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Abstract

Bilevel optimization has been widely applied in many important machine learning
applications such as hyperparameter optimization and meta-learning. Recently,
several momentum-based algorithms have been proposed to solve bilevel optimiza-
tion problems faster. However, those momentum-based algorithms do not achieve
provably better computational complexity than O(e~?2) of the SGD-based algo-
rithm. In this paper, we propose two new algorithms for bilevel optimization, where
the first algorithm adopts momentum-based recursive iterations, and the second
algorithm adopts recursive gradient estimations in nested loops to decrease the
variance. We show that both algorithms achieve the complexity of O(e~1-%), which
outperforms all existing algorithms by the order of magnitude. Our experiments
validate our theoretical results and demonstrate the superior empirical performance
of our algorithms in hyperparameter applications.

1 Introduction

Bilevel optimization has become a timely and important topic recently due to its great effectiveness in
a wide range of applications including hyperparameter optimization [7, 5], meta-learning [33, 16, 1],
reinforcement learning [14, 24]. Bilevel optimization can be generally formulated as the following
minimization problem:

min®(z) := f(z,y*(x)) st y*(z) = argmin g(z,y). (1)
TERP yERY
Since the outer function ®(z) := f(z,y*(x)) depends on the variable z also via the optimizer

y*(x) of the inner-loop function g(x,y), the algorithm design for bilevel optimization is much
more complicated and challenging than minimization and minimax optimization. For example, if
the gradient-based approach is applied, then the gradient of the outer-loop function (also called
hypergradient) will necessarily involve Jacobian and Hessian matrices of the inner-loop function
g(x, y), which require more careful design to avoid high computational complexity.

This paper focuses on the nonconvex-strongly-convex setting, where the outer function f(z, y*(x)) is
nonconvex with respect to (w.r.t.) z and the inner function g(z, y) is strongly convex w.r.t. y for any .
Such a case often occurs in practical applications. For example, in hyperparameter optimization [7],
f(z,y*(x)) is often nonconvex with = representing neural network hyperparameters, but the inner
function g(x, -) can be strongly convex w.r.t. y by including a strongly-convex regularizer on y. In
few-shot meta-learning [1], the inner function g(z, -) often takes a quadratic form together with a
strongly-convex regularizer. To efficiently solve the deterministic problem in eq. (1), various bilevel
optimization algorithms have been proposed, which include two popular classes of deterministic
gradient-based methods respectively based on approximate implicit differentiation (AID) [31, 9, 8]
and iterative differentiation (ITD) [28, 6, 7].
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Recently, stochastic bilevel opitimizers [8, 20] have been proposed, in order to achieve better efficiency
than deterministic methods for large-scale scenarios where the data size is large or vast fresh data
needs to be sampled as the algorithm runs.

In particular, such a class of problems adopt functions by:

O(z) == f(z,y"(x)) == Be[F (2,57 (2): )], g(x,y) = E¢[G(z,y; ()]
where the outer and inner functions take the expected values w.r.t. samples & and (, respectively.

Along this direction, [20] proposed a stochastic gradient descent (SGD) type optimizer (stocBiO),

and showed that stocBiO attains a computational complexity of O(e~2) in order to reach an e-
accurate stationary point. More recently, several studies [2, 11, 22] have tried to accelerate SGD-type
bilevel optimizers via momentum-based techniques, e.g., by introducing a momentum (historical
information) term into the gradient estimation. All of these optimizers follow a single-loop design,
i.e., updating x and y simultaneously. Specifically, [22] proposed an algorithm MSTSA by updating
x via a momentum-based recursive technique introduced by [3, 36]. [11] proposed an optimizer
SEMA similarly to MSTSA but using the momentum recursive technique for updating both = and y.
[2] proposed an algorithm STABLE, which applies the momentum strategy for updating the Hessian
matrix, but the algorithm involves expensive Hessian inverse computation rather than hypergradient
approximation loop. However, as shown in Table 1, SEMA, MSTSA and STABLE achieve the same

complexity order of O(e~2) as the SGD-type stocBiO algorithm, where the momentum technique in
these algorithms does not exhibit the theoretical advantage. Such a comparison is not consistent with
those in minimization [3] and minimax optimization [15], where the single-loop momentum-based
recursive technique achieves provable performance improvements over SGD-type methods. This
motivates the following natural but important question:

e Can we design a faster single-loop momentum-based recursive bilevel optimizer, which achieves
order-wisely lower computational complexity than SGD-type stocBiO (and all other momentum-
based algorithms), and is also easy to implement with efficient matrix-vector products?

Although the existing theoretical efforts on accelerating bilevel optimization algorithms have been ex-
clusively focused on single-loop design', empirical studies in [20] suggested that double-loop bilevel
algorithms such as BSA [8] and stocBiO [20] achieve much better performances than single-loop
algorithms such as TTSA [14]. A good candidate suitable for accelerating double-loop algorithms
can be the popular variance reduction method, such as SVRG [21], SARAH [30] and SPIDER [4],
which typically yield provably lower complexity. The basic idea is to construct low-variance gradient
estimators using periodic high-accurate large-batch gradient evaluations. So far, there has not been
any study on using variance reduction to accelerate double-loop bilevel optimization algorithms. This
motivates the second question that we address in this paper:

e Can we develop a double-loop variance-reduced bilevel optimizer with improved computational
complexity over SGD-type stocBiO (and all other existing algorithms)? If so, when such a
double-loop algorithm holds advantage over the single-loop algorithms in bilevel optimization?

1.1 Main Contributions

This paper proposes two algorithms for bilevel optimization, both outperforming all existing algo-
rithms in terms of complexity order.

We first propose a single-loop momentum-based recursive bilevel optimizer (MRBO). MRBO updates
variables x and y simultaneously, and uses the momentum recursive technique for constructing low-
variance mini-batch estimators for both the gradient Vg(z,-) and the hypergradient V®(-); in
contrast to previous momentum-based algorithms that accelerate only one gradient or neither. Further,
MRBO is easy to implement, and allows efficient computations of Jacobian- and Hessian-vector
products via automatic differentiation. Theoretically, we show that MRBO achieves a computational

complexity (w.r.t. computations of gradient, Jacobian- and Hessian-vector product) of (5(6_1'5),

'In the literature of bilevel optimization, although many hypergradient-based algorithms include an iteration
loop of Hessian inverse estimation, such a loop is typically not counted when these algorithms are classified
by the number of loops. This paper follows such a convention to be consistent with the existing literature.
Namely, the single- and double-loop algorithms mentioned here can include an additional loop of Hessian inverse
estimation in the hypergradient approximation.



Table 1: Comparison of stochastic algorithms for bilevel optimization.

Algorithm Ge(F,e) | Ge(G,e) | IV(G,e) | HV(G,e) | Hyy™(G,e) |
MSTSA [22] O(e?) O(e?) O(e?) O(e™?) /
SEMA [11] O(e7?) O(e7?) O(e™?) O(e7?) /
STABLE [2] O(e™?) O(e7?) / / O(e?)
stocBiO [20] O™ | O | 0(e?) | O(e? /
RSVRB [12] (Concurrent) [ O(e %) [ O(e %) [ O (717 / O (™)
SUSTAIN [23] (Concurrent) | O(e~'®) | O(e™'®) | O(e7"°) | O (') /
MRBO (ours) O ') | 0™ | o) | 0(e?) /
VRBO (ours) O ') | 0™ | 0(e"?) | 0(e™?) /

Gc(F, €) and Ge(G, €): number of gradient evaluations w.r.t. F and G.

Jv(G, €): number of Jacobian-vector products V., V,G(-)v. O(-): omit log 1 terms.
Hv(G, €): number of Hessian-vector products V2G(-)v.

Hyy™ (G, €): number of evaluations of Hessian inverse [V2G]

which outperforms all existing algorithms by an order of ¢~?->. Technically, our analysis needs

to first characterize the estimation property for the momentum-based recursive estimator for the
Hessian-vector type hypergradient and then uses such a property to further bound the per-iteration
error due to momentum updates for both inner and outer loops.

We then propose a double-loop variance-reduced bilevel optimizer (VRBO), which is the first
algorithm that adopts the recursive variance reduction for bilevel optimization. In VRBO, each inner
loop constructs a variance-reduced gradient (w.r.t. ) and hypergradient (w.r.t. x) estimators through
the use of large-batch gradient estimations computed periodically at each outer loop. Similarly to
MRBO, VRBO involves the computations of Jacobian- and Hessian-vector products rather than
Hessians or Hessian inverse. Theoretically, we show that VRBO achieves the same near-optimal

complexity of O(e~1-*) as MRBO and outperforms all existing algorithms. Technically, differently
from the use of variance reduction in minimization and minimax optimization, our analysis for VRBO
needs to characterize the variance reduction property for the Hessian-vector type of hypergradient
estimators, which only involves Hessian vector computation rather than Hessian. Such estimator
introduces additional errors to handle in the telescoping and convergence analysis.

Our experiments” show that VRBO achieves the highest accuracy among all comparison algorithms,
and MRBO converges fastest among its same type of single-loop momentum-based algorithms. In
particular, we find that our double-loop VRBO algorithm converges much faster than other singlr-
loop algorithms including our MRBO, which is in contrast to the existing efforts exclusively on
accelerating the single-loop algorithms [2, 11, 22]. Such a result also differs from those phenomenons
observed in minimization and minimax optimization, where single-loop algorithms often outperform
double-loop algorithms.

1.2 Related Works

Bilevel optimization approaches: At the early stage of bilevel optimization studies, a class of
constraint-based algorithms [13, 35, 29] were proposed, which tried to penalize the outer function
with the optimality conditions of the inner problem. To further simplify the implementation of
constraint-based bilevel methods, gradient-based bilevel algorithms were then proposed, which
include but not limited to AID-based [33, 7, 34, 17], ITD-based [9, 31, 8, 16, 19] methods, and
stochastic bilevel optimizers such as BSA [8], stocBiO [20], and TTSA [14]. The finite-time (i.e.,
non-asymptotic) convergence analysis for bilevel optimization has been recently studied in several
works [8, 20, 14]. In this paper, we propose two novel stochastic bilevel algorithms using momentum
recursive and variance reduction techniques, and show that they order-wise improve the computational
complexity over existing stochastic bilevel optimizers.

Momentum-based recursive approaches: The momentum recursive technique was first introduced
by [3, 36] for minimization problems, and has been shown to achieve improved computational
complexity over SGD-based updates in theory and in practice. Several works [22, 2, 11] applied the

20Our codes are available online at https://github.com/Junjie Yang97/MRVRBO



similar single-loop momentum-based strategy to bilevel optimization to accelerate the SGD-based
bilevel algorithms such as BSA [8] and stocBiO [20]. However, the computational complexities of
these momentum-based algorithms are not shown to outperform that of stocBiO. In this paper, we
propose a new single-loop momentum-based recursive bilevel optimizer (MRBO), which we show
achieves order-wisely lower complexity than existing stochastic bilevel optimizers.

Variance reduction approaches: Variance reduction has been studied extensively for conventional
minimization problems, and many algorithms have been designed along this line, including but not
limited to SVRG [21, 26], SARAH [30], SPIDER [4], SpiderBoost [37, 38, 18] and SNVRG [41].
Several works [27, 39, 40, 32] recently employed such techniques for minimax optimization to
achieve better complexities. In this paper, we propose the first-known variance reduction-based
bilevel optimizer (VRBO), which achieves a near-optimal computational complexity and outperforms
existing stochastic bilevel algorithms.

Two concurrent works: As we were finalizing this submission, two concurrent studies were posted
on arXiv recently ([23] was posted on May 8 and [12] was posted on May 5). Both studies overlap
only with our MRBO algorithm, nothing similar to our VRBO. Specifically, [23] and [12] respectively
proposed the SUSTAIN and RSVRB algorithms for bilevel optimization, both using momentum-
based design as our MRBO. Although SUSTAIN and RSVRB have been shown to achieve the
same theoretical complexity of O(e~1-%) as our MRBO (and VRBO), both algorithms have major
drawbacks in their design, so that their empirical performance (as we demonstrate in our experiments)
is much worse that our MRBO (and even worse than our VRBO). SUSTAIN adopts only single-
sample for each update (whereas MRBO uses minibatch for stability); and RSVRB requires to
compute Hessian inverse at each iteration (whereas MRBO uses Hessian-vector products for fast
computation). As an additional note, our experiments demonstrate that our VRBO significantly
outperforms all these single-loop momentum-based algorithms SUSTAIN and RSVRB as well as our
MRBO.

2 Two New Algorithms

In this section, we propose two new algorithms for bilevel optimization. Firstly, we introduce the
hypergradient of the objective function ®(xy), which is useful for designing stochastic algorithms.

Property 1. The (hyper)gradient of ®(z) = f(x,y*(x)) in eq. (1) takes a form of
VO(z) = Vo f(z,y*(2)) = VaVyg(z, y* (@) [Vig(z,y" (@) 'V f(z,y*(2). )

However, it is not necessary to compute y* for updating x at every iteration, and it is not time and
memory efficient to compute Hessian inverse matrix in eq. (2) explicitly. Here, we estimate the
hypergradient similarly to [20, 8], which takes a form of

Q-1
Vo(x) = Vaf (2,y) = Vo Vyg(a,y)n > (I =nVig(w,y)* 'V, f(z,y), 3)

g=—1

where the Neumann series 7 Z;’io(l —nG)t = G~ is applied to approximate the Hessian inverse.

2.1 Momentum-based Recursive Bilevel Optimizer (MRBO)

As shown in Algorithm 1, we propose a Momentum-based Recursive Bilevel Optimizer (MRBO) for
solving the bilevel problem in eq. (1).

MRBO updates in a single-loop manner, where the momentum recursive technique STORM [3] is
employed for updating both x and y at each iteration simultaneously. To update y, at step £k, MRBO
first constructs the momentum-based gradient estimator u, based on the current V,, G (zk, yx; By)
and the previous V,G(xx—1,yx—1; B,) using a minibatch B, of samples (see line 8 in Algorithm 1).
Note that the hyperparameter ), decreases at each iteration, so that the gradient estimator uy, is more
determined by the previous ug_;, which improves the stability of gradient estimation, especially
when yy, is close to the optimal point. Then MRBO uses the gradient estimator for updating vy, (see
line 11). The stepsize 7 decreases at each iteration to reduce the convergence error.

To update z, at step k, MRBO first constructs the momentum-based recursive hypergradient esti-
mator v, based on the current V®(xy; B,;) and the previous V®(xx_1; B, ) computed using several



Algorithm 1 Momentum-based Recursive Bilevel Optimizer (MRBO)

1: Imput: Stepsize A,y > 0, Coefficients «v, By, Initializers x, 1o, Hessian Estimation Number @,
Batch Size S, Constant ¢y, co,m,d > 0

Vi = 6(13(1’]@; Bm) + (1 — Oék)(’l)k,1 — 6(13(5(}]@,1; Bw))

up = VyG(zk, yi; By) + (1 — Br) (uk—1 — VyG(Tr—1, Yu—1; By))
9: end if

10:  update: 7, = 73#%, Qg1 = 1}y Brir = canp

1 Tyt = Tk — YMeVk, Y+l = Ye — AUk

12: end for

2: fork=0,1,..., K do

3:  Draw Samples B,, B, = {B;(j =1,...,Q), Bp, Bg} with batch size S for each component
4: if k = 0: then

5: v = VO(zi; By), ur = VyG(k, yi; By)

6: else

7

8:

independent minibatches of samples B, = {B;(j = 1,...,Q), Br,Bg} (see line 7 in Algorithm 1).
The hyperparameter «; decreases at each iteration, so that the new gradient estimation vy is more
determined by the previous vy_1, which improves the stability of gradient estimation, especially when

x, is around the optimal point. Specifically, the hypergradient estimator @CI)(Q:;C; B,) is designed
based on the expected form in eq. (3), and takes a form of:

Vo (1p;B,) =V F(l“myk;BF)

— VoV Glae, yri Be)n Z H (I = nV2G(wk, yi; B;))Vy F(ww, yx; Br), (4
q=—1j=Q—q

Note that MRBO computes the above estimator recursively using only Hessian vectors rather than
Hessians (see Appendix A) in order to reduce the memory and computational cost. Then MRBO uses
the estimated gradient vy, for updating zj, (see line 11). The stepsize 7, decreases at each iteration to
facilitate the convergence.

2.2 Variance Reduction Bilevel Optimizer (VRBO)

Although all of the existing momentum algorithms [2, 22, 11] (and two current studies [23, 12]) for
bilevel optimization follow the single-loop design, empirical results in [20] suggest that double-loop
bilevel algorithms can achieve much better performances than single-loop algorithms. Thus, as shown
in Algorithm 2, we propose a double-loop algorithm called Variance Reduction Bilevel Optimizer
(VRBO). VRBO adopts the variance reduction technique in SARAH [30]/SPIDER [4] for bilevel
optimization, which is suitable for designing double-loop algorithms. Specifically, VRBO constructs
the recursive variance-reduced gradient estimators for updating both x and y, where each update of
2 in the outer-loop is followed by (m + 1) inner-loop updates of y. VRBO divides the outer-loop
iterations into epochs, and at the beginning of each epoch computes the hypergradient estimator
@@(xk, yr; S1) and the gradient V,G(x, yx; S1) based on a relatively large batch S; of samples

for variance reduction, where V®(xy, yx; S1) takes a form of

S1

= 1
V& (z, yr; S1) = 5, > (VxF(CCk,yk;&)

i=1

_V v G xkvyknCZ Z H I UV2 ‘rk7ykvc ))V F(‘rlmylmfl)) (5)

g=—-1j=Q—q

where all samples in S; = {¢/(j = 1,...,Q),&,(,i = 1,...,5} are independent. Note that
eq. (5) takes a different form from MRBO in eq. (4), but the Hessian-vector computation method
for MRBO is still applicable here. Then, VRBO recursively updates the gradient estimators for
VyG(Zg ¢, Yrt; S2) and @@(%k,t,ﬂk’t; &) (which takes the same form as eq. (5)) with a small
sample batch Sz (see lines 11 to 16) during inner-loop iterations.



We remark that VRBO is the first algorithm that adopts the recursive variance reduction method for
bilevel optimization. As we will shown in Section 3, VRBO achieves the same nearly-optimal com-
putational complexity as MRBO (and outperforms all other existing algorithms). More interestingly,
as a double-loop algorithm, VRBO empirically significantly outperforms all existing single-loop
momentum algorithms including MRBO. More details and explanation are provided in Section 4.

Algorithm 2 Variance Reduction Bilevel Optimizer (VRBO)
1: Imput: Stepsize 5, « > 0, Initializer xg, Yo, Hessian @), Sample Size S7, S, Periods ¢
2: fork=0,1,...,K do
3:  if mod(k,q) = 0: then

4 Draw a batch &7 of i.i.d. samples

5 up = VyG(z, yr; S1), v = VO (2, Yr; S1)
6: else

7: Uk = Uk—1,m+1> Vk = Uk—1,m+1

8: endif

9: Tyl = Tk — QU
10:  Set Tk, —1 = Tk, Yk,—1 = Yk» Th,0 = Thit1, Yk,0 = Yk» Vk,—1 = Vg, Uk, —1 = Uk
11: fort=0,1,...,m+1do

12: Draw a batch Ss of i.i.d samples

13: Ukt = Okt—1 + VO(Ti, Uryts S2) — VO(Tt—1, Yri—15 S2)
14 Upp = U1+ VyG(Tht, Yr,t; S2) — VyG(Tri—1, Uk,t—15 S2)
15: Thtt1 = Thots Ykt+1 = Ykt — BUkt

16:  end for

170 Ykt1 = Ykm+1

18: end for

3 Main Results

In this section, we first introduce several standard assumptions for the analysis, and then present the
convergence results for the proposed MRBO and VRBO algorithms.

3.1 Technical Assumptions and Definitions
Assumption 1. Assume that the inner function G(x,y; () is p-strongly-convex w.r.t. y for any (.

We then make the following assumptions on the Lipschitzness and bounded variance, as adopted by
the existing studies [8, 20, 14] on stochastic bilevel optimization.

Assumption 2. Let z := (z,y). Assume the functions F(z;€) and G(z; () satisfy, for any £ and (,
a) F(z;€) is M-Lipschitz, i.e., forany z,7, |F(z;€) — F(2';€)| < M|z — #'||.
b) VF(z;€) and VG(z; () are L-Lipschitz, i.e., for any z, 2/,
IVF(2;6) = VE( 9l < Lllz = 2ll,  [VG(2:¢) = VG(Z5 Q)| < Li|z = ']

¢) ViVyG(2;() is T-Lipschitz, i.e., for any z, %', [|[V,V,G(2;() — Vo V,G(2';Q)|| < 7|lz —2'|.

d) V2G(z;C) is p-Lipschitz, i.e., for any z, 7', |[V2G(z; () — V2G(2'; Q)| < pllz — 2/||.

Note that Assumption 2 also implies that E¢[|VF(z:¢) ~ Vf(2)|* < M2 E¢|[V2V,G(z:¢)

Assumption 3. Assume that VG (z;€) has bounded variance, i.e., E¢|VG(2;:€) — Vg (2)|* < o2

Assumptions 2 and 3 require the Lipschitzness conditions to hold for the gradients and second-
order derivatives of the inner and outer objective functions, which further imply the gradient of
the outer objective function is bounded. Such assumptions have also been adopted by the existing
studies [20, 14, 23, 22, 12] for stochastic bilevel optimization. Furthermore, these assumptions are
mild in practice as long as the iterates along practical training paths are bounded. All our experiments



indicate that these iterates are well located in a bounded regime. It is also possible to consider a bilevel
problem over a convex compact set, which relaxes the boundedness assumption. By introducing
a projection of iterative updates into such a set, our analysis for the unconstrained setting can be
extended easily to such a constrained problem.

We next define the e-stationary point for a nonconvex function as the convergence criterion.
Definition 1. We call & an e-stationary point for a function ®(z) if |[V®(Z)||* < e.

3.2 Convergence Analysis of MRBO Algorithm

To analyze the convergence of MRBO, bilevel optimization presents two major challenges due to the
momentum recursive method in MRBO, beyond the previous studies of momentum in conventional
minimization and minimax optimization. (a) Outer-loop updates of bilevel optimization use hypergra-
dients, which involve both the first-order gradient and the Hessian-vector product. Thus, the analysis
of the momentum recursive estimator for such a hypergradient is much more complicated than that
for the vanilla gradient. (b) Since MRBO applies the momentum-based recursive method to both
inner- and outer-loop iterations, the analysis needs to capture the interaction between the inner-loop
gradient estimator and the outer-loop hypergradient estimator. Below, we will provide two major
properties for MRBO, which develop new analysis for handling the above two challenges.

In the following proposition, we characterize the variance bound for the hypergradient estimator in
bilevel optimization, and further use such a bound to characterize the variance of the momentum
recursive estimator of the hypergradient.

I:roposition 1. Suppose Assumptions 1, 2 and 3 hold and 1 < %, the hypergradient estimator
V&(x; By) w.rt. x based on a minibatch B,, has bounded variance

E|V®(z1; By) — V(1) < G2, (6)
where G2 = 2M2 12M?L2g2(Q+1)2 + AMPL(Q+2)(Q+1)*n"0® Further; let &, = vj, — V®(xy,),

S
where vy, denotes the momentum recursive estimator for the hypergradient. Then the per-iteratioon
variance bound of vy, satisfies

E|lé|*> < E[202G? +2(1 — ak.)QLf?Ho:k —xp1]?
+2(1 = a)* Lyl — yr—1 1 + (1 — ) ?|[&—1 ], (7
where Lg) = 2L% + 4% M?(Q 4+ 1)* + 8L*n*(Q + 1)* + 2L** M?p*Q*(Q + 1)*.

The variance bound G of the hypergradient in eq. (6) scales with the number () of Neumann series
terms (i.e., the number of Hessian vectors) and can be reduced by that minibatch size S.

Then the bound eq. (7) further captures how the variance ||€x|| of momentum recursive hypergradient
estimator changes after one iteration. Clearly, the term (1 — a)?||éx_1||? indicates a variance
reduction per iteration, and the remain three terms capture the impact of the randomness due to the
update in step &, including the variance of the stochastic hypergradient estimator G2 (as captured in
eq. (6)) and the stochastic update of both variables x and y. In particular, the variance reduction term
plays a key role in the performance improvement for MRBO over other existing algorithms.

Proposition 2. Suppose Assumptions 1, 2, 3 hold. Let n < % and v <

2 2 y 3 2
I+ 2L ZTM n pLM+fﬂ+rML + pILsM, Then, we have

1 _
vy where Ly =

2 " _ 1
E[®(zr41)] < E[® (k)] + 2mey(L' lyw — v () II” + lée® + ng) - m”ﬂ%ﬂ -z,

where C = M,Lﬂ = max{(L + %2 + % + %)Q,LZQ}.

Proposition 2 characterizes how the objective function value decreases (i.e., captured by E[®(xx41)]—
E[®(x})]) due to one-iteration update ||zy11 — xx||* of variable x (last term in the bound). Such a
value reduction is also affected by the tracking error ||yx — y*(x)||? of the variable y (i.e., y does
not equal the desirable y*(z)), the variance ||€x||?> of momentum recursive hypergradient estimator,
and the Hessian inverse approximation error Cg w.r.t. hypergradient.

Based on Propositions 1 and 2, we next characterize the convergence of MRBO.



Theorem 1. Apply MRBO to solve the problem eq. (1) Suppose Assumptions 1, 2, and 3 hold.
Let hyperpammeters c > d3 + 9’\“ coy > d3 + 75L ,m > max{2,d>, (c1d)3, (c2d)3},y1 =

1 A
y(21)m < 7,0 <A< g, 0<y < < mln{4L®7]K /T50L/2L2 /2 +8Au(LS + L2)

}. Then, we have

L 9 1 2, 1 2 M’ 1/3
KZ 197 (@e) = well™ + llell” + 42n2||$k+1 zill” ) < g (m+ K)7% 0 ®)

* 2 2y 72 2
where L'* is defined in Proposition 2, and M' = Ple) @7 | (2G (c4e)d” | QC;IQd ) log(m

vd Al
2G2
K) + 55

Theorem 1 captures the simultaneous convergence of the variables xy, yx and ||€x||: the tracking error
|ly*(x) — yx|| converges to zero, and the variance ||€x|| of the momentum recursive hypergradient
estimator reduces to zero, both of which further facilitate the convergence of x, and the algorithm.

By properly choosing the hyperparameters in Algorithm 1 to satisfy the conditions in Theorem 1, we
obtain the following computational complexity for MRBO.

Corollary 1. Under the same conditions of Theorem I and choosing K = O(e~'-%),Q = O(log(1)),
MRBO in Algorithm 1 finds an e-stationary point with the gradient complexity of O(e~1-%) and the

(Jacobian-) Hessian-vector complexity of O(e~ ).

As shown in Corollary 1, MRBO achieves the computational complexity of O(e~*5), which out-
performs all existing stochastic bilevel algorithms by a factor of O(e~%-?) (see Table 1). Further,

this also achieves the best known complexity of 6(6_1'5) for vanilla nonconvex optimization via
first-order stochastic algorithms. As far as we know, this is the first result to demonstrate the improved
performance of single-loop recursive momentum over SGD-type updates for bilevel optimization.

3.3 Convergence Analysis of VRBO Algorithm

To analyze the convergence of VRBO, we need to first characterize the statistical properties of the
hypergradient estimator, in which all the gradient, Jacobian-vector, and Hessian-vector have recursive
variance reduction forms. We then need to characterize how the inner-loop tracking error affects
the outer-loop hypergradient estimation error in order to establish the overall convergence. The
complication in the analysis is mainly due to the hypergradient in bilevel optimization, which does
not exist in the previous studies of variance reduction in conventional minimization and minimax
optimization. Below, we provide two properties of VRBO for handling the aforementioned challenges.

In the following proposition, we characterize the variance of the hypergradient estimator, and further
use such a bound to characterize the cumulative variances of both the hypergradient and inner-loop
gradient estimators based on the recursive variance reduction technique over all iterations.

Proposition 3. Suppose Assumptions 1, 2, 3 hold. Let n < % Then the hypergradient estimator
@@(wk, yi; S1) defined in eq. (5) w.rt. x has bounded variance as

N . 0,12
E(|V®(z, yx; S1) — V(1) [I” < <o ©)
1
where 0'* = 2M? + 28 L2 M?n*(Q + 1)2. Let Ay, = E(||vg, — V@ ()12 + [Jur, — Vyg(@r, yi) ),
where vy, and uy, denote the recursive variance reduction estimators for hypergradient and inner-loop
gradient respectively. Then, the cumulative variance of vy, and uy, is bounded by

K-1 4 K-2
> A< 2Ly > Eljukl® + Euvyg 0, o) || (10)
k=0 k=0

As shown in eq. (9), the variance bound of the hypergradient estimator increases with the number ()
of Hessian-vector products for approximating the Hessian inverse and can be reduced by the batch
size S1. Then eq. (10) further provides an upper bound on the cumulative variance Zi:ol Ay, of the
recursive hypergradient estimator and inner-loop gradient estimator.



Proposition 4. Suppose Assumptions 1, 2, 3 hold. Let n < l. Then, we have

E[®(2x11)] < E[®(zx)] + “LEl|Vyg(@r, ys) |2 + aB[[VO(2r) — e = (5 — % La)Ellvx]|?,

u2

where L'* = (L + Ly & + LMoy2 43nd VO (24) takes a form of

p?
%(xk-) = Vo f (@ yr) — VaVyg(@r ) V29 (@ )] " Vo f (@, yi)- (11)

Proposition 4 characterizes how the objective function value decreases (i.e., captured by E[®(zj11)]—
E[®(21)]) due to one iteration update ||vy||? of variable 2 (last term in the bound). Such a value re-
duction is also affected by the moments of gradient w.r.t. y and the variance of recursive hypergradient
estimator.

Based on Propositions 3 and 4, we next characterize the convergence of VRBO.

Theorem 2. Apply VRBO to solve the problem eq. (1) Suppose Assumptions 1, 2, 3 hold. Let o =
ﬁ7ﬁ 13LQ < +,85 > 2( +1)LB,m = ﬁ —1,qg= “Lﬁs? where L, = max{L¢q, Ls}.
Then, we have

Q!

—ZEHV@ I < O(% +—+Q4( —np)*9). (12)

S1

Theorem 2 shows that VRBO converges sublinearly w.r.t. the number K of iterations with the

convergence error consisting of two terms. The first error term gl is caused by the minibatch gradient

and hypergradient estimation at outer loops and can be reduced by increasing the batch size S;
(in fact, Q scales only logarithmically with S7). The second error term Q*(1 — nu)?? is due to
the approximation error of the Hessian-vector type of hypergradient estimation, which decreases
exponentially fast w.r.t. ). By properly choosing the hyperparameters in Algorithm 2, we obtain the
following complexity result for VRBO.

Corollary 2. Under the same conditions of Theorem 2, choose S; = O(e71), Sy = O(e7°9),Q =
O(log(eo%)), K = O(e™'). Then, VRBO finds an e-stationary point with the gradient complexity of

O(e15) and Hessian-vector complexity of O(e~15).

Similarly to MRBO, Corollary 2 indicates that VRBO also outperforms all existing stochastic

algorithms for bilevel optimization by a factor of O(e~%?) (see Table 1). Further, although MRBO
and VRBO achieve the same theoretical computational complexity, VRBO empirically performs
much better than MRBO (as well as other single-loop momentum-based algorithms MSTSA [22],
STABLE [2], and SEMA [11]), as will be shown in Section 4.

We note that although our theory requires @ to scale as O(log(=5)), a very small Q is sufficient to
attain a fast convergence speed in experiments. For example, we choose () = 3 in our hyper-cleaning
experiments as other benchmark algorithms such as AID-FP, reverse, and stocBiO.

4 Experiments

In this section, we compare the performances of our proposed VRBO and MRBO algorithms with
the following bilevel optimization algorithms: AID-FP [10], reverse [6] (both are double-loop deter-
ministic algorithms), BSA [8] (double-loop stochastic algorithm), MSTSA [22] and SUSTAIN [23]
(single-loop stochastic algorithms), STABLE [2] (single-loop stochastic algorithm with Hessian
inverse computations), and stocBiO [20] (double-loop stochastic algorithm). SEMA [11] is not
included in the list because it performs similarly to SUSTAIN. RSVRB [12] is not included since
it performs similarly to STABLE. Our experiments are run over a hyper-cleaning application on
MNIST?. We provide the detailed experiment specifications in Appendix B.

As shown in Figure 1 (a) and (b), the convergence rate (w.r.t. running time) of our VRBO and the
SGD-type stocBiO converge much faster than other algorithms in comparison. Between VRBO and
stocBiO, they have comparable performance, but our VRBO achieves a lower training loss as well as

3The experiments on CIFAR10 are still ongoing.



a more stable convergence. Further, our VRBO converges significantly faster than all single-loop
momentum-based methods. This provides some evidence on the advantage of double-loop algorithms
over single-loop algorithms for bilevel optimization. Moreover, our MRBO achieves the fastest
convergence rate among all single-loop momentum-based algorithms, which is in consistent with
our theoretical results. In Figure 1 (c), we compare our algorithms MRBO and VRBO with three
momentum-based algorithms, i.e., MSTSA, STABLE, and SUSTAIN, where SUSTAIN (proposed
in the concurrent work [23]) achieves the same theoretical complexity as our MRBO and VRBO.
However, it can be seen that MRBO and VRBO are significantly faster than the other three algorithms.

All three plots suggest an interesting observation that double-loop algorithms tend to converge faster
than single-loop algorithms as demonstrated by (i) double-loop VRBO performs the best among all
algorithms; and (ii) double-loop SGD-type stocBiO, GD-type reverse and AID-FP perform even better
than single-loop momentum-accelerated stochastic algorithm MRBO; and (iii) double-loop SGD-
type BSA (with single-sample updates) converges faster than single-loop momentum-accelerated
stochastic MSTSA, STABLE and SUSTAIN (with single-sample updates). Such a phenomenon
has been observed only in bilevel optimization (to our best knowledge), and occurs oppositely
in minimization and minimax problems, where single-loop algorithms substantially outperform
double-loop algorithms. The reason for this can be that the hypergradient estimation at the outer-
loop in bilevel optimization is very sensitive to the inner-loop output. Thus, for each outer-loop
iteration, sufficient inner-loop iterations in the double-loop structure provides a much more accurate
output close to y* (z) than a single inner-loop iteration, and thus helps to estimate a more accurate
hypergradient in the outer loop. This further facilitates better outer-loop iterations and yields faster
overall convergence.

= MRBO = MRBO
s \/RBO s \/RBO

25
3 20
— MSTSA 2 —— MSTSA |
= STABLE | = STABLE " ,\ ~—— MRBO
\ a stocBiO A stocBiO 15 g —— VRBO
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|

AID-FP
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\ SUSTAIN |

10 BSA B
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Figure 1: training loss v.s. running time.

5 Conclusion

In this paper, we proposed two novel algorithms MRBO and VRBO for the nonconvex-strongly-
convex bilevel stochastic optimization problem, and showed that their computational complexities
outperform all existing algorithms order-wise. In particular, MRBO is the first momentum algorithm
that exhibits the order-wise improvement over SGD-type algorithms for bilevel optimization, and
VRBO is the first that adopts the recursive variance reduction technique to accelerate bilevel opti-
mization. Our experiments demonstrate the superior performance of these algorithms, and further
suggest that the double-loop design may be more suitable for bilevel optimization than the single-
loop structure. We anticipate that our analysis can be applied to studying bilevel problems under
various other loss geometries. We also hope that our study can motivate further comparison between
double-loop and single-loop algorithms in bilevel optimization.
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