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ABSTRACT

We present an end-to-end reinforcement learning framework designed to address
the Flexible Job Shop Problem (FJSP). Our approach consists of two primary
components: a generative model that produces problem solutions stepwise, and a
secondary model that continually refines these (partial) solutions. Importantly, we
train both models concurrently, enabling each to be cognizant of the other’s pol-
icy and make informed decisions. Extensive experimentation demonstrates that
our model delivers better performance in shorter time on several public datasets
comparing to baseline algorithms. Furthermore, we highlight the superior gen-
eralizability of our approach, as it maintains strong performance on large-scale
instances even when trained on small-scale instances. It is worth noting that
this training paradigm can be readily adapted to other combinatorial optimization
problems, such as the traveling salesman problem and beyond.

1 INTRODUCTION

In the field of industrial manufacturing, the scheduling of manufactured demands and manufacturing
resources is an extremely important task. The task requires the scheduling system to provide an
optimal scheduling solution as much as possible so that all manufactured demands can be completed
in the shortest time on the processing machine. Cloud manufacturing that has developed in recent
years, due to the open environment of the cloud foundation, these scheduling problems will become
larger in scale, more diversified and more dynamic. These changes have put higher demands on the
real-time and versatility of the scheduling system.

This paper mainly studies a well-known NP-hard problem —- Flexible Job Shop Scheduling Prob-
lem which is famous in the field of cloud manufacturing. FJSP is an extension of a well-known
combinatorial optimization problem which is Job Shop Schdule Problem(JSSP). Unlike the oper-
ations in the JSP problem that can be processed on any machine, the operations in FJSP are only
allowed to be processed on their respective machine sets. This peculiarity makes FJSP not only
need to consider the processing order of operations, but also need to consider assigning suitable
processing machines for operations. These factors make FJSP more complex and diversified.

Due to the complexity of the FJSP problem, exact solution methods such as mathematical program-
ming and constraint programming require a lot of computational time. The computational time
will become unbearable when the instance size is too large. Therefore, some approximate solution
methods that reduce solution quality in exchange for solution time have been proposed.

Priority dispatching rule(PDR) is a well-known heuristic method [4] that schedules operations to
suitable machines for processing by designing a series of priority rules, such as algorithms based on
FIFO(first in first out) and SPT(shortest processing time).

Meta-heuristic methods represented by genetic algorithms [7; 8; 9; 10] have also received much
attention. Compared with PRD heuristic methods, these methods can get higher quality solutions
but also require more time.

With the increasing attention paid to deep learning and reinforcement learning in the field of com-
binatorial optimization in recent years, some related methods [28; 29] have also been used to solve
FJSP problems. The method based on deep reinforcement learning will establish an MDP model
for the FJSP problem and then train a parameterized policy model in this MDP model through a
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human-designed reward function. Finally, use the trained policy model to solve the FJSP problem.
Compared with traditional methods, these reinforcement learning-based methods have shown great
potential in terms of computational time and solution quality.

In this paper, we propose a new end-to-end framework based on graph neural networks and deep
reinforcement learning for solving FJSP problems. Our framework consists of two models: one
is a generation model used to generate scheduling solutions for unassigned operations; the other
is an improving model used to improve current assigned operations scheduling solutions. When
solving, these two models will make decisions alternately. The generation model generates a partial
solution, and then the improvement model improves this partial solution to output an improved
partial solution. Then the generation model will continue to generate more complete partial solutions
based on the improved solution of the previous round until all workpieces are completed assigned,
and finally the optimal solution output by the improvement model for the last time will be used as
the final solution.

Due to our framework using graph neural networks to extract features from FJSP instance, there
is no limit to the scale size of input instances for our model. This peculiarity allows our model to
solve instances of different scales rather than just training set scales. This allows us to train our
model on small-scale instances data set and then use it to solve larger-scale problem. This powerful
generalization ability allows our model to have a wider range of application scenarios.

We conducted comparative experiments on public datasets and randomly generated datasets to verify
that our proposed method has more advantages in terms of solving time and efficiency compared
with other methods. Not only that, we also conducted a series of ablation experiments to study the
impact of each module in our proposed framework on experimental results. In summary, this article
makes the following main contributions:

• Proposed an end-to-end framework based on graph neural networks and deep reinforcement
learning for solving FJSP problems.

• Designed a novel joint training method for training our proposed framework.
• Conducted a series of ablation experiments to study each module in our proposed frame-

work.

2 BACKGROUND

Flexible Job Shop Schedule Problem A FJSP instance of size n × m includes n jobs and m
machine. Using J to represent the set of job and M to represent the set of machine. For each
job Ji ∈ J has an operation set Oi,which contains ni operations,Oij means the operation with
processing order j of the Ji in J . Each operation Oij can be processed on any machine Mk from
its compatible set Mij ∈ M for a processing time pijk when the machine is in idle state.To obtain
a solution for FJSP,each operation Oij should be assigned a machine and start processing time Sij

to process. A FJSP instance can be described as a disjunctive graph G = (O, C,D). Specifically
O = {Oij |∀i, j} ∪ {start, end} is the node set,which includes all operation and two dummy nodes
means start and end of production.These two node can be processed by any machine with zero
processing time. C is the set of conjunctive arcs,which are directed arcs that form n paths from Start
to End representing the repective processing sequence of Ji. D = ∪kDk is the set of disjunctive
arcs which are undirected,and Dk is a set of arcs which connects the operations that can be processed
on machine Mk. Solving FJSP is equivalent to selecting a disjunction arc and fixing its direction for
each operation node. In order to more clearly represent the belonging relationship of each operation
to the machine in the solution, we separate these directional displacement arcs from the disciple
graph to form a solution graph, which will be used to serve our framework for solution generation
and improvement. A FJSP instance and one of its feasible solution can be described by Fig 1.

Conventional Method for FJSP Coneventional methods for solving the FJSP problem can be
roughly divided into three categories: exact methods, heuristic methods, and meta-heuristic meth-
ods.Exact methods usually combine integer linear programming [3] and constraint programming
[4]. These methods can guarantee the optimality of the solution through rigorous mathematical rea-
soning, but they require a lot of computational time. Therefore, exact methods can only be used to
solve small-scale problems. Heuristic methods design optimization algorithms by introducing expert
prior knowledge. Compared to exact methods, heuristic methods require very short computational
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Figure 1: (a) An FJSP instance of size 3 × 2. (b)Two different representations of the same feasible
solution.

time, but at the same time, they also reduce the quality of the solution. Typical heuristic methods
for solving the FJSP problem include PDR [5], A* [6], local search [7], etc. More Specially, the
methods based on PDR are widely used in production systems in real world due to its easy imple-
mentation and less computation time. Meta-heuristics can be further classified into single solution
based(e.g. simulated annealing [8], tabu search [9] and population-based (e.g. genetic algorithm
[10; 11]) methods, which works on a single solution or a population of solutions. Complete reviews
of FJSP methods can be found in [1; 2].

DRL base method for FJSP Recently,more and more work is using DRL to solve complex
scheduling problems. The key issues when using DRL are how to extract features from the FJSP
and how to formulate the problem as an MDP. Some research use multilayer perceptron (MLP)
[12; 13; 14; 15] or convolution neural network (CNN) [16] to extract features from FJSP instance
to represent the state as a feature vector. It is obvious that these methods have a significant dis-
advantage that the network structure will limit the size of the input problem, which means that a
trained model can only solve FJSP instances of the same size. Some methods based on recurrent
neural network(RNN) [32]and attention mechanism [18] are proposed to solve the problem of dif-
ferent input sizes. Obviously, compared with the above-mentioned network structures, GNN [20]
has a natural advantage in dealing with FJSP problems represented by graphs. [21] propose methods
which combine DRL and GNN to learn PDRs for JSP. [23] uses DQN to solve FJSP by selecting
the best one from a pool of hand-crafted PDRs with policy model. [24] propose an DRL method
without considering the graph structure which makes it lose a lot of useful information for decision
making. [29; 30] propose an end-to-end DRL method combines GNN respectively,which generate
solutions of FJSP by assigning operations step-by-step using a policy model.We will compare our
method with the methods of these two papers in the experimental section.

3 GENERALIZATION-IMPROVING MODEL

We use a Graph S = (O, E , C) to represent the solution of FJSP (in figure). It should be noted each
arc E ∈ E connects two sequentially adjacent operations that are processed on the same machine and
Each arc C ∈ C connects the operation on the same job,which both of these two arc set are directed.
There are at most m forward paths from start to end in S (m is the number of machines) which are
connected by arc in E , and each path represents the operation processing queue of a machine. More
specifily, if Oij is located on path k with position l, it means Oij has been assigned to Mk with order
l to process. We use makespan Cmax to measure the quality of a solution S, which is equal to the
processing completion time of the last operation to be completed among all operations.

To solve FJSP, we need to generate S that makes all operation connect with directed arcs E ∈ E .
We consider the process of generating S as a sequential decision-making task. Our method uses a
generative model and an improvement model to alternate decision-making to produce a solution. At
the begining of the round, we initialize a partial solution S0 that E = ∅. Then we use the generation
model to assign a machine to an unassigned operation. At this point, the edge set E of S0 add new
corresponding edge,which form the next partial solution Ŝ1. Afterwards, the improvement model
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will adjust the position of certain operation nodes(equivalent to changing the connections of edges
in the edge set E in Ŝ1) according to the policy to obtain a higher quality solution S1. The generation
model and improvement model will continue to cycle through this process until all operations have
been assigned. Fig 2 demonstrates the interaction process between the two models and the solution
at a time step. In the following sections, we will further elaborate on the model structure and
decision-making process of these two models.

Figure 2: An overview of our framework. In a time step, the Generate Model assigns an unprocessed
operation to a machine for processing and updates the solution, after which the Improve Model
modifies the solution r times by reinserting the processed operation.

3.1 MDP FORMULATION FOR FJSP

State For both generate and improve step, the observation is a Graph of FJSP instance. The GAT
module gets Node feature vectors from Operation Node’s raw feature (Definition in section3.2) and
adjacency matrix. The State vector equals avenger pooling value for all Node feature vectors which
is difined as Eq.5.

Action For generate step, the action’s target is choosing which operation-machine pair as the next
schedule. For each step, the action space size is equal to Nj×Nm (Nj means number of jobs, Nm

means number of machine) because of the job order constraints. Different with generate, improve
action will select an operation and insert it into the new position. More details on defining action
vectors are presented in section 3.2.

Transition A solution graph is maintained in a whole of schedule. Solution Graph consists of two
parts: operation node raw feature and adjacency matrix. For generate step, when an action has been
executed, a new edge between two different operation nodes will be added to the solution graph.
However, for the improve step, we first need to remove the edge connected to the selected operation,
and then add the corresponding edge at the insertion position.

Reward For generate step, The reward function is simply equal to the difference in Cmax when
the solution is updated. However, for the improve step. The reward for each time step consists of
two parts: Step reward which can be calculated immediately at each time step which is as same
as generate step, and global reward which can only be calculated uniformly after the enrie r times
improve step is finshed. It is equal to the Cmax difference between the solution before the first
improve step and the solution after the last improve step divided by the number of improve steps r.

3.2 MODEL STRUCTURE

Operation Orignal Feature Vector: Taking an operation node Oij as an example, its original
features consist of seven elements. These include the assignment flag value fij , average processing
time taij , processing start time tsij , processing time tpij , processing end time teij , percentile in its job
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oJij , and percentile in its machine processing queue oMij . More specifically, the assignment flag value
fij equal to 0 when the operation node is not assigned to any machine for processing, otherwise
it equal to 1. The average processing time is equal to the average processing time of all machines
that can process the operation. The processing start time is equal to the maximum processing end
time of all predecessor nodes of the operation in graph S. The processing time is equal to the
average processing time if the operation is not assigned, otherwise it is equal to the processing time
required by the machine that processes the node. The processing end time is equal to the sum of the
processing start time and the processing time. The job sequence is equal to the rank of the operation
in its job divided by the number of operations in the job. The machine sequence is equal to the
rank of the operation in its machine processing queue divided by the number of operations in the
processing queue. hence,The original feature vector uij of operation node Oij can be expressed as:

uij = [fij , t
a
ij , t

s
ij , t

p
ij , t

e
ij , o

J
ij , o

M
ij ]

GAT Module (GM): GAT [26] is a network structure for processing graph feature extraction,
which generates the features of a node by aggregating all its neighboring nodes. A GAT network
layer takes the original feature vectors of the nodes and the adjacency matrix of a graph as input
and outputs an aggregated feature vector for each node. In S = (O, E , C),we use N J

ij to represent
the neighbor nodes of Oij on the edge set C, NM

ij to represent the neighbor nodes on E , and uij to
represent the feature vector of Oij . GAT first computes the attention coefficient between uij and
each node ukin {N J

ij ∪NM
ij } (including uij itself) as:

eijk = LeakyReLU(aT [Wuij ||Wuk]) (1)

Then the coefficients are normalized across the neighborhood using sofmax function:

αijk = softmax(eijk)

Finally,GAT aggregates features and apply a avitation function to get output:

u
′

ij = σ(
∑

k∈{NJ
ij∪NM

ij }
αijkWuk) (2)

It is worth noting that the output of a GAT network layer is also a feature vector. As a result, we
can stack multiple GAT layers to form a Gm to obtain more powerful feature extraction capabilities
when the adjacency matrix is square. More specifically,the calculation process of the layer i in Gm
can be represented as:

U (i) = GAT (i)(U (i−1), A)

Operation Node Embedding: We use a module GmO consisting of LO layers of GAT stacking
to obtain the embedding vector of the operation node. The GmO takes the original feature matrix
of all operation nodes U and an adjacency matrix AO which constructed from all edges in E and
C as input.The embedding vector of operation node can be calculated as(d is a hyperparameter
representing the embedding dimension which the same as following):

EO = GmO(U,AO), EO ∈ R|O|×d (3)

Insert Position Embedding: We define the insertion position as the blank space between two
adjacent operations (including start and end nodes) in the same machine processing queue. Based
on this definition, for an operation in an n × m scale FJSP instance, there will be at most n + m
different insertion positions, so the total number of insertion positions is equal to nI = n× (n+m).
In order to use GAT to extract the features of these insertion positions, we define an adjacency matrix
AI representing the insertion position with dimensions of nI × n. In the matrix, element Mij = 1
when operation Oj is adjacent to insertion position i, otherwise Mij = 0.Then, we input the original
feature matrix of the operation U and AJ into GmI composed of a single GAT layer (since AJ is
not a square matrix, the GAT layers cannot be stacked), and we can output the embedding vector of
all insertion position EI .The embedding vector of insert position can be calculated as:

EI = GmI(U,AI), EI ∈ RnI×d

Machine Process Queue Embedding: The embedding of the machine-processed queue is
achieved through a single GAT layer due to its use of a non-square adjacency matrix for input.We
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use the original features U of the operation nodes and the adjacency matrix AM representing the
subordinate relationship between the operation nodes and the machine as input.AM is a |M| × |O|
(|M| is the number of machines, |O| is number of operations).For each element Mij of this matrix,
if Oj is processed on Machine i, then Mij = 1, otherwise it is equal to 0.The embedding vector of
machine process queue can be calculated as:

EM = GmM (U,AM ), EM ∈ R|M|×d

Job Sequence Embedding: Similar to the embedding of the machine processing queue, the job
sequence embedding is also achieved by a single GAT layer. It takes the original feature matrix of
the operation and the adjacency matrix AJ representing the subordinate relationship between the
operation nodes and the job as input.AJ is a |J | × |O| (|J | is the number of jobs, |O| is num-
ber of operations).The assignment of elements is similar to that of the machine process queue.The
embedding vector of job sequence node can be calculated as:

EJ = GmJ(U,AJ), EJ ∈ R|J |×d

Policy Model: Our framework makes decisions based on the DuelingDQN algorithm, which esti-
mates the advantage value of state-action pairs to make decisions. More specifically, the algorithm
calculates the advantage values of all feasible actions a ∈ At under state st at step t and selects the
action a∗t corresponding to the maximum advantage value,as:

a∗t = argmaxa∈At
A(st, a) (4)

For both generative model and improvement model, s Obtained by average pooling of all operation
node embedding vectors output by GmO,as:

s = meanpooling(EO) (5)
The action of the generated model is formed by concatenating the job embedding, the machine
processing queue embedding and the operation embedding vector. More specifically, an generative
action vector:

aG = [Ei
J , E

j(i)
O , Ek

M ] (6)
represents that the first unassigned operation Oj(i) in the job Ji is inserted into the end of processing
queue for machine Mk. Hence, at most |J |× |M| actions need to be considered for each generative
decision. For improvement model, an action consists of operation embeddings and an insertion
position embeddings.An improved action vector

aI = [Ei
O, E

j
I ] (7)

means to move operation Oi to insertion position j. Obviously, there are at most m different insertion
schemes for each improvement decision. Both the generative model and the improvement model will
use formula(4) to select the action to be executed in the current state st at step t on their respective
feasible action sets.The advantage value function is fitted by a parametric MLP.

4 ALGORITHM AND TRAINING

In order to train the parameters in our framework, we propose a joint training method based on
DuelingDQN algorithm [27]. We consider a complete episode as the process of the generative
model and improvement model interacting with the FJSP environment. At each step, the generative
model makes decision based on the previous solution and outputs action. The agent takes this action
to interact with the environment and transitions to the next state to generate a new solution. Then, the
improvement model outputs an action to improve it based on the solution generated by the generative
model. In one step, the generative model only makes decision once because only one operation is
assigned in single time step, while the improvement model makes decisions for nt times, where
nt is a hand-craft function related to the order of step t. Therefore, in one step, the improvement
model generates nt solutions and we choose the one with the minmal makespan as the state for
next step. In this way, in a complete episode, for an instance with n operations, the generative
model generates Ng = n interaction trajectories. The improvement model generates Ni interaction
trajectories, which Ni =

∑n
t=0 nt. We store these trajectories in their respective experience pools

for both models and use the DuelingDQN algorithm to train their parameters. In order to maintain
the stability of the convergence of the two model parameters during joint training, we only update
the parameters of one model while fixing the parameters of the other model in the same period.
Then, we alternate the parameter update behavior of the two models at fixed episode intervals. We
have shown the pseudocode for the training process in Algorithm 1.
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Algorithm 1 The Algorithm of GIM Training

Input: number of train episode E, The exchange interval of two model parameter training K =
500, The Generative Model ModelG with parameters θG, The Improvement Model ModelI with
parameters θI .
Initialization: Initlize θG, θI , experience pool EPG and EPI , Updata flag Fu = 1.
for e = 0, 1...E do

Sampling FJSP instance from a uniform distribution.
Initlize: S0.
for t=0,1... do
Ŝt = ModelG(St)

S0
t = Ŝt

for g = 0, 1...nt do
Sg+1
t = ModelI(Sg

t )

Store Transition τgt :< Sg
t ,S

g+1
t > into EPI

end for
St+1 = Snt+1

t
Store Transition τgt+1 :< St,St+1 > into EPI

end for
if E%K = 0 then
Fu = −Fu

end if
if Fu > 0 then

Update the parameters θI for ModelI
else

Update the parameters θG for ModelG
end if

end for

5 EXPERIMENT

To evaluate the performance of the proposed framework,we performed it on both FJSP instance of
random synthesis and publicly available FJSP benchmarks.

5.1 EXPERIMENTAL SETTINGS

Dataset: Similar to other related work, the model proposed in this paper is trained using randomly
synthesized FJSP instances. We generated 3 training instance sets of different sizes, each containing
100 randomly synthesized instances of the same size. In order to allow batch updating of neural
network parameters, all instances in each instance set in the training set have the same total number
of operations. In order to verify the generalization ability of the model, we also generated 7 test
instance sets of different sizes. In addition, we also used (ref1),(ref1), two well-known FJSP bench-
marks,which consist of several FJSP instances with different sizes. Hence, we can further verify the
generalization ability of the model by its performance on these datasets.

Configuration: In the optimal model that we trained, the number of GAT layers LO = 4 in
GAMO,while for other GAMs which L = 1. The embedding dimension de = 8 for all. For
all MLPs in the policy model, we set the hidden layer dimension to dh = 512 and the number of
hidden layers lh = 2. The maximum capacity of the experience pool in the DuelingDQN network
is set to 5000, and the batch size sampled from the experience pool each time is equal to 1024. The
soft update parameter τ = 0.005 for the Target Q networks, the discount factor γ = 0.99, and the
probability of selecting a random strategy δ decays from 0.5 to 0.2 with a decay rate δd = 0.001.
(During inference, δ = 0). We use the Adam optimizer to update network parameters with a learning
rate of lr = 10−4. The maximum number of training episodes E = 200000.The exchange interval
of two model parameter training K = 500.

Baselines: For FJSP, a job sequence patching rule and a machine assignment dispatching rule are
needed to complete a schedule solution. There are hundreds of dispatching rules for the job-shop
scheduling problem and FJSP in literature with a wide range of performance. However, it is nearly
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impossible to evaluate hundreds of dispatching rules. (ref) tested 36 rule combinations with 12 rules
for job sequencing and three rules for machine selection.We selected the four best performance
job sequencing rules and one machine assignment rules and combined them into four PDRs as the
baseline. Four job sequencing dispatching rules include FIFO(First in First Out), MOPNR(Most
Operation Number Remaining), LWKR(Least Work Remaining), MWKR(Most Work Remaining).
one machine assignment dispatching rules including SPT(Shortest Processing Time). We will use
these methods to compare the performance of our model with synthetic datasets and public datasets.
In addition to PDRs, we also selected two meta-heuristic methods [26; 27] and two DRL-based
methods [29; 30]. For the sake of data authenticity, we directly cited the best data from the articles
for comparison. Therefore, we can only compare our model with these methods on public datasets.

5.2 COMPARISON EXPERIMENT

In the comparison experiment section, we will select the optimal model that we have trained and
compare it with other methods. This optimal model was obtained through a total of 100,000 episode
of training on synthetic datasets with scales of 5× 3, 10× 5, and 10× 10.

Performance on Random Instance We use the average objective value makespan, running times,
and Gap to the Gurobi Solver(A commercial-grade high-performance solver tool) to evaluate the
performance of various methods (including eight PDRs and our method) on synthetic test instances
of different scales, summarized in Table 1. Through experimental data, we can clearly see that our
model performs better than other PDRs on instances of different sizes, while the computational time
is also in the same order of magnitude. Although the calculation time we spend will increase more
as the size of the instance increases, this is not enough to make us ignore the huge advantage of the
quality of the solution.

Size OR-Tools FIFO+SPT MOPNR+SPT LWKR+SPT MWKR+SPT Ours

5×3
Cmax 42.64 62.28 59.92 60.88 58.88 48.62
Gap 0.00% 46.06% 40.53% 42.78% 38.09% 14.02%

Time(s) - 0.42 0.39 0.36 0.28 0.34

10×5
Cmax 97.42 159.11 146.15 153.94 151.08 108.04
Gap 0.00% 63.32% 50.02% 58.02% 55.08% 10.90%

Time(s) - 1.09 1.09 0.96 0.92 1.55

20×5
Cmax 186.64 287.02 264.63 263.52 235 208.18
Gap 0.00% 53.78% 41.79% 41.19% 25.91% 11.54%

Time(s) - 3.49 3.43 3.48 3.37 8.62

10×10
Cmax 124.26 239.24 281.34 220.16 237.84 145.88
Gap 0.00% 92.53% 126.41% 77.18% 91.41% 17.40%

Time(s) - 3.29 3.41 3.30 3.27 9.42

20×10
Cmax 257.94 424.26 397.24 393.84 352.93 294.69
Gap 0.00% 64.48% 54.00% 52.69% 36.83% 14.25%

Time(s) - 7.235 7.187 7.170 7.155 14.77

30×10
Cmax 288.46 570.49 729.5 600.8 696.05 309.40
Gap 0.00% 97.77% 152.89% 108.28% 141.30% 7.26%

Time(s) - 12.49 13.14 12.54 12.62 30.62

40×10
Cmax - 886.56 791.57 710.57 839.94 412.64
Gap - 114.85% 91.83% 72.20% 103.55% 0.00%

Time(s) - 18.96 19.63 18.47 18.90 59.28

Table 1: Performance on random instance compared to PDRs methods.

Size UB∗ FIFO+SPT MOPNR+SPT LWKR+SPT MWKR+SPT RGA∗ 2SGA∗ DRL1 DRL2 Ours

v la [33]
Cmax 919.50 974.62 1026.74 989.21 959.47 936.73 925.68 950.75 954.03 945.00
Gap 0.00% 5.99% 11.66% 7.58% 4.35% 1.87% 0.67% 3.40% 3.76% 2.77%

Time(s) - 0.45 0.46 0.44 0.50 191.40 51.43 0.96 - 1.41

mk [? ]
Cmax - 206.82 227.48 210.26 207.47 183 175.20 200.30 - 191.70
Gap - 18.05% 29.84% 20.01% 18.42% 4.45% 0.00% 14.33% - 9.42%

Time(s) - 0.40 0.41 0.39 0.45 280.10 57.60 0.90 - 1.09

Table 2: Performance on public benchmarks. ∗We quoted data directly from the original literature

Performance on Public Benhmarks For public datasets [31; 33], we use makespan to measure the
quality of solutions obtained by different methods. In addition to PDRs, we also directly cited data
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from some related works for comparison with the performance of our model. Among them, [26; 27]
used meta-heuristic genetic algorithm and [29; 30] used DRL-based method. Table 2 shows the
experimental data we obtained on different public dataset. From the experimental data, it can be
seen that our method still surpasses all PDRs methods in terms of solution quality. Compared to
RGA and 2SGA, although our method did not outperform them in terms of solution quality, the
calculation time we spent was much less than that of these meta-heuristic methods. Compared to the
other two DRL-based methods, our model still has some advantages in terms of solution quality.

5.3 ABLATION EXPERIMENT

In order to further study the impact of the generative model and the improved model in the frame-
work proposed in this paper on the performance of the final method, we designed some ablation
experiments.

From the design of our framework, it can be seen that the generative model and the improved
model can run independently, which means that we can only use the generative model to generate
a complete solution or use the improved model individually to improve any feasible initial solution
generated by other methods (such as random generation or PDRs). Based on this perspective, we
compared the performance of different models on synthetic datasets. Table 3 shows the specific ex-
perimental data. According to experimental data it is obviously that using either of the two models
individually would result in a decrease in solution quality. Furthermore, for the improved model,
different initial solutions have a significant impact on the improvement effect. The result indicates
that our framework effectively improves the quality of the solution by alternating between these two
models.

Another question of interest to us is whether our model can improve its generalization performance
by receiving more training data. To validate this, we selected two models. One model was trained
only on a synthetic instance set of size 10 × 5, while the other model was trained on synthetic
instance sets of sizes 5 × 3 and 10 × 5. We evaluated the performance of these two models on test
sets of three different sizes: 5×3, 10×5, and 10×10. The experimental results are shown in Table
4.

Size PDRs+improve random+improve generate+improve GIM

5×3 Cmax 54.72 67.92 58.47 48.62
Gap 12.55% 39.70% 20.26% 0.00%

10×5 Cmax 122.92 157.26 131.48 108.04
Gap 13.81% 45.56% 21.70% 0.00%

10×10 Cmax 168.69 203.91 181.46 145.88
Gap 15.64% 39.78% 24.39% 0.00%

Table 3: Ablation experimental results of using different methods to get a complete solution.The
first three columns means using PRDs, random or generate models to generate complete solutions
and then improve.

Size Model:10×5 Model:10×5+5×3
5×3 50.95 48.62
10×5 107.21 108.04

10×10 159.86 145.88

Table 4: Model 10×5 is trained on a dataset of size 10×5 and Model 10×5+5×3 is trained on a dataset
of size 10×5 and 5×3.

6 CONCLUSION AND DISCUSSION

In this paper, we propose an end-to-end reinforcement learning framework to solve the Flexible
Job Shop Problem. We experimentally verified that our method can achieve good results. We also
designed ablation experiments to further study the role of different modules in the framework. A
valuable direction for future is adapting our method to other combinatorial optimization problems.
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