recall to demonstrating compliant behaviors under defined circum-
stances. Accordingly, we curate data where ground-truth responses act as role models: the LLM
generates scenarios requiring the application of behavioral rules, queries the agent, and produces re-
sponses that consistently reflect satisfactory and policy-aligned behavior. Conditional specifications
govern the workflow of the LLM and their influence increases with complexity. To support this,
we curate large volumes of scenario-simulation data that go beyond memorization, emphasizing the
practical application of policy rules and enabling the model to fully exercise its reasoning capabili-
ties. Unlike standard CPT data focused on rote recall, this simulation data operationalizes the policy
document, transforming abstract rules into executable workflows. An intuitive explanation of why
such data better facilitate model learning is provided in Appendix F. During this process, the LLM
synthesizes scenarios and samples concrete instances from the environment database. For example,
given the complex policy specification in Figure 1, the LLM can generate numerous queries by sam-
pling user and reservation details, then compute the correct number of non-free checked bags and the
corresponding total fee. Finally, we incorporate SFT trajectory data as an auxiliary source to better
prepare the model for downstream task solving. Although all curated data are structured in QA for-
mat, they are employed within a continued d pretraining (CPT) paradigm, where the objective is to
minimize the standard language modeling loss LCPT = −

∑T
t=1 logPθ(xt | x<t), with θ denoting

model parameters and xt the target token at position t. The CPT stage enhances the model’s ability
to internalize and reason over policy content, rather than merely memorizing query answer pairs.
We validate the effectiveness of our curated data and training objective in Section § 4.

4 EVALUATION OF POLICY DOCUMENT INTERNALIZATION

4.1 EXPERIMENT SETTINGS

Model and Data Settings We use Qwen-2.5-32B and Qwen-3-32B for policy document inter-
nalization, chosen for their strong prior knowledge and distinct performance when complex policy

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

documents are provided in context. To evaluate complexity effects, we sample datasets that control
other dimensions while varying workflow complexity from level (1) to (3), as well as datasets that
vary task-level complexity with level (3), (5), (8), and (12) tasks. For SFT, we provide between
1K, 5K, and up to 30K training samples. We also apply our approach to τ -Bench, which offers
only 500 training samples with no CoT based reasoning. Using Qwen-3-32B, we self-generate CoT
trajectories and yield 282 SFT samples. More details are in Appendix D.

Evaluation Framework and Metrics The primary focus of our evaluation is task completion af-
ter policy internalization, where agents must follow the internalized policy document to execute
predefined tasks. To provide a more comprehensive assessment, we also consider scenarios in-
volving policy substitution or override, policy-referral QA grounded in the document, and general
instruction-following tests using IFeval (Zhou et al., 2023). Detailed settings are in Appendix E.
Task completion is measured by success rate (SR), policy QAs are scored on a 0–5 scale by a lan-
guage model and rescaled to 0–100, and instruction following is evaluated by average accuracy.

Table 3: Task-completion performance after policy internalization under varying workflow com-
plexities, with SFT trajectory sizes from 1K to 30K. Our CAP-CPT + SFT consistently outperforms
strong baselines, alleviates data sparsity, and reduces the gap between high- and low-complexity
scenarios. On Qwen-2.5-32B, it even surpasses agent performance with the full policy in context.

Model Complexity Prompting Internalization Approach Internalization Training Data Size
1K 5K 10K 20K 30K

Qwen2.5-32B

Task (5)
Workflow (1)

0.07 Gold CoT SFT 0.04 0.80 0.95 0.97 0.98
CAP-CPT + Gold CoT SFT 0.57 0.94 0.98 0.98 0.99

Task (5)
Workflow (2)

0.04 Gold CoT SFT 0.03 0.23 0.31 0.47 0.59
CAP-CPT + Gold CoT SFT 0.43 0.66 0.74 0.88 0.90

Task (5)
Workflow (3)

0.01 Gold CoT SFT 0.00 0.14 0.26 0.32 0.52
CAP-CPT + Gold CoT SFT 0.36 0.63 0.72 0.85 0.85

Qwen3-32B

Task (5)
Workflow (1)

0.82 Gold CoT SFT 0.03 0.41 0.55 0.71 0.78
CAP-CPT + Gold CoT SFT 0.44 0.67 0.72 0.74 0.80

Task (5)
Workflow (2)

0.62 Gold CoT SFT 0.02 0.18 0.23 0.35 0.42
CAP-CPT + Gold CoT SFT 0.27 0.35 0.46 0.53 0.57

Task (5)
Workflow (3)

0.53 Gold CoT SFT 0.01 0.13 0.17 0.31 0.36
CAP-CPT + Gold CoT SFT 0.16 0.27 0.39 0.41 0.47

Figure 3: Performance curves for internalizing policy documents with varying workflow complex-
ities on Qwen-2.5-32B, comparing the baseline with our method. Our approach consistently out-
performs the baseline across all settings and substantially narrows the performance gap in high-
complexity and data-sparse scenarios.

4.2 MAIN RESULTS

CAP-CPT Significantly Boosts Performance We evaluate agent task-completion performance
under varying workflow complexities in Table 3, with corresponding performance curves in Fig-
ure 7. Relying solely on Gold CoT–enhanced trajectory data for SFT is highly data-intensive and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

results in large disparities across complexity levels. In contrast, our CAP-CPT approach consis-
tently improves performance across all data splits, with particularly strong gains under data-sparse
conditions. Although the curated data is not explicitly optimized for task completion, it substantially
strengthens policy internalization and narrows performance gaps: CAP-CPT reduces the disparity
between high- and low-complexity scenarios by 37% on Qwen-2.5-32B and 21% on Qwen-3-32B,
even with abundant SFT data. This yields more robust and generalizable policy understanding.
Similar trends are observed under varying task-level complexities (Appendix D). Overall, our inter-
nalization achieves input token compression of up to 97.3%. Notably, internalization training on the
strongest base models does not yield gains over the prompting baseline or over training on originally
weaker models. We analyze this in Appendix F.

CAP-CPT Helps Under Broader Evaluation Settings We evaluate agent post-internalization
performance on policy-referral, policy-substitute, and policy-override tasks, as well as general in-
struction following. Results on Qwen-3-32B are shown in Table 4, with more comprehensive results
in Appendix D. Across all policy-related tasks, our method substantially outperforms SFT base-
lines but does not surpass the prompting baseline, indicating that these out-of-domain tasks remain
challenging and warrant further study. For policy-substitute and policy-override, both require bal-
ancing internalized rules with newly introduced ones, with full substitution proving more difficult
than partial override. Improving performance in these settings will likely require additional training
data. For policy-referral, the model immediately after continued pretraining achieves the highest
score, but its performance steadily declines as SFT data size increases, suggesting that SFT tends
to hard-code task solutions rather than really helps to understand policy rules and learn how to put
them into practice. Finally, general instruction-following ability is largely preserved, likely because
policy-focused training is orthogonal to generic instruction following.

Table 4: Comprehensive evaluation results on post-trained Qwen-3-32B across supportive
tasks—including Policy-Substitute, Policy-Override, Policy-Referral, and instruction following,
with further details in Appendix D. While our approach consistently outperforms SFT baselines
after internalization, performance on most tasks still lags behind in-context prompting, suggesting
that additional task-specific training data is needed to fully retain these specialized capabilities.

Model Complexity Prompting Internalization Approach Internalization Training Data Size
1K 5K 10K 20K 30K

Qwen-3-32B
(Substitute)

Task (5)
Workflow (3)

0.53 Gold CoT SFT 0.01 0.00 0.02 0.00 0.00

CAP-CPT + Gold CoT SFT 0.07 0.06 0.08 0.06 0.05

Qwen-3-32B
(Override)

Task (5)
Workflow (3)

0.53 Gold CoT SFT 0.00 0.00 0.00 0.00 0.00

CAP-CPT + Gold CoT SFT 0.09 0.12 0.17 0.22 0.25

Qwen-3-32B
(Referral)

Task (5)
Workflow (3)

0.76 Gold CoT SFT 0.00 0.00 0.00 0.00 0.00

CAP-CPT + Gold CoT SFT 0.59 0.31 0.23 0.20 0.13

Qwen-3-32B
(Ifeval)

Task (5)
Workflow (3)

0.44 Gold CoT SFT 0.45 0.43 0.46 0.42 0.45

CAP-CPT + Gold CoT SFT 0.44 0.45 0.44 0.47 0.43

4.3 ABATION STUDY

We assess the effectiveness of our approach by evaluating two variants of the complete method.
The first variant uses all generated Category-Aware QA-format data for SFT, while the second ex-
cludes the scenario-simulation data designed for complexity handling. As shown in Table 5, both
variants outperform the SFT baselines, but the full approach consistently achieves the strongest re-
sults across all data settings. This underscores the importance of jointly leveraging targeted data
and the CAP-CPT training objective. Additional analyses of the benefits and limitations of these
two variants are provided in Appendix H. Notably, both variants still yield substantial gains over
SFT-only baselines, further validating the effectiveness of our curated data. We also test our method
under multi-policy internalization; results indicate that internalization performance remains consis-
tent when applied across a number of distinct policies with different complexity levels. Details are
provided in Appendix G.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Demonstration of the effectiveness of our CAP-CPT approach. We validate the CPT train-
ing objective by applying the generated data for SFT and assess the scenario-simulation data’s ability
to handle complexity by selectively removing portions of it. Both variants yield suboptimal perfor-
mance compared to our full approach.

Model Complexity Prompting Internalization Approach Internalization Training Data Size
1K 5K 10K 20K 30K

Qwen-3-32B Task (5)
Workflow (3)

0.53

Gold CoT SFT 0.01 0.13 0.17 0.31 0.36
CAP-CPT + Gold CoT SFT 0.16 0.27 0.39 0.41 0.47

(CAP-CPT data + Gold CoT) for SFT 0.08 0.21 0.28 0.34 0.42
Remove Scenario Simulation Data 0.09 0.23 0.32 0.36 0.44

4.4 APPLICATION ON τ -BENCH

Finally, we evaluate our approach on τ -bench. Following the setup described in Section§ 2.1,
we mitigate potential user-simulator bias by modifying the protocol so that agents solve complete
queries directly rather than through multi-turn interaction. We prompt Qwen-3-32B to self-generate
responses for the 500 training samples provided by τ -bench, yielding 282 successful trajectories
with Self-CoT used for SFT. We subsequently perform policy analysis and synthesize CAP-CPT
data. As summarized in Table 14, the original Qwen-3-32B model with in-context policy achieves
a 26.96% success rate. After internalization using only SFT, performance slightly drops to 23.48%,
underperforming the prompting baseline. In contrast, our full approach surpasses the prompting
baseline, achieving a 28.70% success rate while reducing the overall input length by 34.8%. We
further evaluate the policy categorization stage of our pipeline and verify that these gains persist in
real-world settings without manual intervention. Notably, the policy analysis and data generation
steps are executed entirely by Qwen-3-32B, eliminating the need for any external LLM APIs. De-
tailed precision, recall, and F1 results from this policy analysis process are provided in Appendix I.

5 RELATED WORK

Deliberative alignment (Guan et al., 2024; Zhang et al., 2025a) is most closely related to our work.
This line of research aims to internalize general safety rules and behaviors into a model’s prior, ei-
ther through additional training (Guan et al., 2024) or test-time deliberation (Zhang et al., 2025a).
However, it remains focused on generic safety behaviors, overlooking the broader scope of agentic
policies and the complex reasoning challenges (e.g., workflow-level constraints) central to policy
internalization. Besides, our work also intersects with several research areas, including prompt
compression (Li et al., 2024; Chuang et al., 2024; Mu et al., 2024), knowledge injection and percep-
tion (Martino et al., 2023; Song et al., 2025a), and continued pretraining (Zhou et al., 2024). Owing
to space limitations, we provide further discussion of related work in these domains in Appendix K.

6 CONCLUSION

In this work, we examined the challenge of internalizing long, complex policy documents in LLM-
based agentic systems. We characterized distinct forms of policy complexity and introduced CC-
Gen, a controllable-complexity benchmark generator for systematically analyzing agents’ ability to
handle varying complexities and enabling comprehensive evaluation of internalization algorithms.
Our analysis identified workflow depth as a primary driver of performance degradation, highlighting
limits of in-context methods and data-intensive SFT-based approaches. To address these issues, we
internalize policy documents via explicit policy identifiers and an automated pipeline for policy anal-
ysis that generates Category-Aware Policy Continue Pretraining (CAP-CPT) data. This reduces SFT
data demands and mitigates the reasoning challenges posed by complex specifications. Empirically,
our approach yields consistent gains across scenarios and substantially narrows complexity-related
performance disparities. Overall, our findings underscore the importance of explicitly modeling
policy complexity and provide a scalable, effective solution for policy internalization. We hope
this work motivates further research into robust and generalizable internalization for LLM agents,
ultimately enabling more computationally efficient, reliable, and helpful AI assistants for all.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We provide an anonymous source code archive in the supplementary material, which includes our
data generator as well as detailed training and evaluation instructions for reproducing the results in
this paper. We use LlamaFactory Zheng et al. (2024) to train Qwen-2.5-32B and Qwen-3-32B on
eight H100 GPUs. We will also publicly release the full codebase and data, including the benchmark
generator to further facilitate reproducibility. All reported experimental results are based on a single
run. Additional experimental details are provided in Section§ 4 and Appendix D.

8 ETHICS STATEMENT

This work focuses on fundamental research aimed at improving the internalization of complex policy
documents in language models. No human subjects or private user data were involved in this study.
The dataset introduced in this work consists entirely of synthetically generated user profiles and does
not contain or rely on any real user data. To the best of our knowledge, this research does not raise
any ethical concerns.

REFERENCES

Ms Aayushi Bansal, Dr Rewa Sharma, and Dr Mamta Kathuria. A systematic review on data scarcity
problem in deep learning: solution and applications. ACM Computing Surveys (Csur), 54(10s):
1–29, 2022.

Sébastien Bubeck, David Dohan, Kenneth Joseph, et al. Claude 3 technical report. https://
www.anthropic.com/index/claude-3-family, 2024. Anthropic.

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Ting Liu, and Xiangzhan Yu. Recall and
learn: Fine-tuning deep pretrained language models with less forgetting. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 7870–
7881, 2020. doi: 10.18653/v1/2020.emnlp-main.634. URL https://aclanthology.org/
2020.emnlp-main.634/.

Wuyang Chen, Yanqi Zhou, Nan Du, Yanping Huang, James Laudon, Zhifeng Chen, and
Claire Cu. Lifelong language pretraining with distribution-specialized experts. arXiv preprint
arXiv:2305.12281, 2023. URL https://arXiv.org/abs/2305.12281.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to
compress contexts. arXiv preprint arXiv:2305.14788, 2023.

Yu-Neng Chuang, Tianwei Xing, Chia-Yuan Chang, Zirui Liu, Xun Chen, and Xia Hu. Learning to
compress prompt in natural language formats. arXiv preprint arXiv:2402.18700, 2024.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple effects
of knowledge editing in language models. Transactions of the Association for Computational
Linguistics, 12:283–298, 2024.

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for
context compression in a large language model. arXiv preprint arXiv:2307.06945, 2023.

Melody Y Guan, Manas Joglekar, Eric Wallace, Saachi Jain, Boaz Barak, Alec Helyar, Rachel Dias,
Andrea Vallone, Hongyu Ren, Jason Wei, et al. Deliberative alignment: Reasoning enables safer
language models. arXiv preprint arXiv:2412.16339, 2024.

Suchin Gururangan, Mike Lewis, Ari Holtzman, Noah A. Smith, and Luke Zettlemoyer. Demix
layers: Disentangling domains for modular language modeling. In Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 5557–5576. Association for Computational Linguistics,
July 2022. doi: 10.18653/v1/2022.naacl-main.407. URL https://aclanthology.org/
2022.naacl-main.407.

10

https://www.anthropic.com/index/claude-3-family
https://www.anthropic.com/index/claude-3-family
https://aclanthology.org/2020.emnlp-main.634/
https://aclanthology.org/2020.emnlp-main.634/
https://arXiv.org/abs/2305.12281
https://aclanthology.org/2022.naacl-main.407
https://aclanthology.org/2022.naacl-main.407

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng Ding, Liying Cheng, Jiawei Low, Lidong
Bing, and Luo Si. On the effectiveness of adapter-based tuning for pretrained language model
adaptation. In Proceedings of ACL, 2021.

Yun He, Di Jin, Chaoqi Wang, Chloe Bi, Karishma Mandyam, Hejia Zhang, Chen Zhu, Ning Li,
Tengyu Xu, Hongjiang Lv, Shruti Bhosale, Chenguang Zhu, Karthik Abinav Sankararaman, Eryk
Helenowski, Melanie Kambadur, Aditya Tayade, Hao Ma, Han Fang, and Sinong Wang. Multi-if:
Benchmarking llms on multi-turn and multilingual instructions following, 2024. URL https:
//arxiv.org/abs/2410.15553.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing
prompts for accelerated inference of large language models. arXiv preprint arXiv:2310.05736,
2023.

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi, Lifeng Shang,
Xin Jiang, Qun Liu, and Wei Wang. Followbench: A multi-level fine-grained constraints follow-
ing benchmark for large language models, 2024. URL https://arxiv.org/abs/2310.
20410.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwińska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences,
114(13):3521–3526, 2017. doi: 10.1073/pnas.1611835114. URL https://www.pnas.org/
doi/10.1073/pnas.1611835114.

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin. Compressing context to enhance inference
efficiency of large language models, 2023. URL https://arxiv.org/abs/2310.06201.

Zekun Li, Shinda Huang, Jiangtian Wang, Nathan Zhang, Antonis Antoniades, Wenyue Hua, Kai-
jie Zhu, Sirui Zeng, Chi Wang, William Yang Wang, and Xifeng Yan. Sopbench: Evaluat-
ing language agents at following standard operating procedures and constraints, 2025. URL
https://arxiv.org/abs/2503.08669.

Zongqian Li, Yinhong Liu, Yixuan Su, and Nigel Collier. Prompt compression for large language
models: A survey, 2024. URL https://arxiv.org/abs/2410.12388.

Jiateng Liu, Pengfei Yu, Yuji Zhang, Sha Li, Zixuan Zhang, and Heng Ji. Evedit: Event-based
knowledge editing with deductive editing boundaries. arXiv preprint arXiv:2402.11324, 2024a.

Kai Liu, Ze Chen, Zhihang Fu, Rongxin Jiang, Fan Zhou, Yaowu Chen, Yue Wu, and Jieping
Ye. Structure-aware domain knowledge injection for large language models. arXiv preprint
arXiv:2407.16724, 2024b.

Ariana Martino, Michael Iannelli, and Coleen Truong. Knowledge injection to counter large lan-
guage model (llm) hallucination. In European Semantic Web Conference, pp. 182–185. Springer,
2023.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning and Motivation, 24:109–165, 1989.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens, 2024.
URL https://arxiv.org/abs/2304.08467.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Zhiyuan Peng, Xuyang Wu, Qifan Wang, and Yi Fang. Soft prompt tuning for augmenting dense
retrieval with large language models. Knowledge-Based Systems, 309:112758, 2025.

Yunjia Qi, Hao Peng, Xiaozhi Wang, Amy Xin, Youfeng Liu, Bin Xu, Lei Hou, and Juanzi Li. Agen-
tif: Benchmarking instruction following of large language models in agentic scenarios. arXiv
preprint arXiv:2505.16944, 2025.

11

https://arxiv.org/abs/2410.15553
https://arxiv.org/abs/2410.15553
https://arxiv.org/abs/2310.20410
https://arxiv.org/abs/2310.20410
https://www.pnas.org/doi/10.1073/pnas.1611835114
https://www.pnas.org/doi/10.1073/pnas.1611835114
https://arxiv.org/abs/2310.06201
https://arxiv.org/abs/2503.08669
https://arxiv.org/abs/2410.12388
https://arxiv.org/abs/2304.08467

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yanzhao Qin, Tao Zhang, Tao Zhang, Yanjun Shen, Wenjing Luo, Haoze Sun, Yan Zhang, Yujing
Qiao, Weipeng Chen, Zenan Zhou, Wentao Zhang, and Bin Cui. Sysbench: Can large language
models follow system messages?, 2024. URL https://arxiv.org/abs/2408.10943.

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, Wenyuan Wang, Yibin Wang, Zifeng Wang,
Sayna Ebrahimi, and Hao Wang. Continual learning of large language models: A comprehensive
survey. ACM Computing Surveys, 57(5):1–41, 2025. doi: 10.1145/3735633. URL https:
//doi.org/10.1145/3735633.

Zirui Song, Bin Yan, Yuhan Liu, Miao Fang, Mingzhe Li, Rui Yan, and Xiuying Chen. Injecting
domain-specific knowledge into large language models: a comprehensive survey. arXiv preprint
arXiv:2502.10708, 2025a.

Zirui Song, Bin Yan, Yuhan Liu, Miao Fang, Mingzhe Li, Rui Yan, and Xiuying Chen. Injecting
domain-specific knowledge into large language models: A comprehensive survey. arXiv preprint
arXiv:2502.10708, 2025b. URL https://arxiv.org/abs/2502.10708.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuan-Jing Huang, Jianshu Ji, Guihong Cao,
Daxin Jiang, and Ming Zhou. K-adapter: Infusing knowledge into pre-trained models with
adapters. In Findings of ACL, 2021.

Rushi Wang, Jiateng Liu, Cheng Qian, Yifan Shen, Yanzhou Pan, Zhaozhuo Xu, Ahmed Abbasi,
Heng Ji, and Denghui Zhang. Context engineering for trustworthiness: Rescorla wagner steering
under mixed and inappropriate contexts, 2025. URL https://arxiv.org/abs/2509.
04500.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji. Mint:
Evaluating llms in multi-turn interaction with tools and language feedback, 2024. URL https:
//arxiv.org/abs/2309.10691.

Bosi Wen, Pei Ke, Xiaotao Gu, Lindong Wu, Hao Huang, Jinfeng Zhou, Wenchuang Li, Binxin Hu,
Wendy Gao, Jiaxin Xu, Yiming Liu, Jie Tang, Hongning Wang, and Minlie Huang. Benchmarking
complex instruction-following with multiple constraints composition, 2024. URL https://
arxiv.org/abs/2407.03978.

Junlin Xie, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. Large multimodal agents: A
survey. arXiv preprint arXiv:2402.15116, 2024.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. tau-bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, and Danqi Chen. Evaluating large
language models at evaluating instruction following. arXiv preprint arXiv:2310.07641, 2023.

Haoran Zhang, Yafu Li, Xuyang Hu, Dongrui Liu, Zhilin Wang, Bo Li, and Yu Cheng. Reason-
ing over boundaries: Enhancing specification alignment via test-time delibration, 2025a. URL
https://arxiv.org/abs/2509.14760.

Qinggang Zhang, Junnan Dong, Hao Chen, Daochen Zha, Zailiang Yu, and Xiao Huang. Knowgpt:
Knowledge graph based prompting for large language models. In Advances in Neural Information
Processing Systems (NeurIPS), 2024. URL https://arxiv.org/abs/2407.16724.

Shujie Zhang and et al. Are pretrained language models robust? In NAACL-HLT, 2019.

Yuji Zhang, Sha Li, Cheng Qian, Jiateng Liu, Pengfei Yu, Chi Han, Yi R. Fung, Kathleen McKeown,
Chengxiang Zhai, Manling Li, and Heng Ji. The law of knowledge overshadowing: Towards
understanding, predicting, and preventing llm hallucination, 2025b. URL https://arxiv.
org/abs/2502.16143.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372.

12

https://arxiv.org/abs/2408.10943
https://doi.org/10.1145/3735633
https://doi.org/10.1145/3735633
https://arxiv.org/abs/2502.10708
https://arxiv.org/abs/2509.04500
https://arxiv.org/abs/2509.04500
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2407.03978
https://arxiv.org/abs/2407.03978
https://arxiv.org/abs/2509.14760
https://arxiv.org/abs/2407.16724
https://arxiv.org/abs/2502.16143
https://arxiv.org/abs/2502.16143
http://arxiv.org/abs/2403.13372

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning
with pre-trained models: A survey. arXiv preprint arXiv:2401.16386, 2024. URL https:
//arXiv.org/abs/2401.16386.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Lixi Zhu, Xiaowen Huang, and Jitao Sang. How reliable is your simulator? analysis on the limi-
tations of current llm-based user simulators for conversational recommendation. In Companion
Proceedings of the ACM Web Conference 2024, pp. 1726–1732, 2024.

Jiaru Zou, Mengyu Zhou, Tao Li, Shi Han, and Dongmei Zhang. Promptintern: Saving inference
costs by internalizing recurrent prompt during large language model fine-tuning, 2024. URL
https://arxiv.org/abs/2407.02211.

A BENCHMARK DEVELOPMENT AND PROBING EXPERIMENTS

Step 1: Environment Simulation Step 2: Policy Generation Step 3: User Query Sampling

Input: Choose Customized Benchmark Complexity Argument

Environmental Complexity:
{3 accessible databases }

Task-Level Complexity:
{5 Tasks with 5 arguments}

WorkFlow Complexity:
Decision Tree Depth = 2

Agent Execution Step:
{Total Steps less than 5}

(1) Initilize Policy Template(1) Sample Attributes of Data instances

(2) Generate Tools to access Database

Attribute_1: Primary Key

Attribute_2: Random(A-Z)

Attribute_3: Random(0,100)

............

Attribute_k: Random(0,100)

Attribute Types:

Primary Key

Lookup Values

Foreign Key

Other Attributes
(For comparison)

(Get other instance)

(Look up instance)

(Get current instance)

Get_Data_Instance_{1-3}

Search_Data_Instance_{1-3}

(2) Tool Use Specification

(4) Filter step range according to query.

Global Attributes Definition:

Environment Description:

Tool Use Instructions:

Task Completion instructions: ...

General Rules Description:

 Five building
blocks

Constructs
Policy

Document

(3) Task Completion
##Available Tools: Get_Data_Instance_1: Use this
tool to directly access a specific data instance by its
primary key; When to use: ... Example call:
Finish_Task_5: Use this tool to complete the fifth
type of task with the computed arguments. When to
use: ... Example call: Finish_Task_5 (args_1= 3,
arg_2='str1', args_3=42, args_4='str2', args_5=89)

##Task Specifications:- The agent must access the
user's database instance and sequentially get the
following ... according to the user request to finish
Task_Type_1. The agent should pass the following
arguments to the Finish_Task_1: arg_1: The sum of
database_2_attribute_7 and 36, arg_2: The original
lookup value of global_attribute 5,

(1) Sample Tasks to Finish.

(2) Sample the databases needing access.

(3) Form ground truth trajectories.

Figure 4: Pipeline of our CC-Gen benchmark generator.

Complexity Characterization We provide additional details of our CC-Gen benchmark genera-
tor, including its construction, usage, and output. As illustrated in Figure 4, the generator synthesizes
agentic benchmarks by composing four key components:

1. Pre-defined environments. Each environment typically consists of a collection of
databases, where every database has its own schema with primary keys, foreign keys,
lookup keys, and other attributes. The concrete attributes of the data instances are ran-
domly sampled.

2. Policy documents. Policies are instantiated from templates and tagged with explicit mark-
ers (e.g., <Airline #Policy-1356X>). Each policy specifies the set of tasks the
agent must complete, along with detailed guidelines, global attributes, general rules, envi-
ronment descriptions, and tool-use instructions.

3. Tool definitions. For every database, we provide two types of tools: one that retrieves a
single data instance by primary key, and another that supports flexible search over desig-
nated fields. There are also tools which are designed to help agent complete tasks or report
to human agents and ask for help.

13

https://arXiv.org/abs/2401.16386
https://arXiv.org/abs/2401.16386
https://arxiv.org/abs/2407.02211

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

4. User queries and reference trajectories. A benchmark includes a collection of user
queries, their corresponding correct action sequences, and final answers. Users can inde-
pendently control the complexity of the environment, task-level specifications, and work-
flow structures when generating new benchmarks. They may also restrict user query com-
plexity, though in this paper we constrain our experiments accordingly.

We also present an example of tool-use specifications and task completion trajectories in Figure 4.
A complete sample benchmark generated by CC-Gen is provided in Appendix B

Complexity Quantification ‘To unify and simplify the computation of complexity dimensions in
agentic tasks, and to enable users to easily quantify complexity levels, we design a set of discrete
metrics for describing these dimensions. We denote Complexity-dimension (K) as the K-th level of
complexity within a given dimension, and define it as follows:

Environment (K): This captures the number of databases that the language model agent must in-
teract with. For τ -bench, the environmental complexity is set at K = 3, a setting we also adopt
for our main experiments. Although this number is relatively small, we validated that the impact
of environmental complexity is limited; therefore, higher values in real-world scenarios would not
significantly alter our evaluation.

Task-Level (K): This dimension reflects both the number of tasks and the number of arguments
required for computation in each task. While in practice, the complexity from multiple tasks and
individual task arguments can have distinct effects, we unify them into a single dimension. This is
because their increase jointly contributes to the overall task complexity.

Workflow-Level (K): This represents the complexity of the workflow needed to complete the target
task. Specifically, it accounts for the depth of logical structures (e.g., nested if–else conditions) that
the agent must reason through. For simplicity, we define workflow complexity as the depth of these
structures in each specification.

Although in real-world applications the complexity of each dimension may interact in more entan-
gled ways, we unify them in our benchmark to make the construction process more interpretable
and to better isolate the impact of each independent dimension. A discussion of this design choice
is provided in the limitation section M.

Probing Experiments We conducted comprehensive probing experiments on Qwen-3-8B models
to briefly have an insight on which complexity levels worth most attention. The experimental results
are shown in Table 6 ∼ Table 9. We evaluate with both task Success Rate (SR) and also Partial
Success Rate (PSR) for our probing experiments. SR is the fraction of tasks whose entire gold action
sequence is executed correctly. PSR measures argument-level accuracy for tool use: for each gold
action, when the agent invokes the correct tool, we compare its arguments with the gold specification
and compute the fraction that match; PSR is the average of this fraction across all matched tool calls
(averaged over tasks). Our experiments reveal that workflow complexity poses the most significant
reasoning challenges for LLM agents, followed by task-level complexity. In contrast, the impact of
environmental complexity is relatively minor, likely because agents interact with external resources
primarily through tools rather than directly. In practice, adding a large external database often
only introduces a few additional tool-use commands, without substantially increasing the reasoning
burden. We hypothesize that this explains why environmental complexity appears less influential in
our evaluations.

Table 6: Probing experimental results for different environmental complexity, where we control
the task level complexity and workflow level complexity. Results show that distinct environment
complexity does not matter much.

Model Environment (3) Environment (5) Environment (10)
Qwen-3-8B (SR) 0.91 0.87 0.88
Qwen-3-8B (PSR) 0.941 0.913 0.937

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Probing experimental results for different task level complexity at Workflow (1), where
we control the environmental complexity. Results show that increasing task complexity leads to
noticeable performance degradation.

Model Task (3) Task (5) Task (8) Task (12)
Qwen-3-8B (SR) 0.92 0.85 0.67 0.60
Qwen-3-8B (PSR) 0.961 0.929 0.791 0.772

Table 8: Probing experimental results for different task level complexity at Workflow (2), where we
control the environmental complexity. Results show that higher task complexity markedly reduces
performance under deeper workflows.

Model Task (3) Task (5) Task (8) Task (12)
Qwen-3-8B (SR) 0.74 0.68 0.23 0.02
Qwen-3-8B (PSR) 0.876 0.842 0.578 0.298

B DATA EXAMPLES FOR GENERATED POLICY DOCUMENTS

We present several examples generated by our CC-Gen benchmark generator to demonstrate its
ability to produce agentic benchmarks with controllable complexity.

Real Policy Example Sampled from our Agentic Benchmark Generator CC-Gen

Complexity Level: Environmental(3); Task-Level(5); Workflow(1).

Agent Policy Document #P71067

General Instructions

The global attribute is currently: Global-Attribute-Value1 = 30, Global-Attribute-Value2
= 60, Global-Attribute-Value3 = 7. You are a helpful agent that can get access to profiles
and attributes at different layers and indexes. You can help users finish Task-Type-1,
Task-Type-2, Task-Type-3, Task-Type-4, Task-Type-5.

Domain Basic

Profile Structure

The jth profile instance at profile layer i has its primary key as profile-i-j There are 3 layers
of profiles, and each profile layer has a number of profile instances. All the profile instances
at the same layer have the same attributes.

- Each profile at layer 1 indexed j Profile-1-j has attributes: Profile-1-Attribute-1,
Profile-1-Attribute-2, Profile-1-Attribute-3, Profile-1-Attribute-4, Profile-1-Attribute-5,
Profile-1-Attribute-6, Profile-1-Attribute-7, Profile-1-Attribute-8

- Each profile at layer 2 indexed j Profile-2-j has attributes: Profile-2-Attribute-1,
Profile-2-Attribute-2, Profile-2-Attribute-3, Profile-2-Attribute-4, Profile-2-Attribute-5,
Profile-2-Attribute-6, Profile-2-Attribute-7, Profile-2-Attribute-8

- Each profile at layer 3 indexed j Profile-3-j has attributes: Profile-3-Attribute-1,
Profile-3-Attribute-2, Profile-3-Attribute-3, Profile-3-Attribute-4, Profile-3-Attribute-5,
Profile-3-Attribute-6, Profile-3-Attribute-7, Profile-3-Attribute-8

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 9: Probing experimental results for different task level complexity and workflow level com-
plexity, where we control the environmental complexity. Results show that higher workflow and
task levels jointly compound performance degradation.

Model Complexity Task (5) Task (8)

Qwen-3-8B (SR) Workflow (1) 0.85 0.67
Workflow (2) 0.68 0.23

Qwen-3-8B (PSR) Workflow (1) 0.929 0.791
Workflow (2) 0.842 0.578

Attribute Definitions

The jth attribute at layer i is denoted as profile-attribute-i-j.

At layer 1: - The attribute-1 and attribute-2 and attribute-7 and attribute-8 can serve as
conditions - The attribute-4 contain the primary keys to access profiles at layer 1 - The
attribute-5 contain the primary keys to access profiles at layer 2 - The attribute-6 contain the
primary keys to access profiles at layer 3 - The attribute-3 can be used as an alternative way
to access the profiles while searching.

At layer 2: - The attribute-1 and attribute-2 and attribute-7 and attribute-8 can serve as
conditions - The attribute-4 contain the primary keys to access profiles at layer 2 - The
attribute-5 contain the primary keys to access profiles at layer 3 - The attribute-6 contain the
primary keys to access profiles at layer 1 - The attribute-3 can be used as an alternative way
to access the profiles while searching.

At layer 3: - The attribute-1 and attribute-2 and attribute-7 and attribute-8 can serve as
conditions - The attribute-4 contain the primary keys to access profiles at layer 3 - The
attribute-5 contain the primary keys to access profiles at layer 1 - The attribute-6 contain the
primary keys to access profiles at layer 2 - The attribute-3 can be used as an alternative way
to access the profiles while searching.

Profile Access Pattern

When the user specifies a profile-k-id, you should understand that this means the user wants
to access the profile-k instance with the primary key’s index being the given value. When
the user specifies a profile-k-info, you should understand that this means the user wants to
access the profile-k instance with the lookup attribute value of the provided string. When
referring to a user’s profile-k, you should use the layer k-1 profile’s reference attribute to
get access to the primary keys of profile-k instances.

Relative Profile Access:

When the user specifies getting a ’relative profile’ or ’related profile’, this means accessing
other profile instances at the same layer as the current profile. To accomplish this, you
should use the reference attributes from the current profile instance to find the primary keys
of the target profile instances at the same layer. For example, if you are currently accessing
a profile at layer 2, and the user asks for a relative profile, you should use the reference
attributes in the current layer 2 profile to identify and access other layer 2 profile instances.

Tool Calling Instructions

General Rules

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

- You should only make one tool call at a time, and if you make a tool call, you should not
respond to the user simultaneously. - If you respond to the user, you should not make a tool
call at the same time. - You should only call the tool Tool-Conflict when the request is not
able to be handled within the policy and the user specifications.

Available Tools

Profile Access Tools

- Get-Profile-Layer-k: Use this tool to directly access a specific profile instance by its
primary key. - Parameter: ‘index-value‘ (string) - The full primary key of the profile
instance (e.g., ”profile-1-5”, ”profile-2-10”, ”profile-3-1”) - When to use: - When users
specify a profile-id, such as ”my profile-id is profile-1-5” or ”using profile-2-3” - When you
obtain a reference attribute value from another profile instance that contains the primary key
to access a different layer - Example call: Get-Profile-Layer-1(index-value=”profile-1-5”)

- Search-Profile-Layer-k: Use this tool to find profile instances by their lookup attribute
value. - Parameter: ‘key-value‘ (string) - The lookup attribute value to search for - When
to use: When users specify a profile-info, such as ”my profile-info is ’engineering’” or
”find profiles with lookup value ’sales’” - Example call: Search-Profile-Layer-1(key-
value=”engineering”)

Task Completion Tools

- finish-task-k: Use this tool to complete Task-Type-k with the computed arguments. -
Parameter: ‘attributes‘ (list) - A list of computed argument values in the order specified
by the task requirements - When to use: After accessing all required profile instances and
computing the task arguments according to task specifications - Example call: finish-task-
1(attributes=[25, 150, 42])

Conflict Resolution Tool

- Tool-Conflict: Use this tool when the user request cannot be handled within the policy
constraints. - Parameters: None - When to use: If the user request violates policy or cannot
be fulfilled with available tools and data - Example call: Tool-Conflict()

Tool Parameter Mapping Guidelines

- profile-id references: When users mention ”my profile-id is profile-k-X” or ”profile-k-X”,
use the Get-Profile-Layer-k tool with index-value=”profile-k-X” - reference attribute usage:
When you access a profile instance and obtain reference attributes (e.g., reference-1,
reference-2, reference-3), use those primary key values with Get-Profile-Layer-k to access
the referenced profiles at the target layers - profile-info references: When users mention
”my profile-info is Y” or provide lookup values, use the Search-Profile-Layer-k tool
with key-value=”Y” - Task completion: Always pass computed arguments as a list to
finish-task-k tools, ensuring the order matches task specifications

Usage Guidelines

The user will specify the instance index at the first layer, and the agent shall go through the
profile instances at different indexes and layers to obtain the attributes needed for the task.

Policy Specifications

General Policy 1

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The agent must first get access to the profile instance at layer 1 according to the user
specified primary key, alternatively, the agent may also search for the profile instance at
layer 1 when the user did not provide a profile instance at layer 1 and instead provided a
lookup field in profile layer 1.

General Policy 2

The agent should always finish the task with the task required attribute combinations at one
time. If users specify multiple attribute combinations for the task (e.g., ’doing task i for all
the instances accessd in layer 1.’), the agent must call the finish task tool multiple times and
only address one attribute combination at a time.
Task Specifications

Task-Type-1

- The agent must access one profile instance at each of the layer 1, layer 2, layer 3 according
to the user request, - The agent should pass the following arguments into the finish-task-1
tool call: - arg-1: The average of all values: (layer-3-attribute-8 + 26 + 96) divided by
3 (integer division). - arg-2: The original lookup value of layer-1-attribute-3 from the
selected profile. - arg-3: The count of values greater than 50 among: layer-2-attribute-7,
layer-3-attribute-2, 90, 96. - arg-4: layer-3-attribute-1 if layer-3-attribute-1 ¿ 4, else 4. -
arg-5: The maximum among all values: layer-3-attribute-2, layer-2-attribute-7, 51, 59. -
Each task-1 completion requires exactly one profile from each of the specified layers. -
The agent should call the finish-task-1 tool with arguments from one instance per layer at a
time. - Multiple function calls may be needed if multiple profile combinations are requested.

Task-Type-2

- The agent must access one profile instance at each of the layer 1 according to the user
request, - The agent should pass the following arguments into the finish-task-2 tool call:
- arg-1: The sum of all values: global-attribute-2, layer-1-attribute-7, 64, 56. - arg-2:
The original lookup value of layer-1-attribute-3 from the selected profile. - arg-3: The
average of all values: (global-attribute-3 + layer-1-attribute-1 + layer-1-attribute-2 + 63)
divided by 4 (integer division). - arg-4: The minimum among all values: global-attribute-3,
global-attribute-2, layer-1-attribute-7, 46, 40. - arg-5: The sum of even values among:
layer-1-attribute-8, layer-1-attribute-7, layer-1-attribute-1, 78. - The agent should call the
finish-task-2 tool with the arguments above for the selected profile instance.

Task-Type-3

- The agent must access one profile instance at each of the layer 1, layer 2, layer 3 according
to the user request, - The agent should pass the following arguments into the finish-task-3
tool call: - arg-1: The maximum among all values: layer-3-attribute-7, 24, 14. - arg-2:
The result of (layer-2-attribute-1 + 2 + 73) modulo 100. - arg-3: The maximum between
layer-2-attribute-2 and 48. - arg-4: The original lookup value of layer-1-attribute-3 from
the selected profile. - arg-5: The sum of even values among: global-attribute-1, 5, 12. -
Each task-3 completion requires exactly one profile from each of the specified layers. -
The agent should call the finish-task-3 tool with arguments from one instance per layer at a
time. - Multiple function calls may be needed if multiple profile combinations are requested.

Task-Type-4

- The agent must access one profile instance at each of the layer 1 according to the
user request, - The agent should pass the following arguments into the finish-task-4 tool
call: - arg-1: The maximum among all values: layer-1-attribute-1, 76, 65. - arg-2: The
product of global-attribute-3 and 8. - arg-3: The count of values greater than 50 among:
layer-1-attribute-8, layer-1-attribute-7, global-attribute-3, 22. - arg-4: The maximum

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

among all values: global-attribute-2, 50, 66. - arg-5: The result of (layer-1-attribute-8 +
global-attribute-1 + 98 + 90) modulo 100. - The agent should call the finish-task-4 tool with
the arguments above for the selected profile instance.

Task-Type-5

- The agent must access one profile instance at each of the layer 1, layer 2, layer 3 according
to the user request, - The agent should pass the following arguments into the finish-task-
5 tool call: - arg-1: The range (max - min) among: global-attribute-1, layer-3-attribute-8,
layer-2-attribute-2, 5, 99. - arg-2: The count of values greater than 50 among: layer-3-
attribute-8, global-attribute-1, layer-2-attribute-8, 49, 52. - arg-3: The original lookup value
of layer-1-attribute-3 from the selected profile. - arg-4: The average of all values: (layer-2-
attribute-7 + global-attribute-3 + layer-3-attribute-1 + 59) divided by 4 (integer division). -
arg-5: The sum of even values among: layer-2-attribute-2, global-attribute-2, 58, 79. - Each
task-5 completion requires exactly one profile from each of the specified layers. - The agent
should call the finish-task-5 tool with arguments from one instance per layer at a time. -
Multiple function calls may be needed if multiple profile combinations are requested.

C POLICY ANALYSIS DETAILS

We use the model itself (which still requires further internalization) as the LLM for policy analy-
sis, thereby avoiding potential knowledge distillation from stronger models. As described in Sec-
tion § 3.2, we categorize policy specifications into four major types based on their influence on agent
behavior:

1. Factual Type. The policy document states a fact that the agent must memorize and po-
tentially paraphrase when answering user queries. These specifications do not involve rea-
soning or decision-making, but require accurate recall. Example: “The refund will be
processed within 5–7 business days.”

2. Behavior Type. The policy prescribes or prohibits certain general behaviors, indepen-
dent of the workflow logic. Violating these rules does not change the structure of the task
but determines whether the agent’s behavior aligns with policy requirements. Example:
“Before taking any actions that update the booking database (booking, modifying flights,
editing baggage, upgrading cabin class, or updating passenger information), you must list
the action details and obtain explicit user confirmation (yes) to proceed.”

3. Conditional Type (Simple). The policy specifies simple conditional rules that directly
affect the agent’s workflow but require minimal reasoning to apply. The condition typically
involves a straightforward check on one variable or state. Example: “The agent can only
cancel the whole trip that is not flown.”

4. Conditional Type (Complex). The policy encodes nested or multi-branch conditional
logic that requires deeper reasoning to correctly apply. Such rules often involve multi-
ple attributes, role-specific constraints, or cumulative calculations, and thus present higher
complexity for the model. Example: “Checked bag allowance: If the booking user is a
regular member, 0 free checked bag for each basic economy passenger, 1 free checked bag
for each economy passenger, and 2 free checked bags for each business passenger. If the
booking user is a silver member, 1 free checked bag for each basic economy passenger, 2
free checked bag for each economy passenger, and 3 free checked bags for each business
passenger. If the booking user is a gold member, 2 free checked bag for each basic econ-
omy passenger, 3 free checked bag for each economy passenger, and 3 free checked bags
for each business passenger. Each extra baggage is 50 dollars.”

Prompt Used by LLMs to Perform Policy Analysis

You are a policy analysis assistant. Your task is to process the input policy document
according to the four steps below. For each step, you should follow the instruction, review

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

the provided example, and output your results in the required format.

Step 1: Identify all available user-facing tasks defined in the policy. These should be
high-level actions users can request, such as ”Book Flight” or ”Cancel Flight” or ”Return
Item”. You should provide all the identified available tasks in a list, like the example below:

Example: Tasks: [’Book Flight’, ’Modify Flight’, ’Cancel Flight’, ’Process Refund’]

Based on the identified specification types, we design a pipeline for policy analysis and
the generation of Multi-Granular CPT data. The prompt used for Policy Analysis is shown
below.

Step 2: For each sentence or isolated specification from the policy document, identify
its type and scope. Types of the policy statements include: Fact Illustration, Behavior
Specification, Workflow Specification (Simple), Workflow Specification (Complex), and in-
context examples. You should output the complexity level if you identified the specification
as complex While scope refers to the relevant task the statement affects, for each isolated
statement, it’s valid scope can be among any of the above mentioned tasks. At last, you
should output all the identified Workflow Specification (Complex) types of specifications in
the policy in a list of dictionaries, which contains three fields for each dictionary, namely
content, complexity, and valid scope.

The descriptions and representative examples of each specification type are descibed and
listed as below:

Fact Illustration are types of specifications which provides factual information for future
usage. Here is a concrete example: Policy Document Content: The refund will go to
original payment methods in 5 to 7 business days.

Your output for this statement:

Fact Illustration:{Content: The refund will go to original payment methods in 5 to 7
business days. Valid Scope: [The tasks you identified as the valid scope of this policy.]}

Behavior Specification are types of specifications which cannot affect the agent’s workflow.
Here is a concrete example: Policy Document Content: Before take any action to update
database, you must you must list the action details and obtain explicit user confirmation
(yes) to proceed.

Your output for this statement:

Behavior Specification: {Content: Before take any action to update database, you must you
must list the action details and obtain explicit user confirmation (yes) to proceed. Valid
Scope: [The tasks you identified as the valid scope of this policy.]}

Workflow Specification (Simple) are types of specifications are specifications which can
affect the agent’s workflow, and this change is simple. There is usually just one speicifc
condition, which decides the next step. Here is a concrete example: Policy Document
Content: If the trip is flown, you cannot cancel the flight.

Your output for this statement:

Workflow Specification (Simple):{Content: Meal service eligibility: If the trip is flown,
you cannot cancel the flight.Valid Scope: [The tasks you identified as the valid scope of this
policy.]}

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Workflow Specification (Complex) are types of specifications are specifications which
can affect the agent’s workflow, and this change is complex and hierarchical. This usually
composes an if-else tree structure. The complexity level is decided upon the depth of
the if-else tree. Here is a concrete example: Policy Document Content: Meal service
eligibility: If the passenger is flying internationally and in business class, they are eligible
for a full-course meal and two beverages. If the passenger is flying internationally and in
economy class, they are eligible for a standard meal and one beverage. If the passenger is
flying domestically and the total flight time exceeds 3 hours, business class passengers are
eligible for a standard meal and one beverage, while economy passengers are eligible for
one snack and one beverage. If the passenger is flying domestically and the total flight time
is 3 hours or less, only business class passengers receive a complimentary snack; economy
passengers are not eligible for meal service.

Your output for this statement:

Workflow Specification (Complex): {Content: Meal service eligibility: If the passenger is
flying internationally and in business class, they are eligible for a full-course meal and two
beverages. If the passenger is flying internationally and in economy class, they are eligible
for a standard meal and one beverage. If the passenger is flying domestically and the total
flight time exceeds 3 hours, business class passengers are eligible for a standard meal and
one beverage, while economy passengers are eligible for one snack and one beverage. If
the passenger is flying domestically and the total flight time is 3 hours or less, only business
class passengers receive a complimentary snack; economy passengers are not eligible for
meal service. Complexity Level: 5 Valid Scope: [The tasks you identified as the valid scope
of this policy.]}
Note that you need to go through every single sentences in the policy document to make
sure that no Workflow Specification (Complex) are missed from your output. If you are
uncertian about the complexity level or the valid scope, you can output ’Uncertain’ for
these fields. Now you need to process the following policy document. Please organize your
complete output format as below:

Tasks: [Your Identified Tasks]

Fact Illustration: [”Content”: [Content of the Specification], ”Valid Scope”: [The list of
tasks you identified as the valid scope of this policy.], ”Content”: [Content of the Speci-
fication],”Valid Scope”: [The list of tasks you identified as the valid scope of this policy.], ...]

Behavior Specification: [”Content”: [Content of the Specification], ”Valid Scope”: [The list
of tasks you identified as the valid scope of this policy.], ”Content”: [Content of the Speci-
fication],”Valid Scope”: [The list of tasks you identified as the valid scope of this policy.], ...]

Workflow Specification (Simple) in the Policy Document: [”Content”: [Content of the
Specification], ”Valid Scope”: [The list of tasks you identified as the valid scope of this
policy.], ”Content”: [Content of the Specification],”Valid Scope”: [The list of tasks you
identified as the valid scope of this policy.], ...]

Workflow Specification (Complex) in the Policy Document: [”Content”: [Content of the
Specification], ”Complexity Level”: [Your Identified Complexity Level], ”Valid Scope”:
[The list of tasks you identified as the valid scope of this policy.], ”Content”: [Content of
the Specification], ”Complexity Level”: [Your Identified Complexity Level], ”Valid Scope”:
[The list of tasks you identified as the valid scope of this policy.], ...]

Note that the identification of a complex workflow should not be confused with cases where
there are multiple conditions but no branching hierarchy. For sentences like: If the user is
a platinum member or has booked a round-trip ticket, and experiences a missed connection
due to airline delay, the agent can offer lounge access at the next airport after confirming the
flight details. This sentence is of complexity 2. You need to work with the policy document

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

and ensure that all the specifications and requirements specified in the document is fully
considered as one of these four types. Do not miss any specifications that is important. You
should not have any overlapped policy content between these categorizations.

You can simple treat the task as a split and classification. You should divide the policy
content into clear specification chunks, and categorize them into these four types.

Now you need to work with the following Policy Document:

{The Policy Document to be analyzed}

Due to the templated nature of our generated policy document. We could always easily analyze the
policy document successfully. However, for our later application on τ -bench. the policy analysis
can be inaccurate without human double check. We will report the F1 score of policy analysis in
Appendix I and analyze their effects for overall performance.

D MORE COMPREHENSIVE EXPERIMENTAL SETTINGS AND RESULTS

More Comprehensive Experimental Settings We use Qwen-2.5-32B and Qwen-3-32B for pol-
icy document internalization, selected for their strong prior knowledge and distinct performance
when complex policy documents are provided in context. To evaluate complexity effects, we con-
struct datasets that control for other factors while varying workflow complexity from level (1) to (3)
and task-level complexity across levels (3), (5), (8), and (12). For SFT, we train with between 1K
and 30K samples. We also apply our approach to τ -Bench, which provides only 500 training sam-
ples without CoT reasoning. Using Qwen-3-32B, we self-generate CoT trajectories, yielding 282
SFT samples. As noted in the main text, our SFT data ranges from 1K–30K samples. In terms of
CPT data size, we generate CPT data whose size depends on the specific policy document. For each
identified policy specification, we first generate paraphrases and QAs. We produce a limited number
of paraphrases and QAs for factual and behavioral specifications, while generating questions for all
branches of conditional specifications. This results in fewer than 1K QA pairs in total. Behavioral
role model data is relatively sparse, consisting of 1K sampled scenario-instance pairs for each iden-
tified behavioral specification. The largest portion of CPT data comes from scenario simulation,
where we generate 5K sampled pairs per conditional specification. For example, a policy document
with task-level (5) and workflow-level (2) can yield up to 125K scenario simulation samples, as it
contains five tasks, each with five arguments, and a workflow-level specification for each task. The
amount of trajectory familiarization data is kept consistent with the size of the SFT data.

For the smaller model Qwen-2.5-32B, the in-context performance on task completion is weak. With
sufficient SFT training data, performance can be boosted to a reasonable level. Despite this stronger
baseline after SFT, our CAP-CPT data and training still yield consistent improvements across all
scenarios. The gains are most evident in data-sparse settings, where the baseline remains marginal,
and in high-complexity scenarios, where performance is otherwise relatively low.

In contrast, for Qwen-3-32B, a much stronger model on agentic tasks, the SFT approach gener-
ally diminishes the model’s prior knowledge and provides limited gains regardless of training data
scale. Our CAP-CPT training continues to deliver improvements across scenarios, particularly in
data-sparse and high-complexity cases, but the final performance does not surpass Qwen-2.5-32B
and remains only comparable to the prompting baseline. However, we still achieve the goal of
internalization. We provide further details on this finding in Appendix F.

E EVALUATION FRAMEWORK OF POLICY DOCUMENT INTERNALIZATION

We designed a comprehensive evaluation framework for policy document internalization. Rather
than focusing solely on end tasks, where the model completes ordinary user queries under pol-
icy guidance, we introduce a broader set of tasks that better reflect real-world applications of this
approach. Specifically, our framework encompasses task completion, policy referral, policy sub-

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 5: Performance curves for internalizing policy documents with varying workflow complex-
ities on Qwen-3-32B, comparing the baseline with our method. Our approach consistently out-
performs the baseline across all settings and substantially narrows the performance gap in high-
complexity and data-sparse scenarios. Note that while Qwen-3-32B is a model with stronger prior
knowledge, the internalization only yields comparable performance than prompting baseline. See
Appendix F for explanations.

Figure 6: Performance curves for internalizing policy documents with varying task-level complex-
ities on Qwen-2.5-32B, comparing the baseline with our method. Our approach consistently out-
performs the baseline across all settings and substantially narrows the performance gap in high-
complexity and data-sparse scenarios. The pattern is similar to the workflow complexity setting,
only the performance gap absolute values are a bit different.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 7: Performance curves for internalizing policy documents with varying workflow complex-
ities on Qwen-2.5-32B, comparing the baseline with our method. Our approach consistently out-
performs the baseline across all settings and substantially narrows the performance gap in high-
complexity and data-sparse scenarios.

Figure 8: Performance curves for internalizing policy documents with varying task-level complex-
ities on Qwen-3-32B, comparing the baseline with our method. Our approach consistently out-
performs the baseline across all settings and substantially narrows the performance gap in high-
complexity and data-sparse scenarios. The pattern is similar to the workflow complexity setting,
only the performance gap absolute values are a bit different. Note that while Qwen-3-32B is a
model with stronger prior knowledge, the internalization only yields comparable performance than
prompting baseline. See Appendix F for explanations.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 10: Task variants under Workflow (1) for Qwen3-32B and Qwen2.5-32B, comparing Gold
CoT SFT and CAP-CPT + Gold CoT SFT. Original Task (5) results are retained; new Task (3/8/12)
entries are added with blank cells for later fill. Prompting accuracy is shown when available.

Model Complexity Prompting Internalization Approach Internalization Training Data Size
1K 5K 10K 20K 30K

Qwen2.5-32B

Task (3)
Workflow (1)

0.26 Gold CoT SFT 0.15 0.82 0.95 0.97 0.97
CAP-CPT + Gold CoT SFT 0.61 0.96 0.97 0.98 0.99

Task (5)
Workflow (1)

0.07 Gold CoT SFT 0.04 0.80 0.95 0.97 0.98
CAP-CPT + Gold CoT SFT 0.57 0.94 0.98 0.98 0.99

Task (8)
Workflow (1)

0.02 Gold CoT SFT 0.07 0.67 0.82 0.86 0.92
CAP-CPT + Gold CoT SFT 0.55 0.86 0.91 0.94 0.96

Task (12)
Workflow (1)

0.01 Gold CoT SFT 0.03 0.61 0.73 0.81 0.87
CAP-CPT + Gold CoT SFT 0.47 0.77 0.88 0.90 0.91

Qwen3-32B

Task (3)
Workflow (1)

0.83 Gold CoT SFT 0.05 0.51 0.59 0.73 0.81
CAP-CPT + Gold CoT SFT 0.49 0.71 0.76 0.82 0.86

Task (5)
Workflow (1)

0.82 Gold CoT SFT 0.03 0.41 0.55 0.71 0.78
CAP-CPT + Gold CoT SFT 0.44 0.67 0.72 0.74 0.80

Task (8)
Workflow (1)

0.75 Gold CoT SFT 0.03 0.39 0.51 0.67 0.73
CAP-CPT + Gold CoT SFT 0.45 0.65 0.69 0.72 0.76

Task (12)
Workflow (1)

0.71 Gold CoT SFT 0.01 0.35 0.46 0.60 0.65
CAP-CPT + Gold CoT SFT 0.39 0.59 0.63 0.69 0.70

Figure 9: Average input token compression across different scenarios, varying from workflow (1)
complexity to workflow (3) complexity. The compression rate reaches up to 97.3% when the com-
plexity is high.

stitution, policy override, and general instruction following, as detailed below. In addition, we
provide exemplar templates for each evaluation task as well as a baseline prompting setup.

Illustrative Prompt Format for Baseline Prompting Evaluation

[General Instructions]
Based on the Policy document below, answer the user query.
Policy Document: [Complete Content of the Policy]
User query: [Content of the User Query (related to task solving)]
Model Response: [LLM Output]

Task Completion. At the core, we enhance the task completion capability of the LLM agent so it
can effectively serve as a user assistant. Given a user query tagged with the corresponding policy
identifier (special token), the model is expected to perform self-reasoning, tool calls, and multi-round

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

observations, ultimately resolving the query with all actions correct. We measure performance using
the overall success rate (SR).

Illustrative Prompt Format for Task Completion Evaluation

[General Instructions]
Based on the policy document #P12301 you previously learnt about, answer the user query.
User query: [Content of the User Query (related to task solving]
Model Response: [LLM Output]

Policy Referral. To assess whether the LLM agent fully understands and internalizes the target
policy document, we design QA tasks that probe specific policy details: for example, asking how
to compute a parameter or complete a subtask. Since the answers are free-form generations, we
employ an evaluation LLM to assign a 0–5 score, which we rescale to 0–100.

Illustrative Prompt Format for Policy-referral Evaluation

[General Instructions]
Based on the Policy document #P12301 you have previously learnt about, answer questions
about the details of the policy.
User query: [Questions Regarding to Content of the Policy Document]
Model Response: [LLM Output]

Policy Substitution and Override. Real-world effectiveness requires models to handle policy
changes. Substitution refers to replacing the entire policy document with another, while override
refers to modifying only certain parts of a policy. For both settings, we evaluate task success rate.

Illustrative Prompt Format for Policy-substitute Evaluation

[General Instructions]
Based on the Policy document below, answer the user query.
Policy Document: [Complete Content of the New Policy Document (which was not inter-
nalized in the training stages before)]
User query: [Content of the User Query (related to task solving)]
Model Response: [LLM Output]

Illustrative Prompt Format for Policy-override Evaluation

[General Instructions]
Based on the policy document #P12301 you previously learnt about, note that the following
parts of the Policy has been changed: [Content of Overrided Policy]
User query: [Content of the User Query (related to task solving]
Model Response: [LLM Output]

General Instruction Following. To ensure that policy internalization does not compromise general
capabilities, we also evaluate the model on the IF-Eval benchmark (Table ??), which measures
adherence to a broad range of natural instructions.

Finally, we emphasize that such a comprehensive evaluation is rarely supported by prior bench-
marks. In contrast, our benchmark, generated using CC-Gen, offers unique advantages that enable
this broader and more rigorous evaluation.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 11: Self-Generated CoT gives better performance for inherently strong models Perfor-
mance of Qwen-3-32B (Prompting = 0.53) on Task (3), Workflow (5). Self-generated CoT provides
noticeable gains, and when combined with Multi-Granular CPT, achieves the highest performance.

Model Task / Workflow promp ting Internalization Approach Internalization Training Data Size
1K 5K 10K 20K 30K

Qwen-3-32B Task (3)
Workflow (5) 0.53

Gold CoT SFT 0.01 0.13 0.17 0.31 0.36
Self-Generated CoT SFT 0.04 0.19 0.24 0.37 0.46

CAP-CPT + Gold CoT SFT 0.16 0.27 0.39 0.41 0.47
CAP-CPT + Self Generated CoT SFT 0.19 0.33 0.45 0.49 0.58

F INTUITIVE UNDERSTANDING OF OUR OBSERVATIONS

F.1 WHY OUR CAP-CPT APPROACH WORKS WELL

To understand why our Category-Aware Policy Continued Pretraining(CAP-CPT) approach is effec-
tive, it is important to examine the limitations of standard SFT and CPT methods. We summarize
the main challenges in handling policy complexity as follows:

(1) Data sparsity. Data sparsity (Bansal et al., 2022) has long been a dominant issue in deep
learning. Policy specifications involving complex reasoning often require substantially more data
to support effective learning. However, the common practice of sampling user–agent interaction
trajectories provides only random coverage of the interaction space. Given the length of policy doc-
uments and the breadth of business scenarios, such sampled trajectories rarely capture the nuanced
cases needed to train models on complex conditional specifications, even when the overall dataset is
large. In addition, SFT can lead to catastrophic forgetting (McCloskey & Cohen, 1989; Kirkpatrick
et al., 2017; Zhang & et al., 2019), a phenomenon especially pronounced in well-trained language
models (Zhang et al., 2025b).

(2) Limitations of common CPT approaches. Conventional continued pretraining (Zhou et al.,
2024) typically relies on paraphrases or QA pairs to improve memorization of specific content.
However, the objective of policy internalization extends beyond rote recall: the model must also
apply policies in practice, demonstrating appropriate behaviors and reasoning grounded in policy
content. As highlighted in knowledge-centric studies (Cohen et al., 2024; Liu et al., 2024a), training
with purely memorization-centric data fails to foster logical generalization, compositional reasoning,
or relation specificity, phenomena often described as ripple effects in knowledge perception.

Our CAP-CPT approach directly addresses these challenges by emphasizing the creation of
scenario-simulation data for complex conditional specifications. These specifications, which pose
the greatest workflow complexity, are represented with sufficient simulated data to generate diverse
and realistic usage examples, mitigating the limited coverage of SFT trajectories. Moreover, the
continued pretraining objective ensures balanced learning, reducing bias toward memorization and
alleviating catastrophic forgetting.

F.2 TRAINING WITH STRONGER MODELS DOES NOT YIELD BETTER PERFORMANCE

We conduct experiments on two models with different levels of prior knowledge and reasoning abil-
ity in agentic tasks: a stronger model, QWEN-3-32B, which already achieves high baseline accuracy
on policy reasoning, and a weaker model, QWEN-2.5-32B, which starts from a substantially lower
baseline. Interestingly, after applying our internalization method, we observe a clear divergence: the
stronger model remains close to its original performance even with large amounts of additional data,
whereas the weaker model exhibits dramatic improvement, approaching nearly 100% success rate.

We interpret this phenomenon through the lens of prior knowledge stability and learning dynam-
ics. The stronger model’s competence is largely anchored in its pretrained representations, leaving
limited room for further gains; moreover, its richer parametric knowledge makes it more fragile to
fine-tuning, where additional supervision can induce overfitting to synthetic trajectories or trigger
catastrophic forgetting of its broader capabilities (McCloskey & Cohen, 1989; Kirkpatrick et al.,
2017; Zhang & et al., 2019). By contrast, the weaker model’s prior knowledge is less entrenched,
allowing it to more flexibly incorporate the targeted Multi-Granular CPT data. Instead of overwriting

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

strong existing reasoning patterns, fine-tuning serves to fill critical gaps and solidify policy-specific
knowledge, thereby yielding substantial performance gains.

As shown in Table 11, the QWEN-3-32B model achieves higher performance when trained with
Self-CoT data compared to using Gold CoT trajectories as SFT data. This suggests that QWEN-
3-32B benefits more from self-generated rationales that align closely with its existing knowledge,
making such information easier for the model to internalize.

G MULTIPLE POLICY INTERNALIZATION

While our main experiments focus on internalizing policies individually, we further demonstrate that
our approach can support the simultaneous internalization of multiple policies, regardless of their
complexity levels. To test this, we conduct experiments on QWEN-3-32B by mixing the training
data from four distinct policy documents of different task level complexities and jointly fine-tuning
the model on the combined dataset. As shown in Table 12, the model maintains strong performance
on each individual policy even under this mixed setting. However, we note that this experiment is
limited to only four policies, and scaling to a much larger number of policies remains challenging
due to the substantial computational cost.

Table 12: Internalization performance for Qwen3-32B with CAP-CPT + Gold CoT SFT. Second
block shows the same setting fine-tuned with mixed-policy.

Qwen3-32B — CAP-CPT + Gold CoT SFT (Single-Policy Fine-Tuning)

Model Complexity Prompting Internalization Approach Internalization Training Data Size
1K 5K 10K 20K 30K

Qwen3-32B

Task (3)
Workflow (1) 0.83 CAP-CPT + Gold CoT SFT 0.49 0.71 0.76 0.82 0.86

Task (5)
Workflow (1) 0.82 CAP-CPT + Gold CoT SFT 0.44 0.67 0.72 0.74 0.80

Task (8)
Workflow (1) 0.75 CAP-CPT + Gold CoT SFT 0.45 0.65 0.69 0.72 0.76

Task (12)
Workflow (1) 0.71 CAP-CPT + Gold CoT SFT 0.39 0.59 0.63 0.69 0.70

Qwen3-32B — CAP-CPT + Gold CoT SFT (Mixed-Policy Fine-Tuning)

Qwen3-32B

Task (3)
Workflow (1) 0.83 CAP-CPT + Gold CoT SFT 0.48 0.71 0.76 0.82 0.86

Task (5)
Workflow (1) 0.82 CAP-CPT + Gold CoT SFT 0.44 0.67 0.72 0.73 0.80

Task (8)
Workflow (1) 0.75 CAP-CPT + Gold CoT SFT 0.45 0.65 0.69 0.73 0.78

Task (12)
Workflow (1) 0.71 CAP-CPT + Gold CoT SFT 0.41 0.59 0.64 0.69 0.72

H MORE DETAILS ON ABLATION STUDY

We use two alternative settings to independently evaluate the effectiveness of our proposed training
data and algorithm. In Section§ 4, we have already shown that our approach achieves the best over-
all performance on completing user specified tasks. However, the alternatives also reveal interesting
side benefits. As shown in Table 13, excluding Scenario Simulation data during continued pretrain-
ing improves general performance on policy Override, while using the generated CAP-CPT data for
SFT yields a slight gain in policy Referral scores.

We attribute the former to the fact that reduced CPT training limits memorization of the policy
document, making the model less rigid when perform overriding. Conversely, the latter can be
explained by SFT’s stronger memorization of certain patterns, which helps directly answer referral-
style queries. In general, CPT training contributes more to global understanding and faithful memo-
rization of policy documents, whereas SFT-based approaches emphasize alignment with the training

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

distribution. However, this alignment comes at the cost of limited generalization and a potential risk
of forgetting previously acquired knowledge.

Table 13: Ablation Study — notable benefits with both alternatives. Policy performance of
Qwen-3-32B (Prompting = 0.53). The first block (Override) shows the effect of discarding scenario
simulation data. The second block (Referral) shows the effect of using CPT data in the SFT stage.
Both variants reveal complementary benefits, with Multi-Granular CPT + SFT and CPT-based SFT
improving performance in different ways.

Model Complexity Prompting Internalization Approach Internalization Training Data Size
1K 5K 10K 20K 30K

Qwen-3-32B
(Override)

Task (5)
Workflow (3)

0.53
Gold CoT SFT 0.00 0.00 0.00 0.00 0.00

CAP-CPT + Gold CoT SFT 0.09 0.12 0.17 0.22 0.25
No Scenario Simulation CAP-CPT + SFT 0.11 0.13 0.19 0.22 0.27

Qwen-3-32B
(Referral)

Task (5)
Workflow (3)

0.76
Gold CoT SFT 0.00 0.00 0.00 0.00 0.00

CAP-CPT + Gold CoT SFT 0.59 0.31 0.23 0.20 0.13
CPT data used for SFT 0.68 0.63 0.67 0.66 0.61

I APPLICATION TO τ -BENCH

Table 14: Performance of our CAP-CPT on Qwen3-32B over τ -bench, compressing the overall
input by 34.8% while slightly improving performance compared to prompting.

Model Domain Prompting Self-CoT SFT CAP-CPT + Self-CoT SFT Prompt Compression
Qwen3-32B Retail 26.96 23.48 28.70 34.81%

We apply our approach to τ -bench (Yao et al., 2024) to further validate its effectiveness. The original
benchmark is evaluated in a user-simulator–plus–agent setting, where the language model serves
not only as the assistant but also as the simulated user. However, agent performance in this setup is
largely constrained by the quality of the simulator, which can introduce substantial errors. To better
isolate the agent’s reasoning ability, we curate τ -bench into a single-turn agentic benchmark: the
user specifies all requirements at the outset, and the LLM agent must then complete the task through
multi-round reasoning, tool use, and observation.

We first evaluate the F1 score of our policy analysis process on τ -Bench. We manually annotate
the specification types in τ -Bench policy documents and compare them with the predictions from
our analysis pipeline. Results show that the F1 score on high-complexity conditional specifications
is perfect (100%), while simple conditional specifications reach 87.5% F1, mainly due to their dis-
tinctive structure. In contrast, factual and behavioral specifications achieve high precision but suffer
from lower recall, often missing fine-grained requirements. Specifically, factual specifications yield
an F1 of 75% (precision 100%, recall 60%), and behavioral specifications reach 66.7% (precision
0.86, recall 0.55). We did not apply any manual correction when using these outputs for CAP-CPT
data generation and training, thereby reflecting the pipeline’s performance in more realistic settings.

Table 14 reports results of applying our approach on τ -bench. Although τ -bench includes complex-
ity annotations, the tasks are not highly complex—each policy document typically contains only one
or two workflow specifications. Moreover, the dataset is relatively small, with just 500 examples. To
generate trajectories for SFT, we let the LLM to be internalized perform the tasks itself, resulting in
282 training examples. While SFT trained on these examples underperforms compared to prompt-
ing alone, augmenting them with our CAP-CPT data and applying the combined CPT+SFT process
yields performance that surpasses prompting, achieving an input token internalization rate of up to
35%. These results highlight the utility of our approach, especially in data-sparse scenarios.

J ERROR EXAMPLES OF SOTA LLMS ON τ -BENCH

In this section, we present a complete error example where a state-of-the-art LLM fails on complex
τ -Bench specifications, highlighting the importance of addressing complex requirements in agent
policy documents.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Claude-4-sonnet Error Example on Tau-bench

Airline Agent Policy
The current time is 2024-05-15 15:00:00 EST.
As an airline agent, you can help users book, modify, or cancel flight reservations.
- Before taking any actions that update the booking database (booking, modifying flights,
editing baggage, upgrading cabin class, or updating passenger information), you must list
the action details and obtain explicit user confirmation (yes) to proceed.
- You should not provide any information, knowledge, or procedures not provided by the
user or available tools, or give subjective recommendations or comments.
- You should only make one tool call at a time, and if you make a tool call, you should not
respond to the user simultaneously. If you respond to the user, you should not make a tool
call at the same time.
- You should deny user requests that are against this policy.
- You should transfer the user to a human agent if and only if the request cannot be handled
within the scope of your actions.

Domain Basic
- Each user has a profile containing user id, email, addresses, date of birth, payment
methods, reservation numbers, and membership tier.
- Each reservation has an reservation id, user id, trip type (one way, round trip), flights,
passengers, payment methods, created time, baggages, and travel insurance information.
- Each flight has a flight number, an origin, destination, scheduled departure and arrival time
(local time), and for each date:
- If the status is ävailable,̈ the flight has not taken off, available seats and prices are listed.
- If the status is d̈elayedör ön time,̈ the flight has not taken off, cannot be booked.
- If the status is f̈lying,̈ the flight has taken off but not landed, cannot be booked.

Book flight
- The agent must first obtain the user id, then ask for the trip type, origin, destination.
- Passengers: Each reservation can have at most five passengers. The agent needs to collect
the first name, last name, and date of birth for each passenger. All passengers must fly the
same flights in the same cabin.
- Payment: each reservation can use at most one travel certificate, at most one credit card,
and at most three gift cards. The remaining amount of a travel certificate is not refundable.
All payment methods must already be in user profile for safety reasons.
- Checked bag allowance: If the booking user is a regular member, 0 free checked bag
for each basic economy passenger, 1 free checked bag for each economy passenger, and 2
free checked bags for each business passenger. If the booking user is a silver member, 1
free checked bag for each basic economy passenger, 2 free checked bag for each economy
passenger, and 3 free checked bags for each business passenger. If the booking user is a
gold member, 2 free checked bag for each basic economy passenger, 3 free checked bag for
each economy passenger, and 3 free checked bags for each business passenger. Each extra
baggage is 50 dollars. [High complexity part marked in red]
- Travel insurance: the agent should ask if the user wants to buy the travel insurance, which
is 30 dollars per passenger and enables full refund if the user needs to cancel the flight given
health or weather reasons.

Modify flight
- The agent must first obtain the user id and the reservation id.
- Change flights: Basic economy flights cannot be modified. Other reservations can be
modified without changing the origin, destination, and trip type. Some flight segments can
be kept, but their prices will not be updated based on the current price. The API does not
check these for the agent, so the agent must make sure the rules apply before calling the
API!
- Change cabin: all reservations, including basic economy, can change cabin without
changing the flights. Cabin changes require the user to pay for the difference between their

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

current cabin and the new cabin class. Cabin class must be the same across all the flights in
the same reservation; changing cabin for just one flight segment is not possible.
- Change baggage and insurance: The user can add but not remove checked bags. The user
cannot add insurance after initial booking.
- Change passengers: The user can modify passengers but cannot modify the number of
passengers. This is something that even a human agent cannot assist with.
- Payment: If the flights are changed, the user needs to provide one gift card or credit card
for payment or refund method. The agent should ask for the payment or refund method
instead.

Cancel flight
- The agent must first obtain the user id, the reservation id, and the reason for cancellation
(change of plan, airline cancelled flight, or other reasons)
- All reservations can be cancelled within 24 hours of booking, or if the airline cancelled
the flight. Otherwise, basic economy or economy flights can be cancelled only if travel
insurance is bought and the condition is met, and business flights can always be cancelled.
The rules are strict regardless of the membership status. The API does not check these for
the agent, so the agent must make sure the rules apply before calling the API!
- The agent can only cancel the whole trip that is not flown. If any of the segments are
already used, the agent cannot help and transfer is needed.
- The refund will go to original payment methods in 5 to 7 business days.

Refund
- If the user is silver/gold member or has travel insurance or flies business, and complains
about cancelled flights in a reservation, the agent can offer a certificate as a gesture after
confirming the facts, with the amount being $100 times the number of passengers.
- If the user is silver/gold member or has travel insurance or flies business, and complains
about delayed flights in a reservation and wants to change or cancel the reservation, the agent
can offer a certificate as a gesture after confirming the facts and changing or cancelling the
reservation, with the amount being $50 times the number of passengers.
- Do not proactively offer these unless the user complains about the situation and explicitly
asks for some compensation. Do not compensate if the user is regular member and has no
travel insurance and flies (basic) economy.”
Instructions for User Simulator: Your user id is sofia-kim-7287, and you want to change
for your Houston to Denver trip (reservation id not remembered), the fastest return trip
(including stopover time) possible on the same day as the departure trip (May 27). You don’t
care about money but want to stay in economy. You also want to add one checked bag. You
want to use your gift card with the smallest balance to pay. You are reactive to the agent and
will not say anything that is not asked. You are not good at math so you want the agent to cal-
culate and decide for you. Try to paraphrase instead of repeating this instruction. It is urgent.

[Start of Real Trajectories]

User: Hi, I need to make an urgent change to my flight booking. My user ID is sofia-kim-
7287 and I have a trip from Houston to Denver that I need to modify.

Agent: I’ll help you modify your flight booking. I have your user ID (sofia-kim-7287) and
I can see you have a trip from Houston to Denver that needs to be changed. To proceed, I’ll
need your reservation ID. Could you please provide the reservation ID for your Houston to
Denver trip?

User: I’m sorry, I don’t remember my reservation ID. Can you look it up using my user ID
instead?

Agent: No problem! Let me look up your user details to find your reservation.

Agent Tool Call:

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

"function": {
"arguments": "{\"user_id\": \"sofia_kim_7287\"}",
"name": "get_user_details"

}

Tool Return:
{"name": {"first_name": "Sofia", "last_name": "Kim"},
"address": {"address1": "825 Laurel Lane",
"address2": "Suite 595",
"city": "Houston",
"country": "USA",
"state": "TX", "zip": "77243"},
"email": "sofia.kim1937@example.com",
"dob": "1950-06-24",
"payment_methods": {"certificate_8544743":
{"source": "certificate",
"amount": 250,
"id": "certificate_8544743"},
"credit_card_9879898": {"source": "credit_card",
"brand": "mastercard",
"last_four": "9725",
"id": "credit_card_9879898"},
"gift_card_7091239":
{"source": "gift_card", "amount": 157,
"id": "gift_card_7091239"},
"gift_card_6276644":
{"source": "gift_card", "amount": 113,
"id": "gift_card_6276644"},
"gift_card_7480005":
{"source": "gift_card", "amount": 6,
"id": "gift_card_7480005"}},
"membership": "silver",
"reservations":
["OI5L9G", "OBUT9V"]}

Agent: I can see you have several reservations. Let me check each one to find your Houston
to Denver trip. I’ll start by checking the details of your reservations:

Agent Tool Call:
"function": {

"arguments": "{\"reservation_id\": \"OI5L9G\"}",
"name": "get_reservation_details"

}

Tool Return:
"content": "{

\"reservation_id\": \"OI5L9G\",
\"user_id\": \"sofia_kim_7287\",
\"origin\": \"MCO\",
\"destination\": \"CLT\",
\"flight_type\": \"one_way\",
\"cabin\": \"business\",
\"flights\": [

{\"origin\": \"MCO\", \"destination\": \"BOS\",
\"flight_number\": \"HAT017\", \"date\": \"2024-05-25\",
\"price\": 523},
{\"origin\": \"BOS\", \"destination\": \"CLT\",
\"flight_number\": \"HAT277\", \"date\": \"2024-05-25\",

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

\"price\": 501}
],
\"passengers\": [

{\"first_name\": \"Sofia\",
\"last_name\": \"Kim\", \"dob\": \"1950-06-24\"},
{\"first_name\": \"Mia\",
\"last_name\": \"Jackson\", \"dob\": \"1986-05-05\"}

],
\"payment_history\": [

{\"payment_id\": \"gift_card_6276644\", \"amount\": 2048}
],
\"created_at\": \"2024-05-01T09:08:54\",
\"total_baggages\": 2,
\"nonfree_baggages\": 0,
\"insurance\": \"no\"

}"

Agent Tool Call:
"function": {

"arguments": "{\"reservation_id\": \"OBUT9V\"}",
"name": "get_reservation_details"

}

Tool Return:
"content": "{

\"reservation_id\": \"OBUT9V\",
\"user_id\": \"sofia_kim_7287\",
\"origin\": \"IAH\",
\"destination\": \"DEN\",
\"flight_type\": \"round_trip\",
\"cabin\": \"economy\",
\"flights\": [

{\"origin\": \"IAH\", \"destination\": \"ORD\",
\"flight_number\": \"HAT078\", \"date\": \"2024-05-27\",
\"price\": 146},
{\"origin\": \"ORD\", \"destination\": \"DEN\",
\"flight_number\": \"HAT118\", \"date\": \"2024-05-27\",
\"price\": 167},
{\"origin\": \"DEN\", \"destination\": \"LAS\",
\"flight_number\": \"HAT084\", \"date\": \"2024-05-28\",
\"price\": 122},
{\"origin\": \"LAS\", \"destination\": \"IAH\",
\"flight_number\": \"HAT266\", \"date\": \"2024-05-28\",
\"price\": 131}

],
\"passengers\": [

{\"first_name\": \"Sofia\",
\"last_name\": \"Kim\", \"dob\": \"1950-06-24\"}

],
\"payment_history\": [

{\"payment_id\": \"gift_card_7091239\", \"amount\": 566}
],
\"created_at\": \"2024-05-07T16:32:35\",
\"total_baggages\": 1,
\"nonfree_baggages\": 0,
\"insurance\": \"no\"

}"

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Agent: Perfect! I found your Houston to Denver trip. Your reservation ID is **OBUT9V**.
Here are the details of your current reservation:
- **Reservation ID**: OBUT9V
- **Trip**: Houston (IAH) to Denver (DEN) - Round trip -
Cabin: Economy
- **Outbound**: May 27, 2024 - IAH to ORD on flight HAT078
- ORD to DEN on flight HAT118- **Return**: May 28, 2024
- DEN to LAS on flight HAT084 - LAS to IAH on flight HAT266
- **Passenger**: Sofia Kim
- **Baggage**: 1 checked bag (free)
What specific changes would you like to make to this reservation? You can:
- Change your flights (keeping the same origin/destination)
- Upgrade your cabin class
- Add more checked bags
Please let me know what modifications you need.

User: I need to change my return flight to the same day as my departure - May 27th. I want
the fastest return trip possible on that day, including any stopover time. I don’t care about
the cost but want to stay in economy. Also, I need to add one more checked bag.

Agent: I understand you want to: 1. Change your return flight from May 28th to May 27th
(same day as departure) 2. Find the fastest return option on May 27th 3. Stay in economy
class 4. Add one more checked bag (from 1 to 2 total bags) Let me search for available
return flights from Denver to Houston on May 27th to find the fastest option:

Agent Tool Call:
"function": {

"arguments": "{\"destination\": \"IAH\",
\"date\": \"2024-05-27\", \"origin\": \"DEN\"}",
"name": "search_onestop_flight"

},
Tool Return:
"content": "[[

{
\"flight_number\": \"HAT084\",
\"origin\": \"DEN\",
\"destination\": \"LAS\",
\"scheduled_departure_time_est\": \"04:00:00\",
\"scheduled_arrival_time_est\": \"06:00:00\",
\"status\": \"available\",
\"available_seats\": {

\"basic_economy\": 0,
\"economy\": 20,
\"business\": 20

},
\"prices\": {

\"basic_economy\": 50,
\"economy\": 112,
\"business\": 438

},
\"date\": \"2024-05-27\"

},
{

\"flight_number\": \"HAT175\",
\"origin\": \"LAS\",
\"destination\": \"IAH\",
\"scheduled_departure_time_est\": \"17:00:00\",

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

\"scheduled_arrival_time_est\": \"20:00:00\",
\"status\": \"available\",
\"available_seats\": {

\"basic_economy\": 7,
\"economy\": 16,
\"business\": 1

},
\"prices\": {

\"basic_economy\": 95,
\"economy\": 170,
\"business\": 246

},
\"date\": \"2024-05-27\"

}
],
[

{
\"flight_number\": \"HAT084\",
\"origin\": \"DEN\",
\"destination\": \"LAS\",
\"scheduled_departure_time_est\": \"04:00:00\",
\"scheduled_arrival_time_est\": \"06:00:00\",
\"status\": \"available\",
\"available_seats\": {

\"basic_economy\": 0,
\"economy\": 20,
\"business\": 20

},
\"prices\": {

\"basic_economy\": 50,
\"economy\": 112,
\"business\": 438

},
\"date\": \"2024-05-27\"

},
{

\"flight_number\": \"HAT266\",
\"origin\": \"LAS\",
\"destination\": \"IAH\",
\"scheduled_departure_time_est\": \"13:00:00\",
\"scheduled_arrival_time_est\": \"16:00:00\",
\"status\": \"available\",
\"available_seats\": {

\"basic_economy\": 12,
\"economy\": 5,
\"business\": 8

},
\"prices\": {

\"basic_economy\": 80,
\"economy\": 130,
\"business\": 378

},
\"date\": \"2024-05-27\"

}
],
[

{

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

\"flight_number\": \"HAT229\",
\"origin\": \"DEN\",
\"destination\": \"LAS\",
\"scheduled_departure_time_est\": \"11:00:00\",
\"scheduled_arrival_time_est\": \"13:00:00\",
\"status\": \"available\",
\"available_seats\": {

\"basic_economy\": 19,
\"economy\": 0,
\"business\": 5

},
\"prices\": {

\"basic_economy\": 80,
\"economy\": 109,
\"business\": 338

},
\"date\": \"2024-05-27\"

},
{

\"flight_number\": \"HAT175\",
\"origin\": \"LAS\",
\"destination\": \"IAH\",
\"scheduled_departure_time_est\": \"17:00:00\",
\"scheduled_arrival_time_est\": \"20:00:00\",
\"status\": \"available\",
\"available_seats\": {

\"basic_economy\": 7,
\"economy\": 16,
\"business\": 1

},
\"prices\": {

\"basic_economy\": 95,
\"economy\": 170,
\"business\": 246

},
\"date\": \"2024-05-27\"

}
],
{

"flight_number": "HAT084",
"origin": "DEN",
"destination": "LAS",
"scheduled_departure_time_est": "04:00:00",
"scheduled_arrival_time_est": "06:00:00",
"status": "available",
"available_seats": {

"basic_economy": 0,
"economy": 20,
"business": 20

},
"prices": {

"basic_economy": 50,
"economy": 112,
"business": 438

},
"date": "2024-05-27"

},

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

{
"flight_number": "HAT266",
"origin": "LAS",
"destination": "IAH",
"scheduled_departure_time_est": "13:00:00",
"scheduled_arrival_time_est": "16:00:00",
"status": "available",
"available_seats": {

"basic_economy": 12,
"economy": 5,
"business": 8

},
"prices": {

"basic_economomy": 80,
"economy": 130,
"business": 378

},
"date": "2024-05-27"

}

Agent: ”Perfect! I found several return flight options for May 27th. Let me analyze the
fastest options:
**Available return flight options on May 27th (DEN to IAH):
1. **FASTEST OPTION: - DEN to LAS: HAT229 (11:00 AM - 1:00 PM) - LAS to
IAH: HAT266 (1:00 PM - 4:00 PM) - **Total travel time: 5 hours** (11:00 AM - 4:00 PM)
- No layover time needed (arrives and departs LAS at same time)
2. Second fastest: - DEN to LAS: HAT084 (4:00 AM - 6:00 AM) - LAS to IAH: HAT266
(1:00 PM - 4:00 PM) - Total travel time: 12 hours (4:00 AM - 4:00 PM) with 7-hour layover
3. Third option: - DEN to LAS: HAT290 (2:00 PM - 4:00 PM) - LAS to IAH: HAT175
(5:00 PM - 8:00 PM) - Total travel time: 6 hours (2:00 PM - 8:00 PM) with 1-hour layover
The **fastest option** is HAT229 + HAT266, arriving at 4:00 PM in Houston.
However, I notice that HAT229 shows 0 economy seats available. Let me recommend the
third option (HAT290 + HAT175) which is only 1 hour longer and has economy seats
available.
Proposed changes:
- **Flight changes**: Keep outbound flights, change return to HAT290 (DEN-LAS) +
HAT175 (LAS-IAH) on May 27th
-**Baggage**: Increase from 1 to 2 checked bags (1 additional bag = $50)
-**Cabin**: Stay in economy
Would you like me to proceed with these changes? I’ll need a payment method for the
additional baggage fee and any flight change costs.

User: Yes, please proceed with those changes. I want to use my gift card with the smallest
balance to pay for this. Can you help me figure out which one that would be and calculate
the total cost?

Agent: ”**Cost Breakdown:**
- **Flight change cost**: $59 (new flights $312 - current flights $253)
- **Additional baggage**: $50 (1 extra checked bag)
- **Total cost**: $109
Your gift card balances:
- gift-card-7480005: $6 (smallest balance)
- gift-card-6276644: $113
- gift-card-7091239: $157
Unfortunately, your gift card with the smallest balance ($6) won’t cover the total cost of
$109. You have these payment options:
- **gift-card-6276644** ($113) - would cover the full amount
- **gift-card-7091239** ($157) - would cover the full amount

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

- **credit-card-9879898** (Mastercard ending in 9725)
Which payment method would you prefer to use for the $109 total cost?

User: Oh, you’re right - my smallest gift card won’t cover it. Please use the gift card with
$113 then, since that’s the next smallest one that will actually cover the cost.

Agent: ”Perfect! I’ll use gift-card-6276644 ($113) to cover the $109 total cost.
Summary of changes to confirm:
- **Reservation ID**: OBUT9V
- **Flight changes**:
- Keep outbound flights on May 27th (IAH - ORD - DEN)
- Change return flights to May 27th: HAT290 (DEN - LAS 2:00-4:00 PM) + HAT175 (LAS
- IAH 5:00-8:00 PM)
- **Baggage**: Increase from 1 to 2 checked bags
- **Cabin**: Stay in economy
- **Payment**: gift-card-6276644 ($113 balance)- **Total cost**: $109
Do you confirm these changes? Please respond with yes to proceed.”

User: Yes, I confirm these changes.
Agent Tool Call:
"function": {

"arguments": "{\
\"reservation_id\": \"OBUT9V\", \
\"cabin\": \"economy\", \
\"flights\": [\

{\"flight_number\": \"HAT078\",
\"date\": \"2024-05-27\"}, \
{\"flight_number\": \"HAT118\",
\"date\": \"2024-05-27\"}, \
{\"flight_number\": \"HAT290\",
\"date\": \"2024-05-27\"}, \
{\"flight_number\": \"HAT175\",
\"date\": \"2024-05-27\"}\

], \
\"payment_id\": \"gift_card_627644\"\

}",
"name": "update_reservation_flights"

}

Tool Return:
"content": "{

\"reservation_id\": \"OBUT9V\",
\"user_id\": \"sofia_kim_7287\",
\"origin\": \"IAH\",
\"destination\": \"DEN\",
\"flight_type\": \"round_trip\",
\"cabin\": \"economy\",
\"flights\": [

{
\"flight_number\": \"HAT078\",
\"date\": \"2024-05-27\",
\"price\": 146,
\"origin\": \"IAH\",
\"destination\": \"ORD\"

},
{

\"flight_number\": \"HAT118\",
\"date\": \"2024-05-27\",

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

\"price\": 167,
\"origin\": \"ORD\",
\"destination\": \"DEN\"

},
{

\"flight_number\": \"HAT290\",
\"date\": \"2024-05-27\",
\"price\": 142,
\"origin\": \"DEN\",
\"destination\": \"LAS\"

},
{

\"flight_number\": \"HAT175\",
\"date\": \"2024-05-27\",
\"price\": 170,
\"origin\": \"LAS\",
\"destination\": \"IAH\"

}
],
\"passengers\": [

{
\"first_name\": \"Sofia\",
\"last_name\": \"Kim\",
\"dob\": \"1950-06-24\"

}
],
\"payment_history\": [

{
\"payment_id\": \"gift_card_7091239\",
\"amount\": 566

},
{

\"payment_id\": \"gift_card_6276644\",
\"amount\": 59

}
],
\"created_at\": \"2024-05-07T16:32:35\",
\"total_baggages\": 1,
\"nonfree_baggages\": 0,
\"insurance\": \"no\"

}"

Agent: Great! Your flight changes have been successfully updated. Now let me add the
additional checked bag.

By now, the agent has successfully updated the flights and everything is perfect,
however it made an error in the last step when updating the checked bags.

Agent Tool Call:
"function": {
"arguments": "{\

\"reservation_id\": \"OBUT9V\", \
\"total_baggages\": 2, \
\"nonfree_baggages\": 1, \
\"payment_id\": \"gift_card_6276644\"\

}",
"name": "update_reservation_baggages"

},

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

The agent added one non-free baggage to the reservation because the user requested an
additional checked bag. However, according to the highlighted part of policy and the
user’s history, the user is a Silver member traveling in economy class and is entitled to
two free checked bags. By charging the user an extra checked bag fee, the agent made
an error.

K FULL LIST OF RELATED WORK

K.1 PROMPT COMPRESSION FOR LARGE LANGUAGE MODELS

Prompt compression (Li et al., 2024) aims to obtain a more compact representation of lengthy in-
puts while preserving the original outputs. Early approaches include hard prompting (Chuang et al.,
2024; Jiang et al., 2023; Li et al., 2023), which prune tokens that contribute little to the response
while retaining natural language or subword tokens, and soft prompting (Mu et al., 2024; Ge et al.,
2023; Chevalier et al., 2023), which replace the original prompt with learnable embeddings with
the help of trainable encoder-decoder architecture. While soft prompts often rely on non natural
language embeddings, they generally provide stronger generalization for handling diverse require-
ments. Our special token–based internalization (e.g., policy identifiers) combines the strengths of
both: it is interpretable and thus easier for real-world business management, while still supporting
flexible learning to enable generalization. PromptIntern (Zou et al., 2024) introduces a pipeline
for progressively internalizing input tokens, but it does not explicitly address the unique reasoning
challenges posed by the complex structure of policy documents.

K.2 DELIBERATE ALIGNMENT

Deliberative alignment proposes internalizing general safety rules and behaviors into a model’s prior,
reducing the need to specify them in-context via additional training (Guan et al., 2024) or test-time
deliberation (Zhang et al., 2025a). While related to our setting, this line of work is restricted to
general safety behaviors, overlooks the broader scope of agentic policies, and does not address
complex reasoning challenges central to policy internalization (e.g., workflow-level constraints).

K.3 CONTINUED PRETRAINING FOR LARGE LANGUAGE MODELS

Continued Pretraining (CPT) has become a critical paradigm for keeping large language models
(LLMs) up-to-date with evolving data distributions while mitigating catastrophic forgetting. Posi-
tioned at the top layer of the modern continual learning pipeline, CPT incrementally trains LLMs
on newly collected unlabeled corpora to retain general knowledge, acquire novel information, and
revise outdated facts, offering a more efficient alternative to full retraining (Shi et al., 2025). Exist-
ing approaches largely build on classical continual learning methods, such as replay-based rehearsal
of exemplars or pseudo-samples, parameter regularization techniques like Elastic Weight Consoli-
dation (EWC) (Kirkpatrick et al., 2017) and RecAdam (Chen et al., 2020) to constrain parameter
drift, and architecture-based strategies such as adapter modules, vocabulary expansion, and sparse
modular structures (e.g. Mixture-of-Experts) that help isolate new knowledge without overwriting
old representations (Shi et al., 2025; Zhou et al., 2024). In particular, modular expert-based designs
like DEMix layers (Gururangan et al., 2022) support mixing, adding, or removing domain-specific
experts to facilitate adaptation and reduce forgetting, and Lifelong-MoE (Chen et al., 2023) dy-
namically expands expert capacity during CPT to absorb new distributions while preserving prior
knowledge. Empirical results suggest CPT methods consistently improve downstream generaliza-
tion under gradual or correlated distribution shifts, though naive sequential updates can provoke sig-
nificant forgetting in temporally shifting domains (Shi et al., 2025). Replay-based methods may be
less effective in CPT due to overfitting risks, while parameter-efficient finetuning (LoRA, adapters)
and modular expansion techniques show stronger robustness to both temporal and content shifts,
making them attractive for scalable production pipelines (Zhou et al., 2024). Despite progress, cur-
rent surveys stress that CPT research is still in early stages: technique diversity remains limited,
long-horizon simulations are rare, and standardized evaluation benchmarks for vertical forgetting
are lacking, pointing to important directions for future work (Shi et al., 2025). In our approach, we
primarily rely on continued pretraining (CPT) to enable more generalizable learning and mitigate

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

the catastrophic forgetting often observed in pure SFT methods, while incorporating targeted data
and policy-grounded question–answer pairs to better facilitate downstream adaptation.

K.4 KNOWLEDGE INJECTION FOR LARGE LANGUAGE MODELS

Knowledge injection techniques aim to enhance the domain expertise of large language models
(LLMs) by integrating external or structured knowledge into their training or inference process,
thereby bridging the gap between general-purpose reasoning and specialized applications (Song
et al., 2025b). Existing methods are broadly categorized into four paradigms: dynamic knowl-
edge injection, which retrieves knowledge at inference time and augments the input context—often
using retrieval-augmented generation (RAG) with semantic search or knowledge graphs (Zhang
et al., 2024); static knowledge embedding, which encodes domain information into model param-
eters via continued pretraining or fine-tuning, enabling faster inference but risking catastrophic
forgetting when knowledge evolves; modular adapters, which introduce trainable modules such
as K-Adapters to store domain knowledge while keeping backbone parameters frozen, providing
parameter-efficient updates and preserving general capabilities (Wang et al., 2021; He et al., 2021);
and prompt optimization, which relies on carefully designed or learned prompts to guide the model
without parameter updates (Peng et al., 2025; Liu et al., 2024b). Recent work demonstrates that hy-
brid approaches, such as combining retrieval with prompt optimization or adapters (e.g., KnowGPT
and StructTuning), yield strong performance by balancing flexibility, scalability, and computational
efficiency (Liu et al., 2024b; Zhang et al., 2024). Empirical comparisons in biomedical and financial
domains show that static embedding often achieves the highest task-specific accuracy, while dy-
namic injection provides superior adaptability and up-to-date knowledge coverage, highlighting the
importance of choosing injection strategies based on application requirements (Song et al., 2025b).
In our work, the internalization of policy documents is related to, but distinct from, knowledge injec-
tion. Our task emphasizes deep understanding and practical application of policy rules rather than
mere memorization, which also requires extensive reasoning. To address these unique challenges,
we characterize the specific complexities of policy interpretation and propose a CPT-based approach
tailored to this setting. Among the aforementioned approaches, ours bears the closest resemblance
to prompt optimization.

L ETHICAL STATEMENT ON LLM ASSISTANCE

In addition to the reported uses of large language models (LLMs) for running experiments, we
primarily use ChatGPT-5 as a tool for language refinement, including polishing text and improving
clarity. All model-generated content is thoroughly reviewed and rewritten by human authors to
ensure accuracy, originality, and adherence to research integrity standards.

M LIMITATION AND FUTURE WORK

In this section, we discuss the limitations of our work and outline future directions.

(1) Scope of the benchmark. Our study uses a text-only, single-turn agent setting (Section§ 2.1);
consequently, our complexity characterization primarily reflects the policy-document dimension and
its associated agentic tasks. In practice, complexity also arises from intricate user intents, multi-
turn planning and repair, and multimodal inputs (e.g., screenshots, receipts, instructional videos).
Extending CC-Gen and the evaluation suite to multi-turn and multimodal settings, while explicitly
modeling a distribution over user intents is an important next step.

(2) Training recipe. Our approach emphasizes category-aware policy structure and applies contin-
ued pretraining (CPT) followed by SFT, underscoring that explicit complexity characterization is
indispensable. We did not incorporate reinforcement-learning stages (e.g., GRPO/PPO-style objec-
tives) that could leverage our trajectories. Adding an RL fine-tuning stage on top of CAP-CPT+SFT
for improved alignment is a promising extension.

(3) Challenging task variants. Despite strong average gains, models remain brittle on policy-
substitute, policy-override, and policy-referral. These practical extensions of the core internalization
task helps to extend the robustness and safety of the overall system. Simply scaling training data

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

may lift scores on a fixed evaluation set but yields limited gains more broadly because override gran-
ularity (what to override, scope, validity window) and referral formats are under-specified. Future
work includes targeted data generation with controllable override or referral schemas, counterfactual
training, and evaluation protocols that explicitly balance base performance, adaptation fidelity, and
robustness. While context engineering approaches for safe and reliable output (Wang et al., 2025)
are also under consideration.

(4) Fragility of strong priors. We find that stronger reasoning models can be more prone to policy-
specific interference and forgetting. Although CAP-CPT with self-generated CoT mitigates this (Ap-
pendix F), we lack guarantees against negative transfer or regressions in general instruction follow-
ing. Future work should investigate selective internalization via policy identifiers, prior-preservation
regularizers, and continual-learning safeguards for safe deployment.

Future Work An important direction is to integrate retrieval-augmented generation (RAG) with
our CAP-CPT framework to achieve more fine-grained and context-aware internalization, allowing
models to dynamically ground their policy reasoning in high-precision retrieved evidence. Another
promising avenue is to leverage reinforcement learning to further refine the internalization process,
enabling models to explore policy-consistent behaviors and optimize long-horizon adherence re-
wards. We also plan to study methods for mitigating forgetting during continual policy updates,
ensuring that newly internalized rules do not overwrite previously aligned behaviors. Beyond the
current policy set, we aim to generalize to unseen policy documents by explicitly encoding over-
riding relationships between policy sources. Finally, we will explore parallel policy internalization,
enabling models to internalize multiple, potentially interacting policies simultaneously and resolve
conflicts through structured reasoning.

N POLICY DOCUMENTS CLOSER TO THE REAL WORLD

In this section, we extend our policy documents to a group of new policies which is written in a
completely different way compared to those policy documents generated by our {CC-Gen} bench-
mark. These policies are human written and polished by Large Language Models like GPT-5. We
used them and corersponding QAs for a more in-depth evaluation of our approach in real-world
scenarios. We show the complete content of one of these policy documents as below:

Human written real-world Policy Evaluation

Airline Agent Policy

The current time is 2025-10-31 23:42:08 EST.

As an airline agent, you can help users book, modify, cancel, or query flight reservations.

- Before taking any actions that update the booking database (booking, modifying flights,
editing baggage, upgrading cabin class, or updating passenger information), you must list
the action details and obtain explicit user confirmation (yes) to proceed.

- You should not provide any information, knowledge, or procedures not provided by the
user or available tools, or give subjective recommendations or comments.

- You should only make one tool call at a time, and if you make a tool call, you should not
respond to the user simultaneously. If you respond to the user, you should not make a tool
call at the same time.

- You should deny user requests that are against this policy.

- You should transfer the user to a human agent if and only if the request cannot be handled
within the scope of your actions.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Domain Basic

Profile Structure

Passengers Profile
The agent should use the {Username} and {PaxID} as conditions to access and locate the
profile existence of the specific passenger. This profile also includes {membership level},
{payment methods}, {saved passengers}, and {reservations} of the passenger. Among
these attributes, {reservations} will be the primary key to Profile {Reservations}. The
attribute {email} can be used as an alternative way to access the profiles {Passenger} while
searching.

Reservations Profile Each reservation contains {reservation id}, {user id},
{origin}, {destination}, {flight type} (one way, round trip), {flights}, {passengers},
{payment history}, {created at}, {total baggages}, and {nonfree baggages}. Among
these attributes, {user id} links back to the Passengers profile, and {flights} contains
{flight number} which links to the Flights profile.

Flights Profile Each flight has {flight number}, {origin}, {destination},
{scheduled departure time est}, {scheduled arrival time est}, and for each {date}:
- If the status is ”available”, the flight has not taken off, {available seats} and {prices} for
each cabin are listed. - If the status is ”delayed”, the flight has not taken off but is delayed,
with {new departure time est} and {delay reason}. - If the status is ”landed”, the flight
has already landed with {actual departure time est} and {actual arrival time est}. - If the
status is ”cancelled”, the flight has been cancelled with {cancellation reason}.

Membership Tiers and Benefits

- **Basic**: 0% discount, limited baggage allowance
- **Silver**: 10% discount on flights, enhanced baggage allowance
- **Gold**: 15% discount on flights, premium baggage allowance
- **Platinum**: 20% discount on flights, premium baggage allowance

Cabin Types

- **basic economy**: Lowest price, most restrictions
- **economy**: Standard service
- **business**: Premium service, most flexibility

Task 1: BookFlight

Step 1: User Identity Verification

Input Parameters: {user id} for booking user and {companions} list with each
companion’s {user id}

Process: The agent verifies each user exists in the Passengers profile by looking up
their {user id}. For each user, retrieve their {membership} level (platinum/gold/silver/ba-
sic) and {payment methods}.

Output: {membership} for each passenger, {payment methods} for booking user

Policy Rules: All user IDs must exist in the system. If any user ID is invalid, terminate
the booking process.

Step 2: Flight Information Verification

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Input Parameters: {origin}, {destination}, {departure time}, {arrive time}, {cabin}
for each passenger

Process: Search the Flights profile for flights matching the route and time require-
ments. The flight must have status ”available” and sufficient {available seats} in the
requested {cabin} type for all passengers.

Output: {flight number}, {prices} dictionary containing prices for basic economy,
economy, and business cabins.

Policy Rules:
- Only flights with status ”available” can be booked
- Flight departure time must be after {departure time}
- Flight arrival time must be before {arrive time}
- Available seats in requested cabin must be ¿= number of passengers requesting that cabin

Step 3: Calculate Total Airfare Cost

Input Parameters: {cabin} for each passenger, {prices} from flight, {membership}
for each passenger

Process: For each passenger, calculate their ticket cost as: cabin price × (1 - member-
ship discount). Sum all passenger costs to get total airfare.

Output: {airfare cost} (total for all passengers)

Policy Rules - Membership Discounts:

- Platinum members: 20% discount
- Gold members: 15% discount
- Silver members: 10% discount
- Basic members: 0% discount

Step 4: Calculate Checked Baggage Cost

Input Parameters: {luggage number} (total bags for all passengers), {membership}
of booking user, {cabin} of booking user

Process: Determine free baggage allowance based on booking user’s membership and
cabin. Calculate excess baggage count and multiply by $50 per bag.

Output: {baggage cost}, {free allowance}, {excess bags}

Policy Rules - Free Baggage Allowance:

- Basic membership: 0 free bags (basic economy), 1 bag(s) (economy), 2 bags (business)
- Silver membership: 1 free bag(s) (basic economy), 2 bags (economy), 3 bags (business)
- Gold membership: 2 free bags (basic economy), 3 bags (economy), 3 bags (business)
- Platinum membership: 2 free bags (basic economy), 3 bags (economy), 3 bags (business)
- Excess baggage fee: $50 per bag beyond free allowance

Step 5: Calculate Travel Insurance Cost

Input Parameters: {insurance} status (yes/no) for each passenger

Process: Count passengers who selected insurance and multiply by $30 per passenger.
Output: {insurance cost}

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Policy Rules:
- Insurance price: $30 per passenger
- Insurance coverage: Enables full refund if cancellation is due to health or weather reasons
- Insurance cannot be added after booking is completed

Step 6: Payment Method Verification

Input Parameters: {payment methods} selected by user, {final cost} (sum of airfare
+ baggage + insurance)
Process: Verify all selected payment methods exist in the booking user’s profile.
Check that payment method combination follows policy limits.

Output: Validation result (pass/fail)

Policy Rules - Payment Method Limits:

- Maximum 1 travel certificate per reservation - Maximum 1 credit card per reservation -
Maximum 3 gift cards per reservation - All payment methods must already exist in user’s
profile for security - Travel certificate remaining balance is non-refundable

Step 7: Confirmation and Execution

Input Parameters: All booking details including {user ids}, {flight number},
{passengers}, {final cost}, {payment methods}

Process: Display complete booking summary including flight details, passenger
list, price breakdown (airfare, baggage, insurance), and total cost. Request explicit user
confirmation.

Output: {reservation id} if confirmed, or cancellation if user declines

Policy Rules:
- Must display all booking details before confirmation - Require explicit ”yes” confirmation
from user - Only create reservation after receiving confirmation

Task 2: ModifyFlight

Step 1: User Identity Verification

Input Parameters: {user id}, {reservation id}

Process: Verify the user exists in Passengers profile and retrieve their {membership},
{payment methods}, and {reservations} list. Confirm that {reservation id} exists in the
user’s {reservations} list.

Output: {membership}, {payment methods}, validation result

Policy Rules: - User must exist in the system - Reservation must belong to the user
(reservation id must be in user’s reservations list) - If validation fails, terminate modification
process

Step 2: Reservation Status Check

Input Parameters: {reservation id}

Process: Retrieve complete reservation details from Reservations profile in-
cluding {flight type}, {flights}, {passengers}, {total baggages}, {nonfree baggages},

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

{payment history}, {created at}.

Output: All reservation details, {hours until departure}

Policy Rules: - Flight date must be in the future (not expired) - Reservation status
must be ”confirmed” (not already used) - Time until departure must be ¿ 2 hours (applies to
all cabin types) - If any rule violated, cannot modify reservation

Step 3: Modification Eligibility Check

Input Parameters: {passengers} list with each passenger’s {cabin}, {flights} list

Process: Check if any passenger has basic economy cabin. Calculate modification
fees based on cabin types.

Output: {can modify} (boolean), {total modification fee}

Policy Rules: - If ANY passenger has basic economy cabin → Cannot modify flights
(terminate process) - Economy passengers: $75 modification fee per person - Business
passengers: $0 modification fee (free) - Cannot change {origin} or {destination} (must
cancel and rebook instead) - Can only change {departure time} and {arrive time} (same
route, different flight)

Step 4: New Flight Verification

Input Parameters: {origin}, {destination}, {departure time}, {arrive time},
{passengers} with cabin requirements

Process: Search Flights profile for available flights matching criteria. Verify sufficient
seats in each required cabin type.

Output: {new flights} list with {flight number}, {prices}, {available seats}

Policy Rules: - New flights must have status ”available” - Must have enough available
seats in each cabin for all passengers - Origin and destination must match original reservation

Step 5: Price Difference Calculation

Input Parameters: {passengers} with {membership}, {flights} (original),
{new flights}, {total modification fee}

Process: For each passenger, calculate original flight cost and new flight cost with
membership discounts applied. Sum the differences and add modification fees.

Output: {price difference} (positive = payment needed, negative = refund),
{total new cost}, {total original cost}

Policy Rules: - Apply membership discounts to both original and new flight costs -
Membership discounts: Platinum 20- Final price difference = (new cost - original cost) +
modification fees

Step 6: Payment Verification

Input Parameters: {payment methods}, {price difference}

Process: If price difference ¿ 0, verify payment method available. If price difference ¡
0, process refund to original payment method. Display modification summary and request

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

confirmation.

Output: Payment validation result, {reservation id} (updated)

Policy Rules: - If payment required: Must use valid payment method from user profile
- If refund: Return to original payment method - Must show complete modification details
before confirmation - Require explicit ”yes” confirmation

Step 7: Confirmation and Execution

Input Parameters: {reservation id}, {new flights}, {price difference},
{payment methods}

Process: Display complete modification summary and execute the flight change after
user confirmation.

Output: Updated {reservation id}

Policy Rules: - Must display all modification details before confirmation - Require
explicit ”yes” confirmation from user - Only update reservation after receiving confirmation

Task 3: ModifyPassengers

Step 1: User Identity Verification

Input Parameters: {user id}, {reservation id}

Process: Verify the user exists in Passengers profile and retrieve their {membership},
{payment methods}, and {reservations} list. Confirm that {reservation id} exists in the
user’s {reservations} list.

Output: {membership}, {payment methods}, validation result

Policy Rules: - User must exist in the system - Reservation must belong to the user -
If validation fails, terminate modification process

Step 2: Reservation Status Check

Input Parameters: {reservation id}

Process: Retrieve complete reservation details from Reservations profile in-
cluding {flight type}, {flights}, {passengers}, {total baggages}, {nonfree baggages},
{payment history}, {created at}.

Output: All reservation details, {hours until departure}

Policy Rules: - Flight date must be in the future (not expired) - Reservation status
must be ”confirmed” (not already used) - Time until departure must be ¿ 2 hours - If any
rule violated, cannot modify reservation

Step 3: Passenger Limit Check

Input Parameters: {current passenger count}, {add passengers} list,
{remove passengers} list, {user id} (booking user)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Process: Calculate new passenger count after additions/removals. Verify limits and
restrictions.

Output: {new passenger count}, validation result

Policy Rules: - Maximum 5 passengers per reservation - Minimum 1 passenger
(cannot remove all passengers) - Cannot remove booking user (user id of reservation
owner) - new passenger count = current count + add count - remove count - Must satisfy:
1 ≤ new passenger count ≤ 5

Step 4: Remove Passenger Processing

Input Parameters: {remove passengers} list with {user id} for each, {passengers}
current list, {flights}

Process: For each passenger being removed, calculate their flight cost with member-
ship discount applied. Calculate refund as 80% of flight cost. If passenger had insurance,
refund full $30 insurance cost.

Output: {refund amount}, {removed passenger details}

Policy Rules: - Refund policy: 80% of flight cost per removed passenger - Insurance
refund: 100% ($30) if passenger had insurance - Baggage fees: Non-refundable (no refund
for baggage) - Apply membership discounts when calculating original flight cost

Step 5: Add Passenger Processing

Input Parameters: {add passengers} list with {user id}, {cabin}, {insurance},
{luggage number} for each, {flights}

Process: For each new passenger, verify user id exists, check flight seat availability in
requested cabin, calculate costs (flight + insurance + baggage with membership discounts
and free allowances).

Output: {additional cost}, {added passenger details}

Policy Rules: - All new passenger user ids must exist in Passengers profile - Flights
must have available seats in requested cabins - Calculate flight cost with membership
discount - Insurance: $30 per passenger if requested - Baggage: Apply free allowance based
on passenger’s membership and cabin, charge $50 per excess bag

Step 6: Total Cost Calculation

Input Parameters: {refund amount}, {additional cost}

Process: Calculate net cost (additional cost - refund amount).

Output: {total price difference}

Policy Rules: - Net cost = additional cost - refund amount - If net cost ¿ 0: Payment
required - If net cost ¡ 0: Refund to original payment method

Step 7: Payment Verification

Input Parameters: {payment methods}, {total price difference}

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Process: If positive cost, verify payment. If negative, process refund. Display
passenger change summary and request confirmation.

Output: Payment validation result

Policy Rules: - Must display all passenger changes and costs before confirmation -
Require explicit ”yes” confirmation

Step 8: Confirmation and Execution

Input Parameters: {reservation id}, {add passengers}, {remove passengers},
{total price difference}

Process: Display complete passenger modification summary and execute changes
after user confirmation.

Output: Updated {reservation id}

Policy Rules: - Must display complete modification details - Require explicit ”yes”
confirmation from user - Only update reservation after receiving confirmation

Task 4: ModifyCabin

Step 1: User Identity Verification

Input Parameters:{user id}, {reservation id}

Process: Verify the user exists in Passengers profile and retrieve their {membership},
{payment methods}, and {reservations} list. Confirm that {reservation id} exists in the
user’s {reservations} list.

Output: {membership}, {payment methods}, validation result

Policy Rules: - User must exist in the system - Reservation must belong to the user -
If validation fails, terminate modification process

Step 2: Reservation Status Check

Input Parameters: {reservation id}

Process: Retrieve complete reservation details from Reservations profile including
{flight type}, {flights}, {passengers}, {total baggages}, {payment history}, {created at}.

Output: All reservation details, {hours until departure}

Policy Rules: - Flight date must be in the future (not expired) - Reservation status
must be ”confirmed” (not already used) - Time until departure must be ¿ 2 hours - If any
rule violated, cannot modify reservation

Step 3: Cabin Change Eligibility Check

Input Parameters: {passenger user id}, {original cabin}, {new cabin}, {flights}

Process: Verify cabin change is allowed (upgrade or downgrade with restrictions).
Check all flights have available seats in new cabin.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Output: {can change} (boolean), {change type} (upgrade/downgrade)

Policy Rules - Allowed Changes: - Upgrades allowed: basic economy → econo-
my/business, economy → business - Downgrades allowed with partial refund: - business →
economy or basic economy: Refund 80% of price difference - economy → basic economy:
Refund 50% of price difference - Must change all flight segments together (cannot change
only one flight in round trip) - All flights must have available seats in new cabin

Step 4: Cabin Price Difference Calculation

Input Parameters: {passenger user id}, {original cabin}, {new cabin}, {flights},
{current luggage number}

Process: Calculate price difference between cabins with membership discount.
Recalculate baggage allowance and fees based on new cabin.

Output: {cabin price difference}, {luggage cost difference}, {new free allowance}

Policy Rules: - Apply passenger’s membership discount to both original and new
cabin prices - For upgrades: price difference = new cabin cost - original cabin cost - For
downgrades: price difference = -(original cabin cost - new cabin cost) × refund percentage
- Recalculate free baggage allowance based on new cabin and membership - Recalculate
excess baggage fees: (luggage number - new free allowance) × $50

Step 5: Baggage Allowance Adjustment

Input Parameters: {passenger user id}, {membership}, {new cabin},
{current luggage number}

Process: Calculate new free baggage allowance and any additional fees or refunds.

Output: {new free allowance}, {baggage adjustment}

Policy Rules: - New free allowance based on membership and new cabin - If new
allowance ¿ old allowance: May receive partial refund for previously paid bags - If new
allowance ¡ old allowance: May owe additional fees

Step 6: Payment Verification

Input Parameters: {payment methods}, {cabin price difference},
{luggage cost difference}

Process: Calculate total cost (cabin price difference + luggage cost difference).
Process payment or refund. Display cabin change summary and request confirmation.

Output: {total cost}, {reservation id} (updated)

Policy Rules: - Total cost = cabin price difference + luggage cost difference - Must
display cabin change details, price breakdown, and baggage allowance changes - Require
explicit ”yes” confirmation

Step 7: Confirmation and Execution

Input Parameters: {reservation id}, {passenger user id}, {new cabin}, {total cost}

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Process: Display complete cabin modification summary and execute changes after
user confirmation.

Output: Updated {reservation id}

Policy Rules: - Must display all modification details before confirmation - Require
explicit ”yes” confirmation from user - Only update reservation after receiving confirmation

Task 5: ModifyInsurance

Step 1: User Identity Verification

Input Parameters: {user id}, {reservation id}

Process: Verify the user exists in Passengers profile and retrieve their {membership},
{payment methods}, and {reservations} list. Confirm that {reservation id} exists in the
user’s {reservations} list.

Output: {membership}, {payment methods}, validation result

Policy Rules: - User must exist in the system - Reservation must belong to the user -
If validation fails, terminate modification process

Step 2: Reservation Status Check

Input Parameters: {reservation id}

Process: Retrieve complete reservation details from Reservations profile including
{flight type}, {flights}, {passengers}, {payment history}, {created at}.

Output: All reservation details, {hours until departure}

Policy Rules: - Flight date must be in the future (not expired) - Reservation status
must be ”confirmed” (not already used) - Time until departure must be ¿ 2 hours - If any
rule violated, cannot modify reservation

Step 3: Insurance Modification Validation

Input Parameters: {passenger user id}, {original insurance}, {new insurance}

Process: Verify insurance modification is allowed (only additions permitted). Calcu-
late insurance cost if adding.

Output: {insurance cost}, validation result

Policy Rules: - Can ONLY ADD insurance (no → yes transition allowed) - CANNOT
REMOVE insurance (yes → no transition forbidden) - If already has insurance (yes → yes):
No change needed, return error - Insurance price: $30 per passenger - Insurance coverage:
Full refund for health/weather cancellation reasons

Step 4: Insurance Cost Calculation

Input Parameters: {passenger user id}, {new insurance}

Process: Calculate insurance cost for the passenger.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Output: {insurance cost}

Policy Rules: - Insurance cost: $30 per passenger - Must process payment before
adding insurance

Step 5: Payment Verification

Input Parameters: {payment methods}, {insurance cost}

Process: Verify payment method and process payment for insurance. Display
insurance addition summary and request confirmation.

Output: Payment validation result

Policy Rules: - Must use valid payment method from user profile - Must display
insurance details and cost before confirmation - Require explicit ”yes” confirmation

Step 6: Confirmation and Execution

Input Parameters: {reservation id}, {passenger user id}, {insurance cost}

Process: Display complete insurance modification summary and execute changes after
user confirmation.

Output: Updated {reservation id}

Policy Rules: - Must display all modification details before confirmation - Require
explicit ”yes” confirmation from user - Only update reservation after receiving confirmation
- Insurance cannot be removed once added

Task 6: ModifyLuggage

Step 1: User Identity Verification

Input Parameters: {user id}, {reservation id}

Process: Verify the user exists in Passengers profile and retrieve their {membership},
{payment methods}, and {reservations} list. Confirm that {reservation id} exists in the
user’s {reservations} list.

Output: {membership}, {payment methods}, validation result

Policy Rules: - User must exist in the system - Reservation must belong to the user -
If validation fails, terminate modification process

Step 2: Reservation Status Check

Input Parameters: {reservation id}

Process: Retrieve complete reservation details from Reservations profile in-
cluding {flight type}, {flights}, {passengers}, {total baggages}, {nonfree baggages},
{payment history}, {created at}.

Output: All reservation details, {hours until departure}

Policy Rules: - Flight date must be in the future (not expired) - Reservation status
must be ”confirmed” (not already used) - Time until departure must be ¿ 2 hours - If any

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

rule violated, cannot modify reservation

Step 3: Luggage Modification Validation

Input Parameters: {passenger user id}, {original luggage number},
{new luggage number}, {cabin}, {total baggages}

Process: Verify baggage modification is allowed (only additions). Check limits.

Output: {can modify} (boolean), validation result

Policy Rules: - Can ONLY ADD baggage (new luggage number must be ¿
original luggage number) - CANNOT REMOVE baggage (already added baggage is
non-refundable) - Maximum 8 bags per passenger - Maximum 8 bags per reservation total -
If limits exceeded, cannot modify

Step 4: Additional Luggage Cost Calculation

Input Parameters: {passenger user id}, {membership}, {cabin},
{original luggage number}, {new luggage number}

Process: Calculate free allowance based on passenger’s membership and cabin.
Calculate additional baggage cost.

Output: {additional luggage cost}, {new total baggages}

Policy Rules: - Calculate free allowance based on membership and cabin -
Additional cost = (new paid bags - original paid bags) × $50 - new paid bags =
max(0, new luggage number - free allowance) - original paid bags = max(0, origi-
nal luggage number - free allowance)

Step 5: Payment Verification

Input Parameters: {payment methods}, {additional luggage cost}

Process: Verify payment method and process payment for additional luggage. Display
luggage addition summary and request confirmation.

Output: Payment validation result

Policy Rules: - Must use valid payment method from user profile - Must display
luggage details and cost before confirmation - Require explicit ”yes” confirmation

Step 6: Confirmation and Execution

Input Parameters: {reservation id}, {passenger user id}, {new luggage number},
{additional luggage cost}

Process: Display complete luggage modification summary and execute changes after
user confirmation.

Output: Updated {reservation id}

Policy Rules: - Must display all modification details before confirmation - Require
explicit ”yes” confirmation from user - Only update reservation after receiving confirmation
- Luggage cannot be removed once added

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Task 7: CancelFlight

Step 1: User Identity Verification

Input Parameters: {user id}, {reservation id}

Process: Verify user exists in Passengers profile and retrieve {membership},
{payment methods}, and {reservations} list. Confirm {reservation id} is in user’s reserva-
tions.

Output: {membership}, {payment methods}, validation result

Policy Rules: - User must exist in the system - Reservation must belong to the user -
If validation fails, terminate cancellation process

Step 2: Reservation Status Check

Input Parameters: {reservation id}

Process: Retrieve complete reservation details including {flight type}, {flights},
{passengers}, {total baggages}, {payment history}, {created at}.

Output: All reservation details, {hours until departure}

Policy Rules: - Flight date must be in the future (not expired) - Reservation sta-
tus must be ”confirmed” (not already used) - If flight already departed or used, cannot cancel

Step 3: Cancellation Eligibility Check

Input Parameters: {passengers} with {cabin} for each, {flights}, {created at},
{hours until departure}

Process: Check each passenger’s cabin type to determine cancellation eligibility and
fees. Calculate time-based restrictions and additional fees.

Output: {can cancel} (boolean), {total cancellation fee}, {has basic economy}

Policy Rules - Cancellation Fees by Cabin: - basic economy: Non-refundable
($0 refund) - economy: Refundable with $200 cancellation fee per passenger - business:
Refundable with $75 cancellation fee per passenger

Policy Rules - Time Restrictions: - Less than 2 hours until departure: Cannot cancel
(terminate process) - 2-24 hours until departure: Additional $50 emergency cancellation fee
(applied once per reservation) - More than 24 hours until departure: Normal cancellation
fees only

Policy Rules - Warnings: - If any passenger has basic economy: Display warning
”Reservation includes Basic Economy cabin, that portion is non-refundable”

Step 4: Refund Amount Calculation

Input Parameters: {passengers} with {cabin}, {insurance}, {membership} for each,
{flights}, {cancel reason}, {total cancellation fee}, {hours until departure}

Process: For each passenger, calculate their original flight cost with membership
discount. Determine refund based on cabin type and cancellation reason. Add insurance

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

refund if applicable. Subtract emergency fee if within 24 hours.

Output: {total refund}, {refund breakdown} (per passenger details)

Policy Rules - Refund Calculation: - basic economy passengers: $0 refund (non-
refundable) - Special cancellation reasons (weather/health): Full refund of flight cost (no
cancellation fee) - Normal cancellation (personal/schedule change): - economy: flight cost
- $200 cancellation fee - business: flight cost - $75 cancellation fee - Insurance refund: - If
cancel reason is weather or health: Refund $30 per passenger with insurance - Otherwise:
$0 insurance refund - Emergency cancellation fee: Subtract $50 if hours until departure ¡ 24
- Baggage fees: Non-refundable (no refund for any baggage fees paid) - Apply membership
discounts when calculating original flight costs

Step 5: Refund Method Confirmation

Input Parameters: {payment history}, {total refund}

Process: Determine refund destination based on original payment method used.

Output: {refund method}, {refund destination}

Policy Rules - Refund Methods: - If paid with credit card: Refund to the same credit
card - If paid with travel certificate: Issue new travel certificate for refund amount - If
paid with gift card: Refund to new gift card - Refund processing time: 5-7 business days -
Refund goes to original payment method(s) in reverse order of use

Step 6: Confirmation and Execution

Input Parameters: {reservation id}, {total refund}, {cancel reason},
{payment history}, {refund breakdown}

Process: Display complete cancellation summary including flight details, each
passenger’s refund breakdown, cancellation fees, total refund amount, and refund method.
Request explicit user confirmation.

Output: Cancellation confirmation, {reservation id} (cancelled status)

Policy Rules: - Must display complete cancellation details before confirmation - Show
per-passenger refund breakdown - Show all fees (cancellation fees, emergency fees) - Show
refund method and expected processing time - Require explicit ”yes” confirmation from
user - Only process cancellation after receiving confirmation

Task 8: QueryFlight

Query Type 1: Search Available Flights

Step 1: Parameter Validation

Input Parameters: {origin}, {destination}, {departure date}, {return date} (op-
tional), {cabin} (optional), {passenger count} (optional, default 1)

Process: Validate all input parameters to ensure they meet requirements for flight
search.

Output: Validation result (pass/fail)

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

Policy Rules: - {origin} and {destination} must be valid 3-letter airport codes -
{origin} cannot equal {destination} - {departure date} must be a future date (not in the
past) - If {return date} provided, it must be later than {departure date} - {passenger count}
must be positive integer (1-5)

Step 2: Search Outbound Flights

Input Parameters: {origin}, {destination}, {departure date}, {cabin} (optional),
{passenger count}

Process: Query Flights profile for all flights matching the route on the specified date.
Filter for flights with status ”available” and sufficient seats. Sort results by departure time.

Output: {outbound flights} list with {flight number}, {departure time},
{arrival time}, {available seats}, {prices} for each flight

Policy Rules: - Only include flights with status ”available” - If {cabin} specified:
Only include flights with available seats[cabin] ¿= passenger count - If {cabin} not
specified: Include all flights with any cabin having sufficient seats - Sort flights by
{expected departure time est} in ascending order

Step 3: Search Return Flights (if round trip)

Input Parameters: {destination}, {origin}, {return date}, {cabin} (optional),
{passenger count}

Process: If {return date} provided, search for return flights using same logic as
outbound search, but with origin and destination swapped.

Output: {return flights} list (same structure as outbound flights)

Policy Rules: Same as Step 2, applied to return route

Step 4: Format and Return Results

Input Parameters: {outbound flights}, {return flights} (if applicable)

Process: Format search results into readable display showing all flight options with
details.

Output: Formatted flight search results

Policy Rules - Display Format: - Show search criteria (origin, destination, dates,
passenger count) - For each flight, display: - Flight number - Departure and arrival times -
Available seats by cabin type (basic economy, economy, business) - Prices by cabin type -
Indicate if no flights found matching criteria

Query Type 2: Check Reservation Details

Step 1: User Identity Verification

Input Parameters: {user id}, {reservation id}

Process: Verify user exists and that the reservation belongs to them.

Output: Validation result

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

Policy Rules: - User must exist in Passengers profile - {reservation id} must be in
user’s {reservations} list - If validation fails, deny access to reservation details

Step 2: Get Reservation Information

Input Parameters: {reservation id}

Process: Retrieve complete reservation details from Reservations profile including all
fields.

Output: {reservation info} with {user id}, {origin}, {destination}, {flight type},
{flights}, {passengers}, {payment history}, {total baggages}, {nonfree baggages},
{created at}

Policy Rules: Return all reservation data without modification

Step 3: Get Flight Real-time Status

Input Parameters: {flights} list from reservation

Process: For each flight in the reservation, query Flights profile to get current real-time
status.

Output: {flight statuses} list with {status}, {expected departure time},
{expected arrival time}, and status-specific fields

Policy Rules: Retrieve current status for each flight from Flights profile

Step 4: Format and Return Details

Input Parameters: {reservation info}, {flight statuses}

Process: Format complete reservation details into readable display.

Output: Formatted reservation details

Policy Rules - Display Format: - Show reservation ID and booking user - Show
booking time and status - For each flight: flight number, route, date, times, current status -
For each passenger: name, cabin, insurance status - Show baggage information (total bags,
paid bags) - Show payment information (methods used, amounts)

Query Type 3: Check Flight Status

Step 1: Parameter Validation

Input Parameters: {flight number}, {date}

Process: Validate that flight number and date are in correct format.

Output: Validation result

Policy Rules: - {flight number} must be valid format (3-letter airline code + 3-4 digit
number) - {date} must be valid date format (YYYY-MM-DD)

Step 2: Get Flight Information

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

Input Parameters: {flight number}, {date}

Process: Query Flights profile for the specified flight and date. Retrieve all available
information.

Output: {flight details} with {origin}, {destination}, {scheduled departure time},
{scheduled arrival time}, {status}, and status-specific fields

Policy Rules: - If flight number not found: Return error ”Flight number does not
exist” - If date not found for flight: Return error ”No flight information for this date” -
Return all available information for the flight on that date

Step 3: Format and Return Status

Input Parameters: {flight details}

Process: Format flight status information into readable display based on current status.

Output: Formatted flight status

Policy Rules - Display Format: - Show flight number, date, and route - Show sched-
uled departure and arrival times - Show current status (available/delayed/landed/cancelled)
- If status is ”available”: Show expected times, available seats by cabin, prices by cabin -
If status is ”delayed”: Show new expected times and delay reason - If status is ”landed”:
Show actual departure and arrival times - If status is ”cancelled”: Show cancellation reason

Query Type 4: Check User Information

Step 1: User Identity Verification

Input Parameters: {user id}

Process: Verify user exists and retrieve complete profile from Passengers profile.

Output: {user info} with {PaxID}, {name}, {email}, {dob}, {address},
{membership}, {payment methods}, {saved passengers}, {reservations}

Policy Rules: - User must exist in Passengers profile - If user not found: Return error
”User ID invalid” - Return all user profile information

Step 2: Get User Reservation History

Input Parameters: {reservations} list from user profile

Process: For each reservation ID in user’s reservations list, retrieve summary informa-
tion from Reservations profile.

Output: {reservation summary} list with {reservation id}, {route}, {date}, {status},
{passenger count} for each reservation

Policy Rules: Retrieve summary (not full details) for each reservation

Step 3: Format and Return User Info

Input Parameters: {user info}, {reservation summary}

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

Process: Format complete user information into readable display.

Output: Formatted user information

Policy Rules - Display Format: - Show passenger ID and name - Show email and date
of birth - Show address (full address with city, state, zip, country) - Show membership level
and benefits - Show payment methods (type, last 4 digits for cards, amount for certificates)
- Show saved passengers list - Show reservation history with summary for each reservation

We evaluated our internalization approach on this single policy document with Qwen-3-8B, observ-
ing a performance gain with our CAP-CPT approach. More comprehensive evaluation on different
policy documents are leaved for future work.

59

	Introduction
	Complexity Characterization of LLM-based Agentic Tasks
	LLM-based Agentic Task Setting
	CC-GEN: Agentic Benchmark Generator with Controllable Complexities
	Benchmarking Agent Performance with Controlled Complexity

	Internalizing Complex Agentic Policy Documents
	Baseline: SFT with Gold CoT-Enhanced Interaction Trajectories
	Our Approach: Category-Aware Policy Continued Pretraining

	Evaluation of Policy Document Internalization
	Experiment Settings
	Main results
	Abation Study
	Application on -bench

	Related Work
	Conclusion
	Reproducibility Statement
	Ethics Statement
	Benchmark Development and Probing Experiments
	Data Examples for Generated Policy Documents
	Policy Analysis Details
	More Comprehensive Experimental Settings and Results
	Evaluation Framework of Policy Document Internalization
	Intuitive Understanding of our Observations
	Why Our CAP-CPT Approach Works Well
	Training with Stronger Models Does Not Yield Better Performance

	Multiple Policy Internalization
	More Details on Ablation Study
	Application to -bench
	Error Examples of SOTA LLMs on -bench
	Full List of Related Work
	Prompt Compression for Large Language Models
	Deliberate Alignment
	Continued Pretraining for Large Language Models
	Knowledge Injection for Large Language Models

	Ethical Statement on LLM Assistance
	Limitation and Future Work
	Policy Documents Closer to the Real World

