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Abstract
We study the problem of fixed-budget pure exploration in reinforcement learning.
The goal is to identify a near-optimal policy, given a fixed budget on the number
of interactions with the environment. Unlike the standard PAC setting, we do
not require the target error level ε and failure rate δ as input. We propose novel
algorithms and provide, to the best of our knowledge, the first instance-dependent
theoretical guarantee for this setting. Our analysis yields an ε-correctness guaran-
tee with instance-dependent probability, characterizing the budget requirements in
terms of the problem-specific hardness of exploration. As a core component of our
analysis, we derive an ε-good guarantee for the multiple bandit problem—solving
multiple multi-armed bandit instances simultaneously—which may be of inde-
pendent interest. To enable our analysis, we also develop tools for reward-free
exploration under the fixed-budget setting, which we believe will be useful for
future work in this area.

1 Introduction

Reinforcement Learning (RL) theory [1] has been studied under two main objectives: regret min-
imization and policy identification, also known as pure exploration. While the former focuses on
maximizing cumulative reward during learning, the latter aims to identify a near-optimal policy with-
out concern for rewards gained during learning. A substantial body of work on policy identification
has focused on the fixed-confidence setting [16]. This line of research, often referred to as Probably
Approximately Correct (PAC) RL, requires the algorithm to spend as many samples as possible until
it can find an ε-optimal policy with probability at least 1− δ. Specifically, the algorithm is required to
verify itself that the returned arm is indeed ε-optimal policy – otherwise, it is not a fixed confidence
algorithm. Due to the verification requirement, both ε and δ are input to the algorithm. Thus, the
analysis must be done for the correctness of the verification (i.e., proving that the returned arm is
indeed an ε-optimal policy) as well as the sample complexity (i.e., proving how many samples are
taken before stopping).
However, the fixed-confidence setting is not the only way to perform policy identification. The
fixed-budget setting has been popular in multi-armed bandits [9, 4]. In this setting, the learner is
given a fixed number of interactions with the environment as a budget and is required to output a good
policy after exhausting the budget. This setting has numerous merits. First, this setting is arguably
more practical because the user of the algorithm can control the budget explicitly. In contrast, the
fixed confidence setting assumes that the algorithm can use as many samples as possible (though
less is preferred). When stopped forcefully to satisfy practical constraints, it is hard to guarantee the
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quality of the returned policy. Second, the fixed budget setting has potential to guarantee a better
sample complexity because there is no verification requirement (i.e., the algorithm itself certifies that
the returned policy is ε-optimal). This was true for multi-armed bandits where instant-dependent
accelerated rates can be obtained as a function of how many good arms there are, and also a data-
poor regime guarantee can be obtained, meaning that where a nontrivial performance guarantee is
obtained even if the sampling budget is smaller than the number of arms, depending on the problem
instance [26]. These bounds are not likely to be obtained in the fixed confidence setting due to the
verification requirement unless extra knowledge about the best arm is known such as Chaudhuri and
Kalyanakrishnan [6]. While the ε-correctness verification from the fixed-confidence setting can be
necessary in mission-critical applications, there are many applications that do not require such a
guarantee, in which case the parameters ε and δ becomes a cumbersome hyperparameter.
Despite the desirable properties of the fixed-budget setting in bandit problems, its counterpart in
MDPs remains largely unexplored to our knowledge. In this paper, we take the first step at studying
fixed-budget policy identification in MDPs, providing new theoretical insights and algorithms that
bridge this gap. Specifically, a fixed budget algorithm is required to take in a episode budget B and
return a policy π̂ at the end of B-th episode. Our central interest is to upper bound the probability that
the algorithm returns an ε-optimal policy as an exponentially decaying function of the budget B and
instance-dependent quantities, simultaneously for all ε ≥ ε′ for some budget dependent threshold ε′.
In other words, the degree of suboptimality of the learned policy π̂ is a random variable, and we are
characterizing its distribution, in particular its tail behavior.

Contributions. Our main contributions are as follows:

• We propose a novel algorithm, BREA (Backward Reachability Estimation and Action
elimination), which is, to the best of our knowledge, the first fixed-budget pure exploration
algorithm for episodic MDPs with instance-dependent guarantees. The algorithm does not
require the accuracy level ε as an input, and does not assume the uniqueness of the optimal
action.

• For the first time, we establish an ε-correctness guarantee for the SAR algorithm in the
multiple bandit setting, extending its original best arm identification result [5]. This extension
may be of independent interest.

• We develop algorithmic and analytical tools that are broadly useful for reward-free explo-
ration in the fixed-budget setting.

2 Preliminaries
Finite-horizon MDP. We consider a finite-horizon non-stationary Markov Decision Process (MDP)
defined by the tupleM = (S,A, H, {Ph}H−1

h=0 , {Rh}Hh=1), where S is a finite set of states of size
S, A is a finite set of actions of size A, H ∈ N is the horizon, P0 ∈ ∆(S) is the initial distribution,
Ph : S × A → ∆(S) is the transition kernel, and Rh : S × A → ∆([0, 1]) is the random rewards
with E[Rh(s, a)] = rh(s, a). {Ph}H−1

h=0 and {Rh}Hh=1 are unknown to the learner.
The initial state s1 is drawn from the initial distribution P0. At each step h, taking action ah in
state sh results in a next state sh+1 sampled from the transition kernel Ph(· | sh, ah). A trajectory
{(sh, ah, Rh(sh, ah))}Hh=1 is called an episode, and when the learner reaches the end of the episode,
a new episode begins.
A policy π = (π1, . . . , πH) is a sequence of decision rules πh : S → ∆(A) for each step h ∈ [H].
The Q-value function of a policy π at step h ∈ [H] is defined as

Qπ
h(s, a) := Eπ[

H∑
h′=h

Rh′(sh′ , ah′)|sh = s, ah = a]

and it represents the expected reward obtained by choosing action a in state s at step h and choosing
the subsequent actions according to the policy π. The value function of π at step h is defined as

V π
h (s) = Eπ[Q

π
h(s, πh(s))]

and it represents the expected reward obtained by choosing actions according to the policy π starting
in state s at step h. We also define V π

0 := Es∼P0
[V π

1 (s)]. The optimal Q-value function, optimal
value function are defined as

Q∗
h(s, a) = sup

π
Qπ

h(s, a), V ∗
h (s) = sup

π
V π
h (s), V ∗

0 = sup
π

V π
0 .
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We denote the optimal policy by π∗, which satisfies V π∗

0 = V ∗
0 .

Pure exploration under the fixed budget setting. In pure exploration under the fixed budget
setting, the goal is to identify an optimal policy π∗ (or near-optimal) based on a limited interaction
budget. Specifically, the learner is allowed to execute a total of B episodes and must return a single
policy π̂ at the end. The performance is measured by the simple regret, which is defined as

V ∗
0 − V π̂

0 .

A policy π̂ is called ε-good if V ∗
0 − V π̂

0 ≤ ε. In this paper, we propose an algorithm and prove their
performance guarantee by showing some instance-dependent upper bounds of the failure probability

P(V ∗
0 − V π̂

0 > ε).

Instance-dependent quantities. To capture the instance-dependent complexity of the problem, we
need the notion of suboptimality gaps defined as

∆h(s, a) := V ∗
h (s)−Q∗

h(s, a),

∆π
h(s, a) := V π

h (s)−Qπ
h(s, a).

For our analysis, we also denote

∆̄h(s, a) :=

{
∆h(s, a), if Q∗

h(s, a) < V ∗
h (s)

∆h(s, a
′), if Q∗

h(s, a) = V ∗
h and a′ is the second best action,

∆̄π
h(s, a) :=

{
∆π

h(s, a), if Qπ
h(s, a) < V π

h (s)

∆π
h(s, a

′), if Qπ
h(s, a) = V π

h and a′ is the second best action with respect to π.

Thus, if the optimal action in s ∈ S at step h is unique, ∆̄h(s, a) > 0 for all a ∈ A. In contrast, if
there are multiple optimal actions in s ∈ S at step h, ∆̄h(s, a) = 0 for all optimal actions a. Similar
results hold for ∆̄h(s, a) as well.
In MDP, the probability of reaching each state or action is important. Let π be a policy, s ∈ S, a ∈
A, h ∈ [H],Z ⊂ S ×A, we use the following notations:

wπ
h(s) = Pπ[sh = s], wπ

h(s, a) = Pπ[sh = s, ah = a], wπ
h(Z) = Pπ[(sh, ah) ∈ Z],

Wh(s) = sup
π

wπ
h(s), Wh(s, a) = sup

π
wπ

h(s, a), Wh(Z) = sup
π

wπ
h(Z).

We refer to wπ
h(·) as the occupancy measure and Wh(·) as the reachability. Using these notions, we

define the controllability of MDP at step h as

Ch := sup
π

∑
s,Wh(s)>0

wπ
h(s)

Wh(s)
.

Then, we have

1 = sup
π

∑
s,Wh(s)>0

wπ
h(s) ≤ Ch = sup

π

∑
s,Wh(s)>0

wπ
h(s)

Wh(s)
≤

∑
s,Wh(s)>0

sup
π

wπ
h(s)

Wh(s)
≤ S.

We can see that Ch = 1 if Wh(s) = 0 or 1 for any state s i.e. the learner can reach sh = s with
probability 1 by some policy for any reachable state s. On the other hand, Ch = S if wπ

h(s) =
Wh(s) > 0 for any state s ∈ S, any policy π i.e. the learner cannot control the occupancy measure
by varying policy and all states are reachable. Therefore, intuitively, a larger Ch indicates that the
MDP is more difficult to control at step h.

3 The BREA algorithm

There are inherent difficulties in the fixed budget setting. First, while it is relatively straightforward
to analyze algorithms in the fixed confidence setting using concentration bounds such as Hoeffding
bound or Bernstein bound with a prespecified confidence level δ, it is much more challenging in
the fixed budget setting, where neither the confidence level δ nor the accuracy level ε is known in
advance. Second, whereas the fixed-confidence setting typically allows for a potentially excessive
number of samples before termination (depending on the confidence level), the fixed-budget setting
strictly limits the algorithm to a finite number of samples. Third, in the fixed-budget setting, the
algorithm does not know in advance how to allocate the budget across different states s and time
steps h. As a result, budget is often distributed uniformly, and the analysis must rely on nontrivial
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probabilistic arguments. In this section, we present how we design and analyze our algorithm to
overcome the aforementioned difficulties.
At step h, each state s can be treated as a bandit problem, where the expected reward of each action a
is given by Q∗

h(s, a). If we aim to learn the exact optimal policy maximizing Q∗
h(s, a), we need to

sample trajectories sh+1, ah+1, . . . , sH , aH generated under the optimal policy {π∗
h′}Hh′=h+1, which

is unknown. Fortunately, since our goal is to learn an approximately optimal policy, the following
proposition shows that it suffices to use a suitably accurate policy {π̂h′}Hh′=h+1 for sampling in order
to learn π̂h.

Proposition 1. [23, Lemma B.1] Assume that some deterministic policy π̂ satisfies ∆π̂
h(s, π̂h(s)) ≤

εh(s) for any h′ ≤ h ≤ H and any s ∈ S. Then, for any policy π′,∑
s

wπ′

h′ (s)
(
V ∗
h′(s)− V π̂

h′(s)
)
≤

H∑
h=h′

sup
π

∑
s

wπ
h(s)εh(s).

Note that ∆π̂
h(s, a) depends only on the future policies {π̂h′}Hh′=h+1, implying that we must determine

them before learning π̂h(s). By this observation, our learning proceeds backward from H to 1.
If we assume that the hypothesis of the previous proposition holds with h′ = 1 and εh(s) :=

ε
ChHWh(s)

, then the proposition says

V ∗
0 − V π̂

0 ≤
H∑

h=1

sup
π

∑
s

wπ
h(s)εh(s)

=

H∑
h=1

sup
π

∑
s

wπ
h(s)

ε

ChHWh(s)

=

H∑
h=1

ε

H
(definition of Ch)

= ε.

Therefore, we design our algorithm to identify a Θ( ε
ChHWh(s)

)-good action for each relevant state s.
The precise definition of “relevant state” will be given in the analysis. We again emphasize that ε is
not an input to our algorithm and can be chosen arbitrarily for the purpose of analysis. Our algorithm,
which will be detailed in the following subsections, consists of two key components: estimating the
reachability Wh(s) and eliminating actions. We introduce the following notation, which will be used
in the statements of upcoming results.

εB := (1 +
log(2)B

c(B)
)−0.6321

denotes an error threshold that depends on the budget B. The factor

CL2E(B) = Õ(poly(S,A,H)),

which arises from the first part of our algorithm, is formally defined in the Appendix C.

3.1 Reachability estimation

In the first part of the algorithm, we estimate the reachability Wh(s) of each state s at step h. To this
end, we execute reward-free exploration. One notable benefit of reward-free exploration is that it only
needs to be run once, after which the collected data can be applied to a variety of downstream reward

functions. More specifically, we reset the reward as Rh′(s′, a′) =

{
1, if (s′, a′, h′) = (s, 1, h),

0, otherwise.
,

where we arbitrarily fix an action and denote it by 1. With this reset reward, an optimal policy
maximizes the visitation probability of (s, 1) at step h. Therefore, V ∗

0 = Wh(s, 1) = Wh(s). To ap-
proximate such an optimal policy, we employ a regret minimization algorithm, STRONGEULER [19].
More generally, the reachability Wh(X ) of any subset X ⊂ S × A can be estimated in the same
manner. We formalize this in Algorithm 1, which we refer to as FB-L2E, short for Fixed-Budget
Learn2Explore. It is a fixed-budget variant of the Learn2Explore algorithm introduced in Wagenmaker
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Algorithm 1 Fixed Budget Learn to Explore (FB-L2E)

1: function FB-L2E(X ⊆ S ×A, step h, budget B)
2: if |X | = 0 then
3: return {(∅, ∅, 0)}
4: end if
5: J ← ⌈0.6321 log2(1 +

log(2)B
c(B) )⌉ (c(B) is defined in Appendix C)

6: for j = 1 to J do
7: Lj ← 2J−j , δj ← ( 1

8SAH )0.6321Lj log log(8SAH)

8: Kj ← Kj(δj , SAHδj) (Kj is defined in Appendix C)
9: Nj ← Kj/(4|X | · 2j)

10: (Xj ,Πj)← FINDEXPLORABLESETS(X , h, δ,Kj , Nj)
11: X ← X \ Xj

12: end for
13: return {(Xj ,Πj , Nj)}Jj=1
14: end function
15:
16: function FINDEXPLORABLESETS(X ⊆ S ×A, step h, confidence δ, epochs K, samples N )
17: r1h(s, a)← 1 if (s, a) ∈ X , else 0
18: N(s, a, h)← 0, Y ← ∅, Π← ∅, j ← 1
19: for k = 1 to K do
20: // StrongEuler is as defined in Simchowitz and Jamieson [19]
21: Run STRONGEULER(δ) on reward rjh to get trajectory {(skh, akh, h)}Hh=1 and policy πk

22: N(skh, a
k
h)← N(skh, a

k
h) + 1, Π← Π ∪ {πk}

23: if N(skh, a
k
h) ≥ N , (skh, a

k
h) ∈ X and (skh, a

k
h) /∈ Y then

24: Y ← Y ∪ (skh, a
k
h)

25: rj+1
h (s, a)← 1 if (s, a) ∈ X \ Y , else 0

26: j ← j + 1
27: Restart STRONGEULER(δ)
28: end if
29: end for
30: return Y,Π
31: end function

et al. [23], which itself is inspired by Zhang et al. [25], Brafman and Tennenholtz [3]. Algorithm 1
satisfies the following guarantee, the proof of which is deferred to the AppendixC.
Theorem 3.1. Consider running Algorithm 1 with sufficiently large budget B ≥ c(B). Then, the
following statements hold.

1. The total budget used is at most B.

2. For any ε ≥ 2SH2εB , with probability at least 1− exp

(
−Θ̃

(
εB

CL2E(B)

))
,

(1) The reachability of each set Xi satisfies

|Xi|
|X |
· 2−i−3 ≤Wh(Xi) ≤ 2−i+1 for all i ≤ iε :=

log2
(
2SH2

ε

) ,

(2) The remaining elements, X̄ := X \ ∪iεi=1Xi satisfy

sup
π

∑
(s,a)∈X̄

wπ
h(s, a) ≤

ε

2SH2
.

(3) Moreover, for any i ≤ iε, if each policy in Πi is executed A times, then every state-
action pair (s, a) ∈ Xi is visited at least 1

8ANi times.
Remark 2. Theorem 3.1 crucially relies on the fact that STRONGEULER achieves a regret bound
with log 1

δ dependence. However, when the target set is a singleton, i.e., X = (s, a), similar results
can be obtained by combining alternative regret minimization algorithms—such as EULER [24],
which exhibits a log3 1

δ dependence—with a boosting technique. See the Appendix C for the details.
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3.2 Action elimination

In the second part of our algorithm, we iteratively sample trajectories, compute empirical Q-function
of state-action pairs, and eliminate suboptimal actions. For this purpose, we employ a multiple bandit
algorithm, Successive Accepts and Rejects (SAR), proposed by Bubeck et al. [5], and, for the first
time, provide an ε-correctness guarantee for this algorithm. By employing this algorithm to our main
algorithm, we are able to reduce the dependency on S compared to applying its multi-armed bandit
counterpart.

Multiple bandit problem. Consider M instances of multi-armed bandit problems, each with K
arms. Each arm i in instance m yields stochastic rewards supported on [0, σ], with mean µm,i,
ordered such that µm,1 ≥ · · · ≥ µm,K . We denote each bandit-arm pair by (m, i), where m ∈ [M ]
and i ∈ [K]. The objective is to identify a good arm in each instance m ∈ [M ] under a total budget
of B pulls.
We now define some notations. Let µ̂m,i(n) denote the empirical mean reward of arm i in instance
m after n pulls. Define the suboptimality gap as

∆̄m,i :=

{
µm,1 − µm,2, if i = 1,

µm,1 − µm,i, if i ∈ {2, . . . ,K}.

We enumerate all gaps ∆̄m,i over all (m, i) ∈ [M ]× [K] in increasing order as

∆̄(1) ≤ ∆̄(2) ≤ · · · ≤ ∆̄(MK).

Let g(ε) :=
∣∣∣{(m, i) ∈ [M ]× [K] : µm,1 − µm,i ≤ ε

}∣∣∣ for any ε > 0, and define the harmonic log
term

log(MK) :=
1

2
+

MK∑
i=2

1

i
.

For each k ∈ [MK − 1], define

nk(B,M,K) :=

⌈
1

log(MK)
· B −MK

MK + 1− k

⌉
. (1)

The SAR algorithm is summarized in Algorithm 2. By leveraging the ranking of empirical gaps,
SAR adaptively distributes the budget across bandit instances, solving the multiple bandit problem
efficiently. We present a theoretical guarantee for its ability to identify ε-good arms.

Theorem 3.2. If we run Algorithm 2 with budget B ≥MK, then the total number of budget used is
at most B and the following holds for any ε ≥ 0:

P(∃m ∈ [M ] : µm,1 − µm,J(m) > ε) ≤ 2M2K2 exp

(
− B −MK

128σ2 log(MK) ·
∑

i∈[MK](∆̄(i) ∨ ε)−2

)
.

When ε = 0, Theorem 3.2 recovers the best arm identification result [5]. The proof of Theorem 3.2 is
deferred to Appendix D.

3.3 Overview of the BREA algorithm

We combine the two mechanisms described above to construct our main algorithm. The algorithm
proceeds in a backward manner over steps h = H,H − 1, . . . , 1. At each step h, the first half of
the budget is devoted to estimating the reachability Wh(s) for each state s, while the second half
applies the SAR mechanism to eliminate suboptimal actions. The whole algorithm is described in
Algorithm 4 in the appendix.
In general MDPs, the stochasticity of the transition kernel prevents us from freely collecting arbitrary
state-action samples. However, Theorem 3.1 ensures that, with high probability, the policies stored
during the reachability estimation phase yield sufficient samples for each relevant state-action pair.
Under this event, the SAR mechanism is expected to perform reliably. We now present our main
theorem; its proof is provided in the Appendix E.
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Algorithm 2 Successive Accept and Reject (SAR) for the multiple bandit

1: input: Budget B
2: A1 ← {(1, 1), . . . , (M,K)}, n0 ← 0
3: for k = 1 to MK − 1 do
4: nk ← nk(B,M,K) (as defined in (1))
5: ∀(m, i) ∈ Ak, pull (m, i) for nk − nk−1 times
6: ∀m, 1̂m ← arg maxi:(m,i)∈Ak

µ̂m,i(nk) (Break ties arbitrarily)
7: if ∃m such that 1̂m is the last active arm in m then
8: Jm = 1̂m (Accept)
9: Ak+1 ← Ak \ {(m, 1̂m)} (Deactivate)

10: else
11: (mk, ik)← arg max(m,i)∈Ak

(
µ̂m,1̂m

(nk)− µ̂m,i(nk)
)

(Break ties arbitrarily)
12: Ak+1 ← Ak \ {(mk, ik)} (Reject and deactivate)
13: end if
14: end for
15: Jm ← i for AMK = {(m, i)}
16: return {(m,Jm)}Mm=1

Theorem 3.3. If we run Algorithm 4 with a sufficiently large budget B, then the total number of
budgets used is at most B. Moreover, for any ε ≥ 2SH2ε B

2SH
,

P
(
V ∗
0 − V π̂

0 > ε
)
≤ exp

(
−Θ̃

( εB

CL2E(
B

2SH )

))
+ exp

(
−Θ̃

( B

H5 maxh∈[H] C
2
h

∑
s∈S Wh(s)−1

∑
a∈A(∆h(s, a) ∨ ε

Wh(s)
)−2

))
.

Remark 3. From Theorem 3.3, we can derive the sample complexity required by BREA to identify an
ε-correct policy with probability at least 1− δ, given by

τε,δ = Θ̃

(
CL2E

(
B

2SH

)
ε

+H5 max
h∈[H]

C2
h

∑
s∈S

1

Wh(s)

∑
a∈A

1(
∆h(s, a) ∨ ε

Wh(s)

)2
)
log

1

δ
.

The first term inside Θ̃ is a lower-order term. The second term inside Θ̃ becomes
∑

a∈A
1

(∆(a)∨ε)2

for multi-armed bandits (S = H = 1). This is consistent with known results in the bandit literature
([9, 2, 14]). It is also noteworthy that our sample complexity is deterministic while the sample
complexity of PAC RL algorithm typically is guaranteed with probability at least 1− δ.
Our sample complexity involves a H5 maxh term, in contrast to the H4

∑
h dependence that appears

in PAC RL literature ([23, 22, 21]). This difference stems from the inherent difficulty of the fixed
budget setting, where the algorithm does not know in advance how to distribute the budget across
different h. A similar issue regarding the dependency on S could be resolved by employing a multiple
bandit algorithm instead of a multi-armed bandit algorithm.

4 Conclusion

In this paper, we have explored the fixed-budget setting of the pure exploration MDP, which is
surprisingly underexplored in RL theory. While our results establish the first fully instance-dependent
guarantee in the fixed budget setting, these are just the beginning. First, it would be great to see what
kind of instance-dependent acceleration can be proven in MDP, which should be possible given that
accelerated rates were possible in bandits as a function of the number of good arms [15, 26]. Second,
similarly, it would be interesting to explore what kind of data-poor regime guarantees are attainable –
again, such bounds are available in the bandit setting [15, 26]. Third, we believe the factor H2 in
the sample complexity may be improved by leveraging variance-dependent concentration bounds.
Finally, it would be interesting to extend our setting to the function approximation setting.
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Notation. For a positive integer n, we write [n] := {1, 2, . . . , n}. We use f = Θ̃(g) to de-
note that the ratio f

g is bounded both above and below by polylogarithmic functions. We define
min+x∈X f (x) := minx∈X:f(x)>0 f(x). We use poly(·) to denote a polynomial in the variables inside
the parentheses. We write log for natural logarithm and log2 for binary logarithm.

A Related work

Given the breadth of the literature on each topic, we focus on introducing only the most recent and
relevant works.

Instance-dependent regret minimization in episodic MDPs. Zanette and Brunskill [24] pro-
posed the EULER algorithm and proved a regret bound of

√
SAKmin{Q⋆H,G2}, where Q⋆,G

are instance dependent term. Soon after, Simchowitz and Jamieson [19] proposed STRONGEULER
algorithm and proved a gap-dependent regret bound for episodic tabular MDPs, showing that opti-
mistic algorithms can achieve O

(∑
s,a,h

log T
∆h(s,a)

)
regret. This result, obtained via a novel “clipped”

regret decomposition, smoothly interpolates between instance-dependent O(log T ) growth and the
worst-case O(

√
T ) rate, without requiring simplifying assumptions like a bounded mixing time.

Dann et al. [7] further refined these bounds by defining value-function gaps that ignore states never
visited by an optimal policy. Finally, we note that any low-regret algorithm can be converted into
a high-probability guarantee on near-optimal performance via an online-to-batch conversion. For
detailed explanations, see Jin et al. [11]. However, recent studies ([23, 21]) suggest that algorithms
for minimizing regret cannot be instance-optimal for identifying good policies, motivating specialized
algorithms that explore more strategically than standard optimism.

Instance-dependent episodic PAC RL. The history of instance-dependent episodic PAC RL is not
very long. Wagenmaker et al. [23] proposed a planning-based algorithm, MOCA, and analyzed its
instance-dependent sample complexity. Tirinzoni et al. [20] provided an instance-dependent lower
bound for deterministic MDPs and proposed the EPRL algorithm, which has an upper bound of
sample complexity matching the lower bound up to a H2 factor and logarithmic terms. Wagenmaker
and Jamieson [22] considered finite horizon linear MDPs, a superset of tabular MDPs. They proposed
the PEDEL algorithm, which takes a policy set as an input, and analyzed its sample complexity.
Tirinzoni et al. [21] proved, for the first time, an instance-dependent sample complexity of an
optimistic algorithm, BPI-UCRL.

Instance-dependent pure exploration in multi-armed bandits. The problem of pure exploration
in multi-armed bandits (a special case of RL with S = H = 1) has a rich history and is typically
studied in two frameworks: the fixed-confidence ((ε, δ)-PAC) setting and the fixed-budget setting.
In the fixed-confidence setting, the goal is to identify an arm whose mean reward is within ε of the
optimal arm’s mean with probability at least 1− δ, while minimizing the number of samples (pulls).
Even-dar et al. [8] initiated this line of work by proposing the Successive Elimination algorithm,
which guarantees an optimal arm with probability 1− δ using distribution-dependent samples ((ε, δ)-
sample complexity). Mannor and Tsitsiklis [17] later provided a distribution-dependent lower bound
on the (ε, δ)-sample complexity. Kalyanakrishnan et al. [13] proposed the LUCB algorithm and
analyzed their sample complexity. Karnin et al. [14] introduced the Exponential-Gap Elimination
algorithm, removed unnecessary log factors and attained near-optimal sample complexity in the
fixed-confidence regime. Garivier and Kaufmann [10] gave a tighter lower bound and proposed an
algorithm, Track and Stop, which exactly hits the lower bound asymptotically.
In the fixed-budget setting, the learner is given a total sampling budget T and aims to maximize the
probability of identifying the best arm by time T . Here, the results are often characterized by the
exponential rate at which the failure probability decays with T . Audibert et al. [2] studied this setting
and proposed the Successive Rejects algorithm, proving that its error probability decays at an optimal
rate, up to logarithmic factors in the number of arms. Karnin et al. [14] proposed the Sequential
Halving algorithm, proving that its error probability has an improved rate, which is optimal up to
doubly logarithmic factors in the number of arms. Zhao et al. [26] provided a tighter analysis of the
Sequential Halving algorithm and obtained an accelerated decay rate of ε-error probability.
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B Properties of MDP

Although the statements and proofs of the lemmas in this section are nearly identical to those in the
appendix of Wagenmaker et al. [23], we include them here for completeness.

Lemma 4. Assume that some deterministic policy π̂ satisfies ∆π̂
h(s, π̂h(s)) ≤ εh(s) for any h′ ≤

h ≤ H and any s ∈ S. Then, for any policy π′,∑
s

wπ′

h′ (s)
(
V ∗
h′(s)− V π̂

h′(s)
)
≤

H∑
h=h′

sup
π

∑
s

wπ
h(s)εh(s).

Proof. The proof proceeds by backward induction on h′. When h′ = H , the statement trivially holds.
Assume that ∑

s

wπ′

h′ (s)
(
V ∗
h′(s)− V π̂

h′(s)
)
≤

H∑
h=h′

sup
π

∑
s

wπ
h(s)εh(s)

holds for step h′ > 1 and any policy π. Assume further that

∆π̂
h′−1(s, π̂(s)) ≤ εh′−1(s).

By definition,

V ∗
h′−1(s)− V π̂

h′−1(s) = Q∗
h′−1(s, π

∗
h′−1(s))−Qπ̂

h′−1(s, π̂h′−1(s))

= Q∗
h′−1(s, π

∗
h′−1(s))−Qπ̂

h′−1(s, π
∗
h′−1(s))︸ ︷︷ ︸

(1)

+Qπ̂
h′−1(s, π

∗
h′−1(s))−max

a
Qπ̂

h′−1(s, a)︸ ︷︷ ︸
(2)

+max
a

Qπ̂
h′−1(s, a)−Qπ̂

h′−1(s, π̂h′−1(s)).︸ ︷︷ ︸
(3)

It is obvious that (2) ≤ 0 and (3) = ∆π̂
h′−1(s, π̂h′−1(s)) ≤ εh′−1(s) by our assumption. Further-

more,
(1) =

∑
s′

Ph′−1(s
′|s, π∗

h′−1(s))(V
∗
h′(s′)− V π̂

h′(s′)).

Then, for any policy π′,∑
s

wπ′

h′−1(s)(V
∗
h′−1(s)− V π̂

h′−1(s)) ≤
∑
s

∑
s′

wπ′

h′−1(s)Ph′−1(s
′|s, π∗

h′−1(s))(V
∗
h′(s′)− V π̂

h′(s′))

+
∑
s

wπ′

h′−1(s)εh′−1(s)

=
∑
s

wπ′′

h′ (s)(V ∗
h′(s)− V π̂

h′(s)) +
∑
s

wπ′′

h′−1(s)εh′−1(s)

≤
H∑

h=h′−1

sup
π

∑
s

wπ
h(s)εh(s),

where π′′ is a policy that is equal to π′ in step 1, . . . , h′ − 2 and equal to π∗ in step h′ − 1, . . . ,H ,
the last inequality follows by the induction hypothesis.

Lemma 5. Assume supπ
∑

s w
π
h+1(s)

(
V ∗
h+1(s)− V π̂

h+1(s)
)
≤ ε. Then

|∆h(s, a)−∆π̂
h(s, a)| ≤ ε/Wh(s).

Proof.

|∆h(s, a)−∆π̂
h(s, a)| = |V ∗

h (s)−Q∗
h(s, a)− (max

a′
Qπ̂

h(s, a
′)−Qπ̂

h(s, a))|

≤ max{|V ∗
h (s)−max

a′
Qπ̂

h(s, a
′)|, |Qπ̂

h(s, a)−Q∗
h(s, a)|},

where the last inequality follows since

V ∗
h (s)−Q∗

h(s, a)− (max
a′

Qπ̂
h(s, a

′)−Qπ̂
h(s, a)) ≤ V ∗

h (s)−max
a′

Qπ̂
h(s, a

′)
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and
−(V ∗

h (s)−Q∗
h(s, a)− (max

a′
Qπ̂

h(s, a
′)−Qπ̂

h(s, a))) ≤ Q∗
h(s, a)−Qπ̂

h(s, a).

We can write
Q∗

h(s, a) = rh(s, a) +
∑
s′

Ph(s
′|s, a)V ∗

h+1(s
′),

Qπ̂
h(s, a) = rh(s, a) +

∑
s′

Ph(s
′|s, a)V π̂

h+1(s
′).

Then we have
Q∗

h(s, a)−Qπ̂
h(s, a) =

∑
s′

Ph(s
′|s, a)(V ∗

h+1(s
′)− V π̂

h+1(s
′))

=
1

Wh(s)

∑
s′

Wh(s)Ph(s
′|s, a)(V ∗

h+1(s
′)− V π̂

h+1(s
′))

≤ 1

Wh(s)
sup
π

∑
s′

wπ
h+1(s

′)(V ∗
h+1(s

′)− V π̂
h+1(s

′)) ≤ ε

Wh(s)
. (2)

Let a1 := arg maxa Q
∗
h(s, a). Then

V ∗
h (s)−max

a′
Qπ̂

h(s, a
′) = max

a′
Q∗

h(s, a
′)−max

a′
Qπ̂

h(s, a
′) = Q∗

h(s, a1)−max
a′

Qπ̂
h(s, a

′)

= Q∗
h(s, a1)−Qπ̂

h(s, a1) +Qπ̂
h(s, a1)−max

a′
Qπ̂

h(s, a
′) ≤ ε

Wh(s)
. (3)

By (2), (3), the lemma follows.

C Analysis of FB-L2E

C.1 Analysis of FINDEXPLORABLESETS

The overall analysis is similar to that of Wagenmaker et al. [23]. However, the details should
be changed as we use STRONGEULER instead of EULER. We begin with a regret bound of
STRONGEULER. Throughout this section, let M := (SAH2)2.

Lemma 6. If we run STRONGEULER with confidence parameter δ for K episodes, with probability
at least 1− δ,
K∑

k=1

V ∗
0 −

K∑
k=1

V πk
0 ≤ cse

√
SAH2V ∗

0 K log(HK) log(
MHK

δ
)+cseS

2AH6 log(HK) log(
MHK

δ
),

where M = (SAH2)2 and cse is a universal constant.

Proof. In Simchowitz and Jamieson [19, Theorem 2.4], the regret bound up to a universal constant is
presented as√

SAH̄TT log(
mT

δ
) + SAH4(S ∨H) log(

mT

δ
)min{log(mT

δ
), log(

mH

∆min
)},

where ∆min = min+s,a,h ∆h(s, a), T = HK, m = (SAH)2, and H̄T ≤ G2

H log(T ). Here, G is a

constant such that the reward of one episode of our MDP is bounded by G. We can reduce this G2

H

term to V ∗
0

4H by using the argument used in the proof of Jin et al. [12, Lemma 3.4] and Wagenmaker
et al. [23, Lemma D.4]. Thus, the regret bound (up to a universal constant) of STRONGEULER is
given as√

SAV ∗
0 T log(T ) log(

mT

δ
) + SAH4(S ∨H) log(

mT

δ
)min{log(mT

δ
), log(

mH

∆min
)},

The second term is derived from their Simchowitz and Jamieson [19, Claim C.3]. In the proof of
Simchowitz and Jamieson [19, Claim C.3], we can just bound

log(1 +
N ∧ nend

n0
) ≤ log(1 + T )
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since N ≤ T, n0 ≥ 1. By using this bound, we get a regret bound of√
SAV ∗

0 T log(T ) log(
mT

δ
) + SAH4(S ∨H) log(

mT

δ
) log(T ).

Although this bound only applies to stationary MDPs, stationary MDPs can represent non-stationary
MDPs by augmenting states s to (s, h). In this case, the effective number of states is SH . Thus, by
substituting SH in to S, HK into T , the lemma follows.

We now define the important quantities

CK(δ, δsamp, i) := max

{
432c2seS

3A2H6(i+ 6)2 log2(2 · 2 · 432c2seS3A2H7M(i+ 6),

432c2seS
3A2H6 log(

1

δ
)(i+ 3) log(2 · 432c2seS3A2H7 log(

1

δ
)(i+ 3)),

24 log(
4

δ
), 211S2A2 log(

4SAH

δsamp
)

}
,

Ki(δ, δsamp) := ⌈2iCK(δ, δsamp, i)⌉.

(4)

and prove the following property.
Lemma 7. Let CR := 2cseS

3A2H6 log(HKi) log(
2MHKi

δ ) + 2 log 4
δ and Ki = Ki(δ, δsamp).

Then,

Ki ≥ 2i max{4CR, 144c2seS
2A2H2 log(HKi) log(

2MHKi

δ
)}.

Proof. For any i, j > 0 and C > 0, if x ≥ Ci(i+ 3j)j logj(C(i+ 3j)), then x ≥ Ci logj x since

Ci logj x = Ci logj [Ci(i+ 3j)j logj(C(i+ 3j))] ≤ Ci logj [Ci+j(i+ 3j)2j ]

≤ Ci(i+ 3j)j logj [C(i+ 3j)]

= x

Since
2MHKi ≥ 2i · 2 · 432c2seS3A2H7M(i+ 6)2 log2(2 · 2 · 432c2seS3A2H7M(i+ 6),

we have
Ki ≥ 2i · 2 · 432c2seS3A2H6 log2(2MHKi).

Since

HKi ≥ 2i · 432c2seS3A2H7 log(
1

δ
)(i+ 3) log(2 · 432c2seS3A2H7 log(

1

δ
)(i+ 3)),

we have

Ki ≥ 2i · 432c2seS3A2H6 log(HKi) log(
1

δ
).

We also have Ki ≥ 2i · 24 log(4δ ). Combining these three, we have

Ki ≥ 2i
(
144c2seS

3A2H6(log2(2MHKi) + log(HKi) log(
1

δ
) + 8 log(

4

δ
)

)
,

which easily implies

Ki ≥ 2i · 144c2seS2A2H2 log(HKi) log(
2MHKi

δ
),

Ki ≥ 8i
(
2cseS

3A2H6 log(HKi) log(
2MHKi

δ
) + 8 log(

4

δ
)

)
= 4CR.

Throughout the rest of this subsection, we consider running

FINDEXPLORABLESETS(X , h, δ,Ki := Ki(δ, δsamp), Ni :=
Ki

4|X |2i
)

(defined in Algorithm 1) with some X ⊂ S ×A satisfying
Wh(X ) ≤ 2−i+1.
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Let Xi ⊂ X , Πi be the output. We introduce the following notations. Let Kij denote the total number
of episodes taken for j, where the index j changes when the reward rjh is reset. Let mi denote the
number of j. Thus, we have

mi∑
j=1

Kij = Ki.

Let V ∗,ij
0 denote the optimal value function on the reward function rjh, V k,ij

0 denote the value function
for the policy πk on the reward function rjh. Then,

V k,ij
0 ≤ V ∗,ij

0 ≤ sup
π

Eπ[I{(sh, ah) ∈ X}] = Wh(X ) ≤ 2−(i−1).

Now we define some events.

C1,δ =
{mi∑
j=1

( Kij∑
k=1

V ∗,ij
0 −

Kij∑
k=1

V k,ij
0

)
≤ 2cse

√
S2A2H2V ∗,i1

0 Ki log(HKi) log(
MHKi

δ
)

+ 2cseS
3A2H6 log(HKi) log(

MHKi

δ
)
}
,

C2,δ =
{∣∣∣∣∣∣

mi∑
j=1

Kij∑
k=1

H∑
h=1

Rj
h(s

j,k
h , aj,kh )−

mi∑
j=1

Kij∑
k=1

V k,ij
0

∣∣∣∣∣∣ ≤
√
4Ki2−i log

2

δ
+ 2 log

2

δ

}
,

D1,δ =
{
∀(s, a) ∈ X ,

∣∣∣∣∣∣
Ki∑
k=1

wπk

h (s, a)−
Ki∑
k=1

I{(skh,ak
h)=(s,a)}

∣∣∣∣∣∣ ≤
√
2KiWh(s) log

2

δ
+ 2 log

2

δ

}
for the process during the algorithm,

D2,δ =
{
∀(s, a) ∈ Xi,

∣∣∣∣∣∣
Ki∑
k=1

wπk

h (s, a)−
Ki∑
k=1

I{(skh,ak
h)=(s,a)}

∣∣∣∣∣∣ ≤
√

2KiWh(s) log
2

δ
+ 2 log

2

δ

}
for the process during the replay.

Freedman’s inequality is stated below for use in subsequent analysis.

Lemma 8 (Freedman’s inequality). Let (Ω,F ,P) be a probability space andF0 ⊂ F1 ⊂ F2 ⊂ · · · F
be a filtration of σ-algebra. Let {Xi}i be random variables such that Xi is Fi-measurable,

|Xi| ≤M,

E[Xn|Fn−1] = 0,

E[X2
n|Fn−1] ≤ Vn

for constants Vn. Then, for any δ > 0, with probability at least 1− δ,

|
n∑

i=1

Xi| < 2M log
2

δ
+

√√√√2

n∑
i=1

Vn log
2

δ
.

We state properties of the events defined above.

Lemma 9. If δ ∈ (0, 1) is the third argument of FindExplorableSets,
P(C1,δ/2) ≥ 1− δ/2.

Proof. For any fixed K and j,( K∑
k=1

V ∗,ij
0 −

K∑
k=1

V k,ij
0

)
|Fj−1 ≤ cse

√
SAH2V ∗,i1

0 K log(HK) log(
MHK

δ
)

+ cseS
2AH6 log(HK) log(

MHK

δ
)

with probability at least 1−δ, whereFj−1 is the filtration up to iteration j, and we used V ∗,ij
0 ≤ V ∗,i1

0
for all j since the reward function can only decrease as j increases. FindExplorableSets stops
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and restarts STRONGEULER if the relevant condition is met, but this is a random stopping condition.
Thus, to guarantee that the regret bound holds for any possible value of this stopping time, we union
bound over all possible values. Since FindExplorableSets runs for at most Ki episodes, we union
bound over Ki stopping times. We then have( K∑

k=1

V ∗,ij
0 −

K∑
k=1

V k,ij
0

)
|Fj−1 ≤ 2cse

√
SAH2V ∗,i1

0 K log(HKi) log(
2MHKi

δ
)

+ 2cseS
2AH6 log(HKi) log(

2MHKi

δ
)

for all K ∈ [Ki] with probability at least 1− δ
2SA . Since mi ≤ SA, union bounding over all j we

then have that, with probability at least 1− δ/2,
mi∑
j=1

( Kij∑
k=1

V ⋆,ij
0 −

Kij∑
k=1

V k,ij
0

)
≤

mi∑
j=1

2cse

√
SAH2V ∗,i1

0 Kij log(HKi) log(
2MHKi

δ
)

+ 2cseS
3A2H6 log(HKi) log(

2MHKi

δ
)

≤ 2cse

√
S2A2H2V ∗,i1

0 Ki log(HKi) log(
2MHKi

δ
)

+ 2cseS
3A2H6 log(HKi) log(

2MHKi

δ
),

where the last inequality follows from Jensen’s inequality.

Lemma 10. For any δ ∈ (0, 1),
P(C2,δ) ≥ 1− δ.

Proof. For each k ∈ [Ki], we have that Xk :=
∑H

h=1 Rh(s
k
h, a

k
h) ∼ Bernoulli(V πk

0 ). Then
|Xk − V πk

0 | ≤ 1, E[(Xk − V πk
0 )2|Fk−1] = V πk

0 (1 − V πk
0 ) ≤ V πk

0 ≤ Wh(X ) ≤ 2−i+1. Thus, if
we apply Lemma 8, we obtain the statement.

Lemma 11. For any δ ∈ (0, 1),
P(D1,δ) ≥ 1− |X |δ ≥ 1− SAδ.

Proof. Since Xk := I{(skh,ak
h)=(s,a)} ∼ Bernoulli(wπk

h (s, a)),

E[(Xk − wπk

h (s, a))2|Fk−1] = wπk

h (s, a)(1− wπk

h (s, a)) ≤ wπk

h (s, a) ≤Wh(s).

By Lemma 8, we have that∣∣∣∣∣∣
Ki∑
k=1

wπk

h (s, a)−
Ki∑
k=1

I{(skh,ak
h)=(s,a)}

∣∣∣∣∣∣ ≤
√

2KiWh(s) log
2

δ
+ 2 log

2

δ

with probability at least 1− δ. Union bounding over X leads to the statement.

Lemma 12. For any δ ∈ (0, 1),
P(D2,δ) ≥ 1− |Xi|δ ≥ 1− SAδ.

Proof. Since Xk := I{(skh,ak
h)=(s,a)} ∼ Bernoulli(wπk

h (s, a)),

E[(Xk − wπk

h (s, a))2|Fk−1] = wπk

h (s, a)(1− wπk

h (s, a)) ≤ wπk

h (s, a) ≤Wh(s).

By Lemma 8 and union bound over Xi, the statement follows.

Lemma 13. If δ ∈ (0, 1) is the third argument of FindExplorableSets, the event C1,δ/2 ∩ C2,δ/2
implies

Wh(X \ Xi) ≤ 2−i.
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Proof. Putting Lemma 9, 10 and union bounding over these events, we have that with probability at
least 1− δ,

mi∑
j=1

Kij∑
k=1

H∑
h=1

Rj
h(s

j,k
h , aj,kh ) ≥

mi∑
j=1

Kij∑
k=1

V ⋆,ij
0 −

√
4Ki2−i log

4

δ

− 2cse

√
S2A2H2V ∗,i1

0 Ki log(HKi) log(
2MHKi

δ
)− CR

where we denote

CR := 2cseS
3A2H6 log(HKi) log(

2MHKi

δ
) + 2 log

4

δ
.

Assume that V ∗,imi

0 > 2−i. Using that the reward decreases monotonically so V ∗,imi

0 ≤ V ∗,ij
0 for

any j ≤ mi, we can lower bound the above as

≥ 2−iKi −
√
4Ki2−i log

4

δ
− 2cse

√
S2A2H2V ∗,i1

0 Ki log(HKi) log(
2MHKi

δ
)− CR

≥ 2−iKi − 3cse

√
S2A2H22−iKi log(HKi) log(

2MHKi

δ
)− CR

where the second inequality follows since V ∗,i1
0 ≤ 2−i+1 and

√
4Ki2−i log 4

δ will then be dominated
by the regret term. Lemma 7 gives

Ki ≥ 2i max

{
4CR, 144c2seS

2A2H2 log(HKi) log(
2MHKi

δ
)

}
which implies

1

4
2−iKi − CR ≥ 0

and
1

4
2−iKi − 3cse

√
S2A2H22−iKi log(HKi) log(

2MHKi

δ
)

≥
2i · 144c2seS2A2H2 log(HKi) log(

2MHKi

δ )

4 · 2i

− 3cse

√
S2A2H22−i log(HKi) log(

2MHKi

δ
) · 2i144c2seS2A2H2 log(HKi) log(

2MHKi

δ
)

= 0.

Thus, we can lower bound the above as

2−iKi − 3cse

√
S2A2H22−iKi log(HKi) log(

2MHKi

δ
)− CR ≥

1

2
2−iKi.

Note that we can collect a total reward of at most |X |Ni. However, by our choice of

Ni = Ki/(4|X | · 2i),
we have that

|X |Ni =
1

4 · 2i
Ki <

1

2 · 2i
Ki.

This is a contradiction. Thus, we must have that Wh(X \ Xi) ≤ V ∗,imi

0 ≤ 2−i.

Lemma 14. The event Cδ/2 with δ ≥ δsamp

SAH implies

Wh(X ) ≥
|Xi|

2i+3|X |
.

Proof.

Ni|Xi| ≤
mi∑
j=1

Kij∑
k=1

Rj
h(s

j,k
h , aj,kh ) ≤

mi∑
j=1

Kij∑
k=1

V k,ij
0 +

√
4Ki2−i log

4

δ
+ 2 log

4

δ
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≤ KiWh(X ) +
√
4Ki2−i log

4

δ
+ 2 log

4

δ

≤ KiWh(X ) +
Ki

2i+4SA
+

Ki

2i+10SA

≤ KiWh(X ) +
Ki

2i+3SA
,

where the forth inequality follows from Ki ≥ 2i+11S2A2 log 4SAH
δsamp

. Then,

Wh(X ) ≥
Ni|Xi|
Ki

− 1

2i+3SA
=

|Xi|
2i+2|X |

− 1

2i+3SA
≥ |Xi|

2i+3|X |
.

Lemma 15. The event D1,δ ∩ D2,δ with δ ≥ δsamp

2SAH implies that after rerunning each policy in Πi

once, the number of samples collected for each (s, a) ∈ Xi is at least 1
4Ni.

Proof. Let I1, I2 denote the indicator of an event during FindExplorableSets, and an event during
rerunning policies respectively. For a pair (s, a) ∈ Xi, we have

Ki∑
k=1

I1{(skh,ak
h)=(s,a)} −

Ki∑
k=1

wπk

h (s, a) ≤
√

2KiWh(s) log
2

δ
+ 2 log

2

δ

Ki∑
k=1

wπk

h (s, a)−
Ki∑
k=1

I2{(skh,ak
h)=(s,a)} ≤

√
2KiWh(s) log

2

δ
+ 2 log

2

δ

Then the number of samples of (s, a) collected during the rerunning satisfies
Ki∑
k=1

I2{(skh,ak
h)=(s,a)} ≥

Ki∑
k=1

I1{(skh,ak
h)=(s,a)} − 2

√
2KiWh(s) log

2

δ
− 4 log

2

δ

≥ Ni − 2

√
2KiWh(s) log

2

δ
− 4 log

2

δ

≥ Ni − 2

√
2−i+2Ki log

2

δ
− 4 log

2

δ

≥ Ni −
Ki

2i+3.5SA
− Ki

2i+9S2A2

≥ Ni −
Ki

2i+2.5SA

≥ Ni −
Ki

2i+2.5|X |
= Ni(1−

1√
2
) ≥ 1

4
Ni,

where the forth inequality follows from δ ≥ δsamp

4SAH and log 2SAH
δsamp

≤ Ki

2i+11S2A2 .

Lemma 16. The event D1,δ with δ ≥ δsamp

2SAH implies

Wh(s) >
1

2i+3|X |
for each (s, a) ∈ Xi, Wh(Xi) >

|Xi|
2i+3|X |

.

Proof. In the proof of the previous lemma, we showed that√
2−i+2Ki log

2

δ
+ 2 log

2

δ
≤ Ni

2
√
2
<

Ni

2

when δ ≥ δsamp

2SAH . Using this, we have

Ni ≤
Ki∑
k=1

I1{(skh,ak
h)=(s,a)} ≤

Ki∑
k=1

wπk

h (s, a) +

√
2−i+2Ki log

2

δ
+ 2 log

2

δ
< KiWh(s) +

Ni

2
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for each (s, a) ∈ Xi. Thus,

Wh(s) >
Ni

2Ki
=

1

2i+3|X |
.

On the other hand,

|Xi|Ni ≤
∑

(s,a)∈Xi

Ki∑
k=1

I1{(skh,ak
h)=(s,a)} ≤

Ki∑
k=1

wπk

h (Xi) + |Xi|

(√
2−i+2Ki log

2

δ
+ 2 log

2

δ

)
< KiWh(Xi) +

|Xi|Ni

2
.

Thus,

Wh(Xi) >
|Xi|Ni

2Ki
=

|Xi|
2i+3|X |

.

We finally give a guarantee of FindExplorableSets.
Theorem C.1. If we run

FindExplorableSets(X , h, δ,Ki = Ki(δ, δsamp = SAHδ), Ni =
Ki

4|X |2i
)

for a subset X ⊂ S ×A with Wh(X ) ≤ 2−i+1 and returns subset Xi ⊂ X , policy set Πi, then

1. Wh(X \ Xi) ≤ 2−i with probability at least 1− δ.

2. With probability at least 1− SAδ,

(1) If we rerun each policy in Πi once, the number of samples collected for each (s, a) ∈ Xi

is at least 1
4Ni.

(2) Wh(s) >
1

2i+3|X | for each (s, a) ∈ Xi and Wh(Xi) >
|Xi|

2i+3|X | .

Proof. By Lemma 9, 10, 11, 12, 13, 15, and 16, the theorem follows.

C.2 Proof of Theorem 3.1

Before proving Theorem 3.1, we introduce a useful lemma related to the Lambert W -function. The
Lambert function W (s) : [0,∞)→ [0,∞) is defined by

x = W (x) exp(W (x)), for x ≥ 0.

Then the following holds.
Lemma 17. [18, Lemma 17]

0.6321 log(1 + x) ≤W (x) ≤ log(1 + x) for x ≥ 0.

We define

c(B) = 4JCK(
1

8SAH
,
1

8
, J) = poly(S,A,H, log(B)),

CL2E(B) = SH2c(B). (5)
Recall that CK was defined in (4). We now give a proof of Theorem 3.1
Theorem C.2 (Theorem 3.1). Consider running Algorithm 1 with sufficiently large budget B ≥ c(B).
Then, the following statements hold.

1. The total budget used is at most B.

2. For any ε ≥ 2SH2εB , with probability at least 1− exp

(
−Θ̃

(
εB

CL2E(B)

))
,

(1) The reachability of each set Xi satisfies

|Xi|
|X |
· 2−i−3 ≤Wh(Xi) ≤ 2−i+1 for all i ≤ iε :=

log2
(
2SH2

ε

) ,

(2) The remaining elements, X̄ := X \ ∪iεi=1Xi satisfy

sup
π

∑
(s,a)∈X̄

wπ
h(s, a) ≤

ε

2SH2
.
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(3) Moreover, for any i ≤ iε, if each policy in Πi is executed A times, then every state-
action pair (s, a) ∈ Xi is visited at least 1

8ANi times.

Proof. We first prove that the total budget used is at most B. Let δ = 1
8SAH . By the definition of δi,

log
1

δi
= 0.6321Li log

1

δ
· log log 1

δ

≤ 1 + 0.6321Li log
1

δ
· log log 1

δ

≤ (1 + Li log
1

δ
· log log 1

δ
)0.6321

≤ exp(W (Li log
1

δ
· log log 1

δ
)).

Thus,

log
1

δi
· log log 1

δi
≤W (Li log

1

δ
· log log 1

δ
) exp(W (Li log

1

δ
· log log 1

δ
)) = Li log

1

δ
· log log 1

δ
.

(6)
The total budget used is

J∑
j=1

Kj(δj , SAHδj) ≤
J∑

j=1

2j+1CK(δj , SAHδj , J)

≤
J∑

j=1

2J+1CK(
1

8SAH
,
1

8
, J)

≤ 2J(1 +
log(2)B

c(B)
)0.6321CK(

1

8SAH
,
1

8
, J)

≤ 2J(1 +
B

c(B)
)CK(

1

8SAH
,
1

8
, J),

where the second inequality follows from (6) and that CK has log( 1δ ) log log(
1
δ ) dependence. If

B ≥ c(B), then the above is bounded by
4JB

c(B)
CK(

1

8SAH
,
1

8
, J) = B.

We now prove the second part. By union bounding Theorem C.1 over i = 1, 2, . . . iε, (1) hold with
probability at least

1−
iε∑
i=1

δi ≥ 1− iεδiε .

Here, δiε = exp(−Θ̃(Liε)) by the definition and

Liε = 2J−iε ≥ ε

4SH2
(1+

log(2)B

c(B)
)0.6321 ≥ ε

4SH2
(1+0.6321

log(2)B

c(B)
) ≥ ε

4SH2
·0.6321 log(2)B

c(B)
.

Thus, (1) holds with probability at least 1 − exp

(
−Θ̃

(
εB

CL2E(B)

))
. Similarly, (2) holds with

probability at least

1− SA

iε∑
i=1

δi.

Since SA becomes log(SA) when moving into the exponential, (2) also holds with probability at

least 1 − exp

(
−Θ̃

(
εB

CL2E(B)

))
. We next compute the probability that (3) holds. For simplicity,

let’s consider the level i = iε, in which the failure probability SAδiε is dominant. For the collection
of samples via rerunning policies to be successful, we need both D1,δiε

and D2,δiε
to hold. D1,δiε

holds with probability at least 1 − SAδiε
2 . On the event D1,δiε

, consider rerunning each policy in
Πiε for A times. By Lemma 18, with probability 1− exp(− 1

2A log( 1
eSAδiε

)), at least for A
2 trials
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of repetition, we collect Niε

4 samples of each (s, a) ∈ Xiε , which means we collect at least ANiε

8
samples of each (s, a) ∈ Xiε . Thus, the probability that there exists some (s, a) ∈ Xiε , the sample
number of which is less than ANiε

8 is

exp

(
−1

2
A log(

1

eSAδiε
)

)
= exp

(
−Θ̃

(
εAB

CL2E(B)

))
.

However, the failure probability ofD1,δiε
is already exp

(
−Θ̃

(
εB

CL2E(B)

))
, which is more dominant.

Thus, (3) also holds with probability 1− exp

(
−Θ̃

(
εB

CL2E(B)

))
. The theorem is proven.

C.3 Boosting technique

In this subsection, we develop an alternative algorithm of FB-L2E. The core mechanism of this
alternative is the boosting technique, which repeatedly executes independent trials. The number of
repetitions and the failure probability is in the exponential relationship as we can see in the following
lemma.

Lemma 18. Let E be an event from a random trial such that P(E) ≤ δ Let α ∈ (δ, 1). Let N be the
number of trials where E is true out of L trials. Assume α > δ. Then,

P(
N

L
≥ α) ≤ exp

(
−αL ln

(
α

eδ

))

Proof. Recall the KL divergence based concentration inequality where µ̂n is the sample mean of n
Bernoulli i.i.d. random variables with head probability µ:

P(µ̂n − µ ≥ ε) ≤ exp(−nkl(µ+ ε, µ)) .

Note that N/L can be viewed as the sample mean of Bernoulli trials with µ := P(E). Then,

P(N ≥ αL) = P(
N

L
≥ α)

= P(
N

L
− µ ≥ α− µ)

≤ exp(−Lkl(α, µ))

= exp

(
−L

(
α ln(α/µ) + (1− α) ln

1− α

1− µ

))
(a)

≤ exp
(
−L

(
α ln(α/µ)− α

))
≤ exp

(
−L

(
α ln(α/δ)− α

))
where (a) is by the following derivation:

(1− α) ln
1− α

1− µ
= −(1− α) ln

1− µ

1− α

= −(1− α) ln

(
1 +

α− µ

1− α

)
≥ −(α− µ)

≥ −α

The alternative algorithm, FB-L2E-BS is described in Algorithm 0. Although it only applies to
singleton subsets (subset of size 1), one can flexibly change the regret minimization algorithm in
FINDEXPLORABLESETS. It was crucial for our result that the regret bound of STRONGEULER has
log( 1δ ) dependence. However, for FB-L2E-BS, we can use algorithms such as EULER, which has
log3( 1δ ) dependence in the lower order term.
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Algorithm 3 Fixed Budget Learn to Explore with Boosting for Singleton (FB-L2E-BS)
function FB-L2E-BS(X = {(s, a)} ⊆ S ×A, step h, budget B)

if |X | = 0 then
return {(∅, ∅, 0, )}

end if
J ← ⌈0.6321 log2(1 +

log(2)B
c(B) )⌉

for j = 1, . . . , J do
Kj ← Kj(

1
8SAH , 1

8 ), Nj ← Kj/(4|X | · 2j), Lj ← 2J−j

for m = 1, . . . , Lj do
Yj,m,Πj,m = FindExplorableSets(X , h, 1

8SAH ,Kj , Nj)
end for
Calculate the votes: ∀(s, a) ∈ X , vs,a ←

∑Lj

m=1 1
{
(s, a) ∈ Yj,m

}
.

Filter out only if chosen at least half the time: Xj ← {(s, a) | vs,a ≥ Lj/2}
Πj = ∪

Lj

m=1Πj,m

X ← X\Xj

end for
return {(Xj ,Πj , Nj)}Jj=1

end function

We briefly argue that the statements of Theorem 3.1 also hold for FB-L2E-BS used for singleton
subset. The total budget used is

J∑
j=1

2J−jKj = J2J+1CK(
1

8SAH
,
1

8
, J)

≤ 2J(1 +
log(2)B

c(B)
)0.6321CK(

1

8SAH
,
1

8
, J)

≤ 2J(1 +
log(2)B

c(B)
)CK(

1

8SAH
,
1

8
, J).

If B ≥ c(B), then the above is bounded by
4JB

c(B)
CK(

1

8SAH
,
1

8
, J) = B.

Let δ = 1
8SAH , δsamp = 1

8 . The crucial part for other statements in Theorem 3.1, was to make the
failure probability of the j-th iteration in the form of

(c1δ)
c2Lj (7)

for some constant c1, c2, which was done by defining δi as this form in FB-L2E. Once we get (7),

the dominant term becomes (c1δ)
c2Liε = exp

(
−Θ̃

(
εB

CL2E(B)

))
. We show that (7) can also be

obtained for FB-L2E-BS.
Assume Wh(s) ∈ (2−i, 2−i+1] for i ≤ J . Let’s call i as the reachable index of s at h. Let Nj be the
event that (s, a) is not filtered in j-th boosted FES. By Lemma 13,

P
(
(s, a) is not filtered in i-th step by a single FES| ∩i−1

j=1 Nj

)
≤ δ.

If we apply Lemma 18, we obtain the form of (7) as

P
(
∩ij=1Nj

)
≤ P

(
Ni| ∩i−1

j=1 Nj

)
≤ exp

(
−1

2
Li log

1

2eδ

)
.

We say that (s, a) is upper well-filtered at h if (s, a) is filtered in the index j for some j ≤ i.
Now we consider the j-th boosted FES for some j ≤ i− 4. By Lemma 11, 16,

P
(
(s, a) is filtered in j-th step by a single FES| ∩j−1

k=1 Nk

)
≤ δsamp

2SAH
.

Thus, by Lemma 18, we obtain the form of (7) as

P
(
∩j−1
k=1Nk, N c

j

)
≤ P

(
N c

j | ∩
j−1
k=1 Nk

)
≤ exp

(
−1

2
Lj log

SAH

eδsamp

)
.
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We say that (s, a) is lower well-filtered at h if (s, a) is not filtered in the indices j with j ≤ i− 4. We
also say that (s, a) is well-filtered at h if (s, a) is both upper and lower well-filtered at h. We have

P
(
(s, a) is not lower well-filtered at h

)
≤

i−4∑
j=1

exp

(
−1

2
Lj log

SAH

eδsamp

)
≤ i exp

(
−1

2
Li log

SAH

eδsamp

)
.

Thus, we have

P
(
(s, a) is well-filtered at h

)
≥ 1− exp

(
−1

2
Li log

1

2eδ

)
− i exp

(
−1

2
Li log

SAH

eδsamp

)
.

Recall that ε ≥ 2SH2εB and iε := ⌈log2( 2SH2

ε )⌉. We define the set
Sε = {(s, h) : the reachable index of s at h ≤ iε}

and the event
Mε = {(s, a) is well-filtered at h for all (s, h) ∈ Sε}.

By using the monotonicity of Li and union bound, we have the following.

Lemma 19.

P(Mε) ≥ 1− SH exp

(
−1

2
Li∗ log

1

2eδ

)
− SHiε exp

(
−1

2
Li∗ log

SAH

eδsamp

)

= 1− exp

(
−Θ̃

(
εB

CL2E(B)

))
.

Let Wh(S) ∈ (2−i, 2−i+1] and assume that D1,δ happened for at least Lj

2 , where j is the index that
(s, a) is filtered. We denote the number of (s, a) samples at horizon h when running each policy in a
policy set Π A times as NA

Π (s, a, h). Let I ⊂ [Lj ] be the set of indices that D1,δ happened, which
means |I| ≥ Lj/2. Assume m ∈ I . If we rerun each policy in Πj,m once,

P(# of (s, a) samples at horizon h <
1

4
Nj) ≤

δsamp

H
by Lemma 15. Now consider rerunning each policy in Πj,m A times. Since running policies are
independent, we can think of the process as A repetition of running each policy in Πj,m once. Thus,
we get

P(NA
Πj,m

(s, a, h) <
1

8
ANj) ≤ P(

A∑
i=1

Ii{N1
Πj,m

(s,a,h)< 1
4Nj} ≥

A

2
) ≤ exp(−A

2
ln(H/2eδsamp)),

where Ii is the indicator function for i-th repetition of running each policy in Πj,m and the second
inequality follows from Lemma 18. If we rerun each policy in Πj A times,

P(NA
Πj

<
1

32
ANjLj) ≤ P(

∑
m∈I

I{NA
Πj,m

(s,a,h)< 1
8ANj} ≥

|I|
2
) ≤ exp(−Y

2
ln(1/2e exp(−A

2
ln(H/2eδsamp))))

≤ exp(−Lj

4
ln(1/2e exp(−A

2
ln(H/2eδsamp))))

≤ exp
(
−Θ̃

(
ALj

))
by Lemma 18. If this happens, let’s say that (s, a) is well-collected at horizon h for A repetition.
However, the failure probability

P(D1,δ happened less than
Lj

2
) ≤ exp

(
−Θ̃

(
Lj

))
,

which is more dominant. Thus, the following holds.

Lemma 20. Consider s whose reachable index at h is i ≤ iε. If we replay policies saved for (s, a)
A times, the number Ths of (s, a) samples we get satisfies

P
(
Ths <

ANiLi

16

)
≤ exp

(
−Θ̃

(
εB

CL2E(B)

))
.
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D Analysis of SAR

Fix ε ≥ 0. We say that an arm i of a bandit m is ε-good if µm,1 − µm,i ≤ ε. An arm is ε-
bad if it is not ε-good. Let gm(ε) denote the number of ε-good arms in bandit m. We write
k∗ := max

{
k : ∆̄(KM+1−k) > ε

}
and define the following two key events:

E1 =
{
∀k ∈ [k∗], ε

2 -good pairs are not rejected at the end of phase k
}

E2 = {∀k ∈ [(k∗ + 1), . . . ,K], for every active bandit m containing an ε-bad arm

at the beginning of phase k, an ε
2 -good arm in bandit m is not rejected

}
We first show that the intersection of these two events leads to a successful good arm identification
for every bandit.

Lemma 21. Suppose E1 ∩ E2 holds. Then for every m ∈ [M ], the accepted arm is ε-good.

Proof. Suppose the conclusion is not true; i.e., there exists a bandit m for which an ε-bad arm (m, b)
has been accepted. Then, there exists a phase k ∈ [KM − 1] where the best arm (m, 1) is rejected
from bandit m. Due to E1 and the fact that arm (m, 1) is an ε

2 -good arm, we know k ≥ k∗ + 1. Now,
at the beginning of phase k, the bandit m must contain both (m, b) and (m, 1). However, due to E2,
the arm (m, 1) cannot be rejected, which contradicts our supposition.

Furthermore, consider the following event

E0 =

{
∀m ∈ [M ],∀i ∈ [K],∀k ∈ [MK − 1],

∣∣µ̂m,i(nk)− µm,i

∣∣ < 1

8
(∆̄(MK+1−k) ∨ ∆̄(g(ε)+1))

}
Lemma 22. E0 =⇒ E1 ∩ E2

Proof. Assume E0. To show E1, it suffices to show that, for every k ∈ [k∗], if no ε
2 -good arm was

rejected before phase k then no ε
2 -good arm will be rejected in phase k (i.e., either accepts an arm or

rejects a non- ε2 -good arm).

So, let k ∈ [k∗], which implies that ∆̄(MK+1−k) > ε by definition, and assume that no ε
2 -good arm

was rejected before phase k. Furthermore, E1 is trivially true if the phase k accepts an arm. Thus, it
suffices to assume that the phase k does not accept an arm.
We claim that, at the beginning of phase k, there exists an arm (m̄, ī) ∈ S such that

µm̄,1 − µm̄,̄i ≥ ∆̄(MK+1−k) .

Hereafter, we omit (nk) from µ̂·,·(nk). To prove this claim, first note that there exists (m′, i′) ∈ S
such that

∆̄m′,i′ ≥ ∆̄(MK+1−k) .

(To see this, first, confirm that this is true with equality if the arm (MK + 1 − k) is rejected or
accepted at each phase k; now, notice that if an arm other than (MK + 1 − k) was rejected or
accepted, then it only makes the equality into ≥.) Then, we have the following two cases:

• If i′ ̸= 1, then ∆̄m′,i′ = µm′,1 − µm′,i′ by definition, so we can take m̄ = m′ and ī = i′ to
prove the claim.

• If i′ = 1, then, since phase k does not accept an arm, there must exist another surviving arm
i′′ ̸= 1 in bandit m′. Since ∆̄m′,i′′ = µm′,1 − µm′,i′′ and

∆̄m′,i′′ ≥ ∆̄m′,2 = ∆̄m′,1 = ∆̄m′,i′ ≥ ∆̄(MK+1−k) ,

we can choose m̄ = m′ and ī = i′′ to prove the claim.

Assume that E1 is false; i.e., an ε
2 -good arm in bandit m is rejected. This implies that there exists an

active bandit m such that
∃g ∈ [gm( ε2 )] : µ̂m,1̂m

− µ̂m,g ≥ µ̂m̄,1̂m̄
− µ̂m̄,̄i .

Note that, using E0 and µm,1̂m
− µm,g ≤ µm,1 − µm,g ≤ ε

2 < 1
2∆̄(MK+1−k),

(LHS) = µ̂m,1̂m
− µm,1̂m

+ µm,1̂m
− µm,g + µm,g − µ̂m,g
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<
∆̄(MK+1−k)

8
+

∆̄(MK+1−k)

2
+

∆̄(MK+1−k)

8

=
3

4
∆̄(MK+1−k) .

On the other hand,
(RHS) ≥ µ̂m̄,1 − µ̂m̄,̄i ((m, 1) ∈ S since no ε

2 -good arm rejected before phase k)

= µ̂m̄,1 − µm̄,1 + µm̄,1 − µm̄,̄i + µm̄,̄i − µ̂m̄,̄i

> −1

8
∆̄(MK+1−k) + ∆̄(MK+1−k) −

1

8
∆̄(MK+1−k)

≥ 3

4
∆̄(MK+1−k) .

This is a contradiction.
We now prove E2. Suppose not; there exists a phase k ≥ k∗+1 and a bandit m active at the beginning
of phase k where an ε

2 -good arm (g,m) is rejected even if there was a surviving bad arm (b,m). This
means that

µ̂m,g ≤ µ̂m,b

On the other hand, note that k ≥ k∗ + 1 implies ∆̄(MK+1−k) ≤ ∆̄(g(ε)+1), so ∆̄(MK+1−k) ∨
∆̄(g(ε)+1) = ∆̄(g(ε)+1). Thus,

µ̂m,g − µ̂m,b = µ̂m,g − µm,g + µm,g − µm,b + µm,b − µ̂m,b

> −1

8
∆̄(g(ε)+1) + µm,g − µm,b −

1

8
∆̄(g(ε)+1) (E0)

≥ −1

8
∆̄(g(ε)+1) +

1

2
∆̄(g(ε)+1) −

1

8
∆̄(g(ε)+1) (definition of g and b)

> 0

This is a contradiction.

Let

H1(ε) :=

MK∑
i=1

1

(∆̄(i) ∨ ε)2
, H2(ε) := max

i≥g(ε)+1

i

∆̄2
(i)

.

We present a relation between these two gap-dependent quantities.

Lemma 23. H2(ε) ≤ H1(ε) ≤ g(ε)
ε2 + log(MK

g(ε) )H2(ε).

Proof. Let i∗ = argmaxi≥g(ε)+1 i∆̄
−2
i . Note that

H1(ε) =
∑
i≥1

(∆̄i ∨ ε)−2 ≥
g(ε)∑
i=1

∆̄−2
g(ε)+1 +

∑
i≥g(ε)+1

∆−2
i

≥
g(ε)∑
i=1

∆̄−2
g(ε)+1 +

i∗∑
i=g(ε)+1

∆̄−2
i∗

=

g(ε)∑
i=1

∆̄−2
g(ε)+1 + (i∗ − g(ε))∆̄−2

i∗

=

g(ε)∑
i=1

∆̄−2
g(ε)+1 +H2(ε)− g(ε)∆̄−2

i∗

≥
g(ε)∑
i=1

∆̄−2
g(ε)+1 +H2(ε)− g(ε)∆̄−2

g(ε)+1

≥ H2(ε).
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For the right inequality,

H1(ε) =
∑
i≥1

1

i
i(∆̄i ∨ ε)−2 =

≤
g(ε)∑
i=1

1

i
iε−2 +

MK∑
i=g(ε)+1

1

i
H2(ε)

≤ g(ε)

ε2
+ log(

MK

g(ε)
)H2(ε).

We are now ready to prove Theorem 3.2.

Theorem D.1 (Theorem 3.2). If we run Algorithm 2 with B ≥MK, then the total number of budget
used is at most B and

P(∃m ∈ [M ] : µm,1 − µm,JB(m) > ε) ≤ 2M2K2 exp

(
− B −MK

128σ2 log(MK) ·maxi≥g(ε)+1 i∆̄
−2
(i)

)
≤ 2M2K2 exp

(
− B −MK

128σ2 log(MK) ·
∑

i∈[MK](∆̄(i) ∨ ε)−2

)
.

Proof. For the first part, the total budget used is bounded as
MK−1∑
k=1

nk(B,M,K)+nMK−1(B,M,K) ≤MK+
B −MK

log(MK)

(
1

2
+

MK−1∑
k=1

1

MK + 1− k

)
= B,

where we used ⌈x⌉ ≤ 1 + x For the second part, it suffices to bound P(E0) by Lemma 21 and
Lemma 22. Fix a bandit m and an arm i. Then,

P
(
∃k ∈ [KM − 1] :

∣∣µ̂m,i(nk)− µm,i

∣∣ ≥ 1

8
(∆̄(MK+1−k) ∨ ∆̄(g(ε)+1))

)
≤

KM−1∑
k=1

2 exp

(
− nk

2σ2
·
(∆̄(MK+1−k) ∨ ∆̄(g(ε)+1))

2

64

)

≤
KM−1∑
k=1

2 exp

(
− B −MK

log(MK) · (MK + 1− k)

(∆̄(MK+1−k) ∨ ∆̄(g(ε)+1))
2

128σ2

)
≤ 2MK exp

(
− B −MK

128σ2 log(MK) ·maxi∈[2..MK] i(∆̄(i) ∨ ∆̄(g(ε)+1))−2

)
≤ 2MK exp

(
− B −MK

128σ2 log(MK) ·maxi≥g(ε)+1 i∆̄
−2
(i)

)
.

Taking a union bound over m ∈ [M ] and i ∈ [K] and Lemma 23 completes the proof.
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Algorithm 4 Backward Reachability Estimation and Action elimination (BREA)

1: input: Budget B
2: B′ ← ⌊ B

2SH ⌋, J ← ⌈0.6321 log2(1 +
log(2)B′

c(B′) )⌉
3: B′′ ← B

2HJ
4: for h = H,H − 1, . . . , 1 do
5: Zh ← ∅
6: for s ∈ S do {(X sh

j ,Πsh
j , Nsh

j )}Jj=1 ← FB-L2E({(s, 1)}, h,B′) (1 is an arbitrary action)
7: if X sh

h = {(s, 1)} for some j ∈ [J ] then
8: Ŵh(s)← 2−j+1, Zh ← Zh ∪ {s}
9: end if

10: end for
11: for i = 1 to J do
12: Zhi ← {s ∈ Zh : Ŵh(s) = 2−i+1}, A1 ← Zhi ×A,
13: ∀(s, a) ∈ A1, N(s, a)← 0, T (s, a)← 0, T0(s, a)← 0, Q(s, a)← 0
14: for k = 1 to |Zhi|A− 1 do
15: nk ← nk(⌊B′′2−i−2⌋, |Zhi|, A) (as defined in (1))
16: for (s, a) ∈ Ak do
17: Tk(s, a)← ⌊ nk

Ns
i h
⌋

18: Rerun each policy in Πsh
i for Tk − Tk−1 times

19: for each time t = T (s, a) + 1 to Tk(s, a) do
20: if (s, a) is visited at step h then
21: Take action a and extend a trajectory using {π̂h′}Hh′=h+1

22: N(s, a)← N(s, a) + 1

23: Q(s, a)← Q(s, a) +
∑H

h′=h R
t
h′(sth′ , ath′)

24: end if
25: end for
26: Q̂π̂

h(s, a)← Q(s, a)/N(s, a) if N(s, a) > 0 else 0
27: T (s, a)← Tk(s, a)
28: end for
29: if ∃ state s with unique surviving pair (s, a) in Ak then
30: π̂h(s)← a, Ak+1 ← Ak \ {(s, a)}
31: else
32: ∀(s, a) ∈ Ak, ∆̂π̂

h(s, a)← maxa:(s,a)∈Ak
Q̂π̂

h(s, a)− Q̂π̂
h(s, a)

33: (s′, a′)← arg max(s,a)∈Ak
∆̂π̂

h(s, a) (Break ties arbitrarily)
34: Ak+1 ← Ak \ {(s′, a′)}
35: end if
36: end for
37: π̂(s)← a for A|Zhi|A = {(s, a)}
38: end for
39: For each s ∈ S \ Zh, set π̂h(s) as any action
40: end for
41: return π̂

26



E Proof of Theorem 3.3

In this section, we provide an analysis of BREA. For convenience, we write the full algorithm again.
Recall that ε ≥ 2SH2εB and iε = ⌈log2( 2SH2

ε )⌉We define the events

Mh,ε =
{

For any s ∈ S,

FB-L2E({(s, 1)}, h,B′) outputs Xi = {(s, 1)} for some i ≤ iε =⇒ 2−i−3 ≤Wh(s) ≤ 2−i+1,

FB-L2E({(s, 1)}, h,B′) outputs Xi = ∅ for all i ∈ [iε] =⇒ Wh(s) ≤
ε

2SH2

}
,

Mε = ∪Hh=1Mh,ε,

Lh,ε =
{

For any i ≤ iε and any phase k ∈ [|Zhi|A− 1],

each (s, a) ∈ Ak is collected at least ⌊ nk

Nsh
i

⌋N
sh
i

8
times

}
,

Lε = ∪Hh=1 Lh,ε

Eh =
{
∆π̂

h(s, π̂h(s)) ≤
ε

2ChHWh(s)
for all s ∈ ∪iεi=1Zhi

}
.

(8)

Before proving Theorem 3.3, we provide lemmas that will give us a relation between the suboptimality
gap and its empirical estimate.

Lemma 24. Let 0 < a ≤ b and assume f1, f2 ≥ 0 satisfy |f1 − f2| ≤ b. Then

(f1 ∨ a)−2 ≤ (
a

2b
f2 ∨ a)−2.

Proof. If f1 ≤ a, then (f1 ∨ a)−2 = a−2. On the other hand, f2 ≤ f1 + b ≤ a+ b ≤ 2b. Thus,

(f1 ∨ a)−2 = a−2 = (
a

2b
f2 ∨ a)−2.

If f1 > a, then (f1 ∨ a)−2 = f−2
1 < a−2. Also, f2 ≤ f1 + b < f1 +

f1
a b = f1(1 + b

a ) ≤
2b
a f1.

Thus,

(f1 ∨ a)−2 = f−2
1 < (

a

2b
f2 ∨ a)−2.

Lemma 25. On ∩h+1
h′=HEh′ ∩Mε ∩ Lε, we have

(∆π̂
h(s, a) ∨

ε

2ChHWh(s)
)−2 ≤ 16C2

hH
2(∆h(s, a) ∨

2ε

Wh(s)
)−2.

Proof. By Lemma 4, for any policy π′∑
s

wπ′

h+1(s)(V
∗
h+1(s)− V π̂

h+1(s)) ≤
H∑

h′=h+1

sup
π

∑
s

wπ
h′(s)εh(s)

≤
H∑

h′=h+1

sup
π

∑
i≤iε

∑
s∈Zhi

wπ
h′(s)

ε

2ChHWh(s)
+H

H∑
h′=h+1

∑
s̸∈∪i≤iεZhi

sup
π

wπ
h′(s)

≤
H∑

h′=h+1

ε

2H
+

H∑
h′=h+1

SH
ε

2SH2

≤ ε.

By Lemma 5,

|∆h(s, a)−∆π̂
h(s, a)| ≤

ε

Wh(s)
.

By applying Lemma 24 with f1 = ∆π̂
h(s, a), f2 = ∆h(s, a), a = ε

2ChHWh(s)
, b = ε

Wh(s)
, the proof

is done.
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Theorem E.1 (Theorem 3.3). If we run Algorithm 4 with sufficiently large budget B, then the total
number of budget used is at most B. Moreover, for any ε ≥ 2SH2ε B

2SH
,

P
(
V ∗
0 − V π̂

0 > ε
)
≤ exp

(
−Θ̃

( εB

CL2E(
B

2SH )

))
+ exp

(
−Θ̃

( B

H5 maxh∈[H] C
2
h

∑
s∈S Wh(s)−1

∑
a∈A(∆̄h(s, a) ∨ ε

Wh(s)
)−2

))
.

Proof. The budget used from the first part is

SH⌊ B

2SH
⌋ ≤ B

2
by Theorem 3.1. For the second part, we use

|Zhi|A−1∑
i=1

Ti(s, a) + T|Zhi|A−1(s, a)

≤ 1

Ni

|Zhi|A−1∑
i=1

ni + n|Zhi|A−1


≤⌊B

′′2−i−2⌋
2i+2

≤ B′′ =
B

2HJ
(Theorem 3.2)

for each multiple bandit Zhi. Thus, the budget used in the second part is at most B
2 , the total budget

used is at most B.
We now prove the probability bound. By Theorem 3.1, we have

P(Mc
ε) ≤ SH exp

−Θ̃( εB

CL2E(
B

2SH )

) = exp

−Θ̃( εB

CL2E(
B

2SH )

) ,

P(Lc
ε) ≤ S2A2H exp

−Θ̃( εB

CL2E(
B

2SH )

) = exp

−Θ̃( εB

CL2E(
B

2SH )

) . (9)

We can decompose the probability as

P(V ∗
0 − V π̂

0 > ε) ≤ P(V ∗
0 − V π̂

0 > ε,Mε,Lε) + P(Mc
ε) + P(Lc

ε)

≤ P(V ∗
0 − V π̂

0 > ε,Mε,Lε) + exp

−Θ̃( εB

CL2E(
B

2SH )

) . (10)

Assume thatMε,Lε, {Eh}Hh=1 holds. Then, by Lemma 4,

V ∗
0 − V π̂

0 ≤
H∑

h=1

sup
π

∑
s

wπ
h(s)εh(s)

≤
H∑

h=1

sup
π

∑
i≤iε

∑
s∈Zhi

wπ
h(s)

ε

2ChHWh(s)
+H

H∑
h=1

∑
s̸∈∪i≤iεZhi

sup
π

wπ
h(s)

≤
H∑

h=1

ε

2H
+ SH2 ε

2SH2

≤ ε

2
+

ε

2
= ε,

where the second inequality follows from the definition of Ch. Thus, we have

P(V ∗
0 − V π̂

0 > ε,Mε,Lε) ≤
H∑

h=1

P(Ech,Mε,Lε,∩h+1
h′=HEh′). (11)

We try to bound P(Ech,Mε,Lε,∩h+1
h′=HEh′).
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On the event Lε, every multiple bandit instance Zhi effectively collects samples so that SAR with
budget Θ( B

2HJ 2
−i−2) is run. On the eventMε, this is Θ(BWh(s)

HJ ) = Θ(BWh(s)
H ). By Theorem 3.2,

we have

P
(
∆π̂

h(s, π̂h(s)) >
ε

2ChHWh(s)
for some s ∈ Zhi,Mε,Lε,∩h+1

h′=HEh′ |Fh+1

)

≤ exp

−Θ̃( B

H3
∑

(s,a)∈Zhi×A Wh(s)−1(∆π̂
h(s, a) ∨

ε
2ChHWh(s)

)−2

)
≤ exp

−Θ̃( B

C2
hH

5
∑

(s,a)∈Zhi×A Wh(s)−1(∆h(s, a) ∨ ε
Wh(s)

)−2

) ,

where the second inequality follows from Lemma 25, Fh+1 is a filtration up to learning in step h+ 1.
Thus, we have

P(Ech,Mε,Lε,∩h+1
h′=HEh′) ≤ iε exp

−Θ̃( B

H5 maxh C2
h

∑
(s,a)∈S×A Wh(s)−1(∆h(s, a) ∨ ε

Wh(s)
)−2

)
= exp

−Θ̃( B

H5 maxh C2
h

∑
(s,a)∈S×A Wh(s)−1(∆h(s, a) ∨ ε

Wh(s)
)−2

) .

If we plug this into (11) and (10), we get the probability bound of the theorem.
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