
Published in Transactions on Machine Learning Research (06/2024)

Gradient Scarcity in Graph Learning
with Bilevel Optimization

Hashem Ghanem hashemghanem234@gmail.com
Institut de Mathématiques de Bourgogne, CNRS, Université de Bourgogne, France

Samuel Vaiter samuel.vaiter@cnrs.fr
CNRS & Université Côte d’Azur, Laboratoire J. A. Dieudonné

Nicolas Keriven nicolas.keriven@cnrs.fr
CNRS & IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires

Reviewed on OpenReview: https: // openreview. net/ forum? id= 10YJTIsVYq

Abstract

Gradient scarcity emerges when learning graphs by minimizing a loss on a subset of nodes
under the semi-supervised setting. It consists in edges between unlabeled nodes that are far
from the labeled ones receiving zero gradients. The phenomenon was first described when
jointly optimizing the graph and the parameters of a shallow Graph Neural Network (GNN)
using a single loss function. In this work, we give a precise mathematical characterization
of this phenomenon, and prove that it also emerges in bilevel optimization. While for GNNs
gradient scarcity occurs due to their finite receptive field, we show that it also occurs with
the Laplacian regularization as gradients decrease exponentially in amplitude with distance
to labeled nodes, despite the infinite receptive field of this model. We study several solutions
to this issue including latent graph learning using a Graph-to-Graph model (G2G), graph
regularization to impose a prior structure on the graph, and reducing the graph diameter
by optimizing for a larger set of edges. Our empirical results validate our analysis and
show that this issue also occurs with the Approximate Personalized Propagation of Neural
Predictions (APPNP), which approximates a model of infinite receptive field.

1 Introduction

Semi-supervised learning is learning from datasets comprising both labeled and unlabeled points. This
problem is usually handled with extra assumptions on the data. The main one, called homophily, refers
to the fact that “nearby” points are likely to have similar labels (Wang & Zhang, 2006). Moreover, points
in many applications represent entities that are naturally linked to each other, e.g., in biology (Liu et al.,
2018) or social media (Liben-Nowell & Kleinberg, 2003). There again, linked entities are likely to share the
same label, which underlines the importance of exploiting the links when solving semi-supervised learning
problems. Consequently, various graph-based methods have been developed for semi-supervised learning.

One issue with such methods is that their performance is highly dependent on the graph quality. This
issue poses a significant challenge as real-world graphs are inherently noisy, significantly degrading the
performance and leading to sub-optimal solutions. Many graph learning algorithms have thus been proposed
in the literature to overcome this issue. Among these methods, a mainstream approach is to optimize the
graph structure by means of optimizing the performance in the downstream task.

This approach involves generating a graph that, when used by a graph-based method, minimizes some la-
beling loss function. However, graph-based methods themselves require an optimization process to minimize
a labeling loss function too. This problem can be formulated in two different manners. In the joint opti-
mization formulation, a single loss function is used to assess both the graph and the graph-based model,

1

https://openreview.net/forum?id=10YJTIsVYq

Published in Transactions on Machine Learning Research (06/2024)

and both objects are optimized simultaneously. In the bilevel optimization formulation, each of the graph
and the graph-based model is assessed by its own loss function. In this scenario, the graph loss function
takes in input the optimized graph-based model trained while fixing the graph, i.e., we have a constrained
optimization problem where the constraint involves the output of another optimization problem. In both
cases, the optimization is usually handled using gradient-based methods.

For shallow Graph Neural Networks (GNNs), Fatemi et al. (2021) show that joint optimization leads to
gradient scarcity. It refers to the fact that connections between unlabeled nodes “far” from the labeled ones
receive zero gradients, i.e., they receive no supervision during the optimization and are not learned. This
is due to the finite receptive field of message-passing GNNs, which is defined as the neighborhood range
captured by a node during the message passing phase. In this work, we focus on bilevel optimization and
prove that gradient scarcity also occurs for shallow GNNs, despite the additional dependency between the
parameters in this setting. We also show that this issue emerges with other graph-based models. We do
that theoretically and empirically for the Laplacian-based label propagation, which, unlike GNNs, has an
infinite receptive field, and empirically for the Approximate Personalized Propagation of Neural Predictions
(APPNP) (Gasteiger et al., 2018), which approximates a model of infinite receptive field.

The rest of the paper is organized as follows. The rest of this section presents the considered graph-based
models for semi-supervised learning, and the bilevel optimization framework. Section 2 reviews related work.
Sections 3 and 4 presents our theoretical analysis of gradient scarcity for shallow GNNs and the Laplacian
regularization model, respectively. Section 5 proposes three strategies that can be used to mitigate this issue.
We finally present our empirical results in Section 6.

1.1 Graph-based models for semi-supervised learning

A graph G is a pair (V,E), where V is a set of n nodes and E ⊆ V × V is a set of edges. We represent
a graph by its adjacency matrix A ∈ Rn×n, where Ai,j is the weight of the edge between nodes i, j. We
denote by X ∈ Rn×p the feature matrix whose rows include the features of corresponding nodes.
Definition 1.1 (Distance between two nodes). We say that node i is k-hop from node j if the minimum
number of edges forming a path from i to j is k.
Definition 1.2 (Node distance to a subset of nodes). A node i is said to be k-hop from a subset of nodes
if the minimum number of edges forming a path from i to a node in the subset is k. We further refer to the
set of nodes that are at most k-hop from i by its k-hop neighborhood.
Definition 1.3 (Edge distance to a subset of nodes). The distance of an edge (i, j) to a subset of nodes
equals the minimum between the distance of i and the distance of j to this subset.

We look at transductive semi-supervised learning problems, where we have a set of points, a subset of which
is labeled, and the goal is to approximate the labeling function on unlabeled points. Formally, we have
(Xobs, Gobs, Yobs), where Gobs is the observed graph, Xobs are the observed node features (we will drop the
subscript and write X in the rest of the paper) and Yobs ∈ Rn contains the labels of a subset of points Vtr,
i.e., it containes the labels at coordinates i ∈ Vtr ⊂ V and, e.g., not-a-number “NaN” outside of Vtr. There
are roughly two main strategies to solve semi-supervised learning problems. The first is to propagate known
labels using a regularization process. Predicted labels read the following:

YReg(A)∈arg min
Y ∈B

1
|Vtr|

∑
i∈Vtr

`(Yi, (Yobs)i)+λR(Y ,A), (1)

where B is an admissible set, ` is usually a smooth loss function, R is a regularization term, and λ is a
balancing parameter. In regression tasks, B is commonly the space Rn, and ` is chosen to be the Mean Squared
Error (MSE). Whilst in classification tasks, the i-th element Yi is not a scalar but rather a vector holding
the probability distribution over classes. Formally, B = {Y ∈ Rn×C | ∀i,

∑C
c=1 Yi,c = 1, ∀i, c, Yi,c ≥ 0},

where C is the number of classes. In this case, ` is the Categorical Cross Entropy (CCE) loss function.

In fact, graph regularization methods usually differ from each other by the choice of the regularization
function R. A popular choice is the Laplacian regularization, (Slepcev & Thorpe, 2019; Pang & Cheung,

2

Published in Transactions on Machine Learning Research (06/2024)

2017):

R(Y ,A) = 1
|E|

∑
i,j

Ai,j‖Yi − Yj‖2
2 . (2)

Note that here the node features X are not used.

The second main strategy in semi-supervised learning is to train a parametric model YW (X,A) parameterized
by the parameters W , such as GNNs. The objective reads:

YGNN (A) = YW?(X,A),where

W ? = arg min
W

1
|Vtr|

∑
i∈Vtr

`
((

YW (X,A)
)
i
, (Yobs)i

)
. (3)

In this paper, we use message-passing GNNs with sum aggregation (Morris et al., 2019). The first layer is
X [0] = X, propagated as

X [l] = φ(X [l−1]W
[l]
1 + AX [l−1]W

[l]
2 + 1n(b[l])>) , (4)

where W
[l]
1 ,W

[l]
2 ∈ Rdl−1×dl are learnable parameters, b[l] ∈ Rdl is a learnable bias, dl is the output

dimensionality of the l-th layer, 1n = [1, . . . , 1]> ∈ Rn, and φ is a non-linear function applied element-
wise. The output YW (X,A) = X [k] is obtained after k rounds of message passing, and the parameters are
gathered as W = {W [l]

1 ,W
[l]
2 , b[l]}kl=1.

Another advanced example of parametric models is the Personalized Propagation of Neural Predictions
(PPNP) and its fast approximation APPNP (Gasteiger et al., 2018), which enable an infinite receptive field
unlike shallow GNNs such as the model in Eq. (4). Note that the Laplacian regularization model enjoys
an infinite receptive field as well. In the presented material, we analyze the gradient scarcity phenomenon
for both GNNs and the Laplacian regularization, which is possible thanks to their simple models, and we
empirically verify that it occurs with APPNP.

1.2 Joint and bilevel optimization for graph learning

We learn a graph by learning its adjacency matrix. In the joint optimization setting, the graph and the graph-
based model are optimized simultaneously by minimizing a single loss function, usually using a gradient-based
algorithm. For instance, denoting by W the parameters a GNN model, the joint optimization reads:

min
A,W

F = 1
|Vtr|

∑
i∈Vtr

`
((

YW (X,A)
)
i
, (Yobs)i

)
, (5)

In this scenario, A and W are simultaneously updated in each iteration of the gradient-based algorithm.

In the bilevel optimization scenario, the graph has its own labeling loss function, which is a function of the
optimized graph-based model. In the theoretical part of this paper, we analyze gradient scarcity under the
bilevel optimization setting when the graph-based model is either a GNN or the Laplacian regularization.
Therefore, we restrict the following formulation to these two cases. Given a second set of labeled nodes
Vout ⊂ V distinct from Vtr, and a set of admissible adjacency matrices A, the bilevel optimization is cast as

min
A∈A

Fout(A)= 1
|Vout|

∑
i∈Vout

`(Y (A)i, (Yobs)i), (6a)

s.t. Y (A) = YGNN (A) or Y (A) = YReg(A) . (6b)

That is, the minimization of the objective function Fout, called the outer optimization problem, involves
Y (A), which is itself the result of an inner optimization problem, either equation 3 over W or equation 1
over Y . The objective function Fout is used to optimize the graph, and the objective function Fin is used to
optimize the graph-based model. Several models are possible for A:

3

Published in Transactions on Machine Learning Research (06/2024)

Full learning: A = [a, b]n×n is the set of all weighted adjacency matrices (generally with some bounds a, b
on the weights). This choice necessarily leads to an impractical quadratic complexity on the minimization.

Edge refinement: the learned adjacency matrix has the same zero-pattern as the observed adjacency
matrix, that is, we learn weights only on existing edges.

A = {A ∈ [a, b]n×n|Aij = 0 when (Aobs)ij = 0}.

The complexity is proportional to the number of edges, generally less than quadratic in n as graphs tend to
be sparse, which makes edge refinement more scalable than the full learning setting.

Generalized edge refinement: same principle, but the zero-pattern is given by a modification of the
observed adjacency matrix. For instance, taking the zero-pattern of Ar

obs yields an edge between nodes that
are less than r-hop from each other in Gobs, where nodes i and j are r-hop from each other if the length of
the shortest path between them is r.

Latent graph learning: the learned graph is the output of a parametric model, that takes as input the node
features and the observed graph: A = {A = fθ(Aobs,X)}. We will refer to such models as Graph-to-Graph
(G2G).

Both the inner and the outer problems are treated by gradient-based algorithms. We refer to the outer
gradient ∇Fout, whether with respect to A or to θ, as hypergradient.

To our knowledge, the literature has yet to present benchmarks comparing the bilevel and joint frameworks
in graph learning. However, we can distinguish two primary differences between them. Firstly, the bilevel
framework treats the graph as a hyper-parameter, while the joint framework perceives it in a similar way to
the GNN parameters. Secondly, the joint framework is more prone to overfitting. This issue is commonly
addressed through graph regularization and similar techniques (Wang & Leskovec, 2020; Fatemi et al.,
2021). Exploring further comparisons between these frameworks, particularly in terms of their performance
and limitations, is an intriguing direction for our future research.

1.3 The resolution of the joint and the bilevel optimization problems

In fact, the solution of any of the two problems cannot be exactly computed. For the joint optimization
problem 5, the solution does not enjoy a closed-form expression that can be evaluated. In general, this
problem is addressed using gradient-based algorithms, where both A,W are updated at every iteration in
order to converge to a “good” local minimum.

For the bilevel optimization problem 6, the problem is intractable since neither the solution of the inner
problem nor its gradient w.r.t. A (or to θ with G2G models) has a closed-form expression that can be
evaluated. To overcome this difficulty, we unroll (Gregor & LeCun, 2010) τin iterations of a gradient-based
optimizer applied on the inner problem, then use higher-order Automatic Differentiation (AD) to trace these
iterations and approximate the hypergradient. In this work, we use the Higher package (Grefenstette et al.,
2019) to perform the aforementioned automatic differentiation.

1.4 Contributions

Previous works observed gradient scarcity when optimizing the graph and a shallow GNN using joint op-
timization. Indeed, a k-layer GNN computes the label of a node using information from r-hops far nodes
with r ≤ k. This label is then not a function of edges connecting nodes outside this neighborhood, and the
term in the labeling loss corresponding to this label returns null gradients on those distant edges. However,
it is not straightforward how to extend this argument for bilevel optimization. Specifically, the previous
discussion necessitates that the derivatives of the GNN parameters w.r.t. the distant edges equal zero after
every gradient-based update. This applies to the joint optimization setting by construction, but is not easy
to prove in the bilevel optimization setting where additional dependency exists between the parameters of
the problem. Moreover, if the problem holds in the bilevel optimization setting, the roles of Vtr and Vout
need to be clarified. Another question is if this problem is mitigated by resorting to graph-based models
with infinite receptive field, e.g., the Laplacian regularization and APPNP.

4

Published in Transactions on Machine Learning Research (06/2024)

In this work, we prove that hypergradient scarcity occurs under the bilevel optimization setting
when adopting shallow GNNs as the graph-based model. We show that using a k-layer GNN
induces null hypergradients on edges between nodes at least k-hop from labeled nodes in Vtr ∪Vout. For the
Laplacian regularization, we prove that the problem persists, as hypergradients are exponentially
damped with distance from labeled nodes. We empirically validate our findings and show that
the problem occurs with the APPNP model as well. Then, we test three possible strategies to
solve this issue: refining a power of the given adjacency matrix, graph regularization, and latent graph
learning with G2G models. Furthermore, we empirically distinguish between hypergradient scarcity
and overfitting, in the sense that solving the former does not necessarily resolve the latter. To the best
of our knowledge, this is the first work that mathematically tackles the gradient scarcity problem in graph
learning with bilevel optimization, and examines the phenomenon for models with infinite receptive field.

2 Related work

Bilevel optimization has many applications like multi-task and meta learning (Bennett et al., 2006; Fla-
mary et al., 2014; Franceschi et al., 2018). See Colson et al. (2007) for a comprehensive review of applications.

Graph neural networks GNNs. Different GNNs implement different flavors of message passing. One
of the simplest GNNs is the model in Eq. (4) (Morris et al., 2019). Another influential version is the
GCN model (Kipf & Welling, 2017), which simplifies the spectral convolution on graphs to a first-order
approximation. Other popular variants include S2GC (Zhu & Koniusz, 2020), GNN-LF/HF (Zhu et al.,
2021), graph autoencoders (GAEs) (Kipf & Welling, 2016), graph generative adversarial networks (Liu et al.,
2019), etc. These models address different challenges, such as scalability, interpretability, and robustness.

A limitation of GNNs is their finite, usually small, receptive field, which cannot be increased by adding more
layers due to the oversmoothing problem (Keriven, 2022). One line of work to address this issue includes
deep GNNs, which can leverage a higher number of layers (Xu et al., 2018; Huang et al., 2018; Li et al., 2019;
He et al., 2016a;b; Ruiz et al., 2020; Zhang et al., 2022). A second line of work focuses on the way graph
information is exploited rather than on the model structure (Wu et al., 2019; Liu et al., 2020; Rossi et al.,
2020; Li et al., 2020). For instance, PPNP, its approximation APPNP (Gasteiger et al., 2018) and PPRGo
(Bojchevski et al., 2020) use the personalized PageRank (Page, 1998) method to propagate node information
to the entire graph while avoiding the oversmoothing problem. PPNP and APPNP have produced state-of-
the-art results on several node classification datasets. We later theoretically show that the GNN in Eq. (4)
promotes the hypergradient scarcity problem when adopted in the bilevel framework. We empirically show
the same for APPNP, even though it approximates an infinite receptive field.

Graph learning. One simple learner is the k-Nearest Neighbors (k-NN) technique and its variants (Roweis
& Saul, 2000; Tenenbaum et al., 2000; Zhu et al., 2003), where a similarity metric is deployed to detect
the k most similar nodes to each node. Another line of research focused on assigning weights to observed
edges or to edges constructed with k-NN-like methods using a similarity metric (Gretton et al., 2006; Zhu
et al., 2003; Kapoor et al., 2005; Li et al., 2018). Locality-inducing methods optimize edge weights in a
given graph by promoting the assumption that each node can be produced by an edge-weighted sum of its
neighbors (Saul & Roweis, 2003; Wang & Zhang, 2006; Daitch et al., 2009). This methodology is usually
noise sensitive and prone to overfitting as the number of edges is larger than the number of nodes (Qiao
et al., 2018). Smoothness-inducing methods learn a graph that promotes smoothness seen in node features
(Hu et al., 2013; Kalofolias, 2016). This framework costs O(n2) so it does not scale well . However, some
approximations reduced the complexity to O(n log(n)) (Kalofolias & Perraudin, 2017).

Another mainstream approach is to optimize the graph such that it improves the labelling performance in
the downstream task. Such works usually optimize together the graph and the graph-based model. Stretcu
et al. (2019) proposed the deep model GAM, which is trained by penalizing the absence of an edge between
nodes with the same label. Wang & Leskovec (2020) optimize the edge weights and a GNN model using
joint optimization. To alleviate overfitting resulting from learning a large number of parameters, the authors
regularize the graph using the label propagation model (Zhu, 2005). Similarly, Fatemi et al. (2021) use an-
other technique to regularize the graph. Attention mechanisms evaluate edge weights after every GNN layer
based on node similarity (Luong et al., 2015; Vaswani et al., 2017; Veličković et al., 2018; Kim & Oh, 2021).

5

Published in Transactions on Machine Learning Research (06/2024)

The previous methods produced state-of-the-art results on many node classification tasks. Here, we consider
the graph learning problem when formulated as a supervised bilevel optimization problem. Franceschi et al.
(2019) adopted bilevel optimization to learn the parameters of Bernoulli probability distributions over inde-
pendent random edges. This method produced competitive results but it includes learning n2 parameters
which limits scalability. Wan & Kokel (2021) use the bilevel framework to sparsify observed graphs while
keeping it connected. Resulted graphs do not necessarily outperform the observed ones.

Gradient scarcity was identified by Fatemi et al. (2021), where the authors optimized the graph and
a shallow GNN model using joint optimization. The authors showed that when adopting a k-layer GNN
classifier (with k = 2 in their case), edges between unlabeled nodes do not receive any supervision if they
are at least 2-hop from labeled nodes. They referred to this issue as the supervision starvation problem.
They quantify the starvation for the special case of Erdös-Rényi graphs. Note that gradient scarcity and
supervision starvation refer to the same phenomenon. This issue cannot be resolved by adding more layers
to the GNN as more data and labels will be needed for training, and due to the oversmoothing problem.
To overcome this issue, authors proposed to regularize the graph by enforcing the assumption that a good
graph must also perform well in denoising node features.

That said, authors implicitly assumed no dependence between the GNN parameters and the graph when
identifying gradient scarcity, which is the case in joint optimization but not in bilevel optimization. To the
best of our knowledge, this issue has not yet been studied for the bilevel optimization setting. Moreover, it is
not clear if this problem is resolved with graph-based models with infinite receptive field, e.g., the Laplacian
regularization and APPNP. We treat both these topics in our work.

Liu et al. (2022) stated that optimizing both the graph and a GNN model under the supervision of a classi-
fication task introduces reliance on available labels, bias in the edge distribution and even reduces the span
of potential application tasks. Still, this statement is not accompanied with a theoretical justification. To
overcome this problem, authors suggested to avoid label-based graph optimization, and proposed an unsu-
pervised graph learning framework. Although the unsupervised framework proved effective and competed
state-of-the-art methods, we believe that labels contain informative knowledge that is not exploited when
deploying unsupervised learners, and that better results are obtained by getting the best of both worlds.

3 Hypergradient scarcity with shallow GNNs

In this section, we consider the bilevel optimization 6 with the GNN model in Eq. (4), i.e., Y (A) =
YGNN (A) = YW?(A,X). We place ourselves under the edge refinement setting where we optimize the
weight of every existing edge in Aobs.

In Fatemi et al. (2021), the authors demonstrated that the predicted node label using a 2-layer GNN
integrates information from nodes of distance less than two hops, i.e., the label is not a function of edges
connecting nodes at least 2-hop far away. Consequently, when optimizing the graph by minimizing the
classification error of that label via a gradient-based algorithm, these edges receive zero-valued gradients.
However, the authors used joint optimization where there is no dependency betweenW and A, i.e., JW (A) =
0 at every gradient-based iteration. This is not the case for bilevel optimization. In this section, we first
examine the joint optimization scheme, and prove the existence of the problem for a generic number of layers
k, similar to Fatemi et al. (2021). For the bilevel optimization setting, we then prove that the optimized
parameters W ? are not a function of edges connecting nodes at least k-hop from nodes in Vtr. After that, we
conclude that hypergradient scarcity holds in the bilevel setting for edges connecting nodes at least k-hop
from nodes in the union Vtr ∪ Vout.

3.1 Gradient scarcity for joint optimization

In this initial result, we assume that the parameters W do not depend on A, i.e., W is not a function of A.
Indeed, by construction, this is the case after every gradient-based iteration t in the joint optimization setting,
where we have ∂Wt

∂At
= 0, with Wt,At being the updated states of W,A at iteration t, respectively. This

hypothesis is not satisfied in the bilevel optimization setting, which we will address in subsequent sections.
The next theorem shows gradient scarcity in the joint optimization setting by examining YW (A,X).

6

Published in Transactions on Machine Learning Research (06/2024)

Theorem 3.1. Let YW = YW (A,X) be the output of a k-layer GNN parameterized by W as in Eq. (4).
Let i, j, u be such that nodes i, j are at least k-hop from node u. Assume that ∂W

∂Ai,j
= 0. Then we have

∂(YW)u
∂Ai,j

= 0 . (7)

Proof. The proof is done by induction on k. For k = 1, this is indeed the case since X [0] = X does not
depend on A, and that Ai,j does not belong to the row Au,: which is the only row in A that contributes in
the value (X [1])u,:.

Assume that the statement is true for some arbitrary positive integer k, we show that it is also true for
(k+1). If two nodes i, j are at least (k+1)-hop far from node u, then clearly they are at least k-hop far from
it too. Thus from the induction assumption, we have that (X [k])u,: is independent of Ai,j . Also, W

[k+1]
1

does not depend on Ai,j since we assume ∂W
∂Ai,j

= 0. Therefore, (X [k]W
[k+1]
1)u,: in Eq. (4) does not depend

on Ai,j too.

In a similar way, if i, j are at least (k + 1)-hop far from u, then they are at least k-hop far from any of its
neighbors v where Au,v 6= 0. Therefore, for all v, Au,v 6= 0, then ∂(X[k])v,:

∂Ai,j
= 0. Moreover, ∂W

[k+1]
2

∂Ai,j
= 0 since

we assume ∂W
∂Ai,j

= 0. This makes (AX [k]W
[k+1]
2)u,: = Au,:X

[k]W
[k+1]
2 in Eq. (4) independent of Ai,j . This

concludes the proof, as ∂(YW)u

∂Ai,j
= ∂(X[k+1])u

∂Ai,j
= 0.

Note that the number of hops k that defines edges affected by gradient scarcity equals the number of the
GNN layers k. That is, Theorem 3.1 shows that the labels (YW)u on training nodes u ∈ Vtr are not a
function of edges between nodes at least k-hop from these training nodes. Consequently, the gradient of the
labeling loss function in Eq. (5) equals zero on these edges.

3.2 The gradient of the optimized parameters

With the assumption that W is not a function of the adjacency matrix A, Theorem 3.1 states that edges
between nodes at least k-hop from the training nodes receive no supervision. However, in the bilevel op-
timization scenario, after the first outer iteration W may depend on A. The next theorem shows that
hypergradient scarcity still occurs in the bilevel optimization framework, as the “optimal” parameters used
in practice are the result of a gradient-based algorithm. More precisely, we consider a sequence

Wt+1 = Wt −Qt(Wt,∇Wt
Fin) , (8)

where Qt is a smooth function. Note that Wt does not necessarily converge towards the true optimal point
W ?.
Theorem 3.2. Let A be an input graph to a k-layer GNN parameterized by W as in Eq. (4), and Wt be the
output obtained by optimizing equation 3 for W using a gradient-based iterates sequence. Let i, j be nodes
that are at least k-hop from any node in Vtr. Then, for all t ∈ N,

∂Wt(A)
∂Ai,j

= 0 . (9)

Proof. The proof is carried out by induction on the iteration index t of the gradient-based optimizer. Denote
by Fin the objective function in equation 3. For t = 0, W0 is the initialization of W which is usually
random and does not depend on A. For t ≥ 0, we assume that ∂Wt

∂Ai,j
= 0 and prove this must be true for

t+ 1. By differentiating Eq. (8) w.r.t. Ai,j , and under the induction assumption, it is sufficient to show that
∂Qt(Wt,∇WtFin)

∂Ai,j
= 0 to prove that ∂Wt+1(A)

∂Ai,j
= 0. Therefore, given the induction assumption and using the

chain rule, proving that ∂(∇WtFin)
∂Ai,j

= 0 is sufficient to complete the proof. The gradient ∇WtFin writes:

∇Wt
Fin = 1

|Vtr|
∑
u∈Vtr

∇Wt
`
((

YWt
(X,A)

)
u
, (Yobs)u

)
.

7

Published in Transactions on Machine Learning Research (06/2024)

For all u ∈ Vtr, the term∇Wt
`
((

YWt
(X,A)

)
u
, (Yobs)u

)
might be a function of Ai,j through the termsWt and(

YWt(X,A)
)
u
. But ∂Wt

∂Ai,j
= 0 from the induction assumption, and, given that, we have

∂
(

YWt (X,A)
)

u

∂Ai,j
= 0

from Theorem 3.1. Thus, we have for all u ∈ Vtr, ∂
∂Ai,j

∇Wt
`
((

YWt
(X,A)

)
u
, (Yobs)u

)
= 0. This concludes

the proof of Eq. (9) as it gives ∂(∇WtFin)
∂Ai,j

= 0.

One notes that Theorem 3.2 still applies when the joint optimization problem 5 is augmented with a regu-
larization term that regularizes the graph as in Wang & Leskovec (2020); Fatemi et al. (2021) for instance.
For that this term does not affect updates performed on the parameters W . In this work, we are interested
in studying the gradient scarcity phenomenon seen in the gradient of the labeling loss term as in Eq. (5).
Therefore, we do not consider such regularization terms in our analysis. However, we will see in Sections 5
and 6 that graph regularization is one effective technique to alleviate gradient scarcity.

3.3 Hypergradient scarcity

Finally, we put the two previous results together. The next theorem states that within the bilevel optimiza-
tion framework, edges between nodes at least k-hop from nodes in Vtr ∪ Vout receive zero hypergradients.
Theorem 3.3. Let YW be a k-layer GNN following the model 4. Assume that the inner optimization problem
is solved with a gradient-based algorithm as in Eq. (8). Then, for any pair of nodes i, j at least k-hop from
nodes in Vout ∪ Vtr, we have ∂Fout

∂Ai,j
= 0.

Proof. Directly from Theorem 3.2 we have that ∂Wt(A)
∂Ai,j

= 0 since i, j are at least k-hop far from nodes in
Vtr. This makes it possible to apply Theorem 3.1 to get that ∀u ∈ Vout;

∂(YWt)u

∂Ai,j
= 0, as i, j are at least

k-hop far from nodes in Vout and ∂Wt(A)
∂Ai,j

= 0. This concludes the proof as Fout penalizes the classification
error only on nodes in Vout.

Theorem 3.3 shows that the hypergradient scarcity problem emerges when solving edge refinement tasks:
if two nodes are at least k-hop far from nodes in Vout ∪ Vtr in Aobs, the edge in between receives no
hypergradients. In Section 5, we will examine several strategies to mitigate this phenomenon.

4 Hypergradient scarcity with the Laplacian regularization

In the previous section, we have seen how the finite receptive field of shallow GNNs directly induces the
hypergradient scarcity problem. We now examine hypergradient scarcity when Y (A) = YReg(A) with the
Laplacian regularization 2. Indeed, in this case the inner model does not have a finite receptive field, in the
sense that in general ∂Y (A)

∂Aij
6= 0 for all i, j, unlike the shallow GNN case as proven by Theorem 3.1.

Surprisingly, we show that hypergradient scarcity still occurs in some sense. More precisely, we prove that
the magnitude of hypergradients decreases exponentially with the sum of the distance to Vtr and the distance
to Vout.

To proceed, we consider regression downstream tasks as the inner minimizer Y (A) enjoys a closed-form
expression in this case. Recall that in these tasks, we employ the MSE loss as ` in Eqs. (1) and (6). Let
Sin ∈ Rn×n be the diagonal selection matrix whose entries equal 1 if the corresponding node is in Vtr and 0
otherwise, the solution Y (A) reads:

Y (A) =
(
S̃in + λL̃

)−1
S̃inYobs ,

where S̃in = Sin

|Vtr| , L̃ = L
|E| , L = L(A) = D−A is the Laplacian of the graph, and D is the diagonal degree

matrix that includes node degrees on the diagonal: Di,i =
∑
j Ai,j . For simplicity from now on, we denote

B = S̃in + λL̃. Then, we write Y (A) as:

Y (A) = B−1S̃inYobs . (10)

8

Published in Transactions on Machine Learning Research (06/2024)

It is well-defined thanks to the following result.
Lemma 4.1. Assume that the graph is connected. The eigenvalues µi of B satisfy, for all i:

0 < µmin ≤ µi ≤ µmax ≤
1
|Vtr|

+ 2λ . (11)

Given that, we now state the main result of this section.
Theorem 4.2. Let nodes i, j be at least k-hop from Vout, and q-hop from Vtr. Then we have:∣∣∣∣∂Fout∂Aij

∣∣∣∣ . λ

√
|Vout|+ µmin

√
|Vtr||Vout|

µ3
min|Vtr||E|

y2
∞(1− µ)q+k , (12)

where µ = µmin
µmax

and y∞ = ‖Yobs‖∞.

Since both µmin, µmax are strictly positive, as shown in the proof in Section 4.3, then 0 < 1 − µ < 1.
Therefore, Theorem 4.2 states that the magnitude of the hypergradient is exponentially damped in a speed
that is at least proportional to (1− µ)q+k, leading to a form of hypergradient scarcity.

The rest of this section is dedicated to proving Lemma 4.1 and Theorem 4.2. We express Y (A) as a Neumann
series, then we bound the derivative of terms in the resulted series, and by extension the hypergradient.

4.1 Neumann series expansion and the proof of Lemma 4.1

In the first step, we re-write the inverse of B using Neumann series. We first need to prove that ‖I−B‖ < 1
(see e.g., Stewart (1998)), where I ∈ Rn×n is the identity matrix. Remark that the eigenvalues of I −B are
1− µi where µ1, . . . , µn are the eigenvalues of B. Assuming the graph is connected, the ordered eigenvalues
{νi}ni=0 of L̃ satisfy:

0 = ν1 < ν2 ≤ . . . ≤ νn ≤ 2 . (13)
The last inequality holds because ‖L‖ ≤ 2dmax ≤ 2|E|, where dmax is the maximum degree of the graph.
Let u1, . . . ,un be the eigenvectors of L̃, where u1 ∝ 1n is associated to 0.

Proof of Lemma 4.1. We have ‖S̃in‖ ≤ 1/|Vtr| and ‖L̃‖ ≤ 2 so by a triangular inequality the upper bound
is proved.

Using the eigendecomposition of L̃ and recalling that ν1 = 0, for any x ∈ Rn:

x>Bx = λx>L̃x + x>S̃inx

= λ

n∑
i=2

(x>ui)2νi +
∑
i∈Vtr

x2
i

|Vtr|

which, minimized over the unit sphere, gives the expression of µmin. It is immediate that µmin ≥ 0. We
prove that this value is strictly positive. Indeed, x>Bx = 0 implies that x>Sinx = 0 and therefore xi = 0
for i ∈ Vtr, but also that Lx = 0 and therefore that x ∝ 1n, which implies that x = 0.

Let B̃ = B/µmax, with eigenvalues µi/µmax, i = 1, . . . , n. We have for all i:

0 ≤ 1− µi/µmax ≤ 1− µ < 1 ,

where µ = µmin
µmax

. Therefore, we can use Neumann expansion to express B̃−1 as follows:

B̃−1 =
∞∑
r=0

(I − B̃)r ⇒ Y (A) =
∞∑
r=0

(I − B̃)rµ−1
maxS̃inYobs . (14)

We denote by Tr the r-th term in Y (A):

Tr = (I − B̃)rµ−1
maxS̃inYobs . (15)

9

Published in Transactions on Machine Learning Research (06/2024)

Note that since ‖SinYobs‖ ≤
√
|Vtr|‖Yobs‖∞, we have:

‖Tr‖ ≤
νry∞

µmax
√
|Vtr|

, (16)

where y∞ = ‖Yobs‖∞ and ν = 1− µ. Similarly, ‖Y (A)‖ ≤ y∞

µmin
√
|Vtr|

. Moreover, since I − B̃ has the same
zero-pattern than A (except on the diagonal), if u is more than r hops from Vtr, we get (Tr)u = 0.

4.2 Gradient of (Tr)u

In the second step, we derive the formula of the gradient of (Tr)u w.r.t. A, and derive a bound on its
magnitude as a function of r, q the distance to Vtr, and k the distance to Vout. For r > 0, the gradient of
the u-th coefficient in Tr w.r.t. I − B̃ is:

∇I−B̃(Tr)u =
r∑

h=1

((
(I − B̃)r−h

)
u,:

)>
×
(
(I − B̃)h−1µ−1

maxS̃inYobs
)>
,

by the product rule of differentiation, and we have

∇I−B̃(Tr)u =
r∑

h=1

((
(I − B̃)r−h

)
u,:

)>
(Th−1)> .

Using that I − B̃ = I − 1
µmax

(S̃in + λL̃), we have

∇L̃(Tr)u = − λ

µmax
∇I−B̃(Tr)u

= − λ

µmax

r∑
h=1

((
(I − B̃)r−h

)
u,:

)>
(Th−1)> . (17)

Finally, by deriving L̃ w.r.t. Aij :

∂(Tr)u
∂Aij

= − λ

|E|µmax

r∑
h=1

(
(I − B̃)r−h

)
ui

(Th−1)i (18)

+
(
(I − B̃)r−h

)
uj

(Th−1)j
−
(
(I − B̃)r−h

)
uj

(Th−1)i
−
(
(I − B̃)r−h

)
ui

(Th−1)j ,

which allows us to prove the following.
Lemma 4.3. Let i, j, u such that: i, j are at least k-hop from u, and at least q-hop from Vtr. Then:∣∣∣∣∂(Tr)u

∂Aij

∣∣∣∣ ≤
{

0 if q + k > r
4λy∞

|E|µ2
max

√
|Vtr|

(r − q − k)νr−1 otherwise. (19)

Proof. Recall that (Tr)u = 0 if u is more than r-hop from Vtr. Similarly, ((I − B̃)r)ui = 0 if u and i are
more than r-hop from each other. Hence, the term

(
(I − B̃)r−h

)
ui

(Th−1)i appearing in Eq. (18) equals 0 if
r − h < k or h − 1 < q, and bounded by (µmax

√
|Vtr|)−1νr−1y∞ otherwise. In a similar way for the other

terms in Eq. (18), we get that the sum runs over the indices h that satisfy q+ 1 ≤ h ≤ r− k, which is either
none if q + k > r, or r − q − k terms otherwise, which concludes the proof.

10

Published in Transactions on Machine Learning Research (06/2024)

4.3 Proof of Theorem 4.2

We finally examine the hypergradient, and prove an exponential damping rate of its magnitude with the
cumulated distance to Vtr and Vout.
Definition 4.1 (Node cumulated distance to two subsets of nodes). The cumulated distance of a node i to
two subsets of nodes Vtr, Vout equals q + k, where q, k are the distances of i to Vtr, Vout, respectively.
Definition 4.2 (Edge cumulated distance to two subsets of nodes). The cumulated distance of an edge (i, j)
to two subsets of nodes Vtr, Vout equals the minimum between the cumulated distance of i and the cumulated
distance of j to the subsets Vtr, Vout.

Considering Fout = ‖Sout(Y (A)−Yobs)‖2, where Sout is the diagonal selection matrix whose diagonal entries
equal 1 if the corresponding node is in Vout and 0 otherwise, we have:

∂Fout
∂Aij

= 2(∂Y (A)
∂Aij

)>Sout(Y (A)− Yobs)

= 2
∞∑
r=0

(∂Tr
∂Aij

)>Sout(Y (A)− Yobs) .

Using a triangular inequality, the bound on ‖Y (A)‖, and that ‖SoutYobs‖ ≤
√
|Vout|y∞ we get:

‖Sout(Y (A)− Yobs)‖ ≤
1 + µmin

√
|Vtr||Vout|

µmin
√
|Vtr|

y∞ .

By incorporating the resulting inequality in bounding the hypergradient, and by noticing that Sout = S2
out

we have: ∣∣∣∣∂Fout∂Aij

∣∣∣∣ . 1 + µmin
√
|Vtr||Vout|

µmin
√
|Vtr|

y∞

∞∑
r=0
‖Sout

∂Tr
∂Aij

‖

.
1 + µmin

√
|Vtr||Vout|

µmin
√
|Vtr|

y∞

∞∑
r=0

(∑
u∈Vout

∣∣∣∣∂(Tr)u
∂Aij

∣∣∣∣2
) 1

2

.

Using Lemma 4.3 and the hypotheses on i and j, for u in Vout, the term
∣∣∣∂(Tr)u

∂Aij

∣∣∣ is 0 if r < q + k + 1, and
bounded by 4λy∞

|E|µ2
max

√
|Vtr|

(r − q − k)νr−1 otherwise. Hence:

∣∣∣∣∂Fout∂Aij

∣∣∣∣ .λ
√
|Vout|+ µmin

√
|Vtr||Vout|

µmin|Vtr||E|µ2
max

y2
∞

×
∞∑

r=q+k+1
(r − q − k)νr−1 .

Then we see that for ν < 1 we have
∞∑

r=q+k+1
(r − q − k)νr−1 = νq+k

∞∑
r=1

rνr−1 ,

and
∑∞
r=1 rν

r−1 = 1
(1−ν)2 = 1

µ2 , which concludes the proof.

5 Alleviating hypergradient scarcity

In this section, we review strategies to mitigate hypergradient scarcity. However, it is important that we
make a distinction between resolving this issue and resolving the overfitting problem. Indeed, if gradient

11

Published in Transactions on Machine Learning Research (06/2024)

scarcity is also caused by the limited quantity of available labeled data, it is important to avoid confusion
with traditional overfitting. In particular, while traditional overfitting is generally reduced by adding more
training data, gradient scarcity is still observed when optimizing edges far from labeled nodes regardless of
the dataset size and the number of labels. We study several strategies to mitigate hypergradient scarcity in
the bilevel setting, but we emphasize that they might not lead to a better generalization error altogether.

Generalized edge refinement by optimizing Ar
obs. As hypergradient scarcity is observed on edges

connecting nodes distant from the labeled ones, a natural fix is to reduce this distance. One way to do that
is by refining edges in a power of Aobs, as the matrix Ar

obs includes r-edge long connections between nodes.
In our experiments, we adopt A6

obs as this notably expands the graph but does not achieve the extreme case
where the result is a complete graph.

Graph regularization. Graph regularization is used to impose a prior structure on the learned graph, by
adding a regularization term to Fout to penalize graphs with undesirable properties. For instance, Kalofolias
(2016) propose the regularization term −γ1>n log A1n for some γ > 0 to penalize low-degree nodes. We use
this choice in the experiments, but note that imposing task-related priors and regularization terms could
lead to better performance. This will be the topic of future work.

G2G for edge refinement. The third fix we suggest is latent graph learning using G2G models. In the
outer problem, we propose to replace optimizing edge weights by optimizing the parameters of a G2G model
to predict similarity between nodes. Let θ be the weights of this model, and Aθ be its output graph, the G2G
model we adopt is (Aθ)i,j = α

(
(Xi −Xj)2), where the square function is applied entrywise, α : Rp → R is

a Multi-Layer Perceptron (MLP) model consisting of kG2G layers, each is of the form:

X [l] = φ[l](X [l−1]W
[l]
1 + 1n(b[l])>) ,

where W
[l]
1 ∈ Rdl−1×dl , b[l] ∈ Rdl are learnable parameters, and dl is the output dimensionality of the l-th

layer. The parameters are gathered as θ = {W [l]
1 , b[l]}kG2G

l=1 .

6 Experiments

We1 use the real-world citation networks Cora (Lu & Getoor, 2003), CiteSeer (Bhattacharya & Getoor,
2007), and PubMed (Namata et al., 2012), and two other synthetic datasets to validate our findings. The
first synthetic dataset, called synthetic dataset 1, is designed for the Laplacian regularization scenario. The
second one is a binary classification dataset that can be used for the three considered graph-based models.
Due to the paradigm behind construction, we call it the cheaters dataset.

Synthetic dataset 1: the purpose of this dataset is to validate our findings on regression problems,
particularly with the Laplacian regularization 2 in the inner problem. We sample i.i.d. latent variables
X ∈ Rn×p as the node features uniformly at random from [0, 1] with n = 1536, p = 2. The ground-truth
graph A? is constructed s.t. (A?)i,j = 1 if ‖Xi−Xj‖2 < σ, and 0 otherwise. σ is set to 0.06 s.t. the number
of edges approximates n logn. Two distinct procedures were employed to sample the nodes that comprise
Vtr, leading to two distinct realizations of the dataset as illustrated in Fig. 1(top). The first procedure
randomly samples 100 nodes from the set V , hence Vtr is well-spread, whereas the second procedure selects
the 100 nodes with the smallest Euclidean distance to the point (0.5, 0.5), thus Vtr is concentrated in a small
neighborhood in this case. In both cases, we randomly sample 25 nodes from V to construct Vout. The
remaining nodes are equally divided between the validation and the test sets. Then, each node i in Vtr is
labeled as follows:

(Yobs)i = ζ(e−
‖Xi−a1‖2

2(0.2)2 + e
−‖Xi−a2‖2

2(0.2)2 + e
−‖Xi−a3‖2

2(0.2)2) ,

where a1,a2,a3 are randomly sampled from [0, 1]2, and ζ is a scaling factor such that labels lie in [0, 1].
By this construction, the prior that the labeling function on the graph is smooth is met, and the Laplacian
regularization can be applied as in Eq. (1).

1Our Python implementation is available at https://github.com/hashemghanem/Gradients_scarcity_graph_learning.

12

https://github.com/hashemghanem/Gradients_scarcity_graph_learning

Published in Transactions on Machine Learning Research (06/2024)

We use the Laplacian regularization model to generate labels for other nodes. That is, we plug the labels of
Vtr and A? in Eq. (1) with λ = 1 and the solution holds the sought-for labels. This way, the ground-truth
graph actually plays a role in labeling nodes in Vout and in the validation set.

The noisy observed graph is built upon random weights

(Aobs)i,j = ξi,j(A?)i,j where ξi,j ∼ U([0, 1]) .

Experiments on this dataset are done with the Laplacian regularization in the inner problem as in Eq. (1).

0.0 2.5 5.0 7.5 10.0
Cumulated distance to Vtr and Vout

0

2

4

6

8

M
ag

ni
tu

de
 o

f h
yp

er
gr

ad
ie

nt 1e 5

0 5 10 15
Cumulated distance to Vtr and Vout

0

1

2

3

M
ag

ni
tu

de
 o

f h
yp

er
gr

ad
ie

nt 1e 5

Figure 1: Hypergradient scarcity observed when solving the edge refinement task with the bilevel optimization
framework. We run the experiments on the synthetic dataset 1, while adopting the Laplacian regularization
in the inner problem. Top: illustration of the graph. The training nodes Vtr are circled in red, the colors
correspond to the distance to Vtr. The eigenvalue µmin is given as a ratio of the smallest positive eigenvalue of
L̃. Vout is randomly sampled from V but not shown here. Bottom: Hypergradient magnitude

∣∣∣∂Fout

∂Aij

∣∣∣ with
respect to the sum of distances to Vtr and Vout. Left: the training set Vtr is well-spread thereby aligned with
the high-frequency eigenvectors of the graph, resulting in a high µmin. The decrease of the hypergradients is
sharp with the distance. Right: Vtr is aligned with the low-frequency eigenvectors of the graph, resulting
in a low µmin. The decrease of hypergradients magnitude is not as sharp as the previous case.

The cheaters dataset: the purpose of this dataset is to validate our findings on classification problems,
particularly with the shallow GNN 4 in the inner problem, and to validate the efficiency of the proposed
strategies to alleviate hypergradient scarcity. Nodes in this graph represent students in an exam classroom.
Setting n = 256, p = 10, the i.i.d. features X ∈ R256×10 are sampled uniformly at random from [0, 1]. For
a node i, Xi,0 represents the position of the according student in the classroom. For visualization purposes,
we enumerate nodes following the ascending order of X:,0. The remaining 9 features of a student represent
the grades s/he is capable of scoring in the corresponding exam questions. However, students tend to cheat

13

Published in Transactions on Machine Learning Research (06/2024)

0 100 200

0

50

100

150

200

250 0

2

4

6

8

×10−6

0 100 200

0

50

100

150

200

250 −10−2

−10−3

−10−4

−10−5

−10−6

0

10−6

10−5

10−4

10−3

10−2

Figure 2: Hypergradient scarcity observed when solving the edge refinement task with the bilevel optimization
framework. We run the experiment on the cheaters dataset, and use a 2-layer GNN as a classifier following
the model 4. Left: graph initialization. Right: hypergradient at an arbitrary outer iteration, namely 9. It is
clear that the hypergradient on edges between unlabeled nodes far from the ones in Vout ∪ Vtr equals zero.
Recall that Vtr = {0, 1, . . . , 32} ∪ {224, . . . , 255} and Vout = {96, . . . , 160}.

with their neighbors in the graph. The ground-truth graph A? is constructed as follows:

(A?)i,j = exp (−‖Xi,0 −Xj,0‖2
2/2σ2) .

The observed graph Aobs is drawn from a random model as

(Aobs)i,j ∼ Ber ((A?)i,j) .

We set σ = 0.027 s.t. the number of edges in Aobs approximates n logn. Students cheat such that their
grades Ygrade after the exam are

Ygrade = A?X:,1:919 .

A student passes the exam if his grade is greater than a threshold τ , i.e., (Yobs)i = 1 if (Ygrade)i > τ and 0
otherwise. We put τ = 60 so that approximately half of the students pass the exam. Vtr includes nodes in
{0, 1, . . . , n/8}∪{7n/8, . . . , n−1}, i.e., near the two ends of the 1-dimensional class. Vout = {3n/8, . . . , 5n/8},
i.e., centered around the middle of the class. Remaining nodes are equally divided into a validation and a
test set. Experiments on this dataset are done with a 2-layer GNN classifier following the model 4.

Real-world dataset: we validate our findings on the Cora (Lu & Getoor, 2003), CiteSeer (Bhattacharya
& Getoor, 2007), and PubMed (Namata et al., 2012) datasets. These are citation datasets, where nodes
represent research publications described by a bag of words, and edges stand for citations. The task is to
classify articles w.r.t. their topic. From the default train/validation/test split in Yang et al. (2016); Kipf &
Welling (2017), we use the training set as the inner training set Vtr, while we use half of the validation set
as the outer training set Vout. The other half is kept as a validation set as in Franceschi et al. (2019).

Models: G2G and GNN models are implemented using PyTorch (Paszke & al., 2019) and PyTorch Geo-
metric (Fey & Lenssen, 2019), respectively. The function α in the G2G model is an MLP with 2 hidden
layers of 16 neurons for the cheaters dataset, and 1 hidden layer of 32 neurons for the citation datasets. The
GNN model following Eq. (4) has 1 hidden layer of 8 neurons for the cheaters dataset and 16 neurons for
the citation datasets. To compute the node embeddings for the APPNP model, we use an MLP with one
hidden layer. The hidden and the output layers contain 16 neurons. For the APPNP model, the number of
power iterations is set to 20 and the teleport probability is set to 0.1. All hidden layers are followed by the
ELU activation function (Clevert et al., 2015). The G2G output layer is followed by the sigmoid function.
The output layer of GNN models is followed by the softmax function.

Setup: we use Adam (Kingma & Ba, 2014) as the inner and the outer optimizer with the default parameters
of PyTorch, except for the inner learning rate ηin and the outer one ηout, which are tuned from the set

14

Published in Transactions on Machine Learning Research (06/2024)

0 50 100 150
Outer iteration

0.2

0.4

0.6

0.8

1.0
O

u
te

r
tr

ai
n

in
g

ac
cu

ra
cy

BO

BO+Reg

BO+Gen

BO+G2G

(a)

0 50 100 150
Outer iteration

104

T
h

e
nu

m
b

er
of

re
fin

ed
ed

ge
s

BO

BO+Reg

BO+Gen

BO+G2G

(b)

0 50 100 150
Outer iteration

0.4

0.5

0.6

0.7

0.8

T
es

t
ac

cu
ra

cy

BO

BO+Reg

BO+Gen

BO+G2G

Aobs

(c)

Figure 3: Efficiency of the proposed solutions to hypergradient scarcity w.r.t. the number of refined edges
and the generalization capacity. An edge is considered well refined if its learned magnitude is larger than
one percent of the maximum learned edge weight. The solutions are graph regularization with −1> log A1
(BO+Reg), generalized edge refinement by refining edges in A6

obs (BO+Gen), and latent graph learning
using a G2G model (BO+G2G). (a): training accuracy on Vout. (b): number of refined edges. (c) test
accuracy.

{10−4, 10−3, . . . , 10}. The best values were ηin = ηout = 10−2 for the citation datasets. For the cheaters
dataset, ηout = 10−3 adopting a G2G model, while ηout = 10−2 in other cases, and ηin = 10−2. For
the synthetic dataset 1, ηout = 10−1 and ηin = 10. We set τin with a grid search. For the citation
datasets, τin = 500 adopting the Laplacian regularization, and τin = 100 otherwise. For the cheaters dataset,
τin = 200. For the synthetic dataset 1, τin = 500. The learnable parameters of the inner model are initialized
at random after each outer iteration. We adopt the default initialization of PyTorch and PyTorch Geometric
for the parameters of the GNN models. In the Laplacian regularization scenario, the labels are initialized
uniformly at random from [0, 1]. Except for the cheaters dataset, we initialize edge weights uniformly at
random from [0, 1] when solving an edge refinement task, and adopt the default initialization of PyTorch for
the G2G model when it is used. For the cheaters dataset, we initialize edge weights uniformly at random
from 10−5 ∗ [0, 1] in edge refinement tasks, and multiply the default initialization of the last layer of the G2G
model by 10−5 s.t. its output edges at the first iteration are of small magnitude. We adopt this strategy for
this dataset to measure the level of hypergradient scarcity, which we do by counting the number of learned
edges whose magnitude is greater than a chosen threshold. We set the number of outer iterations τout to 150
for synthetic datasets and to 300 for citation datasets. We select the graph (or the G2G parameters) with
the highest validation accuracy. We set λ = 1 in training when considering the Laplacian regularization,
as we expect the bilevel framework to learn this parameter by scaling the learned adjacency matrix. When
applying the Laplacian regularization fed with Aobs on the citation datasets, we set λ = 1 after a grid search.
γ in the graph regularization term is set to 1 following a grid search on the set {10−3, 10−2, . . . , 10}.

6.1 Hypergradient scarcity with the GNN model in Eq. (4)

In this experiment, we consider a 2-layer GNN classifier following the model 4 in the bilevel framework. We
solve the edge refinement task 6 on the cheaters dataset, where ` in Eqs. (1) and (6) is the CCE function.
Fig. 2(left) depicts the initialization of the adjacency matrix. It also shows what edges are to be optimized,
that is, edges whose initialization is nonzero. In Fig. 2(right), we show the hypergradient at the outer iteration
9, which is arbitrarily chosen. It is clear that edges between unlabeled nodes far from the ones in the union
Vout ∪ Vtr get no supervision during the training process. Recall that Vtr = {0, 1, . . . , 32} ∪ {224, . . . , 255}
and Vout = {96, . . . , 160}. This aligns with our findings, which state that edges between nodes at least 2-hop
from nodes in Vout ∪ Vtr receive zero hypergradients. This, as seen in Fig. 3, leads to a learned graph that
overfits training nodes and even generalizes worse than Aobs.

15

Published in Transactions on Machine Learning Research (06/2024)

Table 1: Accuracies obtained on citation networks with the Bilevel Optimization framework (BO), the same
framework optimizing a G2G model (BO+G2G), and the same framework equipped with graph regularization
(BO+Reg). We also benchmark against GAM (the result is reported from the according paper) and against
Aobs. Each experiment is repeated 5 times and the average accuracies are reported. For each dataset, the
first line (in black) corresponds to the test accuracy, whereas the second line (in gray) corresponds to the
training accuracy on Vout. The highest and second-highest test accuracies for each dataset are bolded. The
training accuracy on Vtr is higher than 96% in all experiments.

Aobs BO BO+G2G BO+Reg GAMGNN Lap APPNP GNN Lap APPNP GNN Lap APPNP GNN Lap APPNP

Cora 73.62 72.40 80.88 79.07 73.80 79.90 80.32 75.76 79.96 80.76 76.45 82.10 84.8
77.50 74.03 77.78 90.17 81.70 83.73 94.58 83.64 77.66 97.30 84.68 87.80 -

CiteSeer 62.48 54.00 70.08 68.10 53.00 71.04 70.80 54.72 71.82 70.60 55.10 71.50 72.20
59.66 56.28 68.09 75.94 57.74 76.92 72.76 57.90 81.44 74.09 61.96 70.42 -

PubMed 77.42 70.50 79.14 77.68 72.80 79.32 79.00 72.18 79.22 78.40 75.75 80.20 81.00
79.58 74.71 80.36 93.47 80.00 85.38 90.27 71.37 94.64 87.59 83.39 85.38 -

6.2 Hypergradient scarcity with the Laplacian regularization model

We here examine hypergradient scarcity when adopting the Laplacian regularization in the inner problem.
We run the bilevel optimizer to solve the edge refinement task on the synthetic dataset 1. The dataset
corresponds to a regression problem, so ` in Eqs. (1) and (6) is the MSE loss function.

In Fig. 1(bottom), we plot the absolute value of hypergradients at the outer iteration 6 as a function of
the edge cumulated distance to Vtr and Vout. One observes the hypergradient scarcity phenomenon, since
hypergradients decay exponentially as the edge distance increases. This validates our analysis articulated in
Theorem 4.2. In addition, we observed in practice that µ is nevertheless quite small, and that our bound in
Theorem 4.2 is quite loose. Another observation is that the decrease rate is higher when Vtr is well-spread in
the graph. Deriving a tighter bound on the magnitude of hypergradients and investigating the link between
the distribution of labeled nodes and this bound will be the subject of a future work.

6.3 Testing solutions to mitigate hypergradient scarcity

We run our experiments on the cheaters dataset using the 2-layer GNN 4 as a classifier. In each experiment,
we run the bilevel optimization framework with one of the suggested fixes. We consider two criteria to
measure the efficiency of each solution, the first one is counting the number of refined edges. At any outer
iteration, we say that an edge is refined if its learned weight is greater than one percent of the maximum
learned edge weight at the same iteration. Recall that we initialize the graph/G2G with small parameters
(≈ 10−5). The second criterion is the test accuracy. The first criterion assesses the ability to alleviate
hypergradient scarcity, while the second assesses the generalization to nodes unseen during training, and
thus if the learned graph is meaningful.

Fig. 3 shows that all three fixes produce better results w.r.t. the first criterion, as the number of refined
edges is larger at almost every iteration, with optimizing edges in A6

obs being the most efficient, and the
G2G model and graph regularization having a similar performance. Moreover, one notices that this number
decreases with the iteration index when refining edges in Aobs or in A6

obs, which is expected as only a small
portion of edges receive supervision; however this portion is larger when refining A6

obs.

Regarding the second criterion, the G2G model and the graph regularization generalize well, as both combat
hypergradient scarcity without increasing (or even by decreasing) the number of parameters to learn. On the
other hand, optimizing edges in A6

obs deteriorates performance in the test phase. A likely explanation is that
by expanding the graph, we increase the number of parameters to learn, which means a more complex model
that is more likely to overfit training nodes. This experiment illustrates that hypergradient scarcity
is not the traditional overfitting related to data/label scarcity, and resolving it does not necessarily
promote better generalization.

16

Published in Transactions on Machine Learning Research (06/2024)

0 10
ED to Vin ∪ Vout

−10−3

−10−6

0

10−6

10−3

H
y
p

er
gr

ad
ie

n
t

(G
N

N
ca

se
)

Cora

0 10
ED to Vin ∪ Vout

−10−3

−10−6
0

10−6

10−3

CiteSeer

0 5
ED to Vin ∪ Vout

−10−3

−10−6
0

10−6

10−3

PubMed

0 50 100
ECD to Vin, Vout

−10−3

−10−6

0

10−6

10−3

H
y
p

er
gr

ad
ie

n
t

(L
ap

la
ci

an
ca

se
)

Cora

0 250 500
ECD to Vin, Vout

−10−3

−10−6

0

10−6

10−3
CiteSeer

0 10
ECD to Vin, Vout

−10−6

0

10−6

PubMed

0 10
ED to Vin ∪ Vout

−100

−10−3

−10−6
0

10−6

10−3

100

H
y
p

er
gr

ad
ie

n
t

(A
P

P
N

P
ca

se
)

Cora

0 10
ED to Vin ∪ Vout

−100

−10−3

−10−6
0

10−6

10−3

100
CiteSeer

0 5
ED to Vin ∪ Vout

−10−3

−10−6
0

10−6

10−3

PubMed

Figure 4: Hypergradient scarcity observed with citation networks when solving the edge refinement task
under the bilevel optimization setting. Top: we depict the hypergradient as a function of the Edge Distance
(ED) to Vin ∪ Vout when adopting the 2-layer GNN in Eq. (4) as the graph-based model. Middle: we
depict the hypergradient as a function of the Edge Cumulated Distance (ECD) to the sets Vin, Vout when
adopting the Laplacian regularization model. Since our analysis in this scenario necessitates the graph to be
connected, we make the graph connected by iterating over its components, and connecting an arbitrary node
in the current component to an arbitrary node in the next one. The number of added edges is 77 for Cora,
437 for CiteSeer, and 0 for PubMed. This is done only in the experiment dedicated for this figure. In the
other experiments, the given graph is considered. Bottom: we depict the hypergradient as a function of the
Edge Distance (ED) to Vin ∪Vout when adopting the APPNP model. In all cases, we plot the hypergradient
at the outer iteration 9.

17

Published in Transactions on Machine Learning Research (06/2024)

6.4 Results on real-world citation datasets

We use the bilevel optimization 6 for edge refinement on Cora, CiteSeer, and PubMed. The downstream
task is a multi-label classification problem hence ` is the CCE function. Fig. 4 depicts the hypergradient on
edges at outer iteration 9 as a function of their distance to labeled nodes. For the Laplacian regularization
case, that is the edge cumulated distance to Vtr and Vout. In the case of the GNN model in Eq. (4), the
edge distance is obtained by computing the distance of its endpoints to Vtr ∪Vout then taking the minimum.
For APPNP, we do not have any theorem that defines what distance metric to use to observe hypergradient
scarcity. We thus use the same metric as in the previous GNN case. In accordance with our analysis, the
figure displays a null hypergradient for distances greater than 2 when using the GNN model in Eq. (4),
while the Laplacian regularization scenario exhibits a hypergradient that diminishes exponentially with edge
distance. Interestingly, APPNP exhibits a similar behavior to the Laplacian regularization model, where the
hypergradient is damped exponentially with the edge distance to Vtr and Vout. This means that although
to a lesser degree than shallow GNNs, GNNs of infinite receptive field such as APPNP suffer from
hypergradient scarcity, which is a new finding to the best of our knowledge.

Regarding the generalization capacity evaluated using the test accuracy, Table 1 shows that the bilevel
framework (BO) outperforms Aobs when using the GNN model in Eq. (4), while it performs more or less the
same when using the Laplacian regularization and APPNP models. This might be surprising as one would
expect the bilevel framework to produce a more corrupted graph than Aobs due to hypergradient scarcity,
and thus would lead to a worse generalization, which is observed with the cheaters dataset in Fig. 3. One
possible justification for this is that node features are informative enough in these datasets to compensate
for the corrupted graph. Another justification, especially in the case of the Laplacian regularization and
APPNP, is the small diameter of the graph in these datasets, which limits the number of affected edges.
For example, the percentage of edges with edge distance at most 2 is 77%, 63%, 35% for Cora, CiteSeer, and
PubMed, respectively. For edge distance at most 3, the percentages are 95%, 80%, 86%. This means that a
great portion of edges are not affected by hypergradient scarcity. Hence, it is normal that the learned graph
perform similarly or better than the observed one. Conducting experiments on other datasets where the
graph is of higher importance and of larger diameter is left for future work.

Next, we test the efficiency of the proposed solutions to hypergradient scarcity w.r.t. test accuracy, namely
graph regularization and latent graph learning with G2G models. We do not consider learning a power of
Aobs as the memory requirement goes beyond the limits we have access to. Table 1 shows that both fixes
yield significant improvements over Aobs. More importantly, both fixes consistently improve over the bilevel
framework, notably the graph regularization fix. Since the impact of hypergradient scarcity is not severe in
these datasets, we cannot claim that the improvement is due to alleviating hypergradient scarcity. However,
we can claim that the fixes do not deteriorate the generalization capacity, and that they are more robust to
overfitting than the bilevel framework. Designing a metric to measure the severity of hypergradient scarcity
and the impact of the fixes on it is left for future work. We point out that the bilevel optimization framework
with either fix does not achieve state-of-the-art results produced by GAM.

Finally, we notice that GNN models lead to significantly superior results in all scenarios. This is expected,
as the Laplacian regularization promotes similarity between connected nodes but, unlike GNNs, is not a
supervised-based method.

7 Conclusion

We studied hypergradient scarcity when deploying bilevel optimization in edge refinement tasks under the
semi-supervised learning setting. This phenomenon consists in edges far from labeled nodes receiving zero
hypergradients when optimizing the graph and the graph-based model to improve the labeling performance.
We proved that this problem occurs for shallow GNN models. Replacing GNNs by the Laplacian regulariza-
tion model does not resolve the issue; however, the phenomenon is less severe. We bounded the magnitude
of hypergradients and proved that they are exponentially damped with distance to labeled nodes. To alle-
viate hypergradient scarcity, we examined graph regularization, latent graph learning, and refining edges in
a power of the observed adjacency matrix. Our experiments validated our findings, privileged the first two

18

Published in Transactions on Machine Learning Research (06/2024)

solutions over the latter, and showed that GNNs of infinite receptive field (e.g., APPNP) can suffer from
hypergradient scarcity. Moreover, we showed that alleviating hypergradient scarcity does not necessarily
alleviate overfitting.

Acknowledgments

The authors acknowledge the support of ANR Grava ANR-18-CE40-0005 and ANR GRandMa ANR-21-
CE23-0006.

References
Kristin P Bennett, Jing Hu, Xiaoyun Ji, Gautam Kunapuli, and Jong-Shi Pang. Model selection via bilevel
optimization. In IJCNN, 2006.

Indrajit Bhattacharya and Lise Getoor. Collective entity resolution in relational data. ACM Trans. Knowl.
Discov. Data, 1(1), 2007.

Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek Rózem-
berczki, Michal Lukasik, and Stephan Günnemann. Scaling graph neural networks with approximate
pagerank. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 2464–2473, 2020.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning
by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Benoît Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization. Ann. Oper. Res.,
153(1):235–256, 2007.

Samuel I Daitch, Jonathan A Kelner, and Daniel A Spielman. Fitting a graph to vector data. In Proceedings
of the 26th annual international conference on machine learning, pp. 201–208, 2009.

Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves structure learning
for graph neural networks. NeurIPS, 2021.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

Rémi Flamary, Alain Rakotomamonjy, and Gilles Gasso. Learning constrained task similarities in graph
regularized multi-task learning. In Regularization, Optimization, Kernels, and Support Vector Machines,
volume 103. Chapman and Hall/CRC, 2014.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel program-
ming for hyperparameter optimization and meta-learning. In ICML, 2018.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures for graph
neural networks. In ICML, pp. 1972–1982, 2019.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska Meier,
Douwe Kiela, Kyunghyun Cho, and Soumith Chintala. Generalized inner loop meta-learning. arXiv
preprint arXiv:1910.01727, 2019.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of the 27th
international conference on international conference on machine learning, pp. 399–406, 2010.

Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex Smola. A kernel method
for the two-sample-problem. Advances in neural information processing systems, 19, 2006.

19

Published in Transactions on Machine Learning Research (06/2024)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14,
2016, Proceedings, Part IV 14, pp. 630–645. Springer, 2016b.

Chenhui Hu, Lin Cheng, Jorge Sepulcre, Georges El Fakhri, Yue M Lu, and Quanzheng Li. A graph
theoretical regression model for brain connectivity learning of alzheimer’s disease. In 2013 IEEE 10th
International Symposium on Biomedical Imaging, pp. 616–619. IEEE, 2013.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph repre-
sentation learning. Advances in neural information processing systems, 31, 2018.

Vassilis Kalofolias. How to learn a graph from smooth signals. In Artificial Intelligence and Statistics, pp.
920–929. PMLR, 2016.

Vassilis Kalofolias and Nathanaël Perraudin. Large scale graph learning from smooth signals. arXiv preprint
arXiv:1710.05654, 2017.

Ashish Kapoor, Hyungil Ahn, Yuan Qi, and Rosalind Picard. Hyperparameter and kernel learning for graph
based semi-supervised classification. Advances in neural information processing systems, 18, 2005.

Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing. In NeurIPS,
2022.

Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design with self-
supervision. In ICLR, 2021.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International Conference
on Learning Representations, 12 2014.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations (ICLR), 2017.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as cnns?
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 9267–9276, 2019.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding–design provably more pow-
erful gnns for structural representation learning. arXiv preprint arXiv:2009.00142, pp. 61, 2020.

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive graph convolutional neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In Proceedings of
the twelfth international conference on Information and knowledge management, pp. 556–559, 2003.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings of the
26th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 338–348, 2020.

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph variational
autoencoders for molecule design. Advances in neural information processing systems, 31, 2018.

Weiyi Liu, Pin-Yu Chen, Fucai Yu, Toyotaro Suzumura, and Guangmin Hu. Learning graph topological
features via gan. IEEE Access, 7:21834–21843, 2019.

Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan. Towards unsupervised deep
graph structure learning. In WWW, 2022.

20

Published in Transactions on Machine Learning Research (06/2024)

Qing Lu and Lise Getoor. Link-based classification. In ICML, 2003.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based neural
machine translation. In EMNLP, 2015.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings
of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active surveying for
collective classification. In 10th International Workshop on Mining and Learning with Graphs, volume 8,
pp. 1, 2012.

Lawrence Page. The pagerank citation ranking: Bringing order to the web. technical report. Stanford Digital
Library Technologies Project, 1998, 1998.

Jiahao Pang and Gene Cheung. Graph laplacian regularization for image denoising: Analysis in the contin-
uous domain. IEEE Transactions on Image Processing, 26(4):1770–1785, 2017.

Adam Paszke and al. Pytorch: An imperative style, high-performance deep learning library. In NeurIPS.
2019.

Lishan Qiao, Limei Zhang, Songcan Chen, and Dinggang Shen. Data-driven graph construction and graph
learning: A review. Neurocomputing, 312:336–351, 2018.

Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael Bronstein, and Federico Monti.
Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 7:15, 2020.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, 2000.

Luana Ruiz, Fernando Gama, and Alejandro Ribeiro. Gated graph recurrent neural networks. IEEE Trans-
actions on Signal Processing, 68:6303–6318, 2020.

Lawrence K Saul and Sam T Roweis. Think globally, fit locally: unsupervised learning of low dimensional
manifolds. Journal of machine learning research, 4(Jun):119–155, 2003.

Dejan Slepcev and Matthew Thorpe. Analysis of p-laplacian regularization in semisupervised learning. SIAM
Journal on Mathematical Analysis, 51(3):2085–2120, 2019.

Gilbert W Stewart. Matrix algorithms: volume 1: basic decompositions. SIAM, 1998.

Otilia Stretcu, Krishnamurthy Viswanathan, Dana Movshovitz-Attias, Emmanouil Platanios, Sujith Ravi,
and Andrew Tomkins. Graph agreement models for semi-supervised learning. NeurIPS, 2019.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, 2000.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph Attention Networks. ICLR, 2018.

Guihong Wan and Harsha Kokel. Graph sparsification via meta-learning. DLG@ AAAI, 2021.

Fei Wang and Changshui Zhang. Label propagation through linear neighborhoods. In ICML, 2006.

Hongwei Wang and Jure Leskovec. Unifying graph convolutional neural networks and label propagation.
arXiv preprint arXiv:2002.06755, 2020.

21

Published in Transactions on Machine Learning Research (06/2024)

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying
graph convolutional networks. In International conference on machine learning, pp. 6861–6871. PMLR,
2019.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
Representation learning on graphs with jumping knowledge networks. In International conference on
machine learning, pp. 5453–5462. PMLR, 2018.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with graph
embeddings. In Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, pp. 40–48. JMLR.org, 2016.

Chun-Yang Zhang, Zhi-Liang Yao, Hong-Yu Yao, Feng Huang, and CL Philip Chen. Dynamic representation
learning via recurrent graph neural networks. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 53(2):1284–1297, 2022.

Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In International conference on learning
representations, 2020.

Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui. Interpreting and unifying graph neural networks
with an optimization framework. In Proceedings of the Web Conference 2021, pp. 1215–1226, 2021.

Xiaojin Zhu. Semi-supervised learning with graphs. Carnegie Mellon University, 2005.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian fields and
harmonic functions. In Proceedings of the 20th International conference on Machine learning (ICML-03),
pp. 912–919, 2003.

22

	Introduction
	Graph-based models for semi-supervised learning
	Joint and bilevel optimization for graph learning
	The resolution of the joint and the bilevel optimization problems
	Contributions

	Related work
	Hypergradient scarcity with shallow GNNs
	Gradient scarcity for joint optimization
	The gradient of the optimized parameters
	Hypergradient scarcity

	Hypergradient scarcity with the Laplacian regularization
	Neumann series expansion and the proof of Lemma 4.1
	Gradient of terms in the Neumann expansion
	Proof of theorem:laplacian

	Alleviating hypergradient scarcity
	Experiments
	Hypergradient scarcity with the GNN model in eq:gcnlayer
	Hypergradient scarcity with the Laplacian regularization model
	Testing solutions to mitigate hypergradient scarcity
	Results on real-world citation datasets

	Conclusion

