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Abstract
Unsupervised Neural Machine Translation001
(UNMT) focuses on improving NMT results002
under the assumption there is no human003
translated parallel data, yet little work has004
been done so far in highlighting its advantages005
compared to supervised methods and analyzing006
its output in aspects other than translation007
accuracy. We focus on three very diverse008
languages, French, Gujarati, and Kazakh, and009
train bilingual NMT models, to and from010
English, with various levels of supervision,011
in high- and low- resource setups, measure012
quality of the NMT output and compare the013
generated sequences word order and semantic014
similarity to source and reference sentences.015
We also use Layer-wise Relevance Propagation016
to analyze the model’s behavior during training,017
and evaluate the source and target sentences’018
contribution to the NMT result, expanding019
the findings of previous works to the UNMT020
paradigm.021

1 Introduction022

Unsupervised Neural Machine Translation023

(UNMT) has been widely studied (Wang and024

Zhao, 2021; Marchisio et al., 2020; Kim et al.,025

2020; Lample et al., 2017; Artetxe et al., 2019;026

Su et al., 2019), in an effort to create efficient027

and trustworthy NMT models of excellent028

performance not relying on the existence of029

parallel data. Obtaining high-quality parallel030

corpora is expensive and time-consuming,031

especially for less-common language pairs.032

Unsupervised NMT hence aims to circumvent033

this limitation. NMT in general significantly aids034

in preserving indigenous languages by making035

global information accessible, supports migrants in036

overcoming language barriers to essential services,037

and enables the globalization of local news from038

smaller countries. UNMT particularly has broad039

applicability, especially in addressing linguistic 040

diversity and information accessibility challenges. 041

However, there has been little effort on 042

analyzing, apart from the quality of the output, the 043

model behavior during UNMT, and the models’ 044

inner workings and the effects of various setups 045

on hypotheses and generated translations’ quality, 046

monotonicity and semantic similarity, as well as 047

model robustness and consistency. We analyze and 048

compare UNMT approaches for two very diverse 049

languages, French and Gujarati, translating to and 050

from English. We research into the existence 051

of different stages in UNMT, analyze source 052

and target sentence tokens’ contributions to the 053

result (Bach et al., 2015) evaluate the quality 054

and word alignment of generated translations, 055

and Robustness and Consistency of our model to 056

perturbed inputs. Our paper follows up closely on 057

the work of Voita et al. (2020, 2021); Marchisio 058

et al. (2022), and examines the following questions: 059

• Do the distinct stages of transformer-based 060

NMT analyzed in previous works exist 061

in Unsupervised, and joint Supervised & 062

Unsupervised NMT? 063

• How does output quality, word alignment, 064

semantic similarity, as well as source 065

and target sentences’ token contributions 066

to the NMT output behave across the 067

aforementioned stages? 068

• How Robust and Consistent are NMT models 069

throughout training? 070

Our findings confirm the existence of NMT 071

stages regardless of the level of training 072

supervision, and show that Unsupervised methods 073

produce translations more similar to source 074

sentences in terms of word order, yet more 075
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semantically distant. UNMT models tend to show076

higher Robustness and Consistency, and can more077

easily recover from sentence perturbations. We also078

observe that in reduced training data experiments,079

there is a heavy reliance on the source sentence080

for generating translations. Our focus is not on081

outperforming NMT state-of-the-art results, but082

rather on training and examining the behavior083

of bilingual models in various setups. We will084

be making our experiments’ code public upon085

acceptance.086

The paper is structured as follows: in Section087

2 we present related work in the topics of UNMT,088

NMT analysis and other metrics analyzed in our089

work. In Section 3 we analyze the methods090

proposed for NMT analysis and the experiments091

conducted, while in Section 4 we present and092

discuss our findings. Finally, in Sections 5, 6093

and 7 we conclude our work and highlight certain094

limitations and ethical considerations, respectively.095

We present additional experiments and results096

on the Robustness of the models and Semantic097

Similarity of input and output sentences in the098

supplementary material attached to the submission.099

2 Related Work100

Unsupervised Neural Machine Translation101

UNMT aims to make NMT work in the absence102

of parallel data. Most common approaches have103

focused on cross- or multilingual initialization of104

a language model either through an alignment of105

monolingual embeddings (Artetxe et al., 2017;106

Lample et al., 2018; Conneau et al., 2017; Lample107

et al., 2017) or by model pretraining and fine-108

tuning (Lample and Conneau, 2019; Song et al.,109

2019; Liu et al., 2020). Back-Translation (BT)110

(Sennrich et al., 2015) translates monolingual111

data between languages, creating pseudo-parallel112

training corpora (Artetxe et al., 2017; Lample et al.,113

2017). Marchisio et al. (2022) first systematically114

examine the naturalness and diversity of the115

UNMT output, comparing it to similar quality116

human translations, and proposing a way to117

leverage UNMT to improve a classical supervised118

NMT system. In more recent works, Liu et al.119

(2022) introduce a flow-adapter architecture to120

separately model the distributions of source and121

target languages, and He et al. (2022) identify122

and mitigate a training and inference style and123

content gap between back-translated data and124

natural source sentences. Garcia et al. (2020a)125

expand the paradigm to multilingual UNMT, while126

Garcia et al. (2020b) use offline BT synthetic data 127

to improve multilingual En-xx UNMT for low- 128

resource languages xx. 129

Layer-wise Relevance Propagation (LRP) 130

LRP (Bach et al., 2015) measures relevance of the 131

input components, or the neurons of a network, to 132

the next layers’ output, and is directly applicable 133

to layer-wise architectures. Wu and Ong (2021) 134

use LRP as an attribution method for sequence 135

classification tasks. We extend its usage to the 136

Transformer, and measure the relevance of source 137

and target sentences to the NMT output. 138

Neural Machine Translation analysis 139

Voita et al. (2020) examine the source and target 140

sentences’ tokens’ relative contributions to NMT 141

output, adapting LRP to a Transformer, and 142

experimenting with different training objectives, 143

training data amounts and types of target sentence 144

prefixes, and their effect on NMT output quality 145

and monotonicity. Following up to that work, Voita 146

et al. (2021) analyze NMT stages, drawing parallels 147

to distinct SMT stages. Their findings include 148

decomposing NMT into three phases, and using the 149

key learning advantages of each stage to improve 150

non-autoregressive NMT. We examine and identify 151

if those stages exist in UNMT. 152

Robustness & Consistency 153

Previous works examine Robustness in NLP (Yu 154

et al., 2022; Wang et al., 2021; La Malfa and 155

Kwiatkowska, 2022), measuring and improving 156

NLP models’ performance against perturbed or 157

unseen input. Specifically for NMT, Niu et al. 158

(2020) propose two metrics, Robustness and 159

Consistency to measure sensitivity of a model to 160

input perturbations. 161

3 Method & Experiments 162

3.1 Model 163

We use a 6-layers 8-heads transformer-based model, 164

XLM (Lample and Conneau, 2019), following 165

the training configurations and hyperparameters 166

suggested by the authors. We use Byte 167

Pair Encoding to extract a 60k vocabulary, an 168

embedding layer size of 1024, a dropout value 169

and an attention layer dropout value of 0.1, 170

and a sequence length of 256. We measure 171

the quality of the Language Model (LM) with 172

perplexity, and quality of the NMT output with 173

BLEU both used as training stopping criteria, 174
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when there is no improvement over 10 epochs.175

We first pre-train a LM in each language with176

the MLM objective, and use it to initialize the177

encoder and decoder of the NMT model. We178

then train NMT models, using Back-Translation179

(BT) and denoising auto-encoding (AE) with the180

monolingual data used for LM pretraining for181

UNMT, the Machine Translation (MT) objective182

for the Supervised NMT model, and BT-MT for183

the joint Unsupervised and Supervised approach.184

3.2 Datasets185

The languages we work with are English, French,186

Gujarati, and Kazakh and we’re translating in187

all directions, English–French (En–Fr), French–188

English (Fr–En), English–Gujarati (En–Gu),189

Gujarati–English (Gu–En), English–Kazakh (En–190

Kk), Kazakh–English (Kk–En). For English and191

French, we use 5 million News Crawl 2007-2008192

monolingual sentences for each language, and 23193

million WMT14 parallel sentences. For Gujarati,194

we have 1.4 million sentences and for Kazakh195

we have 9.5M monolingual sentences, collected196

for both languages from Wikipedia, WMT 2018,197

2019 and Leipzig Corpora (2016)1. As parallel198

data, we have 22k sentences from the WMT 2019199

News Translation Task2 for Gu–En and Kk–En,200

respectively/ As development and test sets, we use201

newstest2013 and newstest2014, respectively, for202

En–Fr and Fr–En, WMT19 for En–Gu and Gu–En203

and En–Kk and Kk–En.204

3.3 Layer-wise Relevance Propagation205

Voita et al. (2020) explain how LRP calculation in206

a Transformer is confusing due to the non-clear207

layered nature of the model. We follow their208

setup, with LRP to be propagated first inversely209

through the decoder and the encoder, up to the210

input model layer, and without assuming the211

conservation principle holds per layer, but only212

across processed tokens. LRP is the relevance213

of input neurons to the top-1 logit predicted by214

the model, and token contribution is the sum215

of the input neurons’ relevance. Total source216

and target sentence contributions to the result at217

generation step t are given by Rt(source) =218 ∑
i xi, Rt(target) =

∑t−1
j=1 yj . At every step219

t, Relevance follows the conservation principle:220

Rt(source) + Rt(target) = 1. At step 1, we221

have R1(source) = 1, R1(target) = 0. For every222

1https://wortschatz.unileipzig.de/en/download/
2http://data.statmt.org/news-crawl/

target token past the currently generated one, LRP 223

is 0. 224

3.4 Word Order 225

Our aim is to examine differences in word order 226

between translations and reference or source 227

sentences. We evaluate two different reordering 228

metrics, Fuzzy Reordering Score (FRS) (Talbot 229

et al., 2011; Nakagawa, 2015)3 and Translation 230

Edit Rate (TER) (Snover et al., 2006). FRS ranges 231

between 0 and 1, with larger values for highly 232

monotonic alignments (higher structural similarity 233

and closer word order). For a translation y′ and 234

reference y (or source sentence y): FRS(y′, y) = 235

1− C−1
M−1 . C is the number of chunks of contiguously 236

aligned translation words, intuitively perceived as 237

the number of times a reader would need to jump 238

in order to read the system’s reordering of the 239

sentence in the order proposed by the reference 240

of length M. With fast align4 we calculate word 241

alignments. TER is defined as TER(y′, y) = E
Ly

, 242

where E is the number of edits needed to modify 243

the produced translation y′ to match the reference 244

sentence y (or source sentence y), and Ly is the 245

length of the reference (or the source sentence, 246

respectively). TER ranges between 0 and 1, and 247

low values indicate more monotonic alignments. 248

3.5 Model Robustness 249

Niu et al. (2020) set TQ (y’, y) to be the model 250

quality of model M with translation y′, and 251

reference y, to define the concepts of Consistency 252

and Robustness. Consistency of a model M 253

on input x and perturbation δ is given by 254

CONSIS(M |x, δ) = Sim(yδ, y), where y is the 255

reference translation, and yδ is the translation 256

of the perturbed sentence. Sim is the harmonic 257

mean between model quality TQ(y’, yδ’) and 258

TQ(yδ’, y’), measured between translations y’, yδ’, 259

respectively. On the other hand, Robustness of a 260

model M is defined as the ratio between quality 261

of the model producing translations yδ’ and y’: 262

ROBUST (M |x, δ) = TQ(y′δ,y)
TQ(y′,y) . It takes values in 263

[0,1]. We evaluate Consistency and Robustness on 264

test sets perturbed with two different approaches: 265

a. misspelling - each word is misspelled (random 266

deletion, insertion or substitution of characters) 267

with a probability of 0.1, b. case-changing - each 268

sentence is modified (upper-casing, lower-casing 269

or title-casing all letters) with a probability of 0.5. 270

3https://github.com/google/topdown-btg-preordering
4https://github.com/clab/fast align
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3.6 Semantic Similarity271

In evaluating semantic similarity between human272

translations or source sentences and generated273

translations, we calculate the Ratio Margin-based274

Similarity Score (RMSS) between each reference275

or source sentence and its k-nearest neighbors276

among all translations (Artetxe and Schwenk,277

2018). We follow Keung et al. (2021) to obtain278

and mean-pool the mBERT embedding vectors of279

all sentences. We set cos(·, ·) to be the cosine280

similarity and NNsrc
k (x) the k nearest neighbors281

of x in the reference or source sentence embedding282

space. RMSS is high when source and target pairs283

compared are closer than their respective nearest284

neighbors. For a hypothesis y:285

RMSS(x, y) =

cos(x, y)∑
z∈NNtgt

k (x)
cos(x,z)

2k +
∑

z∈NNsrc
k (y)

cos(y,z)
2k

.286

4 Results & Discussion287

BLEU scores of converged models are seen in288

Table 1. In En–Gu, En–Kk, Kk–En, BT-MT289

improves BLEU; Models trained with parallel data290

show higher BLEU, and absence of parallel data291

or often introduction of low quality data (eg in Gu–292

En) through BT lowers output quality.293

FRS294

In most En–Fr, Fr–En experiments, there is a295

large fluctuation yet a small and gradual FRS296

increase between translations and references (Fig.297

1), and then a small decrease. Higher FRS shows298

more monotonic alignments. Starting from non-299

monotonic alignments in the first stage, we get300

maximum FRS values in the second stage of301

training - highly aligned translations and references302

- which slightly decrease in the third stage until303

model convergence. With parallel data we get304

the most monotonic alignments, while we have305

the least identical reorderings between references306

and translations in BT-only cases, in both high-307

and low-resource setups. Similar patterns are308

observed in En–Kk and Kk–En, where we have309

the least monotonic alignments for few/no parallel310

data (MT-22k, BT-MT-22k, BT), and the most for311

experiments with parallel data (MT, BT-MT), with312

values slightly increasing and then remaining stable313

throughout training in most cases. BT En–Gu,314

Gu–En models show high and steady FRS values:315

between languages with a complicated and non-316

monotonic alignment, BT produces translations 317

more aligned with the reference. 318

For En–Fr, Fr–En, FRS (Fig. 2) values are stable 319

throughout training, and BT, BT-MT experiments’ 320

results imply highly monotonic alignments; with 321

BT, translations are closer to source sentences in 322

terms of word order. FRS is lower in MT only 323

experiments, as source and translation alignments 324

are less monotonic when models are trained with 325

parallel data alone. Results are similar in En– 326

Gu, Gu–En. BT, BT-MT results show an almost 327

perfect alignment between source sentences and 328

translations. 329

For En–Kk, Kk–En, it is interesting to observe 330

that in the majority of experiments, source 331

sentences are highly monotonic to translations, 332

with steady FRS values throughout training. 333

We see that BT yields more stable and higher 334

alignment scores compared to models trained only 335

on parallel data, suggesting it offers a significant 336

advantage for improving translation quality. 337

TER 338

Observing TER between translations and 339

references (Fig. 3), in En–Fr and Fr–En, low 340

TER for MT, BT-MT means more monotonic 341

alignments, in contrast to higher TER in low- 342

resource and BT-only experiments. TER gradually 343

decreases for all models, as sentences generated 344

at the end of training highly resemble human 345

translations. Results are different for En–Gu and 346

Gu–En; TER is low in BT- only and BT-MT 347

models, but rather high, and increasing, in the 348

MT-only model, with translations in the former 349

case very close to references. BT produces more 350

monotonic to the reference translations for a 351

language diverse in terms of script, morphological 352

complexity and word order from English. 353

Stable or slightly increasing TER values between 354

source sentences and translations (Fig. 4) mean 355

high structural resemblance. For En–Fr and Fr– 356

En, BT and BT-MT show the lowest TER values, 357

hence generated with BT sequences and source 358

sentences have high monotonicity. Similarly, in En– 359

Gu and Gu–En, BT, BT-MT models show lower 360

TER and higher and more monotonic alignment of 361

translations and source sentences. 362

For En–Kk, Kk–En, we see that we have 363

higher monotonicity in higher/no supervision 364

experiments, and lower in low-resource models- 365

we can assume training with few parallel data 366
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Method en-fr fr-en en-gu gu-en en-kk kk-en
Other methods

45.95 - 0.1 6 0.3 7 2.5 8 7.4 9

Our method
BT+AE 21.76 21.69 0.4 0.46 0.7 1.0
Parallel data: 22k
MT 31.12 30.63 1.04 2.65 2.4 2.6
BT+AE+MT 34.54 34.02 1.16 2.19 2.8 2.9
132k
MT 37.8 35.6 - - 5.2 8.0
BT+AE+MT 38.6 38.4 - - 6.6 8.9
1m
MT 41.25 41.33 - - - -
BT+AE+MT 40.37 40.4 - - - -
2.5m
MT 40.46 40.71 - - - -
BT+AE+MT 39.88 39.62 - - - -
5m
MT 41.52 41.18 - - - -
BT+AE+MT 40.89 40.8 - - - -
23m
MT 41.75 41.41 - - - -
BT+AE+MT 41.29 40.99 - - - -

Table 1: BLEU scores for En–Fr, Fr–En, En–Gu, Gu–En, En–Kk, Kk–En NMT. Test and validation sets are WMT19 for Gujarati and Kazakh, newstest2013-14 for
French pairs. State-of-the art results given for the sake of consistency. MT stands for machine translation objective, BT stands for Back-Translation and AE for
denoising auto-encoding.

Figure 1: Fuzzy Reordering Scores (FRS) between references and generated translations, for En–Fr, Fr–En, En–Gu, Gu–En, En–Kk, Kk-En during training.

Figure 2: Fuzzy Reordering Scores (FRS) between source sentences and generated translations for En–Fr, Fr–En, En–Gu, Gu–En, En–Kk, Kk–En during training.

and for few epochs highly cannot help the model367

properly align produced translations and references368

or source sentences. Between translations and 369

source sentences, when the model is sufficiently 370
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Figure 3: Translation Edit Rate (TER) between references and generated translations for En–Fr, Fr–En, En–Gu, Gu–En, En–Kk, Kk–En during training.

Figure 4: Translation Edit Rate (TER) between source sentences and generated translations for En–Fr, Fr–En, En–Gu, Gu–En, En–Kk, Kk–En during training.

trained, we surprisingly observe high monotonicity371

across experimental setups.372

We can deduce that for En–Fr, Fr–En,373

translations have higher monotonicity to references374

in MT, BT-MT, lower in BT-only experiments, but375

higher monotonicity to source sentences in BT, BT-376

MT and lower in MT. Training supervision leads377

to better translation to hypothesis alignment, while378

BT induces better translation to source sentence379

alignment.380

Hence, we see that the effectiveness of different381

training methods like MT and BT varies by382

language pair, with BT showing particular promise383

for languages are structurally diverse from English.384

LRP analysis385

Our observations from average source contribution,386

entropy of source contributions and entropy of387

target contributions during training confirm the388

findings of Voita et al. (2020, 2021). Changes389

in sentence contributions are not necessarily390

monotonic to the result, can help distinguish391

different training stages, and identify the balance392

between source and target sequences’ relevance to393

the result (Fig. 5, 6, 7, 8). 394

For En–Fr and Fr–En, En–Kk and Kk–En NMT 395

models (Fig. 5, 6) average source sentence 396

contributions drop at the very beginning of training, 397

while contributions are lowest in both directions in 398

MT, and slightly higher in BT, BT-MT experiments; 399

using only parallel (natural) data during training, 400

average source contributions are lower (Voita et al., 401

2020) and the model relies more on the target 402

prefix for sequence generation, while BT boosts the 403

influence of source sentence to the result. Average 404

contributions are mostly stable or slightly decrease 405

as training progresses, and the source sentence 406

becomes less important in sequence generation. 407

For models trained with less data, contributions 408

and relevance of the source sentence tokens to 409

the generated sentence is high, due to the lack of 410

substantial supervision. 411

Entropy of source contributions is high for MT- 412

only experiments, contributions are more focused, 413

and the model is more confident in choosing the 414

important source tokens, while in BT-only and BT- 415

MT experiments it requires broader source context 416

for target sequence generation, and entropy of 417
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contributions is high, for both evaluation directions.418

In MT-setups, training converges faster.419

Studying the entropy of the target contributions,420

in both En–Fr and Fr–En directions, target entropy421

is more focused during the first part of training.422

We then notice either a small (BT, MT-22k,423

BT-MT-22k) or a larger (MT, BT-MT) increase,424

which gradually evens out as the model converges.425

Experiments with a small amount of training426

data, and/or BT have significantly lower entropy427

contributions than MT-only, with BT contributing428

to the model having higher confidence in choosing429

the target tokens generated. On the contrary, in430

Fr–En, combined experiments seem to have the431

highest, hence less focused target contributions;432

Contributions’ patterns are not similar for En–433

Gu and Gu–En models (Fig. 8, 9). Average source434

contributions in MT experiments are higher than435

those with BT, implying that using parallel data in436

training forces the model to rely on source tokens437

more heavily. Average source contributions are438

lowest in BT-only experiment and target sentence439

reliance for generation is highest.440

Patterns in entropy of source contributions441

resemble those in En–Fr, Fr–En experiments.442

Entropy is low in MT-only; training with parallel443

data increases model confidence in selecting the444

important source tokens for target generation, while445

entropy in BT, BT-MT experiments is similarly446

high. We notice an increase in entropy of447

target contributions and high values in MT-only448

experiments in both directions, which validates449

our hypothesis that source contributions are450

more focused in these cases while the entropy451

in BT experiments is lower. Looking for452

differences between evaluation directions, En–Gu453

contributions in MT- and BT-MT are similar to454

those in the En–Fr low resource experiments, in455

contrast to training in the other direction.456

We can conclude that back-translation (BT)457

boosts the influence of source sentences,458

particularly in low-resource settings, while also459

highlighting that sentence contributions are not460

necessarily monotonic and can indicate different461

training stages.462

In Tables 3, 4 in the Supplementary material463

we show a few example sentences and their464

translations, at the beginning and end of training465

of each model. Examples of sentences and their466

perturbations are given in Table 5.467

5 Conclusions 468

We conduct an extensive analysis of Supervised 469

and/or Unsupervised NMT models’ behavior for 470

French, Gujarati and Kazakh NMT, to and from 471

English, and examine the output in terms of quality, 472

word order, semantic similarity and reliance on 473

source and reference sentences. Our results 474

highlight the importance of supervision for output 475

quality, yet outline the superiority of UNMT in 476

generating sentences highly aligned to references 477

and in preserving models’ robustness. We hope our 478

work sets the ground for better understanding and 479

improving UNMT and our findings can be utilized 480

to improve real-world UNMT systems. 481

6 Limitations 482

It is a computationally hard task to train large 483

Neural Machine Translation models from scratch 484

and the complexity of the training process is high, 485

calling for more efficient training solutions, in 486

terms of memory distribution of the model and 487

parallelization. It is strongly recommended to 488

design a more systematic approach to addressing 489

those factors and expand to more languages, in 490

order to achieve further generalization of the 491

method and overcome all current limitations. 492

Moreover, results for low-resource NMT systems 493

may often be poor, or marginally improving 494

state-of-the-art, calling for improvement in NMT 495

methods to boost performance. 496

7 Ethical Considerations 497

The authors of the paper are aware that when 498

training large language models, several issues 499

ought to be taken into account, related to quality, 500

toxicity and bias related to their training process 501

and output (Bender et al., 2021; Chowdhery et al., 502

2022; Brown et al., 2020). 503
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Robustness681

En–Fr and Fr–En NMT models are highly robust682

in all MT, BT-MT setups (Table 2), especially683

when test sets are misspelled. On the contrary,684

En–Gu and Gu–En models are highly robust on685

BT, BT-MT experiments, on test sets perturbed by686

case-changing; for highly morphological complex687

languages, BT may help boost model robustness.688

A similar behavior is observed for En–Kk, Kk–689

En. Models are highly robust on case-changing in690

all unsupervised, supervised and semi-supervised691

scenarios, and as the amount parallel sentences692

increases, we see an expected increased robustness693

to sentences’ misspelling; the models become694

more robust to a high percentage of sentence695

perturbations with higher training supervision.696

In En–Fr and Fr–En NMT models, consistency697

patterns are similar to those found for Robustness:698

models are highly consistent in MT, BT-MT699

experiments, primarily when test sentences are700

misspelled, with their consistency increasing by701

the amount of parallel train data. BT-only training702

does not seem to help. Model consistency patterns703

for En–Gu, Gu–En follow those of Robustness,704

with BT outperforming other methods.705

Semantic Similarity706

MT-only and BT-MT experiments show high707

RMSS values in En–Fr, Fr–En between translations708

and references (Fig. 10), which have a higher709

semantic similarity than in BT-only or in reduced710

dataset experiments, On the contrary, in En–Gu711

and Gu–En, translations from MT models are712

less similar to references, and most similar in713

BT-only experiments, for which RMSS is highest.714

Source sentences show high semantic similarity to715

translations in MT-only experiments, followed by716

reduced-data model training results, outperforming717

BT-only or BT-MT models, in En–Fr and Fr–En;718

in the first direction, RMSS is very similar across719

models, while in the latter, behavior of the model720

in different setups is significantly more distinct.721

For En–Gu and Gu–En, BT-only experiments722

show highest semantic similarity between source723

sentences and translations (Fig. 11).724
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Figure 10: RMSS between references and generated translations for En–Fr, Fr–En, En–Gu, Gu–En, En–Kk, Kk–En during training.

Figure 11: RMSS between source sentences and generated translations for En–Fr, Fr–En, En–Gu, Gu–En, En–Kk, Kk–En during training.
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Original sentence fr la certification mondiale de la polio eradication ;
en global certification of polio eradication ;

MT-22k en - FC world world dication dication conference
en - LC world world prohibition of poliomyelitis ;

BT-MT-22K en - FC global eradication of geromyelite ;
en - LC global eradication of poliomyelitis ;

BT en - FC the global eradication of poliomyelite;
en - LC the global eradication of poliomyelite;

MT en - FC the global eradication of poliomyelitis;
en - LC global eradication of polio;

BT-MT en - FC global eradication of poliomyelitis ;
en - LC global eradication of poliomyelitis;

Original sentence fr dans notre region , la democratie est une valeur centrale .
en in our region , democracy is a fundamental value .

MT-22k en - FC in our region , democracy is a core value .
en - LC democracy in our region is a central value .

BT-MT-22K en - FC in our region , democracy is a central value .
en - LC in our region , democracy is a central value .

BT en - FC In our region , democratie is a central value .
en - LC In our region , democratie is a central value .

MT en - FC in our region , democracy is a central value .
en - LC democracy our region has a central value .

BT-MT en - FC in our region , democracy is a central value .
en - LC democracy our region is a central value .

Table 3: Two examples of a French sentence, their English ground-truth translation, and their English translations
with each model’s first and last checkpoint (en - FC, en - LC respectively)
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Original sentence gu
en The militants are constantly intimidating the politician not to participate in the election .

BT en - FC
en - LC

MT en - FC
en - LC ;

BT-MT en - FC

en - LC

Original sentence gu
en In which seven Nepalese guides were found dead and many were injured .

BT en - FC

en - LC

MT en - FC
en - LC ;

BT-MT en - FC
en - LC

Table 4: Two examples of a Gujarati sentence, their English ground-truth translation, and their English translations
with each model’s first and last checkpoint (en - FC, en - LC respectively)
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