

ANALYZING AND INTERNALIZING COMPLEX POLICY DOCUMENTS FOR LLM AGENTS

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Model (LLM) based agentic systems rely heavily on in-context policy documents that encode diverse business rules. As business requirements expand, these documents grow substantially, creating significant computational overhead. This motivates the need for internalization methods that embed policy documents into model priors while preserving performance. While prior prompt compression research primarily targets generic prompts, we find that agentic policy documents span multiple levels of complexity and demand more intensive reasoning, presenting greater internalization challenges. We first introduce *CC-Gen*, an agentic benchmark generator with *Controllable Complexity* defined across four levels, enabling systematic benchmarking of how well agents handle complexities and provides a framework for comprehensive evaluation of policy internalization algorithms. Our initial analysis reveals that complex policy specifications governing agent workflows may pose the most significant reasoning challenges. When supporting internalization with gold user–agent interaction trajectories containing chain-of-thought (CoT) annotations through supervised fine-tuning (SFT), we find that this baseline is highly data-intensive and its effectiveness deteriorates markedly as policy document complexity increases. To mitigate data burden and reasoning challenges, we propose Category-Aware Policy Continued Pretraining(CAP-CPT). Our automated pipeline analyzes policy documents to extract key specifications, grouping them into factual, behavioral, and conditional types. We further isolate complex conditions, which introduce high workflow complexity and drive core reasoning difficulty. This categorization guides a targeted therapy, synthesizing specialized training data for each specification type and enabling agents to internalize policy information more effectively through an autoregressive pretraining loss. Our extensive experiments demonstrate the effectiveness of the curated data and training objective. Combined with SFT, our approach improves baseline across all data scenarios. It is especially effective in data-sparse settings and under high policy complexity, yielding gains of up to 41% and 22% on Qwen-3-32B. Overall, we achieve up to 97.3% prompt length reduction in our benchmark. Applied to τ -Bench, our approach further improves performance and reduces input length with very limited SFT data.¹

1 INTRODUCTION

While Large Language Models (LLMs) exhibit strong instruction-following abilities (Ouyang et al., 2022; Zhou et al., 2023; Zeng et al., 2023), LLM-based agents still depend heavily on in-context policy documents to function as effective user assistants. For instance, as illustrated in Figure 1, an airline policy document must be provided in context for the agent to perform its duties. However, these documents, which often encode extensive business rules and behavioral guidelines, can consume a large portion of the input prompt. Even in simplified simulated environments such as τ -Bench (Yao et al., 2024), they account for roughly 35% of the input tokens. In real-world applications, policy prompts expand with business growth and can already reach \sim 50K tokens², dominating the prompt relative to user inputs and in some cases exceeding the available context length. This cre-

¹All data and code will be publicly released.

²Exact numbers are not disclosed due to the proprietary nature of system prompts.

ates substantial computational overhead and highlights the need for efficient internalization methods that embed policy documents into a model’s prior knowledge while preserving agent performance.

Figure 1: Even state-of-the-art LLM-based agents fail to reliably follow policy documents, and our analysis shows that certain policy specifications are inherently complex, imposing substantial reasoning demands. These observations motivate the central research questions we investigate in this paper. A more detailed illustration of this failure case is provided in Appendix J.

While prior token-compression approaches typically treat all inputs as generic prompts (Zou et al., 2024; Li et al., 2024), our observations show that models often struggle to follow specific policy specifications, suggesting that internalizing policy documents poses distinct challenges. As shown in Figure 1, evaluation on τ -bench reveals that even Claude-4-Sonnet (Bubeck et al., 2024) based tool-using agents suffer severe performance degradation with policy documents as short as 1K tokens. To the best of our knowledge, no prior work has systematically examined what makes a policy document easy or difficult to follow. To investigate the cause, we manually analyzed user–agent interaction trajectories and found that certain policy specifications are inherently more complex, imposing substantial reasoning demands that degrade performance (see concrete examples in Appendix J). These insights motivate us to categorize policy complexities, measure their impact on internalization methods, and design algorithms to mitigate these challenges.

To address these challenges, we introduce *CC-Gen*, a benchmark generator that synthesizes policy documents and paired agentic tasks with predefined *Controllable Complexity*. It specifies four levels of complexity: environmental, task level, workflow, and user query (see Appendix A for definitions), allowing each to be independently manipulated to isolate its impact on agent performance. *CC-Gen* further supports fine-grained synthesis of policy modifications and policy-centric QAs, enabling systematic evaluation of both prompting-based and internalization approaches. Our initial results reveal that workflow complexity induces the most severe performance degradation for tool-using agents, followed by task-level complexity, highlighting the key challenges for effective policy internalization. Building on these findings, we construct benchmarks with varied workflow and task-level complexities to evaluate internalization methods across both standard task-oriented queries and broader capabilities such as policy substitution, override, referral, and general instruction following. As a baseline, we curate 1K–30K gold chain-of-thought trajectories for supervised fine-tuning (SFT). Our results show that SFT remains highly data-intensive and suffers from substantial performance gaps under high complexities, underscoring the need for more effective internalization approaches to improve agent robustness and generalization.

To overcome the limitations of baseline approaches, we propose Category-Aware Policy Continued Pretraining(CAP-CPT). Central to our method is an automated pipeline for policy complexity analysis. We leverage an LLM to categorize policy specifications into three types: factual, behavioral, and conditional, further subdividing conditional specifications into simple and complex cases. Each type presents distinct learning challenges, prompting us to generate tailored data for each category. Across all policy specification categories, we construct policy paraphrases and question–answer pairs to seed a compact understanding and durable recall of the documents. Since conditional specifications frequently govern agent workflows, we simulate diverse scenarios in which agents must solve subproblems that hinge on these complex conditions. For behavioral specifications, we add role-model agent demonstrations. We then combine all generated data with existing SFT trajectories, producing a dataset of five complementary data types. Finally, we apply continual pretraining

108 with an autoregressive loss over all tokens, enabling the model to broadly acquire policy knowledge
 109 and generalize across complexity levels.
 110

111 Combining our approach with SFT, we improve baseline performance by over 10% across all sce-
 112 narios on Qwen-3-32B. Notably, our method boosts performance by 44% in data-sparse settings
 113 and reduces performance disparities between workflow complexity level (1) and level (3) by up
 114 to 37%. Ablation studies confirm that our curated scenario-simulation data is crucial for handling
 115 complexity and that our CPT-based training outperforms using the same data for SFT alone. Be-
 116 yond task-oriented evaluations, our method achieves superior results on policy referral, substitution,
 117 and override tasks (Comprehensive evaluation framework in Appendix E), while maintaining strong
 118 general instruction-following ability (Zhou et al., 2023). Overall, our approach achieves up to 97.3%
 119 input token compression on our synthetic benchmark and remains broadly applicable with minimal
 120 assumptions about the policy document. Applied to τ -Bench, it further improves performance and
 121 reduces input length even with very limited SFT data.

122 Overall, our contributions are: (1) We characterize complexity types in agentic policy documents
 123 and construct benchmarks with controllable complexity, enabling systematic evaluation of internal-
 124 ization methods and laying a foundation for future research. (2) Using these benchmarks, we analyze
 125 what makes policy internalization challenging and identify complex workflows as the primary driver
 126 of performance degradation. (3) We propose Category-Aware Policy Continued Pretraining, which
 127 categorizes policy specifications, and curates targeted data for continual pretraining. Experiments
 128 show that our approach delivers substantial performance gains across diverse scenarios and remains
 129 broadly applicable with minimal assumptions about the policy document.

130 2 COMPLEXITY CHARACTERIZATION OF LLM-BASED AGENTIC TASKS

131 2.1 LLM-BASED AGENTIC TASK SETTING

132 To isolate the effect of policy complexity from confounding factors such as multimodal inputs (Xie
 133 et al., 2024) or unstable user simulators in multi-turn dialogues (Wang et al., 2024; Zhu et al., 2024),
 134 we focus on text-only, single-turn, LLM-based agentic tasks. The user provides a query $q \in \mathcal{Q}$
 135 that specifies potentially complex requirements and a target task. The agent receives a general
 136 instruction \mathcal{I} and a policy document \mathcal{P} , a long text corpus defining tasks, completion rules, tool
 137 usage instructions, few-shot demonstrations, and general prompts that guide the LLM as an agent.
 138 At each step t , the agent maintains a history $h_t = (q, \mathcal{I}, \mathcal{P}, r_{<t}, a_{<t}, o_{<t})$ and applies a recursive
 139 mapping $(r_t, a_t) = LLM(h_t)$, where r_t is the reasoning trace and a_t is an action from the tool set
 140 defined in \mathcal{P} . The action is executed by a tool function $g \in G$, producing an observation $o_t = g(a_t)$,
 141 after which the history is updated. The external environment is restricted to database access to ensure
 142 controlled workflows. The full trajectory is $\tau = \{q, \mathcal{I}, \mathcal{P}, r_1, a_1, o_1, \dots, r_T, a_T, o_T\}$ and terminates
 143 when (r_T, a_T, o_T) resolves q under \mathcal{P} or fails after reaching the iteration limit. We leave multimodal
 144 and multi-turn extensions to future work (Appendix M).
 145

146 2.2 CC-GEN: AGENTIC BENCHMARK GENERATOR WITH CONTROLLABLE COMPLEXITIES

147 Based on the above setting, we categorize policy-governed agentic tasks along four complexity di-
 148 mensions: **task-level complexity**, reflecting the intricacy of predefined tasks determined by their
 149 number and required arguments; **workflow-level complexity**, arising from the logical rules in pol-
 150 icy documents, such as nested *if-else* structures, their depth, and branching factors; **environmental-
 151 level complexity**, depending on the richness and scale of external databases accessible through tool
 152 functions; and **query-level complexity**, originating from user queries that may impose special re-
 153 quirements or additional reasoning constraints. Each dimension is quantified by a Complexity-Type
 154 K , where larger K indicates higher complexity, with formal definitions and quantization provided
 155 in Appendix C. Building on these complexity dimensions, we propose *CC-Gen*, a benchmark gen-
 156 erator with fine-grained control over complexity. Given user-specified parameters and sample size,
 157 *CC-Gen* produces benchmarks comprising a policy document \mathcal{P} defining global attributes, rules,
 158 interaction environment, tool usage instructions, and task specifications; a set of databases with ini-
 159 tialized data and executable tools for agent-environment interaction; and a collection of user queries
 160 mapped to one or more tasks, optionally with gold trajectories. As summarized in Table 1, the
 161 benchmarks generated by *CC-Gen* offer three key advantages: (1) they provide sufficiently complex

162 policy documents to serve as rich conditioning context for completing target tasks; (2) they expose
 163 controllable complexity across all characterized dimensions, enabling systematic studies of their
 164 individual and joint effects; and (3) they form a comprehensive testbed for evaluating policy inter-
 165 internalization methods, supporting abundant training data as well as policy-referral and policy-override
 166 tasks. These evaluation tasks are described in Section §4 and Appendix D. The generator work-
 167 flow is illustrated in Figure 4, with further implementation details in Appendix A and concrete data
 168 examples in Appendix B.

169
 170 Table 1: Comparison of existing agentic benchmarks and those produced by our *CC-Gen*. *CC-Gen*
 171 distinguishes itself by (1) supporting long, complex policy documents, (2) allowing for controllable
 172 complexity to systematically study its effects, and (3) supporting more comprehensive internaliza-
 173 tion training and evaluation, including policy-referral and policy-override tasks.

Agent Benchmark	Data Instances	Tool Usage	Long Policy Document	Complexity Study		Internalization Evaluation	
				Characterization	Control	Policy-Referral	Policy-Override
AgentIF Qi et al. (2025)	707	✓	✗	✓	✗	✗	✗
IFEval Zeng et al. (2023)	541	✗	✗	✗	✗	✗	✗
Tau-Bench Yao et al. (2024)	165	✓	✓	✗	✗	✗	✗
Follow-Bench Jiang et al. (2024)	820	✗	✗	✗	✗	✗	✗
AgentOrca Li et al. (2025)	663	✓	✗	✗	✗	✗	✗
Multi-IF He et al. (2024)	4501	✗	✗	✗	✗	✗	✗
ComplexBench Wen et al. (2024)	1150	✓	✗	✓	✗	✗	✗
Sys-Bench Qin et al. (2024)	500	✗	✗	✗	✗	✗	✗
Ours (CC-Gen)	Unlimited	✓	✓	✓	✓	✓	✓

183
 184 Table 2: Tool-using agent performance under varying complexity levels. For each setting, eval-
 185 uation data are randomly sampled from *CC-Gen*. Workflow(K) and Task(K) denote the respective
 186 complexity levels, with formal definitions in Section § 2.3. Model performance consistently declines
 187 as task-level and workflow complexity increase, with some models dropping to zero under the most
 188 challenging workflow settings.

Performance of Tool Using Agents under Different Complexities. Evaluation Metric: Success Rate												
Model / Complexity	Workflow (1)				Workflow (2)				Workflow (3)			
	Task (3)	Task (5)	Task (8)	Task (12)	Task (3)	Task (5)	Task (8)	Task (12)	Task (3)	Task (5)	Task (8)	Task (12)
Gemma-3-27B	0.28	0.30	0.17	0.11	0.20	0.17	0.03	0.00	0.07	0.03	0.02	0.00
Qwen2.5-32B	0.26	0.07	0.02	0.01	0.03	0.04	0.00	0.00	0.01	0.01	0.00	0.00
Qwen-3-8B	0.62	0.59	0.52	0.44	0.54	0.36	0.16	0.13	0.40	0.33	0.10	0.07
Qwen-3-32B	0.83	0.82	0.75	0.71	0.79	0.62	0.47	0.25	0.68	0.53	0.42	0.11
Claude-3-5-Sonnet	0.84	0.75	0.71	0.47	0.58	0.35	0.13	0.03	0.64	0.06	0.08	0.00

198 2.3 BENCHMARKING AGENT PERFORMANCE WITH CONTROLLED COMPLEXITY

200 We conduct experiments (see Appendix A) to examine how complexity dimensions impact agent
 201 performance and reasoning, motivated by the hypothesis that they likewise obstruct internalization.
 202 Our experiments yields three main observations: (1) environmental complexity has minimal effect,
 203 as it is not directly exposed to agents and only indirectly affects the number of required tools, caus-
 204 ing slight performance variation; (2) task-level complexity causes a gradual performance decline,
 205 whereas workflow-level complexity leads to a much sharper drop, underscoring their influence on
 206 reasoning and internalization and motivating us to benchmark their effects; and (3) while query-
 207 level complexity is crucial in practice, we leave it unconstrained to preserve user input flexibility;
 208 accordingly, we randomly sample queries from the task space defined by \mathcal{P} for benchmarking and
 209 follow-up evaluation. Guided by these observations, we construct 12 benchmark settings with
 210 controlled task-level and workflow-level complexities (as they appear to pose the greatest reasoning
 211 challenges and most strongly degrade in-context and internalization performance). As shown in Ta-
 212 ble 2, Task(N) denotes a benchmark where the policy specifies N predefined tasks, each requiring N
 213 correct arguments computed according to the policy rules, and Workflow(K) denotes a benchmark
 214 where computing a task argument involves an *if-else* structure of depth K (see complexity quantifi-
 215 cation in Appendix A and examples in Appendix B). Model performance consistently declines as
 216 both dimensions increase. All models are sensitive to rising workflow complexity, but some degrade
 217 sharply, even to zero in the most challenging settings, while others remain more robust. Notably, the

216 Qwen-3 series shows significantly greater resilience, consistently outperforming Claude-3.5 under
 217 high-complexity conditions.
 218

219 220 3 INTERNALIZING COMPLEX AGENTIC POLICY DOCUMENTS

221 Based on the agent setting defined in Section §2.1, the goal of internalization is to partially or fully
 222 remove the policy document \mathcal{P} from the input. Viewing the agent as M_θ , full internalization corre-
 223 sponds to enforcing the alignment $\mathcal{M}_\theta(q, \mathcal{I}, \mathcal{P}) \sim \mathcal{M}_\theta(q, \mathcal{I})$, meaning the model should produce
 224 equivalent outputs without explicitly receiving \mathcal{P} . In practice, a policy \mathcal{P} may have multiple versions
 225 across domains or situational requirements. To efficiently manage these and provide a recall anchor,
 226 we assign each policy a unique identifier (e.g., <#Policy-1356X>), encouraging the model to
 227 treat identifiers as retrieval cues that strengthen its ability to recall and apply the correct rules at
 228 inference time. In deployment, such identifiers would be supplied by a routing or RAG system that
 229 selects the relevant policy based on the user query. Let pid denote the identifier for policy \mathcal{P} ; our
 230 objective becomes aligning $\mathcal{M}_\theta(q, \mathcal{I}, \mathcal{P})$ with $\mathcal{M}_\theta(q, \mathcal{I}, pid)$. We adopt this formulation throughout
 231 training, with concrete examples of prompt formats and token usage provided in Appendix B.
 232

233 3.1 BASELINE: SFT WITH GOLD CoT-ENHANCED INTERACTION TRAJECTORIES

234 To capture the complex reasoning dynamics required by policy documents and to align model out-
 235 puts with the desired behavior, we curate 1K–30K full interaction trajectories augmented with
 236 manually constructed gold Chain-of-Thought (CoT). As described in Section §2.1, each trajec-
 237 tory is formulated as $\tau = \{q, \mathcal{I}, \mathcal{P}, r_1, a_1, o_1, r_2, a_2, o_2, \dots, r_T, a_T, o_T\}$. To match the infer-
 238 ence format, the policy \mathcal{P} is replaced with an identifier pid , which in practice would be ob-
 239 tained by a routing or RAG system. The reasoning steps $\{r_1, \dots, r_T\}$ are manually curated to
 240 ensure interpretability and logical consistency. The action sequence $\{a_1, \dots, a_T\}$ corresponds
 241 to ground-truth actions provided by our benchmark generator, while the observation sequence
 242 $\{o_1, \dots, o_T\}$ is deterministically produced through the tool set. This yields training data of the form
 243 $\tau = \{q, \mathcal{I}, pid, r_1, a_1, o_1, r_2, a_2, o_2, \dots, r_T, a_T, o_T\}$. We perform supervised fine-tuning (SFT) on
 244 these trajectories by minimizing the standard autoregressive loss over reasoning and action tokens:
 245 $\mathcal{L}_{SFT} = -\sum_t \log p_\theta(y_t | y_{<t})$, $y_t \in \{r_t, a_t\}$. To study data sparsity, we train on datasets of size
 246 1K, 5K, 10K, 20K, and 30K independently.
 247

248 3.2 OUR APPROACH: CATEGORY-AWARE POLICY CONTINUED PRETRAINING

249 While training with Gold CoT-Enhanced Interaction Trajectories yields reasonable internalization
 250 performance, our experiments reveal two major limitations. First, like other SFT methods, it is
 251 highly data-intensive and fails in data-sparse settings, a critical issue in real-world scenarios where
 252 collecting full interaction trajectories with exemplar Chain-of-Thought annotations is difficult. Sec-
 253 ond, the approach struggles with the intensive reasoning demands of complex policy documents,
 254 with performance dropping by up to 46% as workflow complexity increases from level (1) to level
 255 (3) on Qwen-2.5-32B models (see Section § 4). To address these challenges, we propose Category-
 256 Aware Policy Continued Pretraining, which implements an automatic pipeline that analyzes policies,
 257 categorizes their specifications into four types, and generates tailored data for continued pretraining.
 258

259 **Policy Document Analysis and Categorization** Our core insight, drawn from the analysis in Sec-
 260 tion §2.3, is that different policy specifications pose distinct challenges for reasoning and internal-
 261 zation. To address this, we categorize elements of policy documents by how they are applied in the
 262 agent reasoning process and how they affect internalization algorithms. Based on our observation for
 263 real-world policies, we define four categories of specifications: Factual Policy Specifications, Be-
 264 havioral Policy Specifications, Simple Conditional Specifications, and Complex Conditional Speci-
 265 fications. Detailed definitions are provided in Appendix C. As shown in the upper part of Figure 2,
 266 our pipeline begins with an LLM-based preprocessing step: the LLM is prompted to identify task
 267 types in the policy, extract the corresponding specifications, and classify them into these four cate-
 268 gories. In parallel, the LLM determines the valid scope of each specification to construct a complete
 269 representation of the policy. For more complex cases in practice, this process may be enhanced by
 an optional manual check to ensure the categorization is accurate.

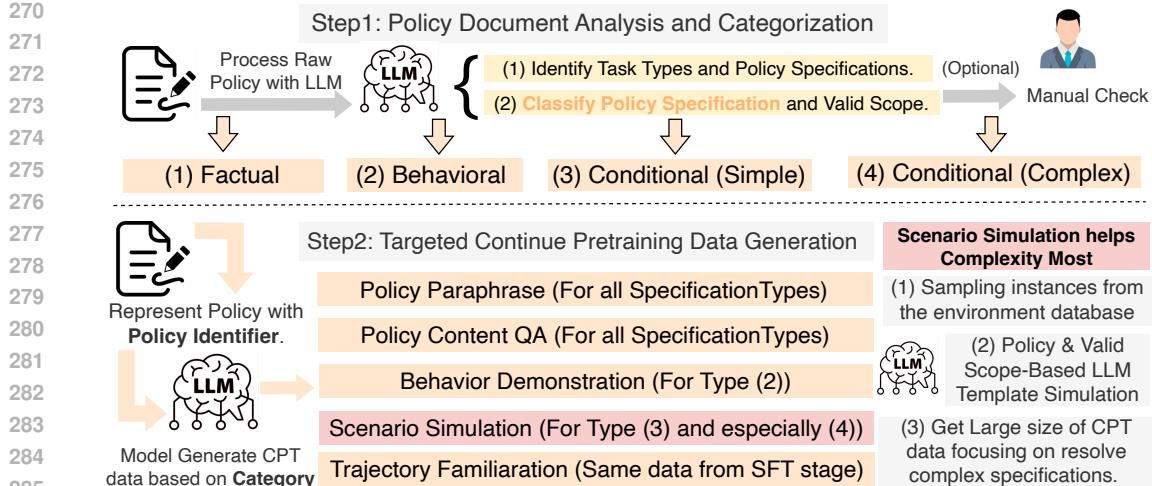


Figure 2: Pipeline for our Category-Aware Policy Continued Pretraining (CAP-CPT). **Top:** An LLM-centric pipeline analyzes policy documents and categorizes policy specifications into four major types. **Bottom:** Based on this categorization, we generate targeted training data for each specification type. In particular, scenario-simulation examples address conditional rules that require complex reasoning, helping the model internalize and apply the most challenging policy knowledge.

Targeted Continued Pretraining Data Generation After policy analysis and categorization, our pipeline leverages an LLM to generate targeted data for each specification type. In all cases, direct references to the policy are replaced with the policy identifier pid . As illustrated in Figure 2, we adopt a “targeted therapy” perspective: the data generation process is tailored to the distinct complexity of each specification category. For factual specifications, the primary challenge is memorization and accurate recall. To address this, we construct policy paraphrases and QA-style content that strengthen the model’s ability to store and retrieve policy details. For behavioral specifications, the challenge shifts from simple recall to demonstrating compliant behaviors under defined circumstances. Accordingly, we curate data where ground-truth responses act as role models: the LLM generates scenarios requiring the application of behavioral rules, queries the agent, and produces responses that consistently reflect satisfactory and policy-aligned behavior. Conditional specifications govern the workflow of the LLM and their influence increases with complexity. To support this, we curate large volumes of scenario-simulation data that go beyond memorization, emphasizing the practical application of policy rules and enabling the model to fully exercise its reasoning capabilities. Unlike standard CPT data focused on rote recall, this simulation data operationalizes the policy document, transforming abstract rules into executable workflows. An intuitive explanation of why such data better facilitate model learning is provided in Appendix F. During this process, the LLM synthesizes scenarios and samples concrete instances from the environment database. For example, given the complex policy specification in Figure 1, the LLM can generate numerous queries by sampling user and reservation details, then compute the correct number of non-free checked bags and the corresponding total fee. Finally, we incorporate SFT trajectory data as an auxiliary source to better prepare the model for downstream task solving. Although all curated data are structured in QA format, they are employed within a continued pretraining (CPT) paradigm, where the objective is to minimize the standard language modeling loss $\mathcal{L}_{CPT} = -\sum_{t=1}^T \log P_\theta(x_t | x_{<t})$, with θ denoting model parameters and x_t the target token at position t . The CPT stage enhances the model’s ability to internalize and reason over policy content, rather than merely memorizing query answer pairs. We validate the effectiveness of our curated data and training objective in Section § 4.

4 EVALUATION OF POLICY DOCUMENT INTERNALIZATION

4.1 EXPERIMENT SETTINGS

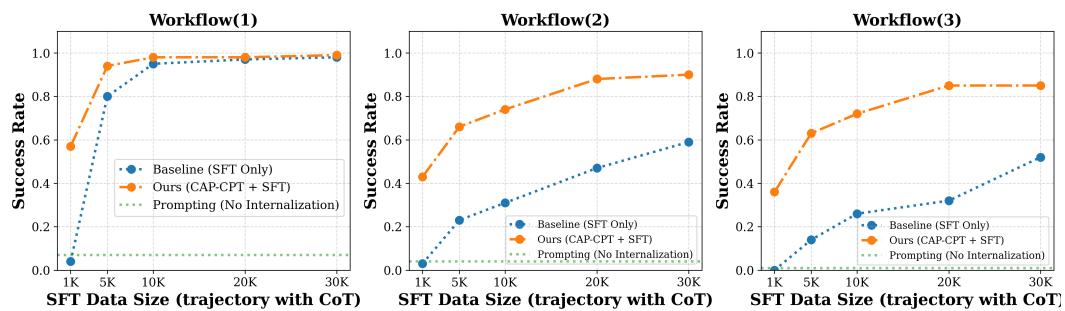
Model and Data Settings We use Qwen-2.5-32B and Qwen-3-32B for policy document internalization, chosen for their strong prior knowledge and distinct performance when complex policy

324 documents are provided in context. To evaluate complexity effects, we sample datasets that control
 325 other dimensions while varying workflow complexity from level (1) to (3), as well as datasets that
 326 vary task-level complexity with level (3), (5), (8), and (12) tasks. For SFT, we provide between
 327 1K, 5K, and up to 30K training samples. We also apply our approach to τ -Bench, which offers
 328 only 500 training samples with no CoT based reasoning. Using Qwen-3-32B, we self-generate CoT
 329 trajectories and yield 282 SFT samples. More details are in Appendix D.

330
 331 **Evaluation Framework and Metrics** The primary focus of our evaluation is task completion af-
 332 ter policy internalization, where agents must follow the internalized policy document to execute
 333 predefined tasks. To provide a more comprehensive assessment, we also consider scenarios in-
 334 volving policy substitution or override, policy-referral QA grounded in the document, and general
 335 instruction-following tests using IFeval (Zhou et al., 2023). Detailed settings are in Appendix E.
 336 Task completion is measured by success rate (SR), policy QAs are scored on a 0–5 scale by a lan-
 337 guage model and rescaled to 0–100, and instruction following is evaluated by average accuracy.

338
 339 Table 3: Task-completion performance after policy internalization under varying workflow com-
 340 plexities, with SFT trajectory sizes from 1K to 30K. Our CAP-CPT + SFT consistently outperforms
 341 strong baselines, alleviates data sparsity, and reduces the gap between high- and low-complexity
 342 scenarios. On Qwen-2.5-32B, it even surpasses agent performance with the full policy in context.

Model	Complexity	Prompting	Internalization Approach	Internalization Training Data Size				
				1K	5K	10K	20K	30K
Qwen2.5-32B	Task (5) Workflow (1)	0.07	Gold CoT SFT	0.04	0.80	0.95	0.97	0.98
			CAP-CPT + Gold CoT SFT	0.57	0.94	0.98	<u>0.98</u>	0.99
	Task (5) Workflow (2)	0.04	Gold CoT SFT	0.03	0.23	0.31	0.47	0.59
			CAP-CPT + Gold CoT SFT	0.43	0.66	0.74	<u>0.88</u>	0.90
Qwen3-32B	Task (5) Workflow (1)	0.01	Gold CoT SFT	0.00	0.14	0.26	0.32	0.52
			CAP-CPT + Gold CoT SFT	0.36	0.63	0.72	<u>0.85</u>	0.85
	Task (5) Workflow (2)	0.82	Gold CoT SFT	0.03	0.41	0.55	0.71	0.78
			CAP-CPT + Gold CoT SFT	0.44	0.67	0.72	0.74	<u>0.80</u>
Qwen3-32B	Task (5) Workflow (3)	0.62	Gold CoT SFT	0.02	0.18	0.23	0.35	0.42
			CAP-CPT + Gold CoT SFT	0.27	0.35	0.46	0.53	<u>0.57</u>
	Task (5) Workflow (3)	0.53	Gold CoT SFT	0.01	0.13	0.17	0.31	0.36
			CAP-CPT + Gold CoT SFT	0.16	0.27	0.39	0.41	<u>0.47</u>



368
 369 Figure 3: Performance curves for internalizing policy documents with varying workflow com-
 370 plexities on Qwen-2.5-32B, comparing the baseline with our method. Our approach consistently
 371 outperforms the baseline across all settings and substantially narrows the performance gap in high-
 372 complexity and data-sparse scenarios.

374 4.2 MAIN RESULTS

375
 376 **CAP-CPT Significantly Boosts Performance** We evaluate agent task-completion performance
 377 under varying workflow complexities in Table 3, with corresponding performance curves in Fig-
 378 ure 7. Relying solely on Gold CoT-enhanced trajectory data for SFT is highly data-intensive and

378 results in large disparities across complexity levels. In contrast, our CAP-CPT approach consistently improves performance across all data splits, with particularly strong gains under data-sparse
 379 conditions. Although the curated data is not explicitly optimized for task completion, it substantially
 380 strengthens policy internalization and narrows performance gaps: CAP-CPT reduces the disparity
 381 between high- and low-complexity scenarios by 37% on Qwen-2.5-32B and 21% on Qwen-3-32B,
 382 even with abundant SFT data. This yields more robust and generalizable policy understanding.
 383 Similar trends are observed under varying task-level complexities (Appendix D). Overall, our internalization achieves input token compression of up to 97.3%. Notably, internalization training on the
 384 strongest base models does not yield gains over the prompting baseline or over training on originally
 385 weaker models. We analyze this in Appendix F.
 386

388 **CAP-CPT Helps Under Broader Evaluation Settings** We evaluate agent post-internalization
 389 performance on policy-referral, policy-substitute, and policy-override tasks, as well as general in-
 390 struction following. Results on Qwen-3-32B are shown in Table 4, with more comprehensive results
 391 in Appendix D. Across all policy-related tasks, our method substantially outperforms SFT base-
 392 lines but does not surpass the prompting baseline, indicating that these out-of-domain tasks remain
 393 challenging and warrant further study. For policy-substitute and policy-override, both require bal-
 394 ancing internalized rules with newly introduced ones, with full substitution proving more difficult
 395 than partial override. Improving performance in these settings will likely require additional training
 396 data. For policy-referral, the model immediately after continued pretraining achieves the highest
 397 score, but its performance steadily declines as SFT data size increases, suggesting that SFT tends
 398 to hard-code task solutions rather than really helps to understand policy rules and learn how to put
 399 them into practice. Finally, general instruction-following ability is largely preserved, likely because
 400 policy-focused training is orthogonal to generic instruction following.

401 Table 4: Comprehensive evaluation results on post-trained Qwen-3-32B across supportive
 402 tasks—including Policy-Substitute, Policy-Override, Policy-Referral, and instruction following,
 403 with further details in Appendix D. While our approach consistently outperforms SFT baselines
 404 after internalization, performance on most tasks still lags behind in-context prompting, suggesting
 405 that additional task-specific training data is needed to fully retain these specialized capabilities.

Model	Complexity	Prompting	Internalization Approach	Internalization Training Data Size				
				1K	5K	10K	20K	30K
Qwen-3-32B (Substitute)	Task (5)	0.53	Gold CoT SFT	0.01	0.00	0.02	0.00	0.00
	Workflow (3)		CAP-CPT + Gold CoT SFT	0.07	0.06	0.08	0.06	0.05
Qwen-3-32B (Override)	Task (5)	0.53	Gold CoT SFT	0.00	0.00	0.00	0.00	0.00
	Workflow (3)		CAP-CPT + Gold CoT SFT	0.09	0.12	0.17	0.22	0.25
Qwen-3-32B (Referral)	Task (5)	0.76	Gold CoT SFT	0.00	0.00	0.00	0.00	0.00
	Workflow (3)		CAP-CPT + Gold CoT SFT	0.59	0.31	0.23	0.20	0.13
Qwen-3-32B (Ifeval)	Task (5)	0.44	Gold CoT SFT	0.45	0.43	0.46	0.42	0.45
	Workflow (3)		CAP-CPT + Gold CoT SFT	0.44	0.45	0.44	0.47	0.43

421 4.3 ABATION STUDY

422 We assess the effectiveness of our approach by evaluating two variants of the complete method.
 423 The first variant uses all generated Category-Aware QA-format data for SFT, while the second ex-
 424 cludes the scenario-simulation data designed for complexity handling. As shown in Table 5, both
 425 variants outperform the SFT baselines, but the full approach consistently achieves the strongest re-
 426 sults across all data settings. This underscores the importance of jointly leveraging targeted data
 427 and the CAP-CPT training objective. Additional analyses of the benefits and limitations of these
 428 two variants are provided in Appendix H. Notably, both variants still yield substantial gains over
 429 SFT-only baselines, further validating the effectiveness of our curated data. We also test our method
 430 under multi-policy internalization; results indicate that internalization performance remains consis-
 431 tent when applied across a number of distinct policies with different complexity levels. Details are
 432 provided in Appendix G.

432 Table 5: Demonstration of the effectiveness of our CAP-CPT approach. We validate the CPT training
 433 objective by applying the generated data for SFT and assess the scenario-simulation data’s ability
 434 to handle complexity by selectively removing portions of it. Both variants yield suboptimal perfor-
 435 mance compared to our full approach.

437	Model	Complexity	Prompting	Internalization Approach	Internalization Training Data Size				
					1K	5K	10K	20K	30K
439	Qwen-3-32B	Task (5) Workflow (3)	0.53	Gold CoT SFT	0.01	0.13	0.17	0.31	0.36
				CAP-CPT + Gold CoT SFT	0.16	0.27	0.39	0.41	0.47
				(CAP-CPT data + Gold CoT) for SFT	0.08	0.21	0.28	0.34	0.42
				Remove Scenario Simulation Data	0.09	0.23	0.32	0.36	0.44

444 4.4 APPLICATION ON τ -BENCH

446 Finally, we evaluate our approach on τ -bench. Following the setup described in Section§ 2.1,
 447 we mitigate potential user-simulator bias by modifying the protocol so that agents solve complete
 448 queries directly rather than through multi-turn interaction. We prompt Qwen-3-32B to self-generate
 449 responses for the 500 training samples provided by τ -bench, yielding 282 successful trajectories
 450 with Self-CoT used for SFT. We subsequently perform policy analysis and synthesize CAP-CPT
 451 data. As summarized in Table 14, the original Qwen-3-32B model with in-context policy achieves
 452 a 26.96% success rate. After internalization using only SFT, performance slightly drops to 23.48%,
 453 underperforming the prompting baseline. In contrast, our full approach surpasses the prompting
 454 baseline, achieving a 28.70% success rate while reducing the overall input length by 34.8%. We
 455 further evaluate the policy categorization stage of our pipeline and verify that these gains persist in
 456 real-world settings without manual intervention. Notably, the policy analysis and data generation
 457 steps are executed entirely by Qwen-3-32B, eliminating the need for any external LLM APIs. De-
 458 tailed precision, recall, and F1 results from this policy analysis process are provided in Appendix I.

459 5 RELATED WORK

461 Deliberative alignment (Guan et al., 2024; Zhang et al., 2025a) is most closely related to our work.
 462 This line of research aims to internalize general safety rules and behaviors into a model’s prior, ei-
 463 ther through additional training (Guan et al., 2024) or test-time deliberation (Zhang et al., 2025a).
 464 However, it remains focused on generic safety behaviors, overlooking the broader scope of agentic
 465 policies and the complex reasoning challenges (e.g., workflow-level constraints) central to policy
 466 internalization. Besides, our work also intersects with several research areas, including prompt
 467 compression (Li et al., 2024; Chuang et al., 2024; Mu et al., 2024), knowledge injection and percep-
 468 tion (Martino et al., 2023; Song et al., 2025a), and continued pretraining (Zhou et al., 2024). Owing
 469 to space limitations, we provide further discussion of related work in these domains in Appendix K.

471 6 CONCLUSION

474 In this work, we examined the challenge of internalizing long, complex policy documents in LLM-
 475 based agentic systems. We characterized distinct forms of policy complexity and introduced CC-
 476 Gen, a controllable-complexity benchmark generator for systematically analyzing agents’ ability to
 477 handle varying complexities and enabling comprehensive evaluation of internalization algorithms.
 478 Our analysis identified workflow depth as a primary driver of performance degradation, highlighting
 479 limits of in-context methods and data-intensive SFT-based approaches. To address these issues, we
 480 internalize policy documents via explicit policy identifiers and an automated pipeline for policy anal-
 481 ysis that generates Category-Aware Policy Continue Pretraining (CAP-CPT) data. This reduces SFT
 482 data demands and mitigates the reasoning challenges posed by complex specifications. Empirically,
 483 our approach yields consistent gains across scenarios and substantially narrows complexity-related
 484 performance disparities. Overall, our findings underscore the importance of explicitly modeling
 485 policy complexity and provide a scalable, effective solution for policy internalization. We hope
 ultimately enabling more computationally efficient, reliable, and helpful AI assistants for all.

486 **7 REPRODUCIBILITY STATEMENT**

488 We provide an anonymous source code archive in the supplementary material, which includes our
 489 data generator as well as detailed training and evaluation instructions for reproducing the results in
 490 this paper. We use LlamaFactory Zheng et al. (2024) to train Qwen-2.5-32B and Qwen-3-32B on
 491 eight H100 GPUs. We will also publicly release the full codebase and data, including the benchmark
 492 generator to further facilitate reproducibility. All reported experimental results are based on a single
 493 run. Additional experimental details are provided in Section § 4 and Appendix D.

494

495 **8 ETHICS STATEMENT**

496

497 This work focuses on fundamental research aimed at improving the internalization of complex policy
 498 documents in language models. No human subjects or private user data were involved in this study.
 499 The dataset introduced in this work consists entirely of synthetically generated user profiles and does
 500 not contain or rely on any real user data. To the best of our knowledge, this research does not raise
 501 any ethical concerns.

502

503 **REFERENCES**

504

505 Ms Aayushi Bansal, Dr Rewa Sharma, and Dr Mamta Kathuria. A systematic review on data scarcity
 506 problem in deep learning: solution and applications. *ACM Computing Surveys (Csur)*, 54(10s):
 507 1–29, 2022.

508 Sébastien Bubeck, David Dohan, Kenneth Joseph, et al. Claude 3 technical report. <https://www.anthropic.com/index/clause-3-family>, 2024. Anthropic.

509 Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Ting Liu, and Xiangzhan Yu. Recall and
 510 learn: Fine-tuning deep pretrained language models with less forgetting. In *Proceedings of the
 511 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 7870–
 512 7881, 2020. doi: 10.18653/v1/2020.emnlp-main.634. URL <https://aclanthology.org/2020.emnlp-main.634/>.

513 Wuyang Chen, Yanqi Zhou, Nan Du, Yanping Huang, James Laudon, Zhifeng Chen, and
 514 Claire Cu. Lifelong language pretraining with distribution-specialized experts. *arXiv preprint
 515 arXiv:2305.12281*, 2023. URL <https://arXiv.org/abs/2305.12281>.

516 Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to
 517 compress contexts. *arXiv preprint arXiv:2305.14788*, 2023.

518 Yu-Neng Chuang, Tianwei Xing, Chia-Yuan Chang, Zirui Liu, Xun Chen, and Xia Hu. Learning to
 519 compress prompt in natural language formats. *arXiv preprint arXiv:2402.18700*, 2024.

520 Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple effects
 521 of knowledge editing in language models. *Transactions of the Association for Computational
 522 Linguistics*, 12:283–298, 2024.

523 Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for
 524 context compression in a large language model. *arXiv preprint arXiv:2307.06945*, 2023.

525 Melody Y Guan, Manas Joglekar, Eric Wallace, Saachi Jain, Boaz Barak, Alec Helyar, Rachel Dias,
 526 Andrea Vallone, Hongyu Ren, Jason Wei, et al. Deliberative alignment: Reasoning enables safer
 527 language models. *arXiv preprint arXiv:2412.16339*, 2024.

528 Suchin Gururangan, Mike Lewis, Ari Holtzman, Noah A. Smith, and Luke Zettlemoyer. Demix
 529 layers: Disentangling domains for modular language modeling. In *Proceedings of the 2022
 530 Conference of the North American Chapter of the Association for Computational Linguistics:
 531 Human Language Technologies*, pp. 5557–5576. Association for Computational Linguistics,
 532 July 2022. doi: 10.18653/v1/2022.naacl-main.407. URL <https://aclanthology.org/2022.naacl-main.407>.

540 Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng Ding, Liying Cheng, Jiawei Low, Lidong
 541 Bing, and Luo Si. On the effectiveness of adapter-based tuning for pretrained language model
 542 adaptation. In *Proceedings of ACL*, 2021.

543 Yun He, Di Jin, Chaoqi Wang, Chloe Bi, Karishma Mandyam, Hejia Zhang, Chen Zhu, Ning Li,
 544 Tengyu Xu, Hongjiang Lv, Shruti Bhosale, Chenguang Zhu, Karthik Abinav Sankararaman, Eryk
 545 Helenowski, Melanie Kambadur, Aditya Tayade, Hao Ma, Han Fang, and Sinong Wang. Multi-if:
 546 Benchmarking llms on multi-turn and multilingual instructions following, 2024. URL <https://arxiv.org/abs/2410.15553>.

547 Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing
 548 prompts for accelerated inference of large language models. *arXiv preprint arXiv:2310.05736*,
 549 2023.

550 Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi, Lifeng Shang,
 551 Xin Jiang, Qun Liu, and Wei Wang. Followbench: A multi-level fine-grained constraints follow-
 552 ing benchmark for large language models, 2024. URL <https://arxiv.org/abs/2310.20410>.

553 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
 554 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwińska, et al. Overcom-
 555 ing catastrophic forgetting in neural networks. *Proceedings of the National Academy of Sciences*,
 556 114(13):3521–3526, 2017. doi: 10.1073/pnas.1611835114. URL <https://www.pnas.org/doi/10.1073/pnas.1611835114>.

557 Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin. Compressing context to enhance inference
 558 efficiency of large language models, 2023. URL <https://arxiv.org/abs/2310.06201>.

559 Zekun Li, Shinda Huang, Jianguan Wang, Nathan Zhang, Antonis Antoniades, Wenyue Hua, Kai-
 560 jie Zhu, Sirui Zeng, Chi Wang, William Yang Wang, and Xifeng Yan. Sopbench: Evaluat-
 561 ing language agents at following standard operating procedures and constraints, 2025. URL
 562 <https://arxiv.org/abs/2503.08669>.

563 Zongqian Li, Yinhong Liu, Yixuan Su, and Nigel Collier. Prompt compression for large language
 564 models: A survey, 2024. URL <https://arxiv.org/abs/2410.12388>.

565 Jiateng Liu, Pengfei Yu, Yuji Zhang, Sha Li, Zixuan Zhang, and Heng Ji. Evedit: Event-based
 566 knowledge editing with deductive editing boundaries. *arXiv preprint arXiv:2402.11324*, 2024a.

567 Kai Liu, Ze Chen, Zhihang Fu, Rongxin Jiang, Fan Zhou, Yaowu Chen, Yue Wu, and Jieping
 568 Ye. Structure-aware domain knowledge injection for large language models. *arXiv preprint*
 569 *arXiv:2407.16724*, 2024b.

570 Ariana Martino, Michael Iannelli, and Coleen Truong. Knowledge injection to counter large lan-
 571 guage model (llm) hallucination. In *European Semantic Web Conference*, pp. 182–185. Springer,
 572 2023.

573 Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
 574 sequential learning problem. *Psychology of Learning and Motivation*, 24:109–165, 1989.

575 Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens, 2024.
 576 URL <https://arxiv.org/abs/2304.08467>.

577 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 578 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 579 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 580 27730–27744, 2022.

581 Zhiyuan Peng, Xuyang Wu, Qifan Wang, and Yi Fang. Soft prompt tuning for augmenting dense
 582 retrieval with large language models. *Knowledge-Based Systems*, 309:112758, 2025.

583 Yunjia Qi, Hao Peng, Xiaozhi Wang, Amy Xin, Youfeng Liu, Bin Xu, Lei Hou, and Juanzi Li. Agen-
 584 tif: Benchmarking instruction following of large language models in agentic scenarios. *arXiv*
 585 *preprint arXiv:2505.16944*, 2025.

594 Yanzhao Qin, Tao Zhang, Tao Zhang, Yanjun Shen, Wenjing Luo, Haoze Sun, Yan Zhang, Yujing
 595 Qiao, Weipeng Chen, Zenan Zhou, Wentao Zhang, and Bin Cui. Sysbench: Can large language
 596 models follow system messages?, 2024. URL <https://arxiv.org/abs/2408.10943>.

597
 598 Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, Wenyuan Wang, Yibin Wang, Zifeng Wang,
 599 Sayna Ebrahimi, and Hao Wang. Continual learning of large language models: A comprehensive
 600 survey. *ACM Computing Surveys*, 57(5):1–41, 2025. doi: 10.1145/3735633. URL <https://doi.org/10.1145/3735633>.

601
 602 Zirui Song, Bin Yan, Yuhang Liu, Miao Fang, Mingzhe Li, Rui Yan, and Xiuying Chen. Injecting
 603 domain-specific knowledge into large language models: a comprehensive survey. *arXiv preprint*
 604 *arXiv:2502.10708*, 2025a.

605
 606 Zirui Song, Bin Yan, Yuhang Liu, Miao Fang, Mingzhe Li, Rui Yan, and Xiuying Chen. Injecting
 607 domain-specific knowledge into large language models: A comprehensive survey. *arXiv preprint*
 608 *arXiv:2502.10708*, 2025b. URL <https://arxiv.org/abs/2502.10708>.

609
 610 Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuan-Jing Huang, Jianshu Ji, Guihong Cao,
 611 Daxin Jiang, and Ming Zhou. K-adapter: Infusing knowledge into pre-trained models with
 612 adapters. In *Findings of ACL*, 2021.

613
 614 Rushi Wang, Jiateng Liu, Cheng Qian, Yifan Shen, Yanzhou Pan, Zhaozhuo Xu, Ahmed Abbasi,
 615 Heng Ji, and Denghui Zhang. Context engineering for trustworthiness: Rescorla wagner steering
 616 under mixed and inappropriate contexts, 2025. URL <https://arxiv.org/abs/2509.04500>.

617
 618 Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji. Mint:
 619 Evaluating llms in multi-turn interaction with tools and language feedback, 2024. URL <https://arxiv.org/abs/2309.10691>.

620
 621 Bosi Wen, Pei Ke, Xiaotao Gu, Lindong Wu, Hao Huang, Jinfeng Zhou, Wenchuang Li, Binxin Hu,
 622 Wendy Gao, Jiaxin Xu, Yiming Liu, Jie Tang, Hongning Wang, and Minlie Huang. Benchmarking
 623 complex instruction-following with multiple constraints composition, 2024. URL <https://arxiv.org/abs/2407.03978>.

624
 625 Junlin Xie, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. Large multimodal agents: A
 626 survey. *arXiv preprint arXiv:2402.15116*, 2024.

627
 628 Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. tau-bench: A benchmark for
 629 tool-agent-user interaction in real-world domains. *arXiv preprint arXiv:2406.12045*, 2024.

630
 631 Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, and Danqi Chen. Evaluating large
 632 language models at evaluating instruction following. *arXiv preprint arXiv:2310.07641*, 2023.

633
 634 Haoran Zhang, Yafu Li, Xuyang Hu, Dongrui Liu, Zhilin Wang, Bo Li, and Yu Cheng. Reasoning
 635 over boundaries: Enhancing specification alignment via test-time deliberation, 2025a. URL
 636 <https://arxiv.org/abs/2509.14760>.

637
 638 Qinggang Zhang, Junnan Dong, Hao Chen, Daochen Zha, Zailiang Yu, and Xiao Huang. Knowgpt:
 639 Knowledge graph based prompting for large language models. In *Advances in Neural Information
 640 Processing Systems (NeurIPS)*, 2024. URL <https://arxiv.org/abs/2407.16724>.

641
 642 Shujie Zhang and et al. Are pretrained language models robust? In *NAACL-HLT*, 2019.

643
 644 Yuji Zhang, Sha Li, Cheng Qian, Jiateng Liu, Pengfei Yu, Chi Han, Yi R. Fung, Kathleen McKeown,
 645 Chengxiang Zhai, Manling Li, and Heng Ji. The law of knowledge overshadowing: Towards
 646 understanding, predicting, and preventing llm hallucination, 2025b. URL <https://arxiv.org/abs/2502.16143>.

647
 648 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 649 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Proceedings
 650 of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 651 3: System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguistics.
 652 URL <http://arxiv.org/abs/2403.13372>.

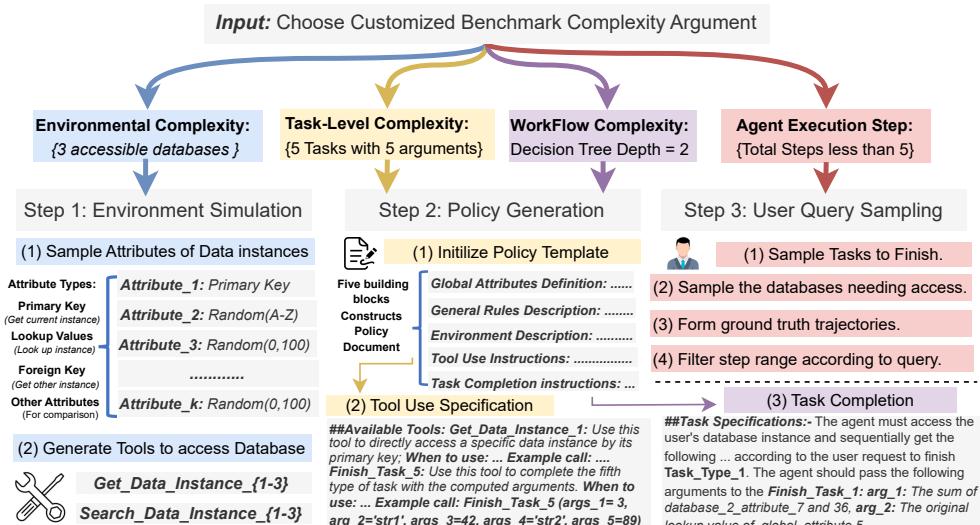
648 Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning
 649 with pre-trained models: A survey. *arXiv preprint arXiv:2401.16386*, 2024. URL <https://arxiv.org/abs/2401.16386>.
 650

651 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
 652 Zhou, and Le Hou. Instruction-following evaluation for large language models. *arXiv preprint*
 653 *arXiv:2311.07911*, 2023.
 654

655 Lixi Zhu, Xiaowen Huang, and Jitao Sang. How reliable is your simulator? analysis on the limi-
 656 tations of current llm-based user simulators for conversational recommendation. In *Companion*
 657 *Proceedings of the ACM Web Conference 2024*, pp. 1726–1732, 2024.

658 Jiaru Zou, Mengyu Zhou, Tao Li, Shi Han, and Dongmei Zhang. Promptintern: Saving inference
 659 costs by internalizing recurrent prompt during large language model fine-tuning, 2024. URL
 660 <https://arxiv.org/abs/2407.02211>.
 661

663 A BENCHMARK DEVELOPMENT AND PROBING EXPERIMENTS



684 Figure 4: Pipeline of our *CC-Gen* benchmark generator.
 685
 686

687 **Complexity Characterization** We provide additional details of our *CC-Gen* benchmark generator,
 688 including its construction, usage, and output. As illustrated in Figure 4, the generator synthesizes
 689 agentic benchmarks by composing four key components:
 690

- 691 **1. Pre-defined environments.** Each environment typically consists of a collection of
 692 databases, where every database has its own schema with primary keys, foreign keys,
 693 lookup keys, and other attributes. The concrete attributes of the data instances are ran-
 694 domly sampled.
- 695 **2. Policy documents.** Policies are instantiated from templates and tagged with explicit mark-
 696 ers (e.g., <Airline #Policy-1356X>). Each policy specifies the set of tasks the
 697 agent must complete, along with detailed guidelines, global attributes, general rules, envi-
 698 ronment descriptions, and tool-use instructions.
- 699 **3. Tool definitions.** For every database, we provide two types of tools: one that retrieves a
 700 single data instance by primary key, and another that supports flexible search over desig-
 701 nated fields. There are also tools which are designed to help agent complete tasks or report
 702 to human agents and ask for help.

702
 703 4. **User queries and reference trajectories.** A benchmark includes a collection of user
 704 queries, their corresponding correct action sequences, and final answers. Users can inde-
 705 pendently control the complexity of the environment, task-level specifications, and work-
 706 flow structures when generating new benchmarks. They may also restrict user query com-
 707 plexity, though in this paper we constrain our experiments accordingly.
 708

708 We also present an example of tool-use specifications and task completion trajectories in Figure 4.
 709 A complete sample benchmark generated by *CC-Gen* is provided in Appendix B
 710

711 **Complexity Quantification** ‘To unify and simplify the computation of complexity dimensions in
 712 agentic tasks, and to enable users to easily quantify complexity levels, we design a set of discrete
 713 metrics for describing these dimensions. We denote Complexity-dimension (K) as the K-th level of
 714 complexity within a given dimension, and define it as follows:
 715

716 **Environment (K):** This captures the number of databases that the language model agent must
 717 interact with. For τ -bench, the environmental complexity is set at $K = 3$, a setting we also adopt
 718 for our main experiments. Although this number is relatively small, we validated that the impact
 719 of environmental complexity is limited; therefore, higher values in real-world scenarios would not
 720 significantly alter our evaluation.
 721

722 **Task-Level (K):** This dimension reflects both the number of tasks and the number of arguments
 723 required for computation in each task. While in practice, the complexity from multiple tasks and
 724 individual task arguments can have distinct effects, we unify them into a single dimension. This is
 725 because their increase jointly contributes to the overall task complexity.
 726

727 **Workflow-Level (K):** This represents the complexity of the workflow needed to complete the target
 728 task. Specifically, it accounts for the depth of logical structures (e.g., nested if-else conditions) that
 729 the agent must reason through. For simplicity, we define workflow complexity as the depth of these
 730 structures in each specification.
 731

732 Although in real-world applications the complexity of each dimension may interact in more entan-
 733 gled ways, we unify them in our benchmark to make the construction process more interpretable
 734 and to better isolate the impact of each independent dimension. A discussion of this design choice
 735 is provided in the limitation section M.
 736

737 **Probing Experiments** We conducted comprehensive probing experiments on Qwen-3-8B models
 738 to briefly have an insight on which complexity levels worth most attention. The experimental results
 739 are shown in Table 6 ~ Table 9. We evaluate with both task Success Rate (SR) and also Partial
 740 Success Rate (PSR) for our probing experiments. SR is the fraction of tasks whose entire gold action
 741 sequence is executed correctly. PSR measures argument-level accuracy for tool use: for each gold
 742 action, when the agent invokes the correct tool, we compare its arguments with the gold specification
 743 and compute the fraction that match; PSR is the average of this fraction across all matched tool calls
 744 (averaged over tasks). Our experiments reveal that workflow complexity poses the most significant
 745 reasoning challenges for LLM agents, followed by task-level complexity. In contrast, the impact of
 746 environmental complexity is relatively minor, likely because agents interact with external resources
 747 primarily through tools rather than directly. In practice, adding a large external database often
 748 only introduces a few additional tool-use commands, without substantially increasing the reasoning
 749 burden. We hypothesize that this explains why environmental complexity appears less influential in
 750 our evaluations.
 751

752 Table 6: Probing experimental results for different environmental complexity, where we control
 753 the task level complexity and workflow level complexity. Results show that distinct environment
 754 complexity does not matter much.
 755

Model	Environment (3)	Environment (5)	Environment (10)
Qwen-3-8B (SR)	0.91	0.87	0.88
Qwen-3-8B (PSR)	0.941	0.913	0.937

756
757
758
759
760 Table 7: Probing experimental results for different task level complexity at Workflow (1), where
761 we control the environmental complexity. Results show that increasing task complexity leads to
762 noticeable performance degradation.
763

Model	Task (3)	Task (5)	Task (8)	Task (12)
Qwen-3-8B (SR)	0.92	0.85	0.67	0.60
Qwen-3-8B (PSR)	0.961	0.929	0.791	0.772

764
765
766
767 Table 8: Probing experimental results for different task level complexity at Workflow (2), where we
768 control the environmental complexity. Results show that higher task complexity markedly reduces
769 performance under deeper workflows.
770

Model	Task (3)	Task (5)	Task (8)	Task (12)
Qwen-3-8B (SR)	0.74	0.68	0.23	0.02
Qwen-3-8B (PSR)	0.876	0.842	0.578	0.298

774 B DATA EXAMPLES FOR GENERATED POLICY DOCUMENTS 775

776 We present several examples generated by our *CC-Gen* benchmark generator to demonstrate its
777 ability to produce agentic benchmarks with controllable complexity.
778

779 Real Policy Example Sampled from our Agentic Benchmark Generator CC-Gen 780

781 **Complexity Level:** Environmental(3); Task-Level(5); Workflow(1).
782

783 **# Agent Policy Document #P71067**
784

785 **## General Instructions**
786

787 The global attribute is currently: Global-Attribute-Value1 = 30, Global-Attribute-Value2
788 = 60, Global-Attribute-Value3 = 7. You are a helpful agent that can get access to profiles
789 and attributes at different layers and indexes. You can help users finish Task-Type-1,
790 Task-Type-2, Task-Type-3, Task-Type-4, Task-Type-5.

791 **## Domain Basic**
792

793 **### Profile Structure**
794

795 The jth profile instance at profile layer i has its primary key as profile-i-j There are 3 layers
796 of profiles, and each profile layer has a number of profile instances. All the profile instances
797 at the same layer have the same attributes.

798 - Each profile at layer 1 indexed j Profile-1-j has attributes: Profile-1-Attribute-1,
799 Profile-1-Attribute-2, Profile-1-Attribute-3, Profile-1-Attribute-4, Profile-1-Attribute-5,
800 Profile-1-Attribute-6, Profile-1-Attribute-7, Profile-1-Attribute-8
801

802 - Each profile at layer 2 indexed j Profile-2-j has attributes: Profile-2-Attribute-1,
803 Profile-2-Attribute-2, Profile-2-Attribute-3, Profile-2-Attribute-4, Profile-2-Attribute-5,
804 Profile-2-Attribute-6, Profile-2-Attribute-7, Profile-2-Attribute-8
805

806 - Each profile at layer 3 indexed j Profile-3-j has attributes: Profile-3-Attribute-1,
807 Profile-3-Attribute-2, Profile-3-Attribute-3, Profile-3-Attribute-4, Profile-3-Attribute-5,
808 Profile-3-Attribute-6, Profile-3-Attribute-7, Profile-3-Attribute-8
809

810
 811 Table 9: Probing experimental results for different task level complexity and workflow level com-
 812 plexity, where we control the environmental complexity. Results show that higher workflow and
 813 task levels jointly compound performance degradation.

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863	814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863	Model	Complexity	Task (5)	Task (8)
Qwen-3-8B (SR)	Workflow (1)	0.85	0.67		
	Workflow (2)	0.68	0.23		
Qwen-3-8B (PSR)	Workflow (1)	0.929	0.791		
	Workflow (2)	0.842	0.578		

Attribute Definitions

The jth attribute at layer i is denoted as profile-attribute-i-j.

At layer 1: - The attribute-1 and attribute-2 and attribute-7 and attribute-8 can serve as conditions - The attribute-4 contain the primary keys to access profiles at layer 1 - The attribute-5 contain the primary keys to access profiles at layer 2 - The attribute-6 contain the primary keys to access profiles at layer 3 - The attribute-3 can be used as an alternative way to access the profiles while searching.

At layer 2: - The attribute-1 and attribute-2 and attribute-7 and attribute-8 can serve as conditions - The attribute-4 contain the primary keys to access profiles at layer 2 - The attribute-5 contain the primary keys to access profiles at layer 3 - The attribute-6 contain the primary keys to access profiles at layer 1 - The attribute-3 can be used as an alternative way to access the profiles while searching.

At layer 3: - The attribute-1 and attribute-2 and attribute-7 and attribute-8 can serve as conditions - The attribute-4 contain the primary keys to access profiles at layer 3 - The attribute-5 contain the primary keys to access profiles at layer 1 - The attribute-6 contain the primary keys to access profiles at layer 2 - The attribute-3 can be used as an alternative way to access the profiles while searching.

Profile Access Pattern

When the user specifies a profile-k-id, you should understand that this means the user wants to access the profile-k instance with the primary key's index being the given value. When the user specifies a profile-k-info, you should understand that this means the user wants to access the profile-k instance with the lookup attribute value of the provided string. When referring to a user's profile-k, you should use the layer k-1 profile's reference attribute to get access to the primary keys of profile-k instances.

Relative Profile Access:

When the user specifies getting a 'relative profile' or 'related profile', this means accessing other profile instances at the same layer as the current profile. To accomplish this, you should use the reference attributes from the current profile instance to find the primary keys of the target profile instances at the same layer. For example, if you are currently accessing a profile at layer 2, and the user asks for a relative profile, you should use the reference attributes in the current layer 2 profile to identify and access other layer 2 profile instances.

Tool Calling Instructions

General Rules

864
865
866
867
868

- You should only make one tool call at a time, and if you make a tool call, you should not respond to the user simultaneously.
- If you respond to the user, you should not make a tool call at the same time.
- You should only call the tool Tool-Conflict when the request is not able to be handled within the policy and the user specifications.

869
870

Available Tools

871
872

Profile Access Tools

873
874
875
876
877
878

- Get-Profile-Layer-k: Use this tool to directly access a specific profile instance by its primary key.
- Parameter: 'index-value' (string) - The full primary key of the profile instance (e.g., "profile-1-5", "profile-2-10", "profile-3-1")
- When to use: - When users specify a profile-id, such as "my profile-id is profile-1-5" or "using profile-2-3"
- When you obtain a reference attribute value from another profile instance that contains the primary key to access a different layer
- Example call: Get-Profile-Layer-1(index-value="profile-1-5")

879
880
881
882
883
884

- Search-Profile-Layer-k: Use this tool to find profile instances by their lookup attribute value.
- Parameter: 'key-value' (string) - The lookup attribute value to search for
- When to use: When users specify a profile-info, such as "my profile-info is 'engineering'" or "find profiles with lookup value 'sales'"
- Example call: Search-Profile-Layer-1(key-value="engineering")

885
886

Task Completion Tools

887
888
889
890
891

- finish-task-k: Use this tool to complete Task-Type-k with the computed arguments.
- Parameter: 'attributes' (list) - A list of computed argument values in the order specified by the task requirements
- When to use: After accessing all required profile instances and computing the task arguments according to task specifications
- Example call: finish-task-1(attributes=[25, 150, 42])

892
893

Conflict Resolution Tool

894
895
896
897

- Tool-Conflict: Use this tool when the user request cannot be handled within the policy constraints.
- Parameters: None
- When to use: If the user request violates policy or cannot be fulfilled with available tools and data
- Example call: Tool-Conflict()

898

Tool Parameter Mapping Guidelines

899
900
901
902
903
904
905
906
907

- profile-id references: When users mention "my profile-id is profile-k-X" or "profile-k-X", use the Get-Profile-Layer-k tool with index-value="profile-k-X"
- reference attribute usage: When you access a profile instance and obtain reference attributes (e.g., reference-1, reference-2, reference-3), use those primary key values with Get-Profile-Layer-k to access the referenced profiles at the target layers
- profile-info references: When users mention "my profile-info is Y" or provide lookup values, use the Search-Profile-Layer-k tool with key-value="Y"
- Task completion: Always pass computed arguments as a list to finish-task-k tools, ensuring the order matches task specifications

908
909

Usage Guidelines

910
911

The user will specify the instance index at the first layer, and the agent shall go through the profile instances at different indexes and layers to obtain the attributes needed for the task.

912
913

Policy Specifications

914

General Policy 1

915
916
917

918
919
920
921
922

The agent must first get access to the profile instance at layer 1 according to the user specified primary key, alternatively, the agent may also search for the profile instance at layer 1 when the user did not provide a profile instance at layer 1 and instead provided a lookup field in profile layer 1.

923
924

General Policy 2
The agent should always finish the task with the task required attribute combinations at one time. If users specify multiple attribute combinations for the task (e.g., 'doing task i for all the instances accessd in layer 1.'), the agent must call the finish task tool multiple times and only address one attribute combination at a time.

Task Specifications

930

931

Task-Type-1

932

933

934

935

936

937

938

939

940

941

- The agent must access one profile instance at each of the layer 1, layer 2, layer 3 according to the user request,
- The agent should pass the following arguments into the finish-task-1 tool call:
 - arg-1: The average of all values: $(\text{layer-3-attribute-8} + 26 + 96) / 3$ (integer division).
 - arg-2: The original lookup value of layer-1-attribute-3 from the selected profile.
 - arg-3: The count of values greater than 50 among: layer-2-attribute-7, layer-3-attribute-2, 90, 96.
 - arg-4: layer-3-attribute-1 if layer-3-attribute-1 ≤ 4 , else 4.
 - arg-5: The maximum among all values: layer-3-attribute-2, layer-2-attribute-7, 51, 59.
- Each task-1 completion requires exactly one profile from each of the specified layers.
- The agent should call the finish-task-1 tool with arguments from one instance per layer at a time.
- Multiple function calls may be needed if multiple profile combinations are requested.

942

943

Task-Type-2

944

945

946

947

948

949

950

951

952

- The agent must access one profile instance at each of the layer 1 according to the user request,
- The agent should pass the following arguments into the finish-task-2 tool call:
 - arg-1: The sum of all values: global-attribute-2, layer-1-attribute-7, 64, 56.
 - arg-2: The original lookup value of layer-1-attribute-3 from the selected profile.
 - arg-3: The average of all values: $(\text{global-attribute-3} + \text{layer-1-attribute-1} + \text{layer-1-attribute-2} + 63) / 4$ (integer division).
 - arg-4: The minimum among all values: global-attribute-3, global-attribute-2, layer-1-attribute-7, 46, 40.
 - arg-5: The sum of even values among: layer-1-attribute-8, layer-1-attribute-7, layer-1-attribute-1, 78.
- The agent should call the finish-task-2 tool with the arguments above for the selected profile instance.

953

954

Task-Type-3

955

956

957

958

959

960

961

962

963

- The agent must access one profile instance at each of the layer 1, layer 2, layer 3 according to the user request,
- The agent should pass the following arguments into the finish-task-3 tool call:
 - arg-1: The maximum among all values: layer-3-attribute-7, 24, 14.
 - arg-2: The result of $(\text{layer-2-attribute-1} + 2 + 73) \bmod 100$.
 - arg-3: The maximum between layer-2-attribute-2 and 48.
 - arg-4: The original lookup value of layer-1-attribute-3 from the selected profile.
 - arg-5: The sum of even values among: global-attribute-1, 5, 12.
- Each task-3 completion requires exactly one profile from each of the specified layers.
- The agent should call the finish-task-3 tool with arguments from one instance per layer at a time.
- Multiple function calls may be needed if multiple profile combinations are requested.

964

965

Task-Type-4

966

967

968

969

970

971

- The agent must access one profile instance at each of the layer 1 according to the user request,
- The agent should pass the following arguments into the finish-task-4 tool call:
 - arg-1: The maximum among all values: layer-1-attribute-1, 76, 65.
 - arg-2: The product of global-attribute-3 and 8.
 - arg-3: The count of values greater than 50 among: layer-1-attribute-8, layer-1-attribute-7, global-attribute-3, 22.
 - arg-4: The maximum

972
973
974
975
976
977

among all values: global-attribute-2, 50, 66. - arg-5: The result of (layer-1-attribute-8 + global-attribute-1 + 98 + 90) modulo 100. - The agent should call the finish-task-4 tool with the arguments above for the selected profile instance.

Task-Type-5

- The agent must access one profile instance at each of the layer 1, layer 2, layer 3 according to the user request, - The agent should pass the following arguments into the finish-task-5 tool call: - arg-1: The range (max - min) among: global-attribute-1, layer-3-attribute-8, layer-2-attribute-2, 5, 99. - arg-2: The count of values greater than 50 among: layer-3-attribute-8, global-attribute-1, layer-2-attribute-8, 49, 52. - arg-3: The original lookup value of layer-1-attribute-3 from the selected profile. - arg-4: The average of all values: (layer-2-attribute-7 + global-attribute-3 + layer-3-attribute-1 + 59) divided by 4 (integer division). - arg-5: The sum of even values among: layer-2-attribute-2, global-attribute-2, 58, 79. - Each task-5 completion requires exactly one profile from each of the specified layers. - The agent should call the finish-task-5 tool with arguments from one instance per layer at a time. - Multiple function calls may be needed if multiple profile combinations are requested.

988
989
990
991
992
993
994
995
996

C POLICY ANALYSIS DETAILS

We use the model itself (which still requires further internalization) as the LLM for policy analysis, thereby avoiding potential knowledge distillation from stronger models. As described in Section § 3.2, we categorize policy specifications into four major types based on their influence on agent behavior:

997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

- Factual Type.** The policy document states a fact that the agent must memorize and potentially paraphrase when answering user queries. These specifications do not involve reasoning or decision-making, but require accurate recall. *Example:* “The refund will be processed within 5–7 business days.”
- Behavior Type.** The policy prescribes or prohibits certain general behaviors, independent of the workflow logic. Violating these rules does not change the structure of the task but determines whether the agent’s behavior aligns with policy requirements. *Example:* “Before taking any actions that update the booking database (booking, modifying flights, editing baggage, upgrading cabin class, or updating passenger information), you must list the action details and obtain explicit user confirmation (yes) to proceed.”
- Conditional Type (Simple).** The policy specifies simple conditional rules that directly affect the agent’s workflow but require minimal reasoning to apply. The condition typically involves a straightforward check on one variable or state. *Example:* “The agent can only cancel the whole trip that is not flown.”
- Conditional Type (Complex).** The policy encodes nested or multi-branch conditional logic that requires deeper reasoning to correctly apply. Such rules often involve multiple attributes, role-specific constraints, or cumulative calculations, and thus present higher complexity for the model. *Example:* “Checked bag allowance: If the booking user is a regular member, 0 free checked bag for each basic economy passenger, 1 free checked bag for each economy passenger, and 2 free checked bags for each business passenger. If the booking user is a silver member, 1 free checked bag for each basic economy passenger, 2 free checked bag for each economy passenger, and 3 free checked bags for each business passenger. If the booking user is a gold member, 2 free checked bag for each basic economy passenger, 3 free checked bag for each economy passenger, and 3 free checked bags for each business passenger. Each extra baggage is 50 dollars.”

Prompt Used by LLMs to Perform Policy Analysis

You are a policy analysis assistant. Your task is to process the input policy document according to the four steps below. For each step, you should follow the instruction, review

1026

1027 the provided example, and output your results in the required format.

1028

1029 **Step 1:** Identify all available user-facing tasks defined in the policy. These should be
 1030 high-level actions users can request, such as "Book Flight" or "Cancel Flight" or "Return
 1031 Item". You should provide all the identified available tasks in a list, like the example below:

1032

1033 **Example:** Tasks: ['Book Flight', 'Modify Flight', 'Cancel Flight', 'Process Refund']

1034

1035 Based on the identified specification types, we design a pipeline for policy analysis and
 1036 the generation of Multi-Granular CPT data. The prompt used for Policy Analysis is shown
 1037 below.

1038

1039 **Step 2:** For each sentence or isolated specification from the policy document, identify
 1040 its type and scope. Types of the policy statements include: Fact Illustration, Behavior
 1041 Specification, Workflow Specification (Simple), Workflow Specification (Complex), and in-
 1042 context examples. You should output the complexity level if you identified the specification
 1043 as complex. While scope refers to the relevant task the statement affects, for each isolated
 1044 statement, its valid scope can be among any of the above mentioned tasks. At last, you
 1045 should output all the identified Workflow Specification (Complex) types of specifications in
 1046 the policy in a list of dictionaries, which contains three fields for each dictionary, namely
 1047 content, complexity, and valid scope.

1048

1049 The descriptions and representative examples of each specification type are described and
 1050 listed as below:

1051

1052 **Fact Illustration** are types of specifications which provides factual information for future
 1053 usage. Here is a concrete example: Policy Document Content: The refund will go to
 1054 original payment methods in 5 to 7 business days.

1055

1056 Your output for this statement:

1057

1058 Fact Illustration: {Content: The refund will go to original payment methods in 5 to 7
 1059 business days. Valid Scope: [The tasks you identified as the valid scope of this policy.]}

1060

1061 **Behavior Specification** are types of specifications which cannot affect the agent's workflow.
 1062 Here is a concrete example: Policy Document Content: Before take any action to update
 1063 database, you must list the action details and obtain explicit user confirmation
 1064 (yes) to proceed.

1065

1066 Your output for this statement:

1067

1068 Behavior Specification: {Content: Before take any action to update database, you must
 1069 list the action details and obtain explicit user confirmation (yes) to proceed. Valid
 1070 Scope: [The tasks you identified as the valid scope of this policy.]}

1071

1072 **Workflow Specification (Simple)** are types of specifications are specifications which can
 1073 affect the agent's workflow, and this change is simple. There is usually just one specific
 1074 condition, which decides the next step. Here is a concrete example: Policy Document
 1075 Content: If the trip is flown, you cannot cancel the flight.

1076

1077 Your output for this statement:

1078

1079 Workflow Specification (Simple): {Content: Meal service eligibility: If the trip is flown,
 1080 you cannot cancel the flight. Valid Scope: [The tasks you identified as the valid scope of this
 1081 policy.]}

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Workflow Specification (Complex) are types of specifications which can affect the agent's workflow, and this change is complex and hierarchical. This usually composes an if-else tree structure. The complexity level is decided upon the depth of the if-else tree. Here is a concrete example: Policy Document Content: Meal service eligibility: If the passenger is flying internationally and in business class, they are eligible for a full-course meal and two beverages. If the passenger is flying internationally and in economy class, they are eligible for a standard meal and one beverage. If the passenger is flying domestically and the total flight time exceeds 3 hours, business class passengers are eligible for a standard meal and one beverage, while economy passengers are eligible for one snack and one beverage. If the passenger is flying domestically and the total flight time is 3 hours or less, only business class passengers receive a complimentary snack; economy passengers are not eligible for meal service.

Your output for this statement:

Workflow Specification (Complex): {Content: Meal service eligibility: If the passenger is flying internationally and in business class, they are eligible for a full-course meal and two beverages. If the passenger is flying internationally and in economy class, they are eligible for a standard meal and one beverage. If the passenger is flying domestically and the total flight time exceeds 3 hours, business class passengers are eligible for a standard meal and one beverage, while economy passengers are eligible for one snack and one beverage. If the passenger is flying domestically and the total flight time is 3 hours or less, only business class passengers receive a complimentary snack; economy passengers are not eligible for meal service. Complexity Level: 5 Valid Scope: [The tasks you identified as the valid scope of this policy.]}

Note that you need to go through every single sentences in the policy document to make sure that no Workflow Specification (Complex) are missed from your output. If you are uncertain about the complexity level or the valid scope, you can output 'Uncertain' for these fields. Now you need to process the following policy document. Please organize your complete output format as below:

Tasks: [Your Identified Tasks]

Fact Illustration: ["Content": [Content of the Specification], "Valid Scope": [The list of tasks you identified as the valid scope of this policy.], "Content": [Content of the Specification],"Valid Scope": [The list of tasks you identified as the valid scope of this policy.], ...]

Behavior Specification: ["Content": [Content of the Specification], "Valid Scope": [The list of tasks you identified as the valid scope of this policy.], "Content": [Content of the Specification],"Valid Scope": [The list of tasks you identified as the valid scope of this policy.], ...]

Workflow Specification (Simple) in the Policy Document: ["Content": [Content of the Specification], "Valid Scope": [The list of tasks you identified as the valid scope of this policy.], "Content": [Content of the Specification],"Valid Scope": [The list of tasks you identified as the valid scope of this policy.], ...]

Workflow Specification (Complex) in the Policy Document: ["Content": [Content of the Specification], "Complexity Level": [Your Identified Complexity Level], "Valid Scope": [The list of tasks you identified as the valid scope of this policy.], "Content": [Content of the Specification],"Complexity Level": [Your Identified Complexity Level], "Valid Scope": [The list of tasks you identified as the valid scope of this policy.], ...]

Note that the identification of a complex workflow should not be confused with cases where there are multiple conditions but no branching hierarchy. For sentences like: If the user is a platinum member or has booked a round-trip ticket, and experiences a missed connection due to airline delay, the agent can offer lounge access at the next airport after confirming the flight details. This sentence is of complexity 2. You need to work with the policy document

1134

1135 and ensure that all the specifications and requirements specified in the document is fully
 1136 considered as one of these four types. Do not miss any specifications that is important. You
 1137 should not have any overlapped policy content between these categorizations.

1138

1139 You can simple treat the task as a split and classification. You should divide the policy
 1140 content into clear specification chunks, and categorize them into these four types.

1141

1142 Now you need to work with the following Policy Document:

1143

1144 *{The Policy Document to be analyzed}*

1145

1146 Due to the templated nature of our generated policy document. We could always easily analyze the
 1147 policy document successfully. However, for our later application on τ -bench. the policy analysis
 1148 can be inaccurate without human double check. We will report the F1 score of policy analysis in
 1149 Appendix I and analyze their effects for overall performance.

1150

1151 D MORE COMPREHENSIVE EXPERIMENTAL SETTINGS AND RESULTS

1152

1153 **More Comprehensive Experimental Settings** We use Qwen-2.5-32B and Qwen-3-32B for policy
 1154 document internalization, selected for their strong prior knowledge and distinct performance
 1155 when complex policy documents are provided in context. To evaluate complexity effects, we
 1156 construct datasets that control for other factors while varying workflow complexity from level (1) to (3)
 1157 and task-level complexity across levels (3), (5), (8), and (12). For SFT, we train with between 1K
 1158 and 30K samples. We also apply our approach to τ -Bench, which provides only 500 training samples
 1159 without CoT reasoning. Using Qwen-3-32B, we self-generate CoT trajectories, yielding 282
 1160 SFT samples. As noted in the main text, our SFT data ranges from 1K–30K samples. In terms of
 1161 CPT data size, we generate CPT data whose size depends on the specific policy document. For each
 1162 identified policy specification, we first generate paraphrases and QAs. We produce a limited number
 1163 of paraphrases and QAs for factual and behavioral specifications, while generating questions for all
 1164 branches of conditional specifications. This results in fewer than 1K QA pairs in total. Behavioral
 1165 role model data is relatively sparse, consisting of 1K sampled scenario-instance pairs for each identified
 1166 behavioral specification. The largest portion of CPT data comes from scenario simulation,
 1167 where we generate 5K sampled pairs per conditional specification. For example, a policy document
 1168 with task-level (5) and workflow-level (2) can yield up to 125K scenario simulation samples, as it
 1169 contains five tasks, each with five arguments, and a workflow-level specification for each task. The
 1170 amount of trajectory familiarization data is kept consistent with the size of the SFT data.

1170

1171 For the smaller model Qwen-2.5-32B, the in-context performance on task completion is weak. With
 1172 sufficient SFT training data, performance can be boosted to a reasonable level. Despite this stronger
 1173 baseline after SFT, our CAP-CPT data and training still yield consistent improvements across all
 1174 scenarios. The gains are most evident in data-sparse settings, where the baseline remains marginal,
 1175 and in high-complexity scenarios, where performance is otherwise relatively low.

1176

1177 In contrast, for Qwen-3-32B, a much stronger model on agentic tasks, the SFT approach generally
 1178 diminishes the model’s prior knowledge and provides limited gains regardless of training data
 1179 scale. Our CAP-CPT training continues to deliver improvements across scenarios, particularly in
 1180 data-sparse and high-complexity cases, but the final performance does not surpass Qwen-2.5-32B
 1181 and remains only comparable to the prompting baseline. However, we still achieve the goal of
 1182 internalization. We provide further details on this finding in Appendix F.

1183

1184 E EVALUATION FRAMEWORK OF POLICY DOCUMENT INTERNALIZATION

1185

1186 We designed a comprehensive evaluation framework for policy document internalization. Rather
 1187 than focusing solely on end tasks, where the model completes ordinary user queries under policy
 1188 guidance, we introduce a broader set of tasks that better reflect real-world applications of this
 1189 approach. Specifically, our framework encompasses **task completion**, **policy referral**, **policy sub-**

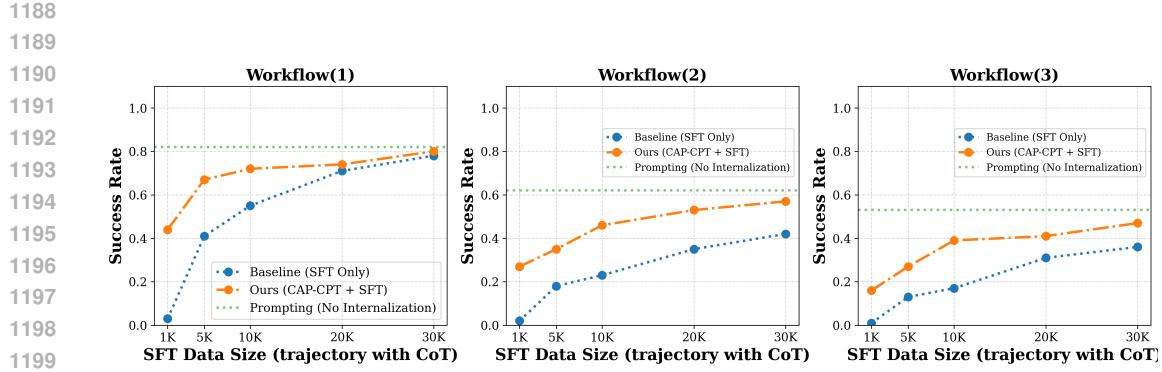


Figure 5: Performance curves for internalizing policy documents with varying workflow complexities on Qwen-3-32B, comparing the baseline with our method. Our approach consistently outperforms the baseline across all settings and substantially narrows the performance gap in high-complexity and data-sparse scenarios. Note that while Qwen-3-32B is a model with stronger prior knowledge, the internalization only yields comparable performance than prompting baseline. See Appendix F for explanations.

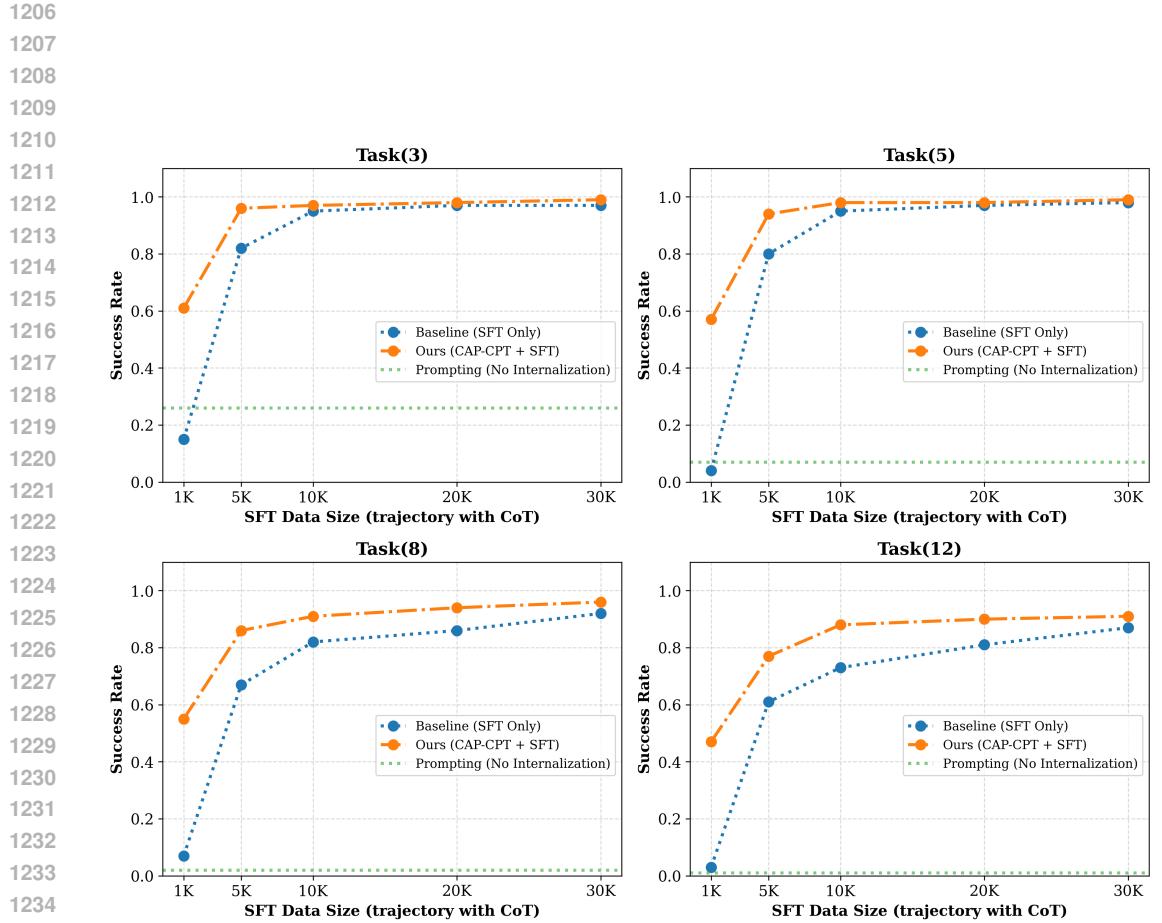


Figure 6: Performance curves for internalizing policy documents with varying task-level complexities on Qwen-2.5-32B, comparing the baseline with our method. Our approach consistently outperforms the baseline across all settings and substantially narrows the performance gap in high-complexity and data-sparse scenarios. The pattern is similar to the workflow complexity setting, only the performance gap absolute values are a bit different.

1241

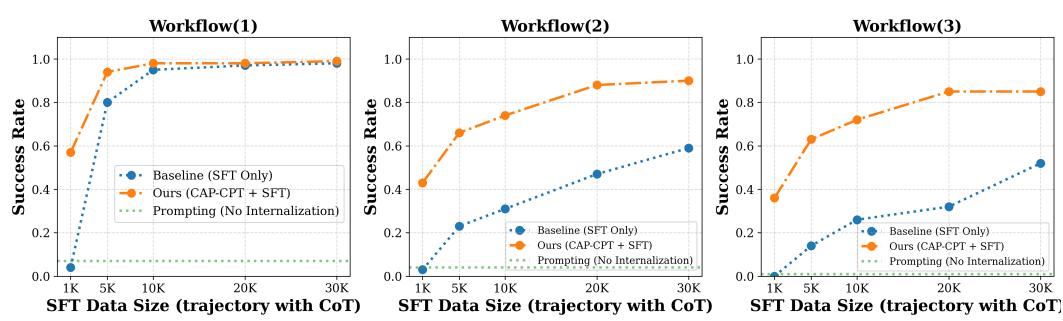


Figure 7: Performance curves for internalizing policy documents with varying workflow complexities on Qwen-2.5-32B, comparing the baseline with our method. Our approach consistently outperforms the baseline across all settings and substantially narrows the performance gap in high-complexity and data-sparse scenarios.

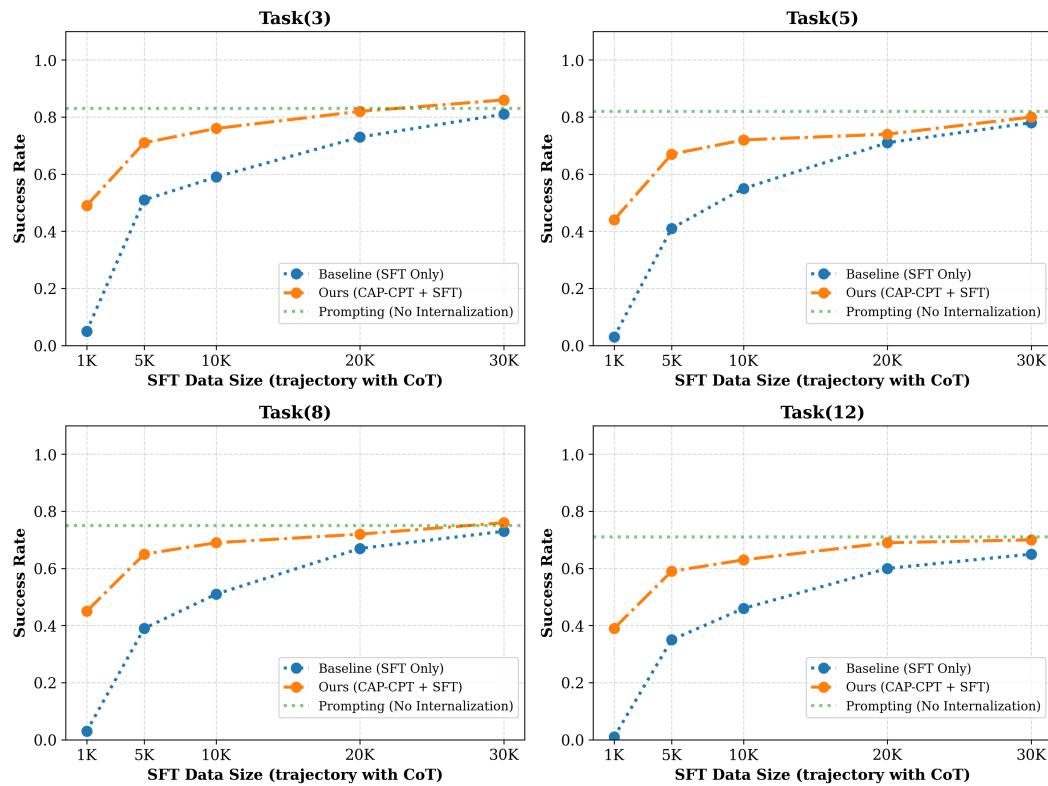
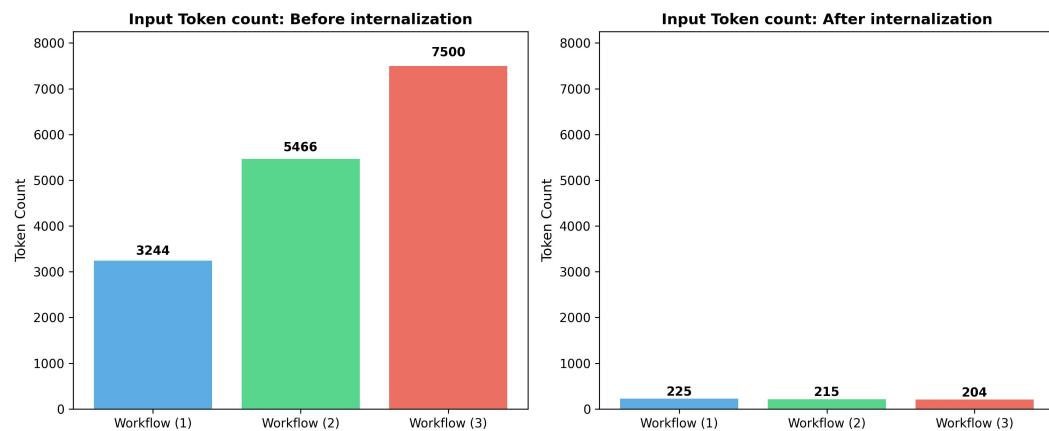


Figure 8: Performance curves for internalizing policy documents with varying task-level complexities on Qwen-3-32B, comparing the baseline with our method. Our approach consistently outperforms the baseline across all settings and substantially narrows the performance gap in high-complexity and data-sparse scenarios. The pattern is similar to the workflow complexity setting, only the performance gap absolute values are a bit different. Note that while Qwen-3-32B is a model with stronger prior knowledge, the internalization only yields comparable performance than prompting baseline. See Appendix F for explanations.

1296 Table 10: Task variants under **Workflow (1)** for **Qwen3-32B** and **Qwen2.5-32B**, comparing *Gold*
 1297 *CoT SFT* and *CAP-CPT + Gold CoT SFT*. Original *Task* (5) results are retained; new *Task* (3/8/12)
 1298 entries are added with blank cells for later fill. Prompting accuracy is shown when available.
 1299

1300 Model	1301 Complexity	1302 Prompting	1303 Internalization Approach	1304 Internalization Training Data Size				
				1305 1K	1306 5K	1307 10K	1308 20K	1309 30K
1302 Qwen2.5-32B	1303 Workflow (1)	1304 Task (3)	1305 Gold CoT SFT	0.15	0.82	0.95	0.97	0.97
		1306 Workflow (1)	1307 CAP-CPT + Gold CoT SFT	0.61	0.96	0.97	<u>0.98</u>	0.99
	1308 Workflow (1)	1309 Task (5)	1310 Gold CoT SFT	0.04	0.80	0.95	0.97	0.98
		1311 Workflow (1)	1312 CAP-CPT + Gold CoT SFT	0.57	0.94	0.98	<u>0.98</u>	0.99
	1313 Workflow (1)	1314 Task (8)	1315 Gold CoT SFT	0.07	0.67	0.82	0.86	0.92
		1316 Workflow (1)	1317 CAP-CPT + Gold CoT SFT	0.55	0.86	0.91	<u>0.94</u>	0.96
1318 Qwen3-32B	1319 Workflow (1)	1320 Task (12)	1321 Gold CoT SFT	0.03	0.61	0.73	0.81	0.87
		1322 Workflow (1)	1323 CAP-CPT + Gold CoT SFT	0.47	0.77	0.88	<u>0.90</u>	0.91
	1324 Workflow (1)	1325 Task (3)	1326 Gold CoT SFT	0.05	0.51	0.59	0.73	0.81
		1327 Workflow (1)	1328 CAP-CPT + Gold CoT SFT	0.49	0.71	0.76	0.82	0.86
	1329 Workflow (1)	1330 Task (5)	1331 Gold CoT SFT	0.03	0.41	0.55	0.71	0.78
		1332 Workflow (1)	1333 CAP-CPT + Gold CoT SFT	0.44	0.67	0.72	0.74	<u>0.80</u>
	1334 Workflow (1)	1335 Task (8)	1336 Gold CoT SFT	0.03	0.39	0.51	0.67	0.73
		1337 Workflow (1)	1338 CAP-CPT + Gold CoT SFT	0.45	0.65	0.69	0.72	0.76
	1339 Workflow (1)	1340 Task (12)	1341 Gold CoT SFT	0.01	0.35	0.46	0.60	0.65
		1342 Workflow (1)	1343 CAP-CPT + Gold CoT SFT	0.39	0.59	0.63	0.69	0.70



1332 Figure 9: Average input token compression across different scenarios, varying from workflow (1)
 1333 complexity to workflow (3) complexity. The compression rate reaches up to 97.3% when the
 1334 complexity is high.
 1335

1336 **stitution, policy override, and general instruction following**, as detailed below. In addition, we
 1337 provide exemplar templates for each evaluation task as well as a baseline prompting setup.
 1338

1339 Illustrative Prompt Format for Baseline Prompting Evaluation

1340 [General Instructions]

1341 Based on the Policy document below, answer the user query.

1342 **Policy Document:** [Complete Content of the Policy]

1343 **User query:** [Content of the User Query (related to task solving)]

1344 **Model Response:** [LLM Output]

1345 **Task Completion.** At the core, we enhance the task completion capability of the LLM agent so it
 1346 can effectively serve as a user assistant. Given a user query tagged with the corresponding policy
 1347 identifier (special token), the model is expected to perform self-reasoning, tool calls, and multi-round

1350 observations, ultimately resolving the query with all actions correct. We measure performance using
 1351 the overall success rate (SR).
 1352

1353

1354 Illustrative Prompt Format for Task Completion Evaluation

1355

1356 [General Instructions]

1357 Based on the policy document #P12301 you previously learnt about, answer the user query.

1358 **User query:** [Content of the User Query (related to task solving)]

1359 **Model Response:** [LLM Output]

1360

1361

1362 **Policy Referral.** To assess whether the LLM agent fully understands and internalizes the target
 1363 policy document, we design QA tasks that probe specific policy details: for example, asking how
 1364 to compute a parameter or complete a subtask. Since the answers are free-form generations, we
 1365 employ an evaluation LLM to assign a 0–5 score, which we rescale to 0–100.

1366

1367

1368 Illustrative Prompt Format for Policy-referral Evaluation

1369

1370 [General Instructions]

1371 Based on the Policy document #P12301 you have previously learnt about, answer questions
 1372 about the details of the policy.

1373 **User query:** [Questions Regarding to Content of the Policy Document]

1374 **Model Response:** [LLM Output]

1375

1376

1377

1378

1379

1380

1381

1382 Illustrative Prompt Format for Policy-substitute Evaluation

1383

1384 [General Instructions]

1385 Based on the Policy document below, answer the user query.

1386 **Policy Document:** [Complete Content of the New Policy Document (which was not inter-
 1387 nalized in the training stages before)]

1388 **User query:** [Content of the User Query (related to task solving)]

1389 **Model Response:** [LLM Output]

1390

1391

1392

1393 Illustrative Prompt Format for Policy-override Evaluation

1394

1395 [General Instructions]

1396 Based on the policy document #P12301 you previously learnt about, note that the following
 1397 parts of the Policy has been changed: [Content of Overridden Policy]

1398 **User query:** [Content of the User Query (related to task solving)]

1399 **Model Response:** [LLM Output]

1400

1401

1402

1403

1404 **General Instruction Following.** To ensure that policy internalization does not compromise general
 1405 capabilities, we also evaluate the model on the IF-Eval benchmark (Table ??), which measures
 1406 adherence to a broad range of natural instructions.

1407 Finally, we emphasize that such a comprehensive evaluation is rarely supported by prior bench-
 1408 marks. In contrast, our benchmark, generated using *CC-Gen*, offers unique advantages that enable
 1409 this broader and more rigorous evaluation.

1404
 1405 **Table 11: Self-Generated CoT gives better performance for inherently strong models** Performance
 1406 of **Qwen-3-32B** (Prompting = 0.53) on Task (3), Workflow (5). Self-generated CoT provides
 1407 noticeable gains, and when combined with Multi-Granular CPT, achieves the highest performance.
 1408

Model	Task / Workflow	prompting	Internalization Approach	Internalization Training Data Size				
				1K	5K	10K	20K	30K
Qwen-3-32B	Task (3) Workflow (5)	0.53	Gold CoT SFT	0.01	0.13	0.17	0.31	0.36
			Self-Generated CoT SFT	0.04	0.19	0.24	0.37	0.46
			CAP-CPT + Gold CoT SFT	0.16	0.27	0.39	0.41	0.47
			CAP-CPT + Self Generated CoT SFT	0.19	0.33	0.45	0.49	0.58

F INTUITIVE UNDERSTANDING OF OUR OBSERVATIONS

F.1 WHY OUR CAP-CPT APPROACH WORKS WELL

To understand why our Category-Aware Policy Continued Pretraining(CAP-CPT) approach is effective, it is important to examine the limitations of standard SFT and CPT methods. We summarize the main challenges in handling policy complexity as follows:

(1) **Data sparsity.** Data sparsity (Bansal et al., 2022) has long been a dominant issue in deep learning. Policy specifications involving complex reasoning often require substantially more data to support effective learning. However, the common practice of sampling user–agent interaction trajectories provides only random coverage of the interaction space. Given the length of policy documents and the breadth of business scenarios, such sampled trajectories rarely capture the nuanced cases needed to train models on complex conditional specifications, even when the overall dataset is large. In addition, SFT can lead to catastrophic forgetting (McCloskey & Cohen, 1989; Kirkpatrick et al., 2017; Zhang & et al., 2019), a phenomenon especially pronounced in well-trained language models (Zhang et al., 2025b).

(2) **Limitations of common CPT approaches.** Conventional continued pretraining (Zhou et al., 2024) typically relies on paraphrases or QA pairs to improve memorization of specific content. However, the objective of policy internalization extends beyond rote recall: the model must also apply policies in practice, demonstrating appropriate behaviors and reasoning grounded in policy content. As highlighted in knowledge-centric studies (Cohen et al., 2024; Liu et al., 2024a), training with purely memorization-centric data fails to foster logical generalization, compositional reasoning, or relation specificity, phenomena often described as ripple effects in knowledge perception.

Our CAP-CPT approach directly addresses these challenges by emphasizing the creation of scenario-simulation data for complex conditional specifications. These specifications, which pose the greatest workflow complexity, are represented with sufficient simulated data to generate diverse and realistic usage examples, mitigating the limited coverage of SFT trajectories. Moreover, the continued pretraining objective ensures balanced learning, reducing bias toward memorization and alleviating catastrophic forgetting.

F.2 TRAINING WITH STRONGER MODELS DOES NOT YIELD BETTER PERFORMANCE

We conduct experiments on two models with different levels of prior knowledge and reasoning ability in agentic tasks: a stronger model, QWEN-3-32B, which already achieves high baseline accuracy on policy reasoning, and a weaker model, QWEN-2.5-32B, which starts from a substantially lower baseline. Interestingly, after applying our internalization method, we observe a clear divergence: the stronger model remains close to its original performance even with large amounts of additional data, whereas the weaker model exhibits dramatic improvement, approaching nearly 100% success rate.

We interpret this phenomenon through the lens of prior knowledge stability and learning dynamics. The stronger model’s competence is largely anchored in its pretrained representations, leaving limited room for further gains; moreover, its richer parametric knowledge makes it more *fragile* to fine-tuning, where additional supervision can induce *overfitting* to synthetic trajectories or trigger *catastrophic forgetting* of its broader capabilities (McCloskey & Cohen, 1989; Kirkpatrick et al., 2017; Zhang & et al., 2019). By contrast, the weaker model’s prior knowledge is less entrenched, allowing it to more flexibly incorporate the targeted Multi-Granular CPT data. Instead of overwriting

strong existing reasoning patterns, fine-tuning serves to fill critical gaps and solidify policy-specific knowledge, thereby yielding substantial performance gains.

As shown in Table 11, the QWEN-3-32B model achieves higher performance when trained with Self-CoT data compared to using Gold CoT trajectories as SFT data. This suggests that QWEN-3-32B benefits more from self-generated rationales that align closely with its existing knowledge, making such information easier for the model to internalize.

G MULTIPLE POLICY INTERNALIZATION

While our main experiments focus on internalizing policies individually, we further demonstrate that our approach can support the simultaneous internalization of multiple policies, regardless of their complexity levels. To test this, we conduct experiments on QWEN-3-32B by mixing the training data from four distinct policy documents of different task level complexities and jointly fine-tuning the model on the combined dataset. As shown in Table 12, the model maintains strong performance on each individual policy even under this mixed setting. However, we note that this experiment is limited to only four policies, and scaling to a much larger number of policies remains challenging due to the substantial computational cost.

Table 12: Internalization performance for **Qwen3-32B** with *CAP-CPT + Gold CoT SFT*. Second block shows the same setting fine-tuned with mixed-policy.

Qwen3-32B — CAP-CPT + Gold CoT SFT (Single-Policy Fine-Tuning)						
Model	Complexity	Prompting	Internalization Approach	Internalization Training Data Size		
				1K	5K	10K
Qwen3-32B	Task (3) Workflow (1)	0.83	CAP-CPT + Gold CoT SFT	0.49	0.71	0.76
	Task (5) Workflow (1)	0.82	CAP-CPT + Gold CoT SFT	0.44	0.67	0.72
	Task (8) Workflow (1)	0.75	CAP-CPT + Gold CoT SFT	0.45	0.65	0.69
	Task (12) Workflow (1)	0.71	CAP-CPT + Gold CoT SFT	0.39	0.59	0.63
Qwen3-32B — CAP-CPT + Gold CoT SFT (Mixed-Policy Fine-Tuning)						
Qwen3-32B	Task (3) Workflow (1)	0.83	CAP-CPT + Gold CoT SFT	0.48	0.71	0.76
	Task (5) Workflow (1)	0.82	CAP-CPT + Gold CoT SFT	0.44	0.67	0.72
	Task (8) Workflow (1)	0.75	CAP-CPT + Gold CoT SFT	0.45	0.65	0.69
	Task (12) Workflow (1)	0.71	CAP-CPT + Gold CoT SFT	0.41	0.59	0.64

H MORE DETAILS ON ABLATION STUDY

We use two alternative settings to independently evaluate the effectiveness of our proposed training data and algorithm. In Section 4, we have already shown that our approach achieves the best overall performance on completing user specified tasks. However, the alternatives also reveal interesting side benefits. As shown in Table 13, excluding Scenario Simulation data during continued pretraining improves general performance on policy *Override*, while using the generated CAP-CPT data for SFT yields a slight gain in policy *Referral* scores.

We attribute the former to the fact that reduced CPT training limits memorization of the policy document, making the model less rigid when perform overriding. Conversely, the latter can be explained by SFT’s stronger memorization of certain patterns, which helps directly answer referral-style queries. In general, CPT training contributes more to global understanding and faithful memorization of policy documents, whereas SFT-based approaches emphasize alignment with the training

1512 distribution. However, this alignment comes at the cost of limited generalization and a potential risk
 1513 of forgetting previously acquired knowledge.
 1514

1515 **Table 13: Ablation Study — notable benefits with both alternatives.** Policy performance of
 1516 **Qwen-3-32B** (Prompting = 0.53). The first block (*Override*) shows the effect of discarding scenario
 1517 simulation data. The second block (*Referral*) shows the effect of using CPT data in the SFT stage.
 1518 Both variants reveal complementary benefits, with Multi-Granular CPT + SFT and CPT-based SFT
 1519 improving performance in different ways.

Model	Complexity	Prompting	Internalization Approach	Internalization Training Data Size				
				1K	5K	10K	20K	30K
Qwen-3-32B (Override)	Task (5) Workflow (3)	0.53	Gold CoT SFT	0.00	0.00	0.00	0.00	0.00
			CAP-CPT + Gold CoT SFT	0.09	0.12	0.17	0.22	0.25
			No Scenario Simulation CAP-CPT + SFT	0.11	0.13	0.19	0.22	0.27
Qwen-3-32B (Referral)	Task (5) Workflow (3)	0.76	Gold CoT SFT	0.00	0.00	0.00	0.00	0.00
			CAP-CPT + Gold CoT SFT	0.59	0.31	0.23	0.20	0.13
			CPT data used for SFT	0.68	0.63	0.67	0.66	0.61

I APPLICATION TO τ -BENCH

1528
 1529 **Table 14:** Performance of our CAP-CPT on Qwen3-32B over τ -bench, compressing the overall
 1530 input by 34.8% while slightly improving performance compared to prompting.
 1531

Model	Domain	Prompting	Self-CoT SFT	CAP-CPT + Self-CoT SFT	Prompt Compression
Qwen3-32B	Retail	26.96	23.48	28.70	34.81%

1532 We apply our approach to τ -bench (Yao et al., 2024) to further validate its effectiveness. The original
 1533 benchmark is evaluated in a user-simulator–plus–agent setting, where the language model serves
 1534 not only as the assistant but also as the simulated user. However, agent performance in this setup is
 1535 largely constrained by the quality of the simulator, which can introduce substantial errors. To better
 1536 isolate the agent’s reasoning ability, we curate τ -bench into a single-turn agentic benchmark: the
 1537 user specifies all requirements at the outset, and the LLM agent must then complete the task through
 1538 multi-round reasoning, tool use, and observation.

1539 We first evaluate the F1 score of our policy analysis process on τ -Bench. We manually annotate
 1540 the specification types in τ -Bench policy documents and compare them with the predictions from
 1541 our analysis pipeline. Results show that the F1 score on high-complexity conditional specifications
 1542 is perfect (100%), while simple conditional specifications reach 87.5% F1, mainly due to their
 1543 distinctive structure. In contrast, factual and behavioral specifications achieve high precision but suffer
 1544 from lower recall, often missing fine-grained requirements. Specifically, factual specifications yield
 1545 an F1 of 75% (precision 100%, recall 60%), and behavioral specifications reach 66.7% (precision
 1546 0.86, recall 0.55). We did not apply any manual correction when using these outputs for CAP-CPT
 1547 data generation and training, thereby reflecting the pipeline’s performance in more realistic settings.

1548 Table 14 reports results of applying our approach on τ -bench. Although τ -bench includes complex-
 1549 ity annotations, the tasks are not highly complex—each policy document typically contains only one
 1550 or two workflow specifications. Moreover, the dataset is relatively small, with just 500 examples. To
 1551 generate trajectories for SFT, we let the LLM to be internalized perform the tasks itself, resulting in
 1552 282 training examples. While SFT trained on these examples underperforms compared to prompting
 1553 alone, augmenting them with our CAP-CPT data and applying the combined CPT+SFT process
 1554 yields performance that surpasses prompting, achieving an input token internalization rate of up to
 1555 35%. These results highlight the utility of our approach, especially in data-sparse scenarios.

J ERROR EXAMPLES OF SOTA LLMS ON τ -BENCH

1556 In this section, we present a complete error example where a state-of-the-art LLM fails on complex
 1557 τ -Bench specifications, highlighting the importance of addressing complex requirements in agent
 1558 policy documents.

1566
1567**Claude-4-sonnet Error Example on Tau-bench**

1568

Airline Agent Policy

1569

The current time is 2024-05-15 15:00:00 EST.

1570

As an airline agent, you can help users book, modify, or cancel flight reservations.

1571

- Before taking any actions that update the booking database (booking, modifying flights, editing baggage, upgrading cabin class, or updating passenger information), you must list the action details and obtain explicit user confirmation (yes) to proceed.

1572

- You should not provide any information, knowledge, or procedures not provided by the user or available tools, or give subjective recommendations or comments.

1573

- You should only make one tool call at a time, and if you make a tool call, you should not respond to the user simultaneously. If you respond to the user, you should not make a tool call at the same time.

1574

- You should deny user requests that are against this policy.

1575

- You should transfer the user to a human agent if and only if the request cannot be handled within the scope of your actions.

1576

Domain Basic

1577

- Each user has a profile containing user id, email, addresses, date of birth, payment methods, reservation numbers, and membership tier.

1578

- Each reservation has an reservation id, user id, trip type (one way, round trip), flights, passengers, payment methods, created time, baggages, and travel insurance information.

1579

- Each flight has a flight number, an origin, destination, scheduled departure and arrival time (local time), and for each date:

1580

- If the status is `available`; the flight has not taken off, available seats and prices are listed.

1581

- If the status is `delayed` or `on time`; the flight has not taken off, cannot be booked.

1582

- If the status is `flying`; the flight has taken off but not landed, cannot be booked.

1583

Book flight

1584

- The agent must first obtain the user id, then ask for the trip type, origin, destination.

1585

- Passengers: Each reservation can have at most five passengers. The agent needs to collect the first name, last name, and date of birth for each passenger. All passengers must fly the same flights in the same cabin.

1586

- Payment: each reservation can use at most one travel certificate, at most one credit card, and at most three gift cards. The remaining amount of a travel certificate is not refundable. All payment methods must already be in user profile for safety reasons.

1587

- **Checked bag allowance:** If the booking user is a regular member, 0 free checked bag for each basic economy passenger, 1 free checked bag for each economy passenger, and 2 free checked bags for each business passenger. If the booking user is a silver member, 1 free checked bag for each basic economy passenger, 2 free checked bag for each economy passenger, and 3 free checked bags for each business passenger. If the booking user is a gold member, 2 free checked bag for each basic economy passenger, 3 free checked bag for each economy passenger, and 3 free checked bags for each business passenger. Each extra baggage is 50 dollars. **[High complexity part marked in red]**

1588

- Travel insurance: the agent should ask if the user wants to buy the travel insurance, which is 30 dollars per passenger and enables full refund if the user needs to cancel the flight given health or weather reasons.

1589

Modify flight

1590

- The agent must first obtain the user id and the reservation id.

1591

- Change flights: Basic economy flights cannot be modified. Other reservations can be modified without changing the origin, destination, and trip type. Some flight segments can be kept, but their prices will not be updated based on the current price. The API does not check these for the agent, so the agent must make sure the rules apply before calling the API!

1592

- Change cabin: all reservations, including basic economy, can change cabin without changing the flights. Cabin changes require the user to pay for the difference between their

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621 current cabin and the new cabin class. Cabin class must be the same across all the flights in
 1622 the same reservation; changing cabin for just one flight segment is not possible.

1623 - Change baggage and insurance: The user can add but not remove checked bags. The user
 1624 cannot add insurance after initial booking.

1625 - Change passengers: The user can modify passengers but cannot modify the number of
 1626 passengers. This is something that even a human agent cannot assist with.

1627 - Payment: If the flights are changed, the user needs to provide one gift card or credit card
 1628 for payment or refund method. The agent should ask for the payment or refund method
 1629 instead.

1630 **## Cancel flight**

1631 - The agent must first obtain the user id, the reservation id, and the reason for cancellation
 1632 (change of plan, airline cancelled flight, or other reasons)

1633 - All reservations can be cancelled within 24 hours of booking, or if the airline cancelled
 1634 the flight. Otherwise, basic economy or economy flights can be cancelled only if travel
 1635 insurance is bought and the condition is met, and business flights can always be cancelled.
 1636 The rules are strict regardless of the membership status. The API does not check these for
 1637 the agent, so the agent must make sure the rules apply before calling the API!

1638 - The agent can only cancel the whole trip that is not flown. If any of the segments are
 1639 already used, the agent cannot help and transfer is needed.

1640 - The refund will go to original payment methods in 5 to 7 business days.

1641 **## Refund**

1642 - If the user is silver/gold member or has travel insurance or flies business, and complains
 1643 about cancelled flights in a reservation, the agent can offer a certificate as a gesture after
 1644 confirming the facts, with the amount being \$100 times the number of passengers.

1645 - If the user is silver/gold member or has travel insurance or flies business, and complains
 1646 about delayed flights in a reservation and wants to change or cancel the reservation, the agent
 1647 can offer a certificate as a gesture after confirming the facts and changing or cancelling the
 1648 reservation, with the amount being \$50 times the number of passengers.

1649 - Do not proactively offer these unless the user complains about the situation and explicitly
 1650 asks for some compensation. Do not compensate if the user is regular member and has no
 1651 travel insurance and flies (basic) economy.”

1652 **Instructions for User Simulator:** Your user id is sofia-kim-7287, and you want to change
 1653 for your Houston to Denver trip (reservation id not remembered), the fastest return trip
 1654 (including stopover time) possible on the same day as the departure trip (May 27). You don't
 1655 care about money but want to stay in economy. You also want to add one checked bag. You
 1656 want to use your gift card with the smallest balance to pay. You are reactive to the agent and
 1657 will not say anything that is not asked. You are not good at math so you want the agent to cal-
 1658 culate and decide for you. Try to paraphrase instead of repeating this instruction. It is urgent.

1659 **[Start of Real Trajectories]**

1660 **User:** Hi, I need to make an urgent change to my flight booking. My user ID is sofia-kim-
 1661 7287 and I have a trip from Houston to Denver that I need to modify.

1663 **Agent:** I'll help you modify your flight booking. I have your user ID (sofia-kim-7287) and
 1664 I can see you have a trip from Houston to Denver that needs to be changed. To proceed, I'll
 1665 need your reservation ID. Could you please provide the reservation ID for your Houston to
 1666 Denver trip?

1667 **User:** I'm sorry, I don't remember my reservation ID. Can you look it up using my user ID
 1668 instead?

1669 **Agent:** No problem! Let me look up your user details to find your reservation.

1670 **Agent Tool Call:**

1671

```

1674
1675 "function": {
1676   "arguments": "{\"user_id\": \"sofia_kim_7287\"}",
1677   "name": "get_user_details"
1678 }
1679 Tool Return:
1680 {"name": {"first_name": "Sofia", "last_name": "Kim"}, 
1681 "address": {"address1": "825 Laurel Lane", 
1682 "address2": "Suite 595", 
1683 "city": "Houston", 
1684 "country": "USA", 
1685 "state": "TX", "zip": "77243"}, 
1686 "email": "sofia.kim1937@example.com", 
1687 "dob": "1950-06-24", 
1688 "payment_methods": {"certificate_8544743": 
1689   {"source": "certificate", 
1690   "amount": 250, 
1691   "id": "certificate_8544743"}, 
1692   "credit_card_9879898": {"source": "credit_card", 
1693   "brand": "mastercard", 
1694   "last_four": "9725", 
1695   "id": "credit_card_9879898"}, 
1696   "gift_card_7091239": 
1697     {"source": "gift_card", "amount": 157, 
1698     "id": "gift_card_7091239"}, 
1699     "gift_card_6276644": 
1700       {"source": "gift_card", "amount": 113, 
1701       "id": "gift_card_6276644"}, 
1702       "gift_card_7480005": 
1703         {"source": "gift_card", "amount": 6, 
1704         "id": "gift_card_7480005"}, 
1705         "membership": "silver", 
1706         "reservations": 
1707           ["OI5L9G", "OBUT9V"] }
1708 Agent: I can see you have several reservations. Let me check each one to find your Houston
1709 to Denver trip. I'll start by checking the details of your reservations:
1710 Agent Tool Call:
1711 "function": {
1712   "arguments": "{\"reservation_id\": \"OI5L9G\"}",
1713   "name": "get_reservation_details"
1714 }
1715 Tool Return:
1716 "content": {
1717   "\\"reservation_id\\": \"OI5L9G\",
1718   "\\"user_id\\": \"sofia_kim_7287\",
1719   "\\"origin\\": \"MCO\",
1720   "\\"destination\\": \"CLT\",
1721   "\\"flight_type\\": \"one_way\",
1722   "\\"cabin\\": \"business\",
1723   "\\"flights\\": [
1724     {\\"origin\\": \"MCO\", \\"destination\\": \"BOS\",
1725     \\"flight_number\\": \"HAT017\", \\"date\\": \"2024-05-25\",
1726     \\"price\\": 523},
1727     {\\"origin\\": \"BOS\", \\"destination\\": \"CLT\",
1728     \\"flight_number\\": \"HAT277\", \\"date\\": \"2024-05-25\",
1729     \\"price\\": 523}
1730   ]
1731 }
1732

```

Agent: I can see you have several reservations. Let me check each one to find your Houston to Denver trip. I'll start by checking the details of your reservations:

```

1709 Agent Tool Call:
1710 "function": {
1711   "arguments": "{\"reservation_id\": \"OI5L9G\"}",
1712   "name": "get_reservation_details"
1713 }
1714 Tool Return:
1715 "content": {
1716   "\\"reservation_id\\": \"OI5L9G\",
1717   "\\"user_id\\": \"sofia_kim_7287\",
1718   "\\"origin\\": \"MCO\",
1719   "\\"destination\\": \"CLT\",
1720   "\\"flight_type\\": \"one_way\",
1721   "\\"cabin\\": \"business\",
1722   "\\"flights\\": [
1723     {\\"origin\\": \"MCO\", \\"destination\\": \"BOS\",
1724     \\"flight_number\\": \"HAT017\", \\"date\\": \"2024-05-25\",
1725     \\"price\\": 523},
1726     {\\"origin\\": \"BOS\", \\"destination\\": \"CLT\",
1727     \\"flight_number\\": \"HAT277\", \\"date\\": \"2024-05-25\",
1728     \\"price\\": 523}
1729   ]
1730 }
1731

```

```

1728
1729     \\"price\\": 501
1730   ],
1731   \\\"passengers\\": [
1732     {\\"first_name\\": \"Sofia\",
1733      \\"last_name\\": \"Kim\", \\"dob\\": \"1950-06-24\"},
1734     {\\"first_name\\": \"Mia\",
1735      \\"last_name\\": \"Jackson\", \\"dob\\": \"1986-05-05\"}
1736   ],
1737   \\\"payment_history\\": [
1738     {\\"payment_id\\": \"gift_card_6276644\", \\"amount\\": 2048}
1739   ],
1740   \\"created_at\\": \"2024-05-01T09:08:54\",
1741   \\"total_baggages\\": 2,
1742   \\"nonfree_baggages\\": 0,
1743   \\"insurance\\": \"no\\"
1744 }
1745 Agent Tool Call:
1746 "function": {
1747   "arguments": "{$\\\"reservation_id\\\"": \"OBUT9V\\\"}",
1748   "name": "get_reservation_details"
1749 }
1750 Tool Return:
1751 "content": "{"
1752   \\"reservation_id\\": \"OBUT9V\",
1753   \\"user_id\\": \"sofia_kim_7287\",
1754   \\"origin\\": \"IAH\",
1755   \\"destination\\": \"DEN\",
1756   \\"flight_type\\": \"round_trip\",
1757   \\"cabin\\": \"economy\",
1758   \\"flights\\": [
1759     {\\"origin\\": \"IAH\", \\"destination\\": \"ORD\",
1760      \\"flight_number\\": \"HAT078\", \\"date\\": \"2024-05-27\",
1761      \\"price\\": 146},
1762     {\\"origin\\": \"ORD\", \\"destination\\": \"DEN\",
1763      \\"flight_number\\": \"HAT118\", \\"date\\": \"2024-05-27\",
1764      \\"price\\": 167},
1765     {\\"origin\\": \"DEN\", \\"destination\\": \"LAS\",
1766      \\"flight_number\\": \"HAT084\", \\"date\\": \"2024-05-28\",
1767      \\"price\\": 122},
1768     {\\"origin\\": \"LAS\", \\"destination\\": \"IAH\",
1769      \\"flight_number\\": \"HAT266\", \\"date\\": \"2024-05-28\",
1770      \\"price\\": 131}
1771   ],
1772   \\\"passengers\\": [
1773     {\\"first_name\\": \"Sofia\",
1774      \\"last_name\\": \"Kim\", \\"dob\\": \"1950-06-24\"}
1775   ],
1776   \\\"payment_history\\": [
1777     {\\"payment_id\\": \"gift_card_7091239\", \\"amount\\": 566}
1778   ],
1779   \\"created_at\\": \"2024-05-07T16:32:35\",
1780   \\"total_baggages\\": 1,
1781   \\"nonfree_baggages\\": 0,
1782   \\"insurance\\": \"no\\"
1783 }
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855

```

1782
 1783 **Agent:** Perfect! I found your Houston to Denver trip. Your reservation ID is **OBUT9V**.
 1784 Here are the details of your current reservation:
 1785 - **Reservation ID**: OBUT9V
 1786 - **Trip**: Houston (IAH) to Denver (DEN) - Round trip -
 1787 - **Cabin**: Economy
 1788 - **Outbound**: May 27, 2024 - IAH to ORD on flight HAT078
 1789 - ORD to DEN on flight HAT118- **Return**: May 28, 2024
 1790 - DEN to LAS on flight HAT084 - LAS to IAH on flight HAT266
 1791 - **Passenger**: Sofia Kim
 1792 - **Baggage**: 1 checked bag (free)
 1793 What specific changes would you like to make to this reservation? You can:
 1794 - Change your flights (keeping the same origin/destination)
 1795 - Upgrade your cabin class
 1796 - Add more checked bags
 1797 Please let me know what modifications you need.
 1798
 1799 **User:** I need to change my return flight to the same day as my departure - May 27th. I want
 1800 the fastest return trip possible on that day, including any stopover time. I don't care about
 1801 the cost but want to stay in economy. Also, I need to add one more checked bag.
 1802
 1803 **Agent:** I understand you want to: 1. Change your return flight from May 28th to May 27th
 1804 (same day as departure) 2. Find the fastest return option on May 27th 3. Stay in economy
 1805 class 4. Add one more checked bag (from 1 to 2 total bags) Let me search for available
 1806 return flights from Denver to Houston on May 27th to find the fastest option:
 1807
 1808 **Agent Tool Call:**
 1809 "function": {
 1810 "arguments": "{\"destination\": \"IAH\",
 1811 \"date\": \"2024-05-27\", \"origin\": \"DEN\"}",
 1812 "name": "search_onestop_flight"
 1813 },
 1814 **Tool Return:**
 1815 "content": "[
 1816 {
 1817 \"flight_number\": \"HAT084\",
 1818 \"origin\": \"DEN\",
 1819 \"destination\": \"LAS\",
 1820 \"scheduled_departure_time_est\": \"04:00:00\",
 1821 \"scheduled_arrival_time_est\": \"06:00:00\",
 1822 \"status\": \"available\",
 1823 \"available_seats\": {
 1824 \"basic_economy\": 0,
 1825 \"economy\": 20,
 1826 \"business\": 20
 1827 },
 1828 \"prices\": {
 1829 \"basic_economy\": 50,
 1830 \"economy\": 112,
 1831 \"business\": 438
 1832 },
 1833 \"date\": \"2024-05-27\"
 1834 },
 1835 {
 1836 \"flight_number\": \"HAT175\",
 1837 \"origin\": \"LAS\",
 1838 \"destination\": \"IAH\",
 1839 \"scheduled_departure_time_est\": \"17:00:00\",
 1840 }
 1841]

```

1836
1837     \\"scheduled_arrival_time_est\": \"20:00:00\",
1838     \\"status\": \"available\",
1839     \\"available_seats\": {
1840         \\"basic_economy\": 7,
1841         \\"economy\": 16,
1842         \\"business\": 1
1843     },
1844     \\"prices\": {
1845         \\"basic_economy\": 95,
1846         \\"economy\": 170,
1847         \\"business\": 246
1848     },
1849     \\"date\": \"2024-05-27\"
1850 }
1851 [
1852 {
1853     \\"flight_number\": \"HAT084\",
1854     \\"origin\": \"DEN\",
1855     \\"destination\": \"LAS\",
1856     \\"scheduled_departure_time_est\": \"04:00:00\",
1857     \\"scheduled_arrival_time_est\": \"06:00:00\",
1858     \\"status\": \"available\",
1859     \\"available_seats\": {
1860         \\"basic_economy\": 0,
1861         \\"economy\": 20,
1862         \\"business\": 20
1863     },
1864     \\"prices\": {
1865         \\"basic_economy\": 50,
1866         \\"economy\": 112,
1867         \\"business\": 438
1868     },
1869     \\"date\": \"2024-05-27\"
1870 },
1871 {
1872     \\"flight_number\": \"HAT266\",
1873     \\"origin\": \"LAS\",
1874     \\"destination\": \"IAH\",
1875     \\"scheduled_departure_time_est\": \"13:00:00\",
1876     \\"scheduled_arrival_time_est\": \"16:00:00\",
1877     \\"status\": \"available\",
1878     \\"available_seats\": {
1879         \\"basic_economy\": 12,
1880         \\"economy\": 5,
1881         \\"business\": 8
1882     },
1883     \\"prices\": {
1884         \\"basic_economy\": 80,
1885         \\"economy\": 130,
1886         \\"business\": 378
1887     },
1888     \\"date\": \"2024-05-27\"
1889 }
1900 [
1901 {

```

```

1890
1891     \\"flight_number\\": \"HAT229\",
1892     \\"origin\\": \"DEN\",
1893     \\"destination\\": \"LAS\",
1894     \\"scheduled_departure_time_est\\": \"11:00:00\",
1895     \\"scheduled_arrival_time_est\\": \"13:00:00\",
1896     \\"status\\": \"available\",
1897     \\"available_seats\\": {
1898         \\"basic_economy\\": 19,
1899         \\"economy\\": 0,
1900         \\"business\\": 5
1901     },
1902     \\"prices\\": {
1903         \\"basic_economy\\": 80,
1904         \\"economy\\": 109,
1905         \\"business\\": 338
1906     },
1907     \\"date\\": \"2024-05-27\"
1908 },
1909 {
1910     \\"flight_number\\": \"HAT175\",
1911     \\"origin\\": \"LAS\",
1912     \\"destination\\": \"IAH\",
1913     \\"scheduled_departure_time_est\\": \"17:00:00\",
1914     \\"scheduled_arrival_time_est\\": \"20:00:00\",
1915     \\"status\\": \"available\",
1916     \\"available_seats\\": {
1917         \\"basic_economy\\": 7,
1918         \\"economy\\": 16,
1919         \\"business\\": 1
1920     },
1921     \\"prices\\": {
1922         \\"basic_economy\\": 95,
1923         \\"economy\\": 170,
1924         \\"business\\": 246
1925     },
1926     \\"date\\": \"2024-05-27\"
1927 },
1928 {
1929     \"flight_number\": \"HAT084\",
1930     \"origin\": \"DEN\",
1931     \"destination\": \"LAS\",
1932     \"scheduled_departure_time_est\": \"04:00:00\",
1933     \"scheduled_arrival_time_est\": \"06:00:00\",
1934     \"status\": \"available\",
1935     \"available_seats\": {
1936         \"basic_economy\": 0,
1937         \"economy\": 20,
1938         \"business\": 20
1939     },
1940     \"prices\": {
1941         \"basic_economy\": 50,
1942         \"economy\": 112,
1943         \"business\": 438
1944     },
1945     \"date\": \"2024-05-27\"
1946 },
1947

```

```

1944
1945  {
1946      "flight_number": "HAT266",
1947      "origin": "LAS",
1948      "destination": "IAH",
1949      "scheduled_departure_time_est": "13:00:00",
1950      "scheduled_arrival_time_est": "16:00:00",
1951      "status": "available",
1952      "available_seats": {
1953          "basic_economy": 12,
1954          "economy": 5,
1955          "business": 8
1956      },
1957      "prices": {
1958          "basic_economy": 80,
1959          "economy": 130,
1960          "business": 378
1961      },
1962      "date": "2024-05-27"
1963  }
1964
Agent: "Perfect! I found several return flight options for May 27th. Let me analyze the
1965 fastest options:
1966 **Available return flight options on May 27th (DEN to IAH):
1967 1. **FASTEST OPTION**: - DEN to LAS: HAT229 (11:00 AM - 1:00 PM) - LAS to
1968 IAH: HAT266 (1:00 PM - 4:00 PM) - **Total travel time: 5 hours** (11:00 AM - 4:00 PM)
1969 - No layover time needed (arrives and departs LAS at same time)
1970 2. Second fastest: - DEN to LAS: HAT084 (4:00 AM - 6:00 AM) - LAS to IAH: HAT266
1971 (1:00 PM - 4:00 PM) - Total travel time: 12 hours (4:00 AM - 4:00 PM) with 7-hour layover
1972 3. Third option: - DEN to LAS: HAT290 (2:00 PM - 4:00 PM) - LAS to IAH: HAT175
1973 (5:00 PM - 8:00 PM) - Total travel time: 6 hours (2:00 PM - 8:00 PM) with 1-hour layover
1974 The **fastest option** is HAT229 + HAT266, arriving at 4:00 PM in Houston.
1975 However, I notice that HAT229 shows 0 economy seats available. Let me recommend the
1976 **third option** (HAT290 + HAT175) which is only 1 hour longer and has economy seats
1977 available.
1978 **Proposed changes:**
1979 - **Flight changes**: Keep outbound flights, change return to HAT290 (DEN-LAS) +
1980 HAT175 (LAS-IAH) on May 27th
1981 - **Baggage**: Increase from 1 to 2 checked bags (1 additional bag = $50)
1982 - **Cabin**: Stay in economy
1983 Would you like me to proceed with these changes? I'll need a payment method for the
1984 additional baggage fee and any flight change costs.
1985
User: Yes, please proceed with those changes. I want to use my gift card with the smallest
1986 balance to pay for this. Can you help me figure out which one that would be and calculate
1987 the total cost?
1988
Agent: ***Cost Breakdown:***
1989 - **Flight change cost**: $59 (new flights $312 - current flights $253)
1990 - **Additional baggage**: $50 (1 extra checked bag)
1991 - **Total cost**: $109
1992
Agent: Your gift card balances:
1993 - gift-card-7480005: $6 (smallest balance)
1994 - gift-card-6276644: $113
1995 - gift-card-7091239: $157
1996
1997 Unfortunately, your gift card with the smallest balance ($6) won't cover the total cost of
$109. You have these payment options:
1998 - **gift-card-6276644** ($113) - would cover the full amount
1999 - **gift-card-7091239** ($157) - would cover the full amount

```

```

1998
1999 - **credit-card-9879898** (Mastercard ending in 9725)
2000 Which payment method would you prefer to use for the $109 total cost?
2001
2002 User: Oh, you're right - my smallest gift card won't cover it. Please use the gift card with
2003 $113 then, since that's the next smallest one that will actually cover the cost.
2004
2005 Agent: "Perfect! I'll use gift-card-6276644 ($113) to cover the $109 total cost.
2006 **Summary of changes to confirm:**"
2007 - **Reservation ID**: OBUT9V
2008 - **Flight changes**:
2009 - Keep outbound flights on May 27th (IAH - ORD - DEN)
2010 - Change return flights to May 27th: HAT290 (DEN - LAS 2:00-4:00 PM) + HAT175 (LAS
2011 - IAH 5:00-8:00 PM)
2012 - **Baggage**: Increase from 1 to 2 checked bags
2013 - **Cabin**: Stay in economy
2014 - **Payment**: gift-card-6276644 ($113 balance)- **Total cost**: $109
2015 Do you confirm these changes? Please respond with yes to proceed."
2016
2017 User: Yes, I confirm these changes.
2018 Agent Tool Call:
2019 "function" : {
2020   "arguments" : " {\\"
2021     \"reservation_id\\": \"OBUT9V\", \
2022     \"cabin\\": \"economy\", \
2023     \"flights\\": [
2024       {\"flight_number\\": \"HAT078\",
2025         \"date\\": \"2024-05-27\"}, \
2026       {\"flight_number\\": \"HAT118\",
2027         \"date\\": \"2024-05-27\"}, \
2028       {\"flight_number\\": \"HAT290\",
2029         \"date\\": \"2024-05-27\"}, \
2030       {\"flight_number\\": \"HAT175\",
2031         \"date\\": \"2024-05-27\"} \
2032     ],
2033     \"payment_id\\": \"gift_card_6276644\" \
2034   }",
2035   "name" : "update_reservation_flights"
2036 }
2037 Tool Return:
2038 "content" : {
2039   \"reservation_id\\": \"OBUT9V\",
2040   \"user_id\\": \"sofia_kim_7287\",
2041   \"origin\\": \"IAH\",
2042   \"destination\\": \"DEN\",
2043   \"flight_type\\": \"round_trip\",
2044   \"cabin\\": \"economy\",
2045   \"flights\\": [
2046     {
2047       \"flight_number\\": \"HAT078\",
2048       \"date\\": \"2024-05-27\",
2049       \"price\\": 146,
2050       \"origin\\": \"IAH\",
2051       \"destination\\": \"ORD\" \
2052     },
2053     {
2054       \"flight_number\\": \"HAT118\",
2055       \"date\\": \"2024-05-27\",
2056     }
2057   }
2058 }
```

```

2052
2053     \\"price\\": 167,
2054     \\"origin\\": \"ORD\",
2055     \\"destination\\": \"DEN\\"
2056   },
2057   {
2058     \\"flight_number\\": \"HAT290\",
2059     \\"date\\": \"2024-05-27\",
2060     \\"price\\": 142,
2061     \\"origin\\": \"DEN\",
2062     \\"destination\\": \"LAS\\"
2063   },
2064   {
2065     \\"flight_number\\": \"HAT175\",
2066     \\"date\\": \"2024-05-27\",
2067     \\"price\\": 170,
2068     \\"origin\\": \"LAS\",
2069     \\"destination\\": \"IAH\\"
2070   ],
2071   \\"passengers\\": [
2072     {
2073       \\"first_name\\": \"Sofia\",
2074       \\"last_name\\": \"Kim\",
2075       \\"dob\\": \"1950-06-24\\"
2076     }
2077   ],
2078   \\"payment_history\\": [
2079     {
2080       \\"payment_id\\": \"gift_card_7091239\",
2081       \\"amount\\": 566
2082     },
2083     {
2084       \\"payment_id\\": \"gift_card_6276644\",
2085       \\"amount\\": 59
2086     }
2087   ],
2088   \\"created_at\\": \"2024-05-07T16:32:35\",
2089   \\"total_baggages\\": 1,
2090   \\"nonfree_baggages\\": 0,
2091   \\"insurance\\": \"no\\"
2092 }

2093
2094 Agent: Great! Your flight changes have been successfully updated. Now let me add the
2095 additional checked bag.
2096
2097 By now, the agent has successfully updated the flights and everything is perfect,
2098 however it made an error in the last step when updating the checked bags.
2099
2100
2101
2102
2103
2104
2105

```

Agent Tool Call:

```

"function": {
  "arguments": "\\"
    \\"reservation_id\\": \"OBUT9V\",
    \\"total_baggages\\": 2,
    \\"nonfree_baggages\\": 1,
    \\"payment_id\\": \"gift_card_6276644\\"
  \",
  "name": "update_reservation_baggages"
},

```

2106
2107
2108
2109
2110
2111
2112
2113
2114

The agent added one non-free baggage to the reservation because the user requested an additional checked bag. However, according to the highlighted part of policy and the user’s history, the user is a Silver member traveling in economy class and is entitled to two free checked bags. By charging the user an extra checked bag fee, the agent made an error.

2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130

K FULL LIST OF RELATED WORK

K.1 PROMPT COMPRESSION FOR LARGE LANGUAGE MODELS

Prompt compression (Li et al., 2024) aims to obtain a more compact representation of lengthy inputs while preserving the original outputs. Early approaches include hard prompting (Chuang et al., 2024; Jiang et al., 2023; Li et al., 2023), which prune tokens that contribute little to the response while retaining natural language or subword tokens, and soft prompting (Mu et al., 2024; Ge et al., 2023; Chevalier et al., 2023), which replace the original prompt with learnable embeddings with the help of trainable encoder-decoder architecture. While soft prompts often rely on non natural language embeddings, they generally provide stronger generalization for handling diverse requirements. Our special token-based internalization (e.g., policy identifiers) combines the strengths of both: it is interpretable and thus easier for real-world business management, while still supporting flexible learning to enable generalization. PromptIntern (Zou et al., 2024) introduces a pipeline for progressively internalizing input tokens, but it does not explicitly address the unique reasoning challenges posed by the complex structure of policy documents.

K.2 DELIBERATE ALIGNMENT

Deliberative alignment proposes internalizing general safety rules and behaviors into a model’s prior, reducing the need to specify them in-context via additional training (Guan et al., 2024) or test-time deliberation (Zhang et al., 2025a). While related to our setting, this line of work is restricted to general safety behaviors, overlooks the broader scope of agentic policies, and does not address complex reasoning challenges central to policy internalization (e.g., workflow-level constraints).

K.3 CONTINUED PRETRAINING FOR LARGE LANGUAGE MODELS

Continued Pretraining (CPT) has become a critical paradigm for keeping large language models (LLMs) up-to-date with evolving data distributions while mitigating catastrophic forgetting. Positioned at the top layer of the modern continual learning pipeline, CPT incrementally trains LLMs on newly collected unlabeled corpora to retain general knowledge, acquire novel information, and revise outdated facts, offering a more efficient alternative to full retraining (Shi et al., 2025). Existing approaches largely build on classical continual learning methods, such as replay-based rehearsal of exemplars or pseudo-samples, parameter regularization techniques like Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) and RecAdam (Chen et al., 2020) to constrain parameter drift, and architecture-based strategies such as adapter modules, vocabulary expansion, and sparse modular structures (e.g. Mixture-of-Experts) that help isolate new knowledge without overwriting old representations (Shi et al., 2025; Zhou et al., 2024). In particular, modular expert-based designs like DEMix layers (Gururangan et al., 2022) support mixing, adding, or removing domain-specific experts to facilitate adaptation and reduce forgetting, and Lifelong-MoE (Chen et al., 2023) dynamically expands expert capacity during CPT to absorb new distributions while preserving prior knowledge. Empirical results suggest CPT methods consistently improve downstream generalization under gradual or correlated distribution shifts, though naive sequential updates can provoke significant forgetting in temporally shifting domains (Shi et al., 2025). Replay-based methods may be less effective in CPT due to overfitting risks, while parameter-efficient finetuning (LoRA, adapters) and modular expansion techniques show stronger robustness to both temporal and content shifts, making them attractive for scalable production pipelines (Zhou et al., 2024). Despite progress, current surveys stress that CPT research is still in early stages: technique diversity remains limited, long-horizon simulations are rare, and standardized evaluation benchmarks for vertical forgetting are lacking, pointing to important directions for future work (Shi et al., 2025). In our approach, we primarily rely on continued pretraining (CPT) to enable more generalizable learning and mitigate

2160 the catastrophic forgetting often observed in pure SFT methods, while incorporating targeted data
 2161 and policy-grounded question–answer pairs to better facilitate downstream adaptation.
 2162

2163 K.4 KNOWLEDGE INJECTION FOR LARGE LANGUAGE MODELS 2164

2165 Knowledge injection techniques aim to enhance the domain expertise of large language models
 2166 (LLMs) by integrating external or structured knowledge into their training or inference process,
 2167 thereby bridging the gap between general-purpose reasoning and specialized applications (Song
 2168 et al., 2025b). Existing methods are broadly categorized into four paradigms: dynamic knowl-
 2169 edge injection, which retrieves knowledge at inference time and augments the input context—often
 2170 using retrieval-augmented generation (RAG) with semantic search or knowledge graphs (Zhang
 2171 et al., 2024); static knowledge embedding, which encodes domain information into model param-
 2172 eters via continued pretraining or fine-tuning, enabling faster inference but risking catastrophic
 2173 forgetting when knowledge evolves; modular adapters, which introduce trainable modules such
 2174 as K-Adapters to store domain knowledge while keeping backbone parameters frozen, providing
 2175 parameter-efficient updates and preserving general capabilities (Wang et al., 2021; He et al., 2021);
 2176 and prompt optimization, which relies on carefully designed or learned prompts to guide the model
 2177 without parameter updates (Peng et al., 2025; Liu et al., 2024b). Recent work demonstrates that hy-
 2178 brid approaches, such as combining retrieval with prompt optimization or adapters (e.g., KnowGPT
 2179 and StructTuning), yield strong performance by balancing flexibility, scalability, and computational
 2180 efficiency (Liu et al., 2024b; Zhang et al., 2024). Empirical comparisons in biomedical and financial
 2181 domains show that static embedding often achieves the highest task-specific accuracy, while dy-
 2182 namic injection provides superior adaptability and up-to-date knowledge coverage, highlighting the
 2183 importance of choosing injection strategies based on application requirements (Song et al., 2025b).
 2184 In our work, the internalization of policy documents is related to, but distinct from, knowledge injec-
 2185 tion. Our task emphasizes deep understanding and practical application of policy rules rather than
 2186 mere memorization, which also requires extensive reasoning. To address these unique challenges,
 2187 we characterize the specific complexities of policy interpretation and propose a CPT-based approach
 2188 tailored to this setting. Among the aforementioned approaches, ours bears the closest resemblance
 2189 to prompt optimization.

2190 L ETHICAL STATEMENT ON LLM ASSISTANCE 2191

2192 In addition to the reported uses of large language models (LLMs) for running experiments, we
 2193 primarily use ChatGPT-5 as a tool for language refinement, including polishing text and improving
 2194 clarity. All model-generated content is thoroughly reviewed and rewritten by human authors to
 2195 ensure accuracy, originality, and adherence to research integrity standards.

2196 M LIMITATION AND FUTURE WORK 2197

2198 In this section, we discuss the limitations of our work and outline future directions.

2199 (1) **Scope of the benchmark.** Our study uses a text-only, single-turn agent setting (Section§ 2.1);
 2200 consequently, our complexity characterization primarily reflects the policy-document dimension and
 2201 its associated agentic tasks. In practice, complexity also arises from intricate user intents, multi-
 2202 turn planning and repair, and multimodal inputs (e.g., screenshots, receipts, instructional videos).
 2203 Extending CC-Gen and the evaluation suite to multi-turn and multimodal settings, while explicitly
 2204 modeling a distribution over user intents is an important next step.

2205 (2) **Training recipe.** Our approach emphasizes category-aware policy structure and applies contin-
 2206 ued pretraining (CPT) followed by SFT, underscoring that explicit complexity characterization is
 2207 indispensable. We did not incorporate reinforcement-learning stages (e.g., GRPO/PPO-style objec-
 2208 tives) that could leverage our trajectories. Adding an RL fine-tuning stage on top of CAP-CPT+SFT
 2209 for improved alignment is a promising extension.

2210 (3) **Challenging task variants.** Despite strong average gains, models remain brittle on policy-
 2211 substitute, policy-override, and policy-referral. These practical extensions of the core internalization
 2212 task helps to extend the robustness and safety of the overall system. Simply scaling training data

2214 may lift scores on a fixed evaluation set but yields limited gains more broadly because override gran-
 2215 ularity (what to override, scope, validity window) and referral formats are under-specified. Future
 2216 work includes targeted data generation with controllable override or referral schemas, counterfactual
 2217 training, and evaluation protocols that explicitly balance base performance, adaptation fidelity, and
 2218 robustness. While context engineering approaches for safe and reliable output (Wang et al., 2025)
 2219 are also under consideration.

2220 **(4) Fragility of strong priors.** We find that stronger reasoning models can be more prone to policy-
 2221 specific interference and forgetting. Although CAP-CPT with self-generated CoT mitigates this (Ap-
 2222 pendix F), we lack guarantees against negative transfer or regressions in general instruction follow-
 2223 ing. Future work should investigate selective internalization via policy identifiers, prior-preservation
 2224 regularizers, and continual-learning safeguards for safe deployment.

2225 **Future Work** An important direction is to integrate retrieval-augmented generation (RAG) with
 2226 our CAP-CPT framework to achieve more fine-grained and context-aware internalization, allowing
 2227 models to dynamically ground their policy reasoning in high-precision retrieved evidence. Another
 2228 promising avenue is to leverage reinforcement learning to further refine the internalization process,
 2229 enabling models to explore policy-consistent behaviors and optimize long-horizon adherence re-
 2230wards. We also plan to study methods for mitigating forgetting during continual policy updates,
 2231 ensuring that newly internalized rules do not overwrite previously aligned behaviors. Beyond the
 2232 current policy set, we aim to generalize to unseen policy documents by explicitly encoding over-
 2233 riding relationships between policy sources. Finally, we will explore parallel policy internalization,
 2234 enabling models to internalize multiple, potentially interacting policies simultaneously and resolve
 2235 conflicts through structured reasoning.

2237 N POLICY DOCUMENTS CLOSER TO THE REAL WORLD

2238 In this section, we extend our policy documents to a group of new policies which is written in a
 2239 completely different way compared to those policy documents generated by our {CC-Gen} bench-
 2240 mark. These policies are human written and polished by Large Language Models like GPT-5. We
 2241 used them and corersponding QAs for a more in-depth evaluation of our approach in real-world
 2242 scenarios. We show the complete content of one of these policy documents as below:

2243 Human written real-world Policy Evaluation

2244 # Airline Agent Policy

2245 The current time is 2025-10-31 23:42:08 EST.

2246 As an airline agent, you can help users book, modify, cancel, or query flight reservations.

2247 - Before taking any actions that update the booking database (booking, modifying flights,
 2248 editing baggage, upgrading cabin class, or updating passenger information), you must list
 2249 the action details and obtain explicit user confirmation (yes) to proceed.

2250 - You should not provide any information, knowledge, or procedures not provided by the
 2251 user or available tools, or give subjective recommendations or comments.

2252 - You should only make one tool call at a time, and if you make a tool call, you should not
 2253 respond to the user simultaneously. If you respond to the user, you should not make a tool
 2254 call at the same time.

2255 - You should deny user requests that are against this policy.

2256 - You should transfer the user to a human agent if and only if the request cannot be handled
 2257 within the scope of your actions.

2268

2269

2270

2271

2272

2273

Domain Basic

Profile Structure

Passengers Profile

The agent should use the {Username} and {PaxID} as conditions to access and locate the profile existence of the specific passenger. This profile also includes {membership_level}, {payment_methods}, {saved_passengers}, and {reservations} of the passenger. Among these attributes, {reservations} will be the primary key to Profile {Reservations}. The attribute {email} can be used as an alternative way to access the profiles {Passenger} while searching.

****Reservations Profile**** Each reservation contains {reservation_id}, {user_id}, {origin}, {destination}, {flight_type} (one_way, round_trip), {flights}, {passengers}, {payment_history}, {created_at}, {total_baggages}, and {nonfree_baggages}. Among these attributes, {user_id} links back to the Passengers profile, and {flights} contains {flight_number} which links to the Flights profile.

****Flights Profile**** Each flight has {flight_number}, {origin}, {destination}, {scheduled_departure_time_est}, {scheduled_arrival_time_est}, and for each {date}:

- If the status is "available", the flight has not taken off, {available_seats} and {prices} for each cabin are listed.
- If the status is "delayed", the flight has not taken off but is delayed, with {new_departure_time_est} and {delay_reason}.
- If the status is "landed", the flight has already landed with {actual_departure_time_est} and {actual_arrival_time_est}.
- If the status is "cancelled", the flight has been cancelled with {cancellation_reason}.

Membership Tiers and Benefits

- ****Basic****: 0% discount, limited baggage allowance
- ****Silver****: 10% discount on flights, enhanced baggage allowance
- ****Gold****: 15% discount on flights, premium baggage allowance
- ****Platinum****: 20% discount on flights, premium baggage allowance

Cabin Types

- ****basic_economy****: Lowest price, most restrictions
- ****economy****: Standard service
- ****business****: Premium service, most flexibility

Task 1: BookFlight

Step 1: User Identity Verification

****Input Parameters****: {user_id} for booking user and {companions} list with each companion's {user_id}

****Process****: The agent verifies each user exists in the Passengers profile by looking up their {user_id}. For each user, retrieve their {membership} level (platinum/gold/silver/basic) and {payment_methods}.

****Output****: {membership} for each passenger, {payment_methods} for booking user

****Policy Rules****: All user IDs must exist in the system. If any user ID is invalid, terminate the booking process.

Step 2: Flight Information Verification

2322
 2323 ****Input Parameters**:** {origin}, {destination}, {departure_time}, {arrive_time}, {cabin}
 2324 for each passenger
 2325
 2326 ****Process**:** Search the Flights profile for flights matching the route and time require-
 2327 ments. The flight must have status "available" and sufficient {available_seats} in the
 2328 requested {cabin} type for all passengers.
 2329
 2330 ****Output**:** {flight_number}, {prices} dictionary containing prices for basic_economy,
 2331 economy, and business cabins.
 2332
 2333 ****Policy Rules**:**
 2334 - Only flights with status "available" can be booked
 2335 - Flight departure time must be after {departure_time}
 2336 - Flight arrival time must be before {arrive_time}
 2337 - Available seats in requested cabin must be \geq number of passengers requesting that cabin
 2338
 2339 **### Step 3: Calculate Total Airfare Cost**
 2340
 2341 ****Input Parameters**:** {cabin} for each passenger, {prices} from flight, {membership}
 2342 for each passenger
 2343
 2344 ****Process**:** For each passenger, calculate their ticket cost as: cabin_price \times (1 - member-
 2345 ship_discount). Sum all passenger costs to get total airfare.
 2346
 2347 ****Output**:** {airfare_cost} (total for all passengers)
 2348
 2349 ****Policy Rules - Membership Discounts**:**
 2350
 2351 - **Platinum members:** 20% discount
 2352 - **Gold members:** 15% discount
 2353 - **Silver members:** 10% discount
 2354 - **Basic members:** 0% discount
 2355
 2356 **### Step 4: Calculate Checked Baggage Cost**
 2357
 2358 ****Input Parameters**:** {luggage_number} (total bags for all passengers), {membership}
 2359 of booking user, {cabin} of booking user
 2360
 2361 ****Process**:** Determine free baggage allowance based on booking user's membership and
 2362 cabin. Calculate excess baggage count and multiply by \$50 per bag.
 2363
 2364 ****Output**:** {baggage_cost}, {free_allowance}, {excess_bags}
 2365
 2366 ****Policy Rules - Free Baggage Allowance**:**
 2367
 2368 - **Basic membership:** 0 free bags (basic_economy), 1 bag(s) (economy), 2 bags (business)
 2369 - **Silver membership:** 1 free bag(s) (basic_economy), 2 bags (economy), 3 bags (business)
 2370 - **Gold membership:** 2 free bags (basic_economy), 3 bags (economy), 3 bags (business)
 2371 - **Platinum membership:** 2 free bags (basic_economy), 3 bags (economy), 3 bags (business)
 2372 - **Excess baggage fee:** \$50 per bag beyond free allowance
 2373
 2374 **### Step 5: Calculate Travel Insurance Cost**
 2375
 2376 ****Input Parameters**:** {insurance} status (yes/no) for each passenger
 2377
 2378 ****Process**:** Count passengers who selected insurance and multiply by \$30 per passenger.
 2379 ****Output**:** {insurance_cost}

2376
 2377 ****Policy Rules**:**
 2378 - Insurance price: \$30 per passenger
 2379 - Insurance coverage: Enables full refund if cancellation is due to health or weather reasons
 2380 - Insurance cannot be added after booking is completed

2381 **### Step 6: Payment Method Verification**

2382
 2383 ****Input Parameters**:** {payment_methods} selected by user, {final_cost} (sum of airfare
 2384 + baggage + insurance)
 2385 ****Process**:** Verify all selected payment methods exist in the booking user's profile.
 2386 Check that payment method combination follows policy limits.

2387
 2388 ****Output**:** Validation result (pass/fail)

2389
 2390 ****Policy Rules - Payment Method Limits**:**

2391 - Maximum 1 travel certificate per reservation - Maximum 1 credit card per reservation -
 2392 Maximum 3 gift cards per reservation - All payment methods must already exist in user's
 2393 profile for security - Travel certificate remaining balance is non-refundable

2394
 2395 **### Step 7: Confirmation and Execution**

2396
 2397 ****Input Parameters**:** All booking details including {user_ids}, {flight_number},
 2398 {passengers}, {final_cost}, {payment_methods}

2399
 2400 ****Process**:** Display complete booking summary including flight details, passenger
 2401 list, price breakdown (airfare, baggage, insurance), and total cost. Request explicit user
 2402 confirmation.

2403 ****Output**:** {reservation_id} if confirmed, or cancellation if user declines

2404
 2405 ****Policy Rules**:**
 2406 - Must display all booking details before confirmation - Require explicit "yes" confirmation
 2407 from user - Only create reservation after receiving confirmation

2408
 2409 **## Task 2: ModifyFlight**

2410
 2411 **### Step 1: User Identity Verification**

2412
 2413 ****Input Parameters**:** {user_id}, {reservation_id}

2414
 2415 ****Process**:** Verify the user exists in Passengers profile and retrieve their {membership},
 2416 {payment_methods}, and {reservations} list. Confirm that {reservation_id} exists in the
 2417 user's {reservations} list.

2418 ****Output**:** {membership}, {payment_methods}, validation result

2419
 2420 ****Policy Rules**:** - User must exist in the system - Reservation must belong to the user
 2421 (reservation_id must be in user's reservations list) - If validation fails, terminate modification
 2422 process

2423
 2424 **### Step 2: Reservation Status Check**

2425
 2426 ****Input Parameters**:** {reservation_id}

2427
 2428 ****Process**:** Retrieve complete reservation details from Reservations profile in-
 2429 cluding {flight_type}, {flights}, {passengers}, {total_baggage}, {nonfree_baggage},

2430
 2431 {payment_history}, {created_at}.

2432
 2433 ****Output**:** All reservation details, {hours_until_departure}

2434
 2435 ****Policy Rules**:** - Flight date must be in the future (not expired) - Reservation status
 2436 must be "confirmed" (not already used) - Time until departure must be \leq 2 hours (applies to
 2437 all cabin types) - If any rule violated, cannot modify reservation

2438 **### Step 3: Modification Eligibility Check**

2439
 2440 ****Input Parameters**:** {passengers} list with each passenger's {cabin}, {flights} list

2441
 2442 ****Process**:** Check if any passenger has basic_economy cabin. Calculate modification
 2443 fees based on cabin types.

2444
 2445 ****Output**:** {can_modify} (boolean), {total_modification_fee}

2446
 2447 ****Policy Rules**:** - If ANY passenger has basic_economy cabin \rightarrow Cannot modify flights
 2448 (terminate process) - Economy passengers: \$75 modification fee per person - Business
 2449 passengers: \$0 modification fee (free) - Cannot change {origin} or {destination} (must
 2450 cancel and rebook instead) - Can only change {departure_time} and {arrive_time} (same
 2451 route, different flight)

2452 **### Step 4: New Flight Verification**

2453
 2454 ****Input Parameters**:** {origin}, {destination}, {departure_time}, {arrive_time},
 2455 {passengers} with cabin requirements

2456
 2457 ****Process**:** Search Flights profile for available flights matching criteria. Verify sufficient
 2458 seats in each required cabin type.

2459
 2460 ****Output**:** {new_flights} list with {flight_number}, {prices}, {available_seats}

2461
 2462 ****Policy Rules**:** - New flights must have status "available" - Must have enough available
 2463 seats in each cabin for all passengers - Origin and destination must match original reservation

2464 **### Step 5: Price Difference Calculation**

2465
 2466 ****Input Parameters**:** {passengers} with {membership}, {flights} (original),
 2467 {new_flights}, {total_modification_fee}

2468
 2469 ****Process**:** For each passenger, calculate original flight cost and new flight cost with
 2470 membership discounts applied. Sum the differences and add modification fees.

2471
 2472 ****Output**:** {price_difference} (positive = payment needed, negative = refund),
 2473 {total_new_cost}, {total_original_cost}

2474
 2475 ****Policy Rules**:** - Apply membership discounts to both original and new flight costs -
 2476 Membership discounts: Platinum 20- Final price difference = (new_cost - original_cost) +
 2477 modification_fees

2478 **### Step 6: Payment Verification**

2479
 2480 ****Input Parameters**:** {payment_methods}, {price_difference}

2481
 2482 ****Process**:** If price_difference $<$ 0, verify payment method available. If price_difference $>$
 2483 0, process refund to original payment method. Display modification summary and request

2484
 2485 confirmation.
 2486
 2487 ****Output**:** Payment validation result, {reservation_id} (updated)
 2488
 2489 ****Policy Rules**:** - If payment required: Must use valid payment method from user profile
 2490 - If refund: Return to original payment method - Must show complete modification details
 2491 before confirmation - Require explicit "yes" confirmation

2492 **### Step 7: Confirmation and Execution**
 2493
 2494 ****Input Parameters**:** {reservation_id}, {new_flights}, {price_difference},
 2495 {payment_methods}
 2496
 2497 ****Process**:** Display complete modification summary and execute the flight change after
 2498 user confirmation.
 2499
 2500 ****Output**:** Updated {reservation_id}
 2501
 2502 ****Policy Rules**:** - Must display all modification details before confirmation - Require
 2503 explicit "yes" confirmation from user - Only update reservation after receiving confirmation

2504 **## Task 3: ModifyPassengers**
 2505
 2506 **### Step 1: User Identity Verification**
 2507
 2508 ****Input Parameters**:** {user_id}, {reservation_id}
 2509
 2510 ****Process**:** Verify the user exists in Passengers profile and retrieve their {membership},
 2511 {payment_methods}, and {reservations} list. Confirm that {reservation_id} exists in the
 2512 user's {reservations} list.
 2513
 2514 ****Output**:** {membership}, {payment_methods}, validation result
 2515
 2516 ****Policy Rules**:** - User must exist in the system - Reservation must belong to the user -
 2517 If validation fails, terminate modification process

2518 **### Step 2: Reservation Status Check**
 2519
 2520 ****Input Parameters**:** {reservation_id}
 2521
 2522 ****Process**:** Retrieve complete reservation details from Reservations profile in-
 2523 cluding {flight_type}, {flights}, {passengers}, {total_baggages}, {nonfree_baggages},
 2524 {payment_history}, {created_at}.
 2525
 2526 ****Output**:** All reservation details, {hours_until_departure}
 2527
 2528 ****Policy Rules**:** - Flight date must be in the future (not expired) - Reservation status
 2529 must be "confirmed" (not already used) - Time until departure must be \geq 2 hours - If any
 2530 rule violated, cannot modify reservation

2531 **### Step 3: Passenger Limit Check**
 2532
 2533 ****Input Parameters**:** {current_passenger_count}, {add_passengers} list,
 2534 {remove_passengers} list, {user_id} (booking user)
 2535
 2536
 2537

2538
 2539 ****Process**:** Calculate new passenger count after additions/removals. Verify limits and
 2540 restrictions.
 2541
 2542 ****Output**:** {new_passenger_count}, validation result
 2543
 2544 ****Policy Rules**:** - Maximum 5 passengers per reservation - Minimum 1 passenger
 2545 (cannot remove all passengers) - Cannot remove booking user (user_id of reservation
 2546 owner) - new_passenger_count = current_count + add_count - remove_count - Must satisfy:
 2547 $1 \leq \text{new_passenger_count} \leq 5$
 2548
Step 4: Remove Passenger Processing
 2549
 2550 ****Input Parameters**:** {remove_passengers} list with {user_id} for each, {passengers}
 2551 current list, {flights}
 2552
 2553 ****Process**:** For each passenger being removed, calculate their flight cost with member-
 2554 ship discount applied. Calculate refund as 80% of flight cost. If passenger had insurance,
 2555 refund full \$30 insurance cost.
 2556
 2557 ****Output**:** {refund_amount}, {removed_passenger_details}
 2558
 2559 ****Policy Rules**:** - Refund policy: 80% of flight cost per removed passenger - Insurance
 2560 refund: 100% (\$30) if passenger had insurance - Baggage fees: Non-refundable (no refund
 2561 for baggage) - Apply membership discounts when calculating original flight cost
 2562
Step 5: Add Passenger Processing
 2563
 2564 ****Input Parameters**:** {add_passengers} list with {user_id}, {cabin}, {insurance},
 2565 {luggage_number} for each, {flights}
 2566
 2567 ****Process**:** For each new passenger, verify user.id exists, check flight seat availability in
 2568 requested cabin, calculate costs (flight + insurance + baggage with membership discounts
 2569 and free allowances).
 2570
 2571 ****Output**:** {additional_cost}, {added_passenger_details}
 2572
 2573 ****Policy Rules**:** - All new passenger user_ids must exist in Passengers profile - Flights
 2574 must have available seats in requested cabins - Calculate flight cost with membership
 2575 discount - Insurance: \$30 per passenger if requested - Baggage: Apply free allowance based
 2576 on passenger's membership and cabin, charge \$50 per excess bag
 2577
Step 6: Total Cost Calculation
 2578
 2579 ****Input Parameters**:** {refund_amount}, {additional_cost}
 2580
 2581 ****Process**:** Calculate net cost (additional_cost - refund_amount).
 2582
 2583 ****Output**:** {total_price_difference}
 2584
 2585 ****Policy Rules**:** - Net cost = additional_cost - refund_amount - If net cost < 0 : Payment
 2586 required - If net cost > 0 : Refund to original payment method
 2587
Step 7: Payment Verification
 2588
 2589 ****Input Parameters**:** {payment_methods}, {total_price_difference}
 2590
 2591

2592
 2593 ****Process**:** If positive cost, verify payment. If negative, process refund. Display
 2594 passenger change summary and request confirmation.
 2595
 2596 ****Output**:** Payment validation result
 2597
 2598 ****Policy Rules**:** - Must display all passenger changes and costs before confirmation -
 2599 Require explicit "yes" confirmation
 2600
Step 8: Confirmation and Execution
 2601
 2602 ****Input Parameters**:** {reservation_id}, {add_passengers}, {remove_passengers},
 2603 {total_price_difference}
 2604
 2605 ****Process**:** Display complete passenger modification summary and execute changes
 2606 after user confirmation.
 2607
 2608 ****Output**:** Updated {reservation_id}
 2609
 2610 ****Policy Rules**:** - Must display complete modification details - Require explicit "yes"
 2611 confirmation from user - Only update reservation after receiving confirmation
 2612
Task 4: ModifyCabin
 2613
Step 1: User Identity Verification
 2614
 2615 ****Input Parameters**:** {user_id}, {reservation_id}
 2616
 2617 ****Process**:** Verify the user exists in Passengers profile and retrieve their {membership},
 2618 {payment_methods}, and {reservations} list. Confirm that {reservation_id} exists in the
 2619 user's {reservations} list.
 2620
 2621 ****Output**:** {membership}, {payment_methods}, validation result
 2622
 2623 ****Policy Rules**:** - User must exist in the system - Reservation must belong to the user -
 2624 If validation fails, terminate modification process
 2625
Step 2: Reservation Status Check
 2626
 2627 ****Input Parameters**:** {reservation_id}
 2628
 2629 ****Process**:** Retrieve complete reservation details from Reservations profile including
 2630 {flight_type}, {flights}, {passengers}, {total_baggages}, {payment_history}, {created_at}.
 2631
 2632 ****Output**:** All reservation details, {hours_until_departure}
 2633
 2634 ****Policy Rules**:** - Flight date must be in the future (not expired) - Reservation status
 2635 must be "confirmed" (not already used) - Time until departure must be \geq 2 hours - If any
 2636 rule violated, cannot modify reservation
 2637
Step 3: Cabin Change Eligibility Check
 2638
 2639 ****Input Parameters**:** {passenger_user_id}, {original_cabin}, {new_cabin}, {flights}
 2640
 2641 ****Process**:** Verify cabin change is allowed (upgrade or downgrade with restrictions).
 2642 Check all flights have available seats in new cabin.
 2643
 2644
 2645

2646
 2647 ****Output**:** {can_change} (boolean), {change_type} (upgrade/downgrade)
 2648
 2649 ****Policy Rules - Allowed Changes**:** - Upgrades allowed: basic_economy → economy/business, economy → business - Downgrades allowed with partial refund: - business → economy or basic_economy: Refund 80% of price difference - economy → basic_economy: Refund 50% of price difference - Must change all flight segments together (cannot change only one flight in round trip) - All flights must have available seats in new cabin
 2650
 2651
 2652
 2653
 2654 **### Step 4: Cabin Price Difference Calculation**
 2655
 2656 ****Input Parameters**:** {passenger_user_id}, {original_cabin}, {new_cabin}, {flights},
 2657 {current_luggage_number}
 2658
 2659 ****Process**:** Calculate price difference between cabins with membership discount.
 2660 Recalculate baggage allowance and fees based on new cabin.
 2661
 2662 ****Output**:** {cabin_price_difference}, {luggage_cost_difference}, {new_free_allowance}
 2663
 2664 ****Policy Rules**:** - Apply passenger's membership discount to both original and new
 2665 cabin prices - For upgrades: price_difference = new_cabin_cost - original_cabin_cost - For
 2666 downgrades: price_difference = -(original_cabin_cost - new_cabin_cost) × refund_percentage
 2667 - Recalculate free baggage allowance based on new cabin and membership - Recalculate
 2668 excess baggage fees: (luggage_number - new_free_allowance) × \$50
 2669
 2670 **### Step 5: Baggage Allowance Adjustment**
 2671
 2672 ****Input Parameters**:** {passenger_user_id}, {membership}, {new_cabin},
 2673 {current_luggage_number}
 2674
 2675 ****Process**:** Calculate new free baggage allowance and any additional fees or refunds.
 2676
 2677 ****Output**:** {new_free_allowance}, {baggage_adjustment}
 2678
 2679 ****Policy Rules**:** - New free allowance based on membership and new cabin - If new
 2680 allowance > old allowance: May receive partial refund for previously paid bags - If new
 2681 allowance < old allowance: May owe additional fees
 2682
 2683 **### Step 6: Payment Verification**
 2684
 2685 ****Input Parameters**:** {payment_methods}, {cabin_price_difference},
 2686 {luggage_cost_difference}
 2687
 2688 ****Process**:** Calculate total cost (cabin_price_difference + luggage_cost_difference).
 2689 Process payment or refund. Display cabin change summary and request confirmation.
 2690
 2691 ****Output**:** {total_cost}, {reservation_id} (updated)
 2692
 2693 ****Policy Rules**:** - Total cost = cabin_price_difference + luggage_cost_difference - Must
 2694 display cabin change details, price breakdown, and baggage allowance changes - Require
 2695 explicit "yes" confirmation
 2696
 2697 **### Step 7: Confirmation and Execution**
 2698
 2699 ****Input Parameters**:** {reservation_id}, {passenger_user_id}, {new_cabin}, {total_cost}

2700
 2701 ****Process**:** Display complete cabin modification summary and execute changes after
 2702 user confirmation.
 2703
 2704 ****Output**:** Updated {reservation_id}
 2705
 2706 ****Policy Rules**:** - Must display all modification details before confirmation - Require
 2707 explicit "yes" confirmation from user - Only update reservation after receiving confirmation
 2708
Task 5: ModifyInsurance
 2709
Step 1: User Identity Verification
 2710
 2711 ****Input Parameters**:** {user_id}, {reservation_id}
 2712
 2713 ****Process**:** Verify the user exists in Passengers profile and retrieve their {membership},
 2714 {payment_methods}, and {reservations} list. Confirm that {reservation_id} exists in the
 2715 user's {reservations} list.
 2716
 2717 ****Output**:** {membership}, {payment_methods}, validation result
 2718
 2719 ****Policy Rules**:** - User must exist in the system - Reservation must belong to the user -
 2720 If validation fails, terminate modification process
 2721
Step 2: Reservation Status Check
 2722
 2723 ****Input Parameters**:** {reservation_id}
 2724
 2725 ****Process**:** Retrieve complete reservation details from Reservations profile including
 2726 {flight_type}, {flights}, {passengers}, {payment_history}, {created_at}.
 2727
 2728 ****Output**:** All reservation details, {hours.until_departure}
 2729
 2730 ****Policy Rules**:** - Flight date must be in the future (not expired) - Reservation status
 2731 must be "confirmed" (not already used) - Time until departure must be \geq 2 hours - If any
 2732 rule violated, cannot modify reservation
 2733
Step 3: Insurance Modification Validation
 2734
 2735 ****Input Parameters**:** {passenger_user_id}, {original_insurance}, {new_insurance}
 2736
 2737 ****Process**:** Verify insurance modification is allowed (only additions permitted). Calculate
 2738 insurance cost if adding.
 2739
 2740 ****Output**:** {insurance_cost}, validation result
 2741
 2742 ****Policy Rules**:** - Can ONLY ADD insurance (no \rightarrow yes transition allowed) - CANNOT
 2743 REMOVE insurance (yes \rightarrow no transition forbidden) - If already has insurance (yes \rightarrow yes):
 2744 No change needed, return error - Insurance price: \$30 per passenger - Insurance coverage:
 2745 Full refund for health/weather cancellation reasons
 2746
Step 4: Insurance Cost Calculation
 2747
 2748 ****Input Parameters**:** {passenger_user_id}, {new_insurance}
 2749
 2750 ****Process**:** Calculate insurance cost for the passenger.
 2751
 2752
 2753

2754
 2755 ****Output**:** {insurance_cost}
 2756
 2757 ****Policy Rules**:** - Insurance cost: \$30 per passenger - Must process payment before
 2758 adding insurance
 2759
 2760 **### Step 5: Payment Verification**
 2761
 2762 ****Input Parameters**:** {payment_methods}, {insurance_cost}
 2763
 2764 ****Process**:** Verify payment method and process payment for insurance. Display
 2765 insurance addition summary and request confirmation.
 2766
 2767 ****Output**:** Payment validation result
 2768
 2769 ****Policy Rules**:** - Must use valid payment method from user profile - Must display
 2770 insurance details and cost before confirmation - Require explicit "yes" confirmation
 2771
 2772 **### Step 6: Confirmation and Execution**
 2773
 2774 ****Input Parameters**:** {reservation_id}, {passenger_user_id}, {insurance_cost}
 2775
 2776 ****Process**:** Display complete insurance modification summary and execute changes after
 2777 user confirmation.
 2778
 2779 ****Output**:** Updated {reservation_id}
 2780
 2781 ****Policy Rules**:** - Must display all modification details before confirmation - Require
 2782 explicit "yes" confirmation from user - Only update reservation after receiving confirmation
 2783 - Insurance cannot be removed once added
 2784
 2785 **## Task 6: ModifyLuggage**
 2786
 2787 **### Step 1: User Identity Verification**
 2788
 2789 ****Input Parameters**:** {user_id}, {reservation_id}
 2790
 2791 ****Process**:** Verify the user exists in Passengers profile and retrieve their {membership},
 2792 {payment_methods}, and {reservations} list. Confirm that {reservation_id} exists in the
 2793 user's {reservations} list.
 2794
 2795 ****Output**:** {membership}, {payment_methods}, validation result
 2796
 2797 ****Policy Rules**:** - User must exist in the system - Reservation must belong to the user -
 2798 If validation fails, terminate modification process
 2799
 2800 **### Step 2: Reservation Status Check**
 2801
 2802 ****Input Parameters**:** {reservation_id}
 2803
 2804 ****Process**:** Retrieve complete reservation details from Reservations profile in-
 2805 cluding {flight_type}, {flights}, {passengers}, {total_baggages}, {nonfree_baggages},
 2806 {payment_history}, {created_at}.
 2807
 2808 ****Output**:** All reservation details, {hours.until_departure}
 2809
 2810 ****Policy Rules**:** - Flight date must be in the future (not expired) - Reservation status
 2811 must be "confirmed" (not already used) - Time until departure must be \geq 2 hours - If any
 2812

2808
 2809 rule violated, cannot modify reservation
 2810
 2811 **### Step 3: Luggage Modification Validation**
 2812
 2813 ****Input Parameters**:** {passenger_user_id}, {original_luggage_number},
 2814 {new_luggage_number}, {cabin}, {total_baggages}
 2815 ****Process**:** Verify baggage modification is allowed (only additions). Check limits.
 2816
 2817 ****Output**:** {can_modify} (boolean), validation result
 2818
 2819 ****Policy Rules**:** - Can ONLY ADD baggage (new_luggage_number must be > original_luggage_number) - CANNOT REMOVE baggage (already added baggage is non-refundable) - Maximum 8 bags per passenger - Maximum 8 bags per reservation total - If limits exceeded, cannot modify
 2820
 2821
 2822
 2823 **### Step 4: Additional Luggage Cost Calculation**
 2824
 2825
 2826 ****Input Parameters**:** {passenger_user_id}, {membership}, {cabin},
 2827 {original_luggage_number}, {new_luggage_number}
 2828
 2829 ****Process**:** Calculate free allowance based on passenger's membership and cabin. Calculate additional baggage cost.
 2830
 2831 ****Output**:** {additional_luggage_cost}, {new_total_baggages}
 2832
 2833 ****Policy Rules**:** - Calculate free allowance based on membership and cabin - Additional cost = (new_paid_bags - original_paid_bags) × \$50 - new_paid_bags = max(0, new_luggage_number - free_allowance) - original_paid_bags = max(0, original_luggage_number - free_allowance)
 2834
 2835
 2836
 2837 **### Step 5: Payment Verification**
 2838
 2839 ****Input Parameters**:** {payment_methods}, {additional_luggage_cost}
 2840
 2841 ****Process**:** Verify payment method and process payment for additional luggage. Display luggage addition summary and request confirmation.
 2842
 2843
 2844 ****Output**:** Payment validation result
 2845
 2846 ****Policy Rules**:** - Must use valid payment method from user profile - Must display luggage details and cost before confirmation - Require explicit "yes" confirmation
 2847
 2848 **### Step 6: Confirmation and Execution**
 2849
 2850
 2851 ****Input Parameters**:** {reservation_id}, {passenger_user_id}, {new_luggage_number},
 2852 {additional_luggage_cost}
 2853
 2854 ****Process**:** Display complete luggage modification summary and execute changes after user confirmation.
 2855
 2856 ****Output**:** Updated {reservation_id}
 2857
 2858 ****Policy Rules**:** - Must display all modification details before confirmation - Require explicit "yes" confirmation from user - Only update reservation after receiving confirmation - Luggage cannot be removed once added
 2859
 2860
 2861

```
2862
2863 ## Task 7: CancelFlight
2864
2865 ### Step 1: User Identity Verification
2866
2867 **Input Parameters**: {user_id}, {reservation_id}
2868
2869 **Process**: Verify user exists in Passengers profile and retrieve {membership}, {payment_methods}, and {reservations} list. Confirm {reservation_id} is in user's reservations.
2870
2871
2872 **Output**: {membership}, {payment_methods}, validation result
2873
2874 **Policy Rules**: - User must exist in the system - Reservation must belong to the user - If validation fails, terminate cancellation process
2875
2876
2877 ### Step 2: Reservation Status Check
2878
2879 **Input Parameters**: {reservation_id}
2880
2881 **Process**: Retrieve complete reservation details including {flight_type}, {flights}, {passengers}, {total_baggages}, {payment_history}, {created_at}.
2882
2883 **Output**: All reservation details, {hours_until_departure}
2884
2885 **Policy Rules**: - Flight date must be in the future (not expired) - Reservation status must be "confirmed" (not already used) - If flight already departed or used, cannot cancel
2886
2887
2888 ### Step 3: Cancellation Eligibility Check
2889
2890 **Input Parameters**: {passengers} with {cabin} for each, {flights}, {created_at}, {hours_until_departure}
2891
2892 **Process**: Check each passenger's cabin type to determine cancellation eligibility and fees. Calculate time-based restrictions and additional fees.
2893
2894
2895 **Output**: {can_cancel} (boolean), {total_cancellation_fee}, {has_basic_economy}
2896
2897 **Policy Rules - Cancellation Fees by Cabin**: - basic_economy: Non-refundable ($0 refund) - economy: Refundable with $200 cancellation fee per passenger - business: Refundable with $75 cancellation fee per passenger
2898
2899
2900 **Policy Rules - Time Restrictions**: - Less than 2 hours until departure: Cannot cancel (terminate process) - 2-24 hours until departure: Additional $50 emergency cancellation fee (applied once per reservation) - More than 24 hours until departure: Normal cancellation fees only
2901
2902
2903
2904
2905 **Policy Rules - Warnings**: - If any passenger has basic_economy: Display warning "Reservation includes Basic Economy cabin, that portion is non-refundable"
2906
2907
2908 ### Step 4: Refund Amount Calculation
2909
2910 **Input Parameters**: {passengers} with {cabin}, {insurance}, {membership} for each, {flights}, {cancel_reason}, {total_cancellation_fee}, {hours_until_departure}
2911
2912 **Process**: For each passenger, calculate their original flight cost with membership discount. Determine refund based on cabin type and cancellation reason. Add insurance
```

2916
 2917 refund if applicable. Subtract emergency fee if within 24 hours.
 2918
 2919 ****Output**:** {total_refund}, {refund_breakdown} (per passenger details)
 2920
 2921 ****Policy Rules - Refund Calculation**:** - basic_economy passengers: \$0 refund (non-
 2922 refundable) - Special cancellation reasons (weather/health): Full refund of flight cost (no
 2923 cancellation fee) - Normal cancellation (personal/schedule_change): - economy: flight_cost
 2924 - \$200 cancellation fee - business: flight_cost - \$75 cancellation fee - Insurance refund: - If
 2925 cancel_reason is weather or health: Refund \$30 per passenger with insurance - Otherwise:
 2926 \$0 insurance refund - Emergency cancellation fee: Subtract \$50 if hours_until_departure > 24
 2927 - Baggage fees: Non-refundable (no refund for any baggage fees paid) - Apply membership
 2928 discounts when calculating original flight costs

2929 **### Step 5: Refund Method Confirmation**

2930
 2931 ****Input Parameters**:** {payment_history}, {total_refund}
 2932
 2933 ****Process**:** Determine refund destination based on original payment method used.
 2934
 2935 ****Output**:** {refund_method}, {refund_destination}

2936
 2937 ****Policy Rules - Refund Methods**:** - If paid with credit card: Refund to the same credit
 2938 card - If paid with travel certificate: Issue new travel certificate for refund amount - If
 2939 paid with gift card: Refund to new gift card - Refund processing time: 5-7 business days -
 2940 Refund goes to original payment method(s) in reverse order of use

2941 **### Step 6: Confirmation and Execution**

2942
 2943 ****Input Parameters**:** {reservation_id}, {total_refund}, {cancel_reason},
 2944 {payment_history}, {refund_breakdown}

2945
 2946 ****Process**:** Display complete cancellation summary including flight details, each
 2947 passenger's refund breakdown, cancellation fees, total refund amount, and refund method.
 2948 Request explicit user confirmation.

2949
 2950 ****Output**:** Cancellation confirmation, {reservation_id} (cancelled status)

2951
 2952 ****Policy Rules**:** - Must display complete cancellation details before confirmation - Show
 2953 per-passenger refund breakdown - Show all fees (cancellation fees, emergency fees) - Show
 2954 refund method and expected processing time - Require explicit "yes" confirmation from
 2955 user - Only process cancellation after receiving confirmation

2956 **## Task 8: QueryFlight**

2957 **### Query Type 1: Search Available Flights**

2958
 2959 ****Step 1: Parameter Validation****

2960
 2961 ****Input Parameters**:** {origin}, {destination}, {departure_date}, {return_date} (optional),
 2962 {cabin} (optional), {passenger_count} (optional, default 1)

2963
 2964 ****Process**:** Validate all input parameters to ensure they meet requirements for flight
 2965 search.

2966
 2967 ****Output**:** Validation result (pass/fail)

2968
 2969

2970
 2971 ****Policy Rules**:** - {origin} and {destination} must be valid 3-letter airport codes -
 2972 {origin} cannot equal {destination} - {departure_date} must be a future date (not in the
 2973 past) - If {return_date} provided, it must be later than {departure_date} - {passenger_count}
 2974 must be positive integer (1-5)

2975
 2976 ****Step 2: Search Outbound Flights****

2977 ****Input Parameters**:** {origin}, {destination}, {departure_date}, {cabin} (optional),
 2978 {passenger_count}

2979
 2980 ****Process**:** Query Flights profile for all flights matching the route on the specified date.
 2981 Filter for flights with status "available" and sufficient seats. Sort results by departure time.

2982
 2983 ****Output**:** {outbound_flights} list with {flight_number}, {departure_time},
 2984 {arrival_time}, {available_seats}, {prices} for each flight

2985
 2986 ****Policy Rules**:** - Only include flights with status "available" - If {cabin} specified:
 2987 Only include flights with available_seats[cabin] \geq passenger_count - If {cabin} not
 2988 specified: Include all flights with any cabin having sufficient seats - Sort flights by
 2989 {expected_departure_time_est} in ascending order

2990
 2991 ****Step 3: Search Return Flights (if round trip)****

2992 ****Input Parameters**:** {destination}, {origin}, {return_date}, {cabin} (optional),
 2993 {passenger_count}

2994
 2995 ****Process**:** If {return_date} provided, search for return flights using same logic as
 2996 outbound search, but with origin and destination swapped.

2997
 2998 ****Output**:** {return_flights} list (same structure as outbound_flights)

2999
 3000 ****Policy Rules**:** Same as Step 2, applied to return route

3001
 3002 ****Step 4: Format and Return Results****

3003
 3004 ****Input Parameters**:** {outbound_flights}, {return_flights} (if applicable)

3005
 3006 ****Process**:** Format search results into readable display showing all flight options with
 3007 details.

3008
 3009 ****Output**:** Formatted flight search results

3010
 3011 ****Policy Rules - Display Format**:** - Show search criteria (origin, destination, dates,
 3012 passenger count) - For each flight, display: - Flight number - Departure and arrival times -
 3013 Available seats by cabin type (basic_economy, economy, business) - Prices by cabin type -
 3014 Indicate if no flights found matching criteria

3015
 3016 **### Query Type 2: Check Reservation Details**

3017
 3018 ****Step 1: User Identity Verification****

3019
 3020 ****Input Parameters**:** {user_id}, {reservation_id}

3021
 3022 ****Process**:** Verify user exists and that the reservation belongs to them.

3023 ****Output**:** Validation result

3024
 3025 ****Policy Rules**:** - User must exist in Passengers profile - {reservation_id} must be in
 3026 user's {reservations} list - If validation fails, deny access to reservation details
 3027
 3028 ****Step 2: Get Reservation Information****
 3029
 3030 ****Input Parameters**:** {reservation_id}
 3031
 3032 ****Process**:** Retrieve complete reservation details from Reservations profile including all
 3033 fields.
 3034
 3035 ****Output**:** {reservation_info} with {user_id}, {origin}, {destination}, {flight_type},
 3036 {flights}, {passengers}, {payment_history}, {total_baggages}, {nonfree_baggages},
 3037 {created_at}
 3038
 3039 ****Policy Rules**:** Return all reservation data without modification
 3040
 3041 ****Step 3: Get Flight Real-time Status****
 3042
 3043 ****Input Parameters**:** {flights} list from reservation
 3044
 3045 ****Process**:** For each flight in the reservation, query Flights profile to get current real-time
 3046 status.
 3047
 3048 ****Output**:** {flight_statuses} list with {status}, {expected_departure_time},
 3049 {expected_arrival_time}, and status-specific fields
 3050
 3051 ****Policy Rules**:** Retrieve current status for each flight from Flights profile
 3052
 3053 ****Step 4: Format and Return Details****
 3054
 3055 ****Input Parameters**:** {reservation_info}, {flight_statuses}
 3056
 3057 ****Process**:** Format complete reservation details into readable display.
 3058
 3059 ****Output**:** Formatted reservation details
 3060
 3061 ****Policy Rules - Display Format**:** - Show reservation ID and booking user - Show
 3062 booking time and status - For each flight: flight number, route, date, times, current status -
 3063 For each passenger: name, cabin, insurance status - Show baggage information (total bags,
 3064 paid bags) - Show payment information (methods used, amounts)
 3065
 3066 **### Query Type 3: Check Flight Status**
 3067
 3068 ****Step 1: Parameter Validation****
 3069
 3070 ****Input Parameters**:** {flight_number}, {date}
 3071
 3072 ****Process**:** Validate that flight number and date are in correct format.
 3073
 3074 ****Output**:** Validation result
 3075
 3076 ****Policy Rules**:** - {flight_number} must be valid format (3-letter airline code + 3-4 digit
 3077 number) - {date} must be valid date format (YYYY-MM-DD)
 3078
 3079 ****Step 2: Get Flight Information****
 3080

3078
 3079 ****Input Parameters**:** {flight_number}, {date}
 3080
 3081 ****Process**:** Query Flights profile for the specified flight and date. Retrieve all available
 3082 information.
 3083
 3084 ****Output**:** {flight_details} with {origin}, {destination}, {scheduled_departure_time},
 3085 {scheduled_arrival_time}, {status}, and status-specific fields
 3086
 3087 ****Policy Rules**:** - If flight_number not found: Return error "Flight number does not
 3088 exist" - If date not found for flight: Return error "No flight information for this date" -
 3089 Return all available information for the flight on that date
 3090
 3091 ****Step 3: Format and Return Status****
 3092
 3093 ****Input Parameters**:** {flight_details}
 3094
 3095 ****Process**:** Format flight status information into readable display based on current status.
 3096
 3097 ****Output**:** Formatted flight status
 3098
 3099 ****Policy Rules - Display Format**:** - Show flight number, date, and route - Show sched-
 3100 uled departure and arrival times - Show current status (available/delayed/landed/cancelled)
 3101 - If status is "available": Show expected times, available seats by cabin, prices by cabin -
 3102 If status is "delayed": Show new expected times and delay reason - If status is "landed":
 3103 Show actual departure and arrival times - If status is "cancelled": Show cancellation reason
 3104
 3105 **### Query Type 4: Check User Information**
 3106
 3107 ****Step 1: User Identity Verification****
 3108
 3109 ****Input Parameters**:** {user_id}
 3110
 3111 ****Process**:** Verify user exists and retrieve complete profile from Passengers profile.
 3112
 3113 ****Output**:** {user_info} with {PaxID}, {name}, {email}, {dob}, {address},
 3114 {membership}, {payment_methods}, {saved_passengers}, {reservations}
 3115
 3116 ****Policy Rules**:** - User must exist in Passengers profile - If user not found: Return error
 3117 "User ID invalid" - Return all user profile information
 3118
 3119 ****Step 2: Get User Reservation History****
 3120
 3121 ****Input Parameters**:** {reservations} list from user profile
 3122
 3123 ****Process**:** For each reservation ID in user's reservations list, retrieve summary informa-
 3124 tion from Reservations profile.
 3125
 3126 ****Output**:** {reservation_summary} list with {reservation_id}, {route}, {date}, {status},
 3127 {passenger_count} for each reservation
 3128
 3129 ****Policy Rules**:** Retrieve summary (not full details) for each reservation
 3130
 3131 ****Step 3: Format and Return User Info****
 3132
 3133 ****Input Parameters**:** {user_info}, {reservation_summary}

3132

3133 ****Process**:** Format complete user information into readable display.

3134

3135 ****Output**:** Formatted user information

3136

3137 ****Policy Rules - Display Format**:** - Show passenger ID and name - Show email and date
3138 of birth - Show address (full address with city, state, zip, country) - Show membership level
3139 and benefits - Show payment methods (type, last 4 digits for cards, amount for certificates)
3140 - Show saved passengers list - Show reservation history with summary for each reservation

3141

3142 We evaluated our internalization approach on this single policy document with Qwen-3-8B, observ-
3143 ing a performance gain with our CAP-CPT approach. More comprehensive evaluation on different
3144 policy documents are leaved for future work.

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185