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Abstract

Unsupervised Neural Machine Translation
(UNMT) focuses on improving NMT results
under the assumption there is no human
translated parallel data, yet little work has
been done so far in highlighting its advantages
compared to supervised methods and analyzing
its output in aspects other than translation
accuracy. We focus on three very diverse
languages, French, Gujarati, and Kazakh, and
train bilingual NMT models, to and from
English, with various levels of supervision,
in high- and low- resource setups, measure
quality of the NMT output and compare the
generated sequences word order and semantic
similarity to source and reference sentences.
We also use Layer-wise Relevance Propagation
to analyze the model’s behavior during training,
and evaluate the source and target sentences’
contribution to the NMT result, expanding
the findings of previous works to the UNMT
paradigm.

1 Introduction

Unsupervised Neural Machine Translation
(UNMT) has been widely studied (Wang and
Zhao, 2021; Marchisio et al., 2020; Kim et al.,
2020; Lample et al., 2017; Artetxe et al., 2019;
Su et al., 2019), in an effort to create efficient
and trustworthy NMT models of excellent
performance not relying on the existence of
parallel data. Obtaining high-quality parallel
corpora is expensive and time-consuming,
especially for less-common language pairs.
Unsupervised NMT hence aims to circumvent
this limitation. NMT in general significantly aids
in preserving indigenous languages by making
global information accessible, supports migrants in
overcoming language barriers to essential services,
and enables the globalization of local news from
smaller countries. UNMT particularly has broad

applicability, especially in addressing linguistic
diversity and information accessibility challenges.

However, there has been little effort on
analyzing, apart from the quality of the output, the
model behavior during UNMT, and the models’
inner workings and the effects of various setups
on hypotheses and generated translations’ quality,
monotonicity and semantic similarity, as well as
model robustness and consistency. We analyze and
compare UNMT approaches for two very diverse
languages, French and Gujarati, translating to and
from English. We research into the existence
of different stages in UNMT, analyze source
and target sentence tokens’ contributions to the
result (Bach et al.,, 2015) evaluate the quality
and word alignment of generated translations,
and Robustness and Consistency of our model to
perturbed inputs. Our paper follows up closely on
the work of Voita et al. (2020, 2021); Marchisio
et al. (2022), and examines the following questions:

* Do the distinct stages of transformer-based
NMT analyzed in previous works exist
in Unsupervised, and joint Supervised &
Unsupervised NMT?

* How does output quality, word alignment,
semantic similarity, as well as source
and target sentences’ token contributions
to the NMT output behave across the
aforementioned stages?

e How Robust and Consistent are NMT models
throughout training?

Our findings confirm the existence of NMT
stages regardless of the level of training
supervision, and show that Unsupervised methods
produce translations more similar to source
sentences in terms of word order, yet more



semantically distant. UNMT models tend to show
higher Robustness and Consistency, and can more
easily recover from sentence perturbations. We also
observe that in reduced training data experiments,
there is a heavy reliance on the source sentence
for generating translations. Our focus is not on
outperforming NMT state-of-the-art results, but
rather on training and examining the behavior
of bilingual models in various setups. We will
be making our experiments’ code public upon
acceptance.

The paper is structured as follows: in Section
2 we present related work in the topics of UNMT,
NMT analysis and other metrics analyzed in our
work. In Section 3 we analyze the methods
proposed for NMT analysis and the experiments
conducted, while in Section 4 we present and
discuss our findings. Finally, in Sections 5, 6
and 7 we conclude our work and highlight certain
limitations and ethical considerations, respectively.
We present additional experiments and results
on the Robustness of the models and Semantic
Similarity of input and output sentences in the
supplementary material attached to the submission.

2 Related Work

Unsupervised Neural Machine Translation
UNMT aims to make NMT work in the absence
of parallel data. Most common approaches have
focused on cross- or multilingual initialization of
a language model either through an alignment of
monolingual embeddings (Artetxe et al., 2017;
Lample et al., 2018; Conneau et al., 2017; Lample
et al.,, 2017) or by model pretraining and fine-
tuning (Lample and Conneau, 2019; Song et al.,
2019; Liu et al., 2020). Back-Translation (BT)
(Sennrich et al., 2015) translates monolingual
data between languages, creating pseudo-parallel
training corpora (Artetxe et al., 2017; Lample et al.,
2017). Marchisio et al. (2022) first systematically
examine the naturalness and diversity of the
UNMT output, comparing it to similar quality
human translations, and proposing a way to
leverage UNMT to improve a classical supervised
NMT system. In more recent works, Liu et al.
(2022) introduce a flow-adapter architecture to
separately model the distributions of source and
target languages, and He et al. (2022) identify
and mitigate a training and inference style and
content gap between back-translated data and
natural source sentences. Garcia et al. (2020a)
expand the paradigm to multilingual UNMT, while

Garcia et al. (2020b) use offline BT synthetic data
to improve multilingual En-xx UNMT for low-
resource languages xx.

Layer-wise Relevance Propagation (LRP)

LRP (Bach et al., 2015) measures relevance of the
input components, or the neurons of a network, to
the next layers’ output, and is directly applicable
to layer-wise architectures. Wu and Ong (2021)
use LRP as an attribution method for sequence
classification tasks. We extend its usage to the
Transformer, and measure the relevance of source
and target sentences to the NMT output.

Neural Machine Translation analysis

Voita et al. (2020) examine the source and target
sentences’ tokens’ relative contributions to NMT
output, adapting LRP to a Transformer, and
experimenting with different training objectives,
training data amounts and types of target sentence
prefixes, and their effect on NMT output quality
and monotonicity. Following up to that work, Voita
etal. (2021) analyze NMT stages, drawing parallels
to distinct SMT stages. Their findings include
decomposing NMT into three phases, and using the
key learning advantages of each stage to improve
non-autoregressive NMT. We examine and identify
if those stages exist in UNMT.

Robustness & Consistency

Previous works examine Robustness in NLP (Yu
et al., 2022; Wang et al., 2021; La Malfa and
Kwiatkowska, 2022), measuring and improving
NLP models’ performance against perturbed or
unseen input. Specifically for NMT, Niu et al.
(2020) propose two metrics, Robustness and
Consistency to measure sensitivity of a model to
input perturbations.

3 Method & Experiments
3.1 Model

We use a 6-layers 8-heads transformer-based model,
XLM (Lample and Conneau, 2019), following
the training configurations and hyperparameters
suggested by the authors. We use Byte
Pair Encoding to extract a 60k vocabulary, an
embedding layer size of 1024, a dropout value
and an attention layer dropout value of 0.1,
and a sequence length of 256. We measure
the quality of the Language Model (LM) with
perplexity, and quality of the NMT output with
BLEU both used as training stopping criteria,



when there is no improvement over 10 epochs.
We first pre-train a LM in each language with
the MLM objective, and use it to initialize the
encoder and decoder of the NMT model. We
then train NMT models, using Back-Translation
(BT) and denoising auto-encoding (AE) with the
monolingual data used for LM pretraining for
UNMT, the Machine Translation (MT) objective
for the Supervised NMT model, and BT-MT for
the joint Unsupervised and Supervised approach.

3.2 Datasets

The languages we work with are English, French,
Gujarati, and Kazakh and we’re translating in
all directions, English-French (En—Fr), French—
English (Fr-En), English-Gujarati (En—Gu),
Gujarati—-English (Gu-En), English—-Kazakh (En—
Kk), Kazakh-English (Kk-En). For English and
French, we use 5 million News Crawl 2007-2008
monolingual sentences for each language, and 23
million WMT14 parallel sentences. For Gujarati,
we have 1.4 million sentences and for Kazakh
we have 9.5M monolingual sentences, collected
for both languages from Wikipedia, WMT 2018,
2019 and Leipzig Corpora (2016)'. As parallel
data, we have 22k sentences from the WMT 2019
News Translation Task? for Gu—En and Kk—En,
respectively/ As development and test sets, we use
newstest2013 and newstest2014, respectively, for
En-Fr and Fr—En, WMT19 for En—Gu and Gu-En
and En—-Kk and Kk—En.

3.3 Layer-wise Relevance Propagation

Voita et al. (2020) explain how LRP calculation in
a Transformer is confusing due to the non-clear
layered nature of the model. We follow their
setup, with LRP to be propagated first inversely
through the decoder and the encoder, up to the
input model layer, and without assuming the
conservation principle holds per layer, but only
across processed tokens. LRP is the relevance
of input neurons to the top-1 logit predicted by
the model, and token contribution is the sum
of the input neurons’ relevance. Total source
and target sentence contributions to the result at
generation step t are given by Ry(source) =
> Ti, Ri(target) = Z;;ll yj. At every step
t, Relevance follows the conservation principle:
Ry(source) + Ry(target) = 1. At step 1, we
have R;(source) = 1, Ry(target) = 0. For every

"https://wortschatz.unileipzig.de/en/download/
“http://data.statmt.org/news-crawl/

target token past the currently generated one, LRP
is 0.

3.4 Word Order

Our aim is to examine differences in word order
between translations and reference or source
sentences. We evaluate two different reordering
metrics, Fuzzy Reordering Score (FRS) (Talbot
et al., 2011; Nakagawa, 2015)3 and Translation
Edit Rate (TER) (Snover et al., 2006). FRS ranges
between O and 1, with larger values for highly
monotonic alignments (higher structural similarity
and closer word order). For a translation ' and
reference y (or source sentence y): FRS(y',y) =
1- % C is the number of chunks of contiguously
aligned translation words, intuitively perceived as
the number of times a reader would need to jump
in order to read the system’s reordering of the
sentence in the order proposed by the reference
of length M. With fast_align* we calculate word
alignments. TER is defined as TER(y', y) = L%,
where E is the number of edits needed to modify
the produced translation ¢ to match the reference
sentence y (or source sentence ¥), and L, is the
length of the reference (or the source sentence,
respectively). TER ranges between 0 and 1, and
low values indicate more monotonic alignments.

3.5 Model Robustness

Niu et al. (2020) set 7Q (y’, y) to be the model
quality of model M with translation 3’, and
reference y, to define the concepts of Consistency
and Robustness. Consistency of a model M
on input x and perturbation § is given by
CONSIS(M|x,d) = Sim(ys,y), where y is the
reference translation, and ys is the translation
of the perturbed sentence. Sim is the harmonic
mean between model quality T7Q(y’, ys’) and
TO(ys’, y’), measured between translations y’, ys’,
respectively. On the other hand, Robustness of a
model M is defined as the ratio between quality
of the model producing translations ys’ and y’:

ROBUST(M|z,8) = 7% It takes values in
[0,1]. We evaluate Consistency and Robustness on
test sets perturbed with two different approaches:
a. misspelling - each word is misspelled (random
deletion, insertion or substitution of characters)
with a probability of 0.1, b. case-changing - each
sentence is modified (upper-casing, lower-casing

or title-casing all letters) with a probability of 0.5.

3https://github.com/google/topdown-btg-preordering
*https://github.com/clab/fast_align



3.6 Semantic Similarity

In evaluating semantic similarity between human
translations or source sentences and generated
translations, we calculate the Ratio Margin-based
Similarity Score (RMSS) between each reference
or source sentence and its k-nearest neighbors
among all translations (Artetxe and Schwenk,
2018). We follow Keung et al. (2021) to obtain
and mean-pool the mBERT embedding vectors of
all sentences. We set cos(+,-) to be the cosine
similarity and NN;"¢(x) the k nearest neighbors
of z in the reference or source sentence embedding
space. RMSS is high when source and target pairs
compared are closer than their respective nearest
neighbors. For a hypothesis y:

RMSS(z,y) =
cos(z, y)

cos(z,z) cos(y,z) *
ZzeNfot(x) 2k "’ZzeNNzTC(y) 2k

4 Results & Discussion

BLEU scores of converged models are seen in
Table 1. In En-Gu, En-Kk, Kk-En, BT-MT
improves BLEU; Models trained with parallel data
show higher BLEU, and absence of parallel data
or often introduction of low quality data (eg in Gu—
En) through BT lowers output quality.

FRS

In most En—Fr, Fr-En experiments, there is a
large fluctuation yet a small and gradual FRS
increase between translations and references (Fig.
1), and then a small decrease. Higher FRS shows
more monotonic alignments. Starting from non-
monotonic alignments in the first stage, we get
maximum FRS values in the second stage of
training - highly aligned translations and references
- which slightly decrease in the third stage until
model convergence. With parallel data we get
the most monotonic alignments, while we have
the least identical reorderings between references
and translations in BT-only cases, in both high-
and low-resource setups. Similar patterns are
observed in En—Kk and Kk—En, where we have
the least monotonic alignments for few/no parallel
data (MT-22k, BT-MT-22k, BT), and the most for
experiments with parallel data (MT, BT-MT), with
values slightly increasing and then remaining stable
throughout training in most cases. BT En—Gu,
Gu-En models show high and steady FRS values:
between languages with a complicated and non-

monotonic alignment, BT produces translations
more aligned with the reference.

For En—Fr, Fr-En, FRS (Fig. 2) values are stable
throughout training, and BT, BT-MT experiments’
results imply highly monotonic alignments; with
BT, translations are closer to source sentences in
terms of word order. FRS is lower in MT only
experiments, as source and translation alignments
are less monotonic when models are trained with
parallel data alone. Results are similar in En—
Gu, Gu-En. BT, BT-MT results show an almost
perfect alignment between source sentences and
translations.

For En—Kk, Kk-En, it is interesting to observe
that in the majority of experiments, source
sentences are highly monotonic to translations,
with steady FRS values throughout training.

We see that BT yields more stable and higher
alignment scores compared to models trained only
on parallel data, suggesting it offers a significant
advantage for improving translation quality.

TER

Observing TER between translations and
references (Fig. 3), in En—Fr and Fr—En, low
TER for MT, BT-MT means more monotonic
alignments, in contrast to higher TER in low-
resource and BT-only experiments. TER gradually
decreases for all models, as sentences generated
at the end of training highly resemble human
translations. Results are different for En—-Gu and
Gu-En; TER is low in BT- only and BT-MT
models, but rather high, and increasing, in the
MT-only model, with translations in the former
case very close to references. BT produces more
monotonic to the reference translations for a
language diverse in terms of script, morphological
complexity and word order from English.

Stable or slightly increasing TER values between
source sentences and translations (Fig. 4) mean
high structural resemblance. For En—Fr and Fr—
En, BT and BT-MT show the lowest TER values,
hence generated with BT sequences and source
sentences have high monotonicity. Similarly, in En—
Gu and Gu-En, BT, BT-MT models show lower
TER and higher and more monotonic alignment of
translations and source sentences.

For En—Kk, Kk-En, we see that we have
higher monotonicity in higher/no supervision
experiments, and lower in low-resource models-
we can assume training with few parallel data



Method en-fr fr-en en-gu gu-en en-kk Kkk-en
Other methods

45.9° - 01% 037 25%  74°

Our method
BT+AE 21.76  21.69 0.4 0.46 0.7 1.0

Parallel data: 22k

MT 31.12  30.63 1.04 2.65 2.4 2.6
BT+AE+MT 34.54 34.02 1.16 2.19 2.8 2.9
132k

MT 37.8 35.6 - - 5.2 8.0
BT+AE+MT 38.6 384 - - 6.6 8.9
Im

MT 41.25 41.33 - - - -
BT+AE+MT 40.37 404 - - - -
2.5m

MT 40.46 40.71 - - - -
BT+AE+MT 39.88 39.62 - - - -
Sm

MT 41.52  41.18 - - - -
BT+AE+MT 40.89 40.8 - - - -
23m

MT 41.75 41.41 - - N N
BT+AE+MT 41.29 40.99 - - - -

Table 1: BLEU scores for En—Fr, Fr—En, En—Gu, Gu-En, En—-Kk, Kk—En NMT. Test and validation sets are WMT19 for Gujarati and Kazakh, newstest2013-14 for
French pairs. State-of-the art results given for the sake of consistency. MT stands for machine translation objective, BT stands for Back-Translation and AE for
denoising auto-encoding.
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Figure 1: Fuzzy Reordering Scores (FRS) between references and generated translations, for En—Fr, Fr—En, En—Gu, Gu—En, En—Kk, Kk-En during training.
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Figure 2: Fuzzy Reordering Scores (FRS) between source sentences and generated translations for En—Fr, Fr—-En, En—-Gu, Gu—En, En—-Kk, Kk—En during training.

and for few epochs highly cannot help the model  or source sentences. Between translations and
properly align produced translations and references  source sentences, when the model is sufficiently
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Figure 3: Translation Edit Rate (TER) between references and generated translations for En-Fr, Fr-En, En-Gu, Gu-En, En-Kk, Kk-En during training.
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Figure 4: Translation Edit Rate (TER) between source sentences and generated translations for En—Fr, Fr—En, En—-Gu, Gu-En, En—-Kk, Kk—En during training.

trained, we surprisingly observe high monotonicity
across experimental setups.

We can deduce that for En-Fr, Fr—En,
translations have higher monotonicity to references
in MT, BT-MT, lower in BT-only experiments, but
higher monotonicity to source sentences in BT, BT-
MT and lower in MT. Training supervision leads
to better translation to hypothesis alignment, while
BT induces better translation to source sentence
alignment.

Hence, we see that the effectiveness of different
training methods like MT and BT varies by
language pair, with BT showing particular promise
for languages are structurally diverse from English.

LRP analysis

Our observations from average source contribution,
entropy of source contributions and entropy of
target contributions during training confirm the
findings of Voita et al. (2020, 2021). Changes
in sentence contributions are not necessarily
monotonic to the result, can help distinguish
different training stages, and identify the balance
between source and target sequences’ relevance to

the result (Fig. 5, 6, 7, 8).

For En—Fr and Fr—En, En—Kk and Kk—-En NMT
models (Fig. 5, 6) average source sentence
contributions drop at the very beginning of training,
while contributions are lowest in both directions in
MT, and slightly higher in BT, BT-MT experiments;
using only parallel (natural) data during training,
average source contributions are lower (Voita et al.,
2020) and the model relies more on the target
prefix for sequence generation, while BT boosts the
influence of source sentence to the result. Average
contributions are mostly stable or slightly decrease
as training progresses, and the source sentence
becomes less important in sequence generation.
For models trained with less data, contributions
and relevance of the source sentence tokens to
the generated sentence is high, due to the lack of
substantial supervision.

Entropy of source contributions is high for MT-
only experiments, contributions are more focused,
and the model is more confident in choosing the
important source tokens, while in BT-only and BT-
MT experiments it requires broader source context
for target sequence generation, and entropy of



contributions is high, for both evaluation directions.
In MT-setups, training converges faster.

Studying the entropy of the target contributions,
in both En—Fr and Fr-En directions, target entropy
is more focused during the first part of training.
We then notice either a small (BT, MT-22k,
BT-MT-22k) or a larger (MT, BT-MT) increase,
which gradually evens out as the model converges.
Experiments with a small amount of training
data, and/or BT have significantly lower entropy
contributions than MT-only, with BT contributing
to the model having higher confidence in choosing
the target tokens generated. On the contrary, in
Fr—En, combined experiments seem to have the
highest, hence less focused target contributions;

Contributions’ patterns are not similar for En—
Gu and Gu-En models (Fig. 8, 9). Average source
contributions in MT experiments are higher than
those with BT, implying that using parallel data in
training forces the model to rely on source tokens
more heavily. Average source contributions are
lowest in BT-only experiment and target sentence
reliance for generation is highest.

Patterns in entropy of source contributions
resemble those in En-Fr, Fr—En experiments.
Entropy is low in MT-only; training with parallel
data increases model confidence in selecting the
important source tokens for target generation, while
entropy in BT, BT-MT experiments is similarly
high. We notice an increase in entropy of
target contributions and high values in MT-only
experiments in both directions, which validates
our hypothesis that source contributions are
more focused in these cases while the entropy
in BT experiments is lower. Looking for
differences between evaluation directions, En—Gu
contributions in MT- and BT-MT are similar to
those in the En—Fr low resource experiments, in
contrast to training in the other direction.

We can conclude that back-translation (BT)
boosts the influence of source sentences,
particularly in low-resource settings, while also
highlighting that sentence contributions are not
necessarily monotonic and can indicate different
training stages.

In Tables 3, 4 in the Supplementary material
we show a few example sentences and their
translations, at the beginning and end of training
of each model. Examples of sentences and their
perturbations are given in Table 5.

5 Conclusions

We conduct an extensive analysis of Supervised
and/or Unsupervised NMT models’ behavior for
French, Gujarati and Kazakh NMT, to and from
English, and examine the output in terms of quality,
word order, semantic similarity and reliance on
source and reference sentences. Our results
highlight the importance of supervision for output
quality, yet outline the superiority of UNMT in
generating sentences highly aligned to references
and in preserving models’ robustness. We hope our
work sets the ground for better understanding and
improving UNMT and our findings can be utilized
to improve real-world UNMT systems.

6 Limitations

It is a computationally hard task to train large
Neural Machine Translation models from scratch
and the complexity of the training process is high,
calling for more efficient training solutions, in
terms of memory distribution of the model and
parallelization. It is strongly recommended to
design a more systematic approach to addressing
those factors and expand to more languages, in
order to achieve further generalization of the
method and overcome all current limitations.
Moreover, results for low-resource NMT systems
may often be poor, or marginally improving
state-of-the-art, calling for improvement in NMT
methods to boost performance.

7 Ethical Considerations

The authors of the paper are aware that when
training large language models, several issues
ought to be taken into account, related to quality,
toxicity and bias related to their training process
and output (Bender et al., 2021; Chowdhery et al.,
2022; Brown et al., 2020).
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Robustness

En—Fr and Fr—En NMT models are highly robust
in all MT, BT-MT setups (Table 2), especially
when test sets are misspelled. On the contrary,
En—Gu and Gu-En models are highly robust on
BT, BT-MT experiments, on test sets perturbed by
case-changing; for highly morphological complex
languages, BT may help boost model robustness.

A similar behavior is observed for En—Kk, Kk—
En. Models are highly robust on case-changing in
all unsupervised, supervised and semi-supervised
scenarios, and as the amount parallel sentences
increases, we see an expected increased robustness
to sentences’ misspelling; the models become
more robust to a high percentage of sentence
perturbations with higher training supervision.
In En-Fr and Fr—-En NMT models, consistency
patterns are similar to those found for Robustness:
models are highly consistent in MT, BT-MT
experiments, primarily when test sentences are
misspelled, with their consistency increasing by
the amount of parallel train data. BT-only training
does not seem to help. Model consistency patterns
for En—-Gu, Gu-En follow those of Robustness,
with BT outperforming other methods.

Semantic Similarity

MT-only and BT-MT experiments show high
RMSS values in En—Fr, Fr—En between translations
and references (Fig. 10), which have a higher
semantic similarity than in BT-only or in reduced
dataset experiments, On the contrary, in En—Gu
and Gu-En, translations from MT models are
less similar to references, and most similar in
BT-only experiments, for which RMSS is highest.
Source sentences show high semantic similarity to
translations in MT-only experiments, followed by
reduced-data model training results, outperforming
BT-only or BT-MT models, in En—Fr and Fr-En;
in the first direction, RMSS is very similar across
models, while in the latter, behavior of the model
in different setups is significantly more distinct.
For En—-Gu and Gu-En, BT-only experiments
show highest semantic similarity between source
sentences and translations (Fig. 11).
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Figure 10: RMSS between references and generated translations for En—Fr, Fr-En, En-Gu, Gu—En, En—Kk, Kk-En during training.
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Figure 11: RMSS between source sentences and generated translations for En-Fr, Fr—En, En-Gu, Gu-En, En—Kk, Kk-En during training.
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Original sentence  fr la certification mondiale de la polio eradication ;
en global certification of polio eradication ;

MT-22k en - FC  world world dication dication conference
en-LC world world prohibition of poliomyelitis ;

BT-MT-22K en - FC  global eradication of geromyelite ;
en-LC global eradication of poliomyelitis ;

BT en - FC  the global eradication of poliomyelite;
en-LC the global eradication of poliomyelite;

MT en - FC  the global eradication of poliomyelitis;
en-LC global eradication of polio;

BT-MT en- FC  global eradication of poliomyelitis ;
en-LC global eradication of poliomyelitis;

Original sentence  fr dans notre region , la democratie est une valeur centrale .
en in our region , democracy is a fundamental value .
MT-22k en-FC in our region, democracy is a core value .

en-LC democracy in our region is a central value .

BT-MT-22K en - FC  in our region , democracy is a central value .
en-LC inourregion, democracy is a central value .

BT en - FC In our region , democratie is a central value .
en-LC Inourregion, democratie is a central value .

MT en - FC in our region , democracy is a central value .
en-LC democracy our region has a central value .

BT-MT en-FC in our region, democracy is a central value .
en-LC democracy our region is a central value .

Table 3: Two examples of a French sentence, their English ground-truth translation, and their English translations
with each model’s first and last checkpoint (en - FC, en - LC respectively)
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Original sentence gu

The Uld§l AdRAA Add uuslal il s = A & 3 Al YewlHi @l 4 @ .
e

]
The militants are constantly intimidating the politician not to participate in the election .

en
BT en - FC  The idél A Acdet axlal 2dl s o Al & 3 dall AewllHl ool 4 @ .
en-LC  dél AdRAA dAcdd bl Al 26 o A D F Al Yewllul @ol 4 A .
MT en - FC Al AdRAA audlall 2l s o A & § 2l Aeollui eol 4 @ .
en-LC The dcél Add AdRAA 4l il ks o A B 3 Al dewllHl . ;
BT-MT en - FC Uldé) Add A aHlel AUl s A D F A Yewlul ol 4 @ .
en-LC  ddsl Add Al axdldl vl ¢ o Al & 3 dll Yewlui oot 4 d .

Original sentence gu

Ui Ald Aulell dUgSIHL Wt [Auey o Al scdl A U9l e YAl el .

en In which seven Nepalese guides were found dead and many were injured .
BT en-FC In addition to AWMl ougdl-l dd [uey o Al &dl and U QA Al &dl .
en-LC o Ad Auedl oug Sl Ad [usy o Al sl AU 8l dRkd §Al &dl .
MT en - FC Rl Audil ougsi-t Ald [Qusy o Al sedl A 6ol aid o1l
bl oS SIHL Al oYl e & .
en-LC i Audl sS4t Aid [uer o 2l sl gRkd 2 s
BT-MT en - FC In the past , the Ald WAl ASSIHL Hid HU @ Al &l and many HAC YAl &l
en-LC & Ad Awoll aug sl dld [uey @ Al sdl A €l gl €Al sdl .

Table 4: Two examples of a Gujarati sentence, their English ground-truth translation, and their English translations
with each model’s first and last checkpoint (en - FC, en - LC respectively)
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