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Abstract
With the prevalence of pre-training-fine-tuning
paradigm, how to efficiently adapt the pre-trained
model to the downstream tasks has been an in-
triguing issue. Parameter-Efficient Fine-Tuning
(PEFT) methods have been proposed for low-cost
adaptation. Although PEFT has demonstrated
effectiveness and been widely applied, the under-
lying principles are still unclear. In this paper,
we adopt the PAC-Bayesian generalization error
bound, viewing pre-training as a shift of prior dis-
tribution which leads to a tighter bound for gener-
alization error. We validate this shift from the per-
spectives of oscillations in the loss landscape and
the quasi-sparsity in gradient distribution. Based
on this, we propose a gradient-based sparse fine-
tuning algorithm, named Sparse Increment Fine-
Tuning (SIFT), and validate its effectiveness on
a range of tasks including the GLUE Benchmark
and Instruction-tuning. The code is accessible at
https://github.com/song-wx/SIFT.

1. Introduction
With the prevalent pre-training-fine-tuning paradigm, Large
Language Models (LLMs) pre-trained on a internet-scale
corpus can be effectively adapted to the specific downstream
domains. However, as the number of parameters in large
language models increases, fine-tuning all parameters is
prohibitively expensive. Toward efficient adaptation from
pre-trained LLMs to downstream tasks, several parameter-
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efficient fine-tuning methods have been proposed (Houlsby
et al., 2019; Ben Zaken et al., 2022; Li & Liang, 2021; Hu
et al., 2021; Zhang et al., 2023; Dettmers et al., 2024), which
can achieve the performance close to or even surpass that of
full fine-tuning with lower costs.

Although these methods have demonstrated their effective-
ness to some extent and have been widely applied, the un-
derlying principles are still unclear and the selection of train-
able modules are typically heuristically. Li et al. (2018a)
points out that over-parameterized networks have a lower
intrinsic dimension, i.e. they can achieve 90% or even 100%
of the full parameter performance by training only fewer
parameters than the full parameter, which is the motivation
of LoRA (Hu et al., 2021). A natural question is:

What causes pre-trained language models to have the
lower intrinsic dimension?

To answer this question, we first need to understand what
changes occur from random initialization to pre-trained ini-
tialization. As indicated in Devlin et al. (2018), pre-trained
models rapidly generalize to downstream data through fine-
tuning. Intuitively, the generalization error of pre-trained
models is controlled by a tighter bound compared to random
initialized models. Therefore, we shed a spotlight on a clas-
sic PAC-Bayesian generalization error bound to analysis the
difference between training from scratch and training after
pre-training, which is first proposed by McAllester (2003)
and refined by Maurer (2004); Catoni (2007); Thiemann
et al. (2017). In contrast to general PAC bounds that only
consider the complexity of the hypothesis space, typically
measured by VC-dimension (Vapnik, 1991) or Rademacher
complexity (Bartlett & Mendelson, 2002), PAC-Bayesian
bounds jointly consider a less accurate prior probability dis-
tribution for parameters and a more precise data-based pos-
terior distribution. We view pre-training as a shift of prior,
where pre-training, by learning language features such as
grammar and syntax on a large corpus, moves the model
away from sub-manifolds of non-expressive parameters in
the parameter space. Pre-training initialization is equiva-
lent to assigning relatively low probabilities in the prior for
non-expressive parameters. In contrast to random initial-
ization, which assigns equal probabilities in the prior to all
parameters, the KL divergence between the pre-trained prior
and the data-based posterior is lower, as shown in Figure 1.
Therefore, pre-trained models have a tighter generalization
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error bound. We validate this prior shift through investigat-
ing changes in the loss landscape and gradient distribution.
From random initialization to pre-trained initialization, the
loss landscape transitions from flat oscillations to sharp
oscillations, and the gradient exhibits a quasi-sparse prop-
erty, where partial components dominate the majority of
the gradient norm. Due to this difference, we conclude that
the intrinsic dimensions actually reflects the required
dimensions of the search space. For pre-trained models,
the searching space dimensions needed to reach an optimal
solution during the fine-tuning process has been compressed
and the subspace spanned by the dimensions with extreme
gradients largely contains the optima. As a result, the pre-
trained models can be effectively adapted to downstream
tasks by updating only a small portion of parameters.

Based on this, we propose a gradient-based sparse update
scheme called Sparse Increment Fine-Tuning (SIFT). Un-
like other existing PEFT methods, such as LoRA (Hu et al.,
2021), Adapter (Houlsby et al., 2019), Prefix-Tuning (Li &
Liang, 2021), which require pluging in additional modules,
SIFT does not alter the model’s initial structure and is the
first to achieve parameter efficiency in a component-sparse
way. To achieve memory efficiency, it inserts hook func-
tions into back propagation to acquire sparse gradients and
perform in-place sparse updates on the parameters, as illus-
trated in Figure 5. We validate its effectiveness on a range
of tasks including the GLUE Benchmark and Instruction-
tuning and highlight its advantages in parameter efficiency
in Section 5.3.2. Overall, we demonstrates the feasibility of
fine-tuning language models entirely in a component-sparse
way.

In summary, the contributions of this paper are as follows:

• To our best knowledge, this is the first time analyzing
pre-trained models with PAC-Bayesian bounds. We
validate the prior shift of pre-trained models from the
perspectives of loss landscapes and gradient distribu-
tions and relate the low intrinsic dimensions to the
compressed searching space.

• We propose a gradient-based sparse fine-tuning algo-
rithm, an efficient and simple PEFT method, which
is an entirely component-sparse method that needs
no additional plug-in modules. It demonstrates com-
petitive performances and better parameter utilization
efficiency.

• We introduce a memory-efficient implementation for
SIFT by utilizing hooks during backward propagation,
which could potentially be implemented at the lower
level of deep learning training frameworks like Py-
Torch (Paszke et al., 2017), and integrated into the
general training process. This paves the way for more
streamlined and efficient fine-tuning.

2. Related Work
Parameter-efficient Fine-tuning: To apply pre-trained
models more efficiently to downstream tasks, Houlsby et al.
(2019) proposes parameter-efficient transfer learning by in-
serting a bottleneck structure between different layers of the
pre-trained model. During fine-tuning, the pre-trained pa-
rameters remain unchanged, and only the bottleneck layers
are updated. Ben Zaken et al. (2022) shows that training
only bias terms and task-specific modules during fine-tuning
can also adapt pre-trained models effectively to downstream
tasks. Prefix-tuning (Li & Liang, 2021) adapts pre-trained
models to downstream tasks by prepending trainable con-
tinuous tokens (Prefixes) to the input and hidden states of
each Transformer layer. LoRA (Hu et al., 2021) freezes the
weights of pre-trained models and injects trainable rank de-
composition matrices into each layer of the Transformer
architecture. Following the proposal of LoRA, several
LoRA-based improvements have been introduced, including
AdaLoRA (Zhang et al., 2023), which adaptively allocates
parameter budgets based on the importance of weight ma-
trices, and QLoRA (Dettmers et al., 2024), which further
reduces the resource overhead through quantization tech-
niques. The above PEFT methods, except for Bias-only
which is a module sparse approach, are all adapted to the
downstream tasks by introducing additional modules.

PAC-Bayesian Generalization Error Bounds: introduced
by McAllester (1999; 2003), combines the advantage of
Bayesian methods and PAC Learning, which allows for con-
sidering domain knowledge as a Bayesian prior without
assuming the truth of the prior (McAllester, 2003). Early
generalization error bounds only consider the complexity of
the hypothesis space, measured by VC-dimension (Vapnik,
1991) and Rademacher complexity (Bartlett & Mendelson,
2002), which is nearly vacuous and trivial in the real neural
network setting (Zhang et al., 2021). In contrast, PAC-Bayes
methods reward models whose prior assigns higher prob-
ability to those hypotheses that are in line with train data,
with a tighter control over generalization error.

3. Understanding Pre-training-fine-tuning
from a Distribution-shift Perspective

The pre-training-fine-tuning paradigm has shown great suc-
cess in numerous NLP tasks (Devlin et al., 2018). In this
section, we adopt the PAC-Bayesian generalization error
bounds and, from the perspective of the prior distribution
shift, analyze the pre-training-fine-tuning paradigm in both
theoretical and empirical aspects. We conclude that the low
intrinsic dimensions of pre-trained models originate from
the compressed searching space and the subspace spanned
by the dimensions with extreme gradients largely contains
an optima.
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3.1. PAC-Bayesian Generalization Error Bounds

For a fixed architecture of the deep learning model, models
with different parameter values (i.e., hypotheses) collec-
tively form the hypothesis space. Any hypothesis h in the
hypothesis space H can be represented as h =

∑N
i=1 hiei,

where N is the total number of parameters, ei is akin to
the definition of the standard basis (with the ith component
being 1 and the rest being 0), and hi represents the value of
the model h on the ith component. Hence, a straightforward
conclusion is that |H| ≤ N , and subsequent discussions are
based on the premise that the hypothesis space is finite.

Let the empirical risk of h be R̂(h) = 1
n

∑n
i=1 l(h, si), and

the population risk be R(h) = E
s∼S

[l(h, s)], where si is

independently sampled from the identical data distribution
S, n represents the number of samples, l is a bounded loss
function, and for simplicity, l(h, s) ∈ [0, 1]. The generaliza-
tion error is defined as ∆(h) = R̂(h)−R(h).

In this setting, with a probability at least 1−δ, the population
risk R̂(h) satisfies:

∀h ∈ H, R̂(h) ≤ R(h) +

√
log(|H|) + log(1/δ)

2n
(1)

If we consider a probability distribution P regarding hy-
potheses, referred to as a prior (McAllester, 1998), then
with a probability of at least 1− δ,

∀h ∈ H, R̂(h) ≤ R(h)+

√
log(1/P(h)) + log(1/δ)

2n
(2)

A most trivial prior is to assume that all hypotheses are
equally likely, i.e., ∀h ∈ H,P(h) = 1/ log(|H|). In this
case, the inequality 2 degenerates to 1. But the parameters
are certainly not uniformly distributed. For natural language
processing tasks, without considering specific data, param-
eters that can accurately represent fundamental language
features such as grammar and semantics should be assigned
a higher probability. We refer to this as a weakly informa-
tive prior, which conveys partial information.

If we consider a more precise distribution Q, which charac-
terizes the probability distribution of the parameters based
on specific data, referred to as a posterior, then we have the
following bound on the population risk, first introduced by
McAllester (2003), with a probability at least 1− δ:

E
h∼Q

[R(h)] ≤ E
h∼Q

[R̂(h)] +

√
KL(Q||P ) + log(n/δ) + 2

2n− 1
(3)

The formula 3 indicates that the smaller KL divergence be-
tween the prior and the posterior, the tighter control there is
on the generalization error. A more detailed introduction of
the above theorems can be found in Appendix A.

Figure 1. An intuitive explanation about prior distribution and pos-
terior distribution. Random initialization is equivalent to assigning
equal probabilities to hypotheses in the hypothesis space (the hori-
zontal line referred as prior-random). Pretraining learns language
features from extensive corpora, moving away from hypotheses
that are not accurately expressive of language, equivalent to as-
signing them lower prior probabilities. Data-based, more precise
posterior also have lower probabilities for hypotheses that fail to
represent and understand language correctly. Therefore, compared
to prior-random, the KL divergence between prior-pretrained and
posterior is smaller.

Pre-training language models aims to learn grammar, seman-
tics, and other basic language features (referred to as a prior)
from a large corpus through masking or auto-regressive
methods, steering the model away from parameters that
cannot correctly understanding and convey language. There-
fore, pre-trained initialization of the model is equivalent
to assigning lower probabilities to such parameters in the
prior. Those parameters are naturally incapable of handling
various tasks related to language correctly, so they should
also have lower probabilities in the data-based posterior.
As shown intuitively in Figure 1, pre-trained initialization
considering basic language features is closer to the distri-
bution of the data-based on posterior compared to random
initialization. This closeness results in lower KL divergence
and, consequently, a tighter upper bound on generalization
error, allowing the population risk to consistently decrease
along with the reduction of empirical risk during training.

The difference in the distribution of parameters can signif-
icantly affect the variation of losses, i.e., the properties of
loss landscapes. In Section 3.2, we validate this distribution
difference between random and pre-trained initialization by
visualizing the loss landscape. By the first-order approxi-
mation of the multivariate Taylor expansion, this difference
in loss landscapes stems from varied gradient distributions,
which is also confirmed by the empirical analysis in Section
3.3.

3.2. Visualization of Loss Landscape

Loss landscape is a high-dimensional geometry which is
completely determined as soon as a dateset and the net-
work structure are specified (Li et al., 2018a), reflecting
the relationship between the loss and parameters. For high-
dimensional geometries such as loss landscapes, it is not
possible to imagine and understand their geometric prop-
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Figure 2. 1-D (up) and 2-D (down) visualization of the shift of the loss landscape from random initialization to pre-trained initialization.
The figures show the loss landscape transitions from low amplitude oscillations to high amplitude oscillations.

erties as intuitively as in low-dimensional shapes. Despite
the difficulty in understanding such high-dimensional ge-
ometries, researchers have proposed methods to project
high-dimensional loss surfaces into low-dimensional space,
including one-dimensional visualization (Goodfellow et al.,
2014; Smith & Topin, 2017) and two-dimensional visual-
ization (Li et al., 2018b), in order to easily understand and
study some of the properties of loss landscapes.

In exploring the shift of the loss landscape from random
initialization to pre-trained initialization, we note θ0 as the
randomly initialized parameters and θ1 as the pre-trained pa-
rameters. Goodfellow et al. (2014) plots the loss landscape
curve from θ0 to θ1 by linearly sampling and interpolating
the network parameters between θ0 and θ1, the loss curve f
is defined as:

f(α) = L(θ0 + αδ)

where α ∈ [0, 1] and δ is θ1 − θ0 that represents a direction.
The two-dimensional loss surface f is plotted similarly to
the one-dimensional one, determined by a starting point and
two directions:

f(α, β) = L(θ0 + αδ1 + βδ2).

In our setting, δ1 = θ1 − θ0, α ∈ [−0.5, 1.5], β ∈ [−1, 1],
when α = 0, β = 0, the model is in the random initializa-
tion state, and when α = 1, β = 0, the model is in the pre-
trained state. We use a method similar to Li et al. (2018b)
to construct the direction δ2 to avoid the scaling effect be-
tween different components, multiplying δ1 by a Gaussian
random number points by points, i.e. δ2i = di ∗ δ1i , where
di follows a normal distribution. We investigate the shift of
the loss landscape using RoBERTa-base (Liu et al., 2019)
on a range of tasks at GLUE, which are shown in Figure 2.

A prior idea would be that pre-trained models are more ef-
ficient at adapting to downstream tasks than training from

scratch because the knowledge learned during pre-training
reduces the initial loss. However, a striking fact is that
pre-training does not make all tasks have lower losses than
random initialization at the beginning of fine-tuning, e.g.
MNLI, MRPC, etc. Instead, for most task, there are ex-
tremely higher losses than random initialization around the
pre-trained initialization. A common feature of the loss
landscape is that the oscillations of the loss around random
initialization are generally small in magnitude, whereas the
loss oscillations around pre-training are sharp, i.e. after a
valid pre-training process, the loss landscape shifts from
low amplitude oscillations to high amplitude oscillations.

Since the 1-D and 2-D loss landscapes are projections of the
original loss landscape, the special states exhibited in the
low-dimensional projections reflect the general property of
the high-dimensional space. For simplicity, let’s consider
the one-dimensional loss curve, L(θ0 + αδ), where δ can
be represented as a linear combination of natural bases, i.e.
δ =

∑N
i=1 diei. By the first-order approximation of the

multivariate Taylor expansion, we can estimate

L(θ0 + αδ) = L(θ0 + α
∑

diei)

≈ L(θ0) + α
∑

di∇Lei(θ0)

If the probability distributions of gradients on each dimen-
sion ei are relatively similar, meaning there is an expectation
E(∇Lei(θ0)) ≈ E0, where E0 is a constant, and since N
is usually quite large, the loss can be further approximated
as L(θ0) + α

∑
diE0. This indicates that the loss will not

exhibit sharp oscillations. However, if extreme distribu-
tions exist in certain dimensions, for example, if the N th

dimension has a different distribution, then the loss can be
approximated as L(θ0) +α

∑N−1
i=1 diE0 +αdN∇LeN (θ0).

In this case, the loss will be significantly influenced by the
gradient of the N th dimension. Therefore, a flat loss land-
scape implies similar distributions among dimensions and
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Figure 3. (a) depicts the gradient distribution of parameters in one layer of RoBERTa-Large on the MNLI dataset, showing different
gradient distributions of the models trained from scratch and from pre-trained. Both distribution are approximately presenting a bell-shaped
distribution similar to a normal distribution with a mean of zero. (b) and (c) are drawn on their respective scales, showing that compared
to the model trained from scratch, the gradients of the pre-trained model are more concentrated around zero while they exists much larger
gradient values. (d) illustrates the gradient proportion of the top x% components, indicating that the gradients of the pre-trained model
hold a more extreme property, dominating 99% of the complete gradient norm with only 1% of the parameters.

the intense oscillations in loss landscape indicate that certain
dimensions dominate the changes of the loss, suggesting
an inconsistency in the distributions among dimensions.
We verify this inconsistency in gradient distributions in the
following Section 3.3 and highlight the quasi-sparsity in
gradients of pre-trained models.

3.3. Quasi-Sparse Gradient Distribution

Ye et al. (2020); Wiedemann et al. (2020) take the assump-
tion that the distribution of the parameter gradients approxi-
mates a normal distribution. In Figure 3, we plot the gradi-
ent distribution of one parameter in RoBERTa-Large on the
MNLI dataset and other parameters also have the similar
property shown in the following part. Both the gradients of
the model trained from scratch and from pre-trained show a
bell-shaped distribution with a mean of near zero. Under the
same histogram settings, the gradient distributions of from
scratch and pre-trained models show a huge difference in fre-
quency and value range. Figure 3(c) displays the pre-trained
gradient distribution on a log-scale, where the majority of
gradients are concentrated around zero, with only a very
small portion having larger gradient values, and the maxi-
mum value of pre-trained is about two orders of magnitude
higher than that from scratch. Figure 3(d) shows the gradi-
ent proportion of the components with the top x% absolute
gradient value. The pre-trained gradient shows a more ex-
treme property, where 1% of the components account for
99% of the total gradient norm. This severe imbalance in
distribution exhibits a property similar to sparsity, which we
refer to as Quasi-Sparse. The majority of information in the
gradient space can be represented by a very small number
of components.

Through pre-training, the model reaches a sub-manifold in
the parameter space where the parameters are with higher
distribution probabilities and can be expressive of language
(corresponding to the bell-shaped distribution in Figure 1).

Therefore, during the fine-tuning process on downstream
tasks, it is only necessary to search within this manifold
to find a good solution. This results in redundancy on
most dimensions, manifested by smaller gradient values.
Therefore, the compressed searching space is the key to the
low intrinsic dimension of the objective loss landscape (Li
et al., 2018a). A natural question is whether updating only
in these dimensions can effectively adapt the pre-trained
model to downstream domains. A prior idea is that, due
to the quasi-sparsity of the gradient, updating only partial
components with larger gradients can also effectively reduce
the empirical loss, while the generalization loss can also
be consistently reduced due to tighter upper bounds on the
generalization error of pre-trained models.

In the following Section 4, we propose a memory-efficient
implementation of the sparse fine-tuning scheme, which val-
idates the feasibility of fine-tuning language models entirely
in a component-sparse way.

4. Methodology
We describe the design of Sparse Increment Fine-Tuning
(SIFT), whose principle is to update only a part of the com-
ponents of the parameters. Based on the similar subspace
method in nonlinear optimization(Liu et al., 2021), we pro-
vide a mathematical definition related to SIFT. Finally, we
propose a memory-efficient implementation for SIFT.

4.1. SIFT: Sparse Increment Fine-Tuning

We define the fine-tuned parameters as the sum of pre-
trained parameters and an increment, xft = xpt + ∆x.
Updating only a portion of the components means that ∆x
is a sparse matrix, hence we name this update method Sparse
Increment Fine-Tuning (SIFT). Below, we will explain that
due to the quasi-sparse gradient property of the pre-trained
model, ∆x can ensure sufficient descent of the loss.
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The idea of only updating partial components of the pa-
rameters is similar to the subspace method for non-linear
optimization (Liu et al., 2021). In SIFT, we aim to update
only components with the top x% absolute values of the gra-
dient, so the update direction will be in a subspace spanned
by these components’ dimensions. We adopt the definition
in (Liu et al., 2021), where gik is denoted as the ith compo-
nent of gradient gk. Sorted in descending order of absolute
value, the top x% components are selected:

|gki1 | ≥ |gki2 | ≥ |gki3 | ≥ · · · ≥ |gkim |,
m = [x% ∗ n],
n is the number of gk components

Therefore, the update direction d are in the subspace S =
span{ei1 , ei2 , . . . , ein}, called the τ -steepest coordinates
subspace, where ei refers to the ith standard basis. Based on
this, we define the steepest descent direction as sufficiently
descending, when,

min
d∈S

dT gk
∥d∥2∥gk∥2

≤ − τ

n

That is, the descent direction d is sufficiently close to the
negative gradient direction. If (gτ+1

k )
2 ≤ ϵ

∑τ
j=1 (g

j
k)

2
, we

can further obtain the following estimate,

min
d∈S

dT gk
∥d∥2∥gk∥2

≤ − 1√
1 + ϵ(n− τ)

As discussed in section 3.2, for the gradients of pre-trained
models, a few components dominate most of the gradient
norm, allowing us to obtain a sufficiently small ϵ with a
relatively small τ , ensuring that the direction d chosen from
the subspace S is sufficiently descending.

Due to the limitation of computational cost, we usually can-
not obtain the gradients over the complete data. Instead,
stochastic gradient type methods typically take a mini-batch
sampled from the full data. Without the complete gradient
information, SIFT uses the gradient from the first batch(or
first several batches by using gradient accumulation) as an
estimate of the complete gradient and selects the compo-
nents to be updated based on this. A natural question arises:
do the components selected based on the gradient of the
first batch still effectively represent the full gradient infor-
mation in subsequent batches? That is, whether there will
be significant differences between the gradients of different
batches. As shown in Figure 4, we compare the proportion
of the top 1% components of each batch’s gradients with
the proportion of the top 1% components of the first batch’s
gradients. For pre-trained models, using the top x% compo-
nents of the first batch does indeed result in some reduction
of gradient information, but except for some outlier samples,
the difference always remains within an acceptable level

Figure 4. (Left) compares the difference in the proportion of gradi-
ents accounted for by two different top 1% component selection
methods: the top 1% of the current batch and the top 1% of the first
batch. Although sticking with the first batch’s top 1% as opposed
to selecting the top 1% of the current batch results in some re-
ductions of gradient information, the difference remains within an
acceptable range. Avoiding frequent changes of components can
improve training efficiency and preserve the historical information
of Adam-like optimizers. In contrast, (Right) shows the gradient
proportion variation in the model trained from scratch, where fix-
ing the top 1% of the first batch leads to a greater reduction of the
gradient information.

compared to the top 1% of the current batch. In contrast, the
top 1% components of the first batch in models trained from
scratch tend to lose more gradient information. Therefore,
for efficiency, SIFT always updates the top x% components
of the first batch in the whole training process. This ap-
proach enables the use of Adam-like optimizers that require
historical state information, as frequent changes of compo-
nents would result in the loss of their historical information.
Appropriate periodic changes of the components that need
to be updated is also an acceptable choice, and this could be
one of the focus for future work.

4.2. A Memory-efficient Implementation of SIFT

The key to SIFT lies in obtaining gradients of partial com-
ponents. Under existing deep learning frameworks (such as
PyTorch (Paszke et al., 2017)), gradients of all parameters
are able to be accessed only after backward propagation. A
simple implementation of SIFT is to retrieve the gradients of
partial components through indexing after all gradients have
been calculated. However, as all gradients have already been
stored, storing the gradients of partial components at this
point does not reduce the memory overhead of gradient stor-
age. The memory overhead during training mainly consists
of four parts: parameters, gradients, optimizer states, and
activation. Although this implementation does not reduce
storage overhead of gradients, it can significantly reduce
that of the optimizer states.

Lv et al. (2023) proposes an alternative SGD method that re-
duces gradient storage by inserting a hook function, thereby
fusing the gradient into the parameters as soon as the gradi-
ent is computed. Inspired by Lv et al. (2023), we propose
a memory-efficient implementation of SIFT. As shown in
Figure 5, we register a Sparse Parameter (SP) and corre-
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Table 1. Performances of fine-tuned pre-trained RoBERTa-large with different methods on the GLUE benchmark. Num denotes the
number of trainable parameters in the fine-tuning process, excluding the classifier. Similar to (Hu et al., 2021), we report the matched
and mismatched accuracy for MNLI, Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks. *
indicates results reported in (Hu et al., 2021). The best results are highlighted in bold and the second best results are underlined.

MODEL METHOD NUM MNLI SST-2 MRPC COLA QNLI QQP RTE STS-B AVG.

ROBERTA-LARGE

FULL* 355.0M 90.2 96.4 90.9 68.0 94.7 92.2 86.6 92.4 88.9
ADPTP * 3.0M 90.2 96.1 90.2 68.3 94.8 91.9 83.8 92.1 88.4
ADPTP * 0.8M 90.5 96.6 89.7 67.8 94.8 91.7 80.1 91.9 87.9
ADPTH * 6.0M 89.9 96.2 88.7 66.5 94.7 92.1 83.4 91.0 87.8
ADPTH * 0.8M 90.3 96.3 87.7 66.3 94.7 91.5 72.9 91.5 86.4
LORA* 0.8M 90.6 96.2 90.2 68.2 94.8 91.6 85.2 92.3 88.6
SIFT 0.8M 90.6 96.2 90.4 68.5 94.1 91.0 85.9 92.3 88.6

Figure 5. (1) For each parameter (P) that requires updating sparsely,
we register a Sparse Parameter (SP) with the Sparse Gradient (SG),
storing them in the form of values and indexes; (2) Acquire the
computed gradient (G) by inserting a hook function; (3) Obtain
partial components of the gradient through indexing to serve as
the Sparse Gradient for the Sparse Parameter; (4) Use the Sparse
Gradient to update the Sparse Parameter in the optimizer; (5) Use
the Sparse Parameter to update the initial parameter.

sponding Sparse Gradient (SG) for the parameters to be up-
dated, only storing values and indexes for each. SP does not
obtain SG through normal backward propagation. Instead,
we inject a hook function into the parameters to capture the
computed gradients and assign them to SG via indexing.
SP with SG is updated through the normal optimizer, and
finally, SP is integrated into the initial parameter P.

Table 2. Memory consumption of fine-tuning Llama 7B with dif-
ferent methods including full fine-tuning and SIFT in 5% sparsity
rate. The data type of the model is bf16, the optimizers all use
AdamW and are in fp32, and the sequence length and batch size
are 2048 and 1. GC refers to whether gradient checkpointing is
enabled or not.

GC PARAMS GRAD OPTIM STATES ACTIVATION TOTAL

FULL
% 12.55 12.55 50.21 35.72 111.03
" 0.81 76.12

SIFT % 12.55 0.626 2.51 35.72 51.41
" 0.81 16.50

For x% sparse updates, we can simultaneously reduce the
gradients and optimizer states to the original x%. Combined

with techniques such as mixed-precision training and gradi-
ent checkpointing, it is possible to fine-tune a 7B model on
a single RTX 3090 24GB, as shown in Table 2.

5. Experiments
Our evaluation mainly consists of two parts, targeting two
cases: Natural Language Understanding (NLU) and Natu-
ral Language Generating (NLG). For NLU, we align with
the evaluation of LoRA (Hu et al., 2021), selecting the
GLUE Benchmark (Wang et al., 2018) as our evaluation
dataset, and compare it with the data reported in (Hu et al.,
2021). For NLG, to validate the effectiveness of SIFT on
much larger models, we choose instruction-tuning as our
test case. We adopt Llama (Touvron et al., 2023) as our back-
bone models, use the alpaca dataset (Taori et al., 2023) for
instruction-tuning, and conduct evaluations on benchmarks
such as MMLU (Hendrycks et al., 2020) and HumanEval
(Chen et al., 2021). In the experiments, similar to (Hu et al.,
2021), we only consider updating the parameters in the self-
attention modules. By adjusting the sparsity rate of SIFT, we
ensure a consistent number of trainable parameters. See Ap-
pendix B for detailed hyper-parameter settings, categories
scores of MMLU and generated samples of HumanEval.

In Section 5.3, we conduct further experimental analysis
towards SIFT. Since SIFT selects components to update
through gradient analysis, we compare SIFT with random
component selection in Section 5.3.1. Additionally, as we
heuristically choose to perform sparse updates on q,k,v and
o, we compare the specific performance of applying SIFT
in different parameters. Finally, in Section 5.3.2, we ex-
plore the impact of sparsity rate on the downstream task,
investigating what is the limit of sparsity rate required for
an acceptable performance in the downstream task. The
evaluation includes the following baselines:

Full fine-tune: All pre-trained parameters are updated.

Adapter: (Houlsby et al., 2019) proposes to adapt pre-
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trained models to downstream tasks by inserting trainable
Adapter modules into the self-attention layers while keeping
the pre-trained parameters frozen. These modules have a
bottleneck structure with non-linear function. We denote
this original version as AdptH . Based on (Houlsby et al.,
2019), (Pfeiffer et al., 2020) proposed a more efficient ver-
sion of the Adapter modules, referred to as AdptP .

LoRA(Hu et al., 2021): freezes the weights of the pre-
trained model and adds trainable rank decomposition matri-
ces in parallel to each layer of the Transformer architecture.

5.1. GLUE Benchmark

We evaluate SIFT on the GLUE benchmark (Wang et al.,
2018). We select RoBERTa (Liu et al., 2019) as the back-
bone model for testing. The general experimental setup
is consistent with (Hu et al., 2021) and we apply a 0.8%
sparsity rate with SIFT to the Query, Key, Value, and Out-
put projection in the self-attention module to ensure the
number of trainable parameters is consistent with the com-
pared baselines. Table 1 reports the results of pre-trained
RoBERTa-Large with different fine-tuning methods on the
GLUE benchmark and the number of trainable parameters
(excluding the classifier). The results of each run are taken
from the best epoch. Table 1 reveals that SIFT performs
competitive on the GLUE benchmark compared to full fine-
tuning and other PEFT methods.

5.2. Instruction-tuning

Wei et al. (2021) proposes to perform supervised fine-tuning
on top of pre-trained language models to make them align in-
structions and generate more meaningful content. Taori et al.
(2023) fine-tunes pre-trained Llama on a 52k instruction-
following dataset (Alpaca), which is generated by the tech-
nique introduced by Wang et al. (2022). We fine-tune
Llama with Alpaca in different ways including full fine-
tuning, LoRA and our SIFT. We evaluate language models
on two benchmarks including MMLU and HumanEval. For
MMLU, the evaluation metric is the accuracy of the gen-
erating answer in zero-shot setting, while HumanEval is
evaluated by pass@1 and pass@10 metric. Higher values
are better for all metrics. Table 3 demonstrates that sparse
structures like SIFT can inject knowledge into pre-trained
LLMs and exhibit a competitive performance.

5.3. Further Analysis

We primarily conduct further experimental analysis towards
SIFT involving comparison of performance differences
when applying SIFT on different parameters, as well as
the differences between SIFT gradient-based component se-
lection and random selection. Finally, we discuss the impact
of the sparsity rate on the performance of downstream tasks.

Table 3. Performances of fine-tuned Llama on Alpaca dataset with
different methods. We present the accuracy on the MMLU task un-
der zero-shot setting, as well as the pass@1 and pass@10 metrics
on the HumanEval task.

MODEL METHOD NUM MMLU HUMANEVAL

LLAMA-7B

VANILLA 32.7 11.3/16.5
FULL 6.74B 42.0 11.1/19.5
LORA 0.32B 40.7 11.8/20.1
SIFT 0.32B 40.7 11.6/20.7

LLAMA-13B

VANILLA 43.6 14.3/24.4
FULL 13.0B 48.8 15.7/22.0
LORA 0.5B 46.7 14.6/25.6
SIFT 0.5B 46.7 15.5/26.2

LLAMA-33B
VANILLA 54.3 20.9/36.0

LORA 0.98B 55.9 21.6/33.5
SIFT 0.96B 55.7 24.1/37.2

Table 4. Performances of applying SIFT and random selection on
different parameters. Wq,Wk,Wv,Wo represent the query, key,
value, and output parameters in the attention module respectively
and WAll denotes all parameters in the attention module (excluding
LayerNorm).

TYPE WEIGHT NUM RTE MRPC AVG.

SIFT

WV 0.81M 85.9 90.4 88.0
WQ,V 0.81M 85.2 90.2 87.7
WQ,K,V 0.83M 84.8 88.7 86.8
WQ,K,V,O 0.80M 85.9 90.4 88.0
WAll 0.80M 86.6 89.0 87.8

RANDOM

WV 0.81M 83.0 89.2 86.1
WQ,V 0.81M 82.3 89.0 85.7
WQ,K,V 0.83M 81.9 87.5 84.7
WQ,K,V,O 0.80M 83.8 89.5 86.5
WAll 0.80M 83.0 88.2 85.6

5.3.1. SIFT VS. RANDOM

SIFT selects the component with the highest absolute gra-
dient value in the first batch for the subsequent updates.
A natural question arises: does this selection have an ad-
vantage over random selection? Additionally, in previous
experiments, we heuristically choose the Wq,Wk,Wv and
Wo in the attention modules for sparse updating. Under
the condition of maintaining the same number of trainable
parameters, including more modules to apply SIFT means
that each module has fewer trainable components. We want
to know whether having fewer modules with more compo-
nents or more modules with fewer components performs
better in the fine-tuning process. In Table 4, we compare
the performance of SIFT and random selection in updating
different modules. We choose two small datasets from the
GLUE benchmark, RTE and MRPC, for evaluation. The
final performances do not show a consistent conclusion in
the choice of different update modules. Therefore, balanc-
ing the number of components and modules, we choose to
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update Wq,Wk,Wv and Wo as our final choice. Compared
to random selection, SIFT gradient-based selection method
shows a clear advantage in the final performance of down-
stream tasks. However, although not as effective as SIFT in
terms of performances, sparse updates in randomly selected
components can still effectively adapt pre-trained models to
downstream tasks, with only a small performance gap. This
further confirms that due to the shift of the prior induced
by pre-training, the model is away from non-expressive
submanifolds in parameter space, resulting in redundancy
across dimensions. Searching along partial dimensions is
sufficient to find a relatively good solution.

5.3.2. SPARSITY RATE ANALYSIS

Figure 6. Performances of the fine-tuned pre-trained RoBERTa-
Large vs different methods and the numbers of trainable parame-
ters. Classifier only indicates that only the classifiers are fine-tuned,
and the rest of the methods update the classifiers along with the
parts of the pre-trained model.

We investigate the efficiency of different methods, that is, the
trend of performance with the number of trainable parame-
ters (budget). We compare performances of SIFT, Random
selection and LoRA with varied budgets on MRPC dataset.
Figure 6 show that SIFT is able to adapt the downstream
task more efficiently in a less budget, while the performance
gap between SIFT and LoRA is smoothed out as the budget
increases. Consistent with the conclusion in Section 5.3.1,
we find that when the number of parameters reaches a cer-
tain threshold, Random is also able to adapt the downstream
task, but it is significantly inferior to SIFT and LoRA in
terms of performances in less budgets.

6. Conclusion
In this paper, we adopt PAC-Bayesian generalization error
bounds to analyze the pre-training-fine-tuning paradigm and
attribute the performance differences to the prior distribution
shift. We verify the shift of the prior through investigating
differences of pre-trained models in loss landscapes and gra-
dient distributions. Pre-trained models, compared to models
trained from scratch, exhibit sharper oscillations in the loss
landscape and gradients display a quasi-sparse property,
where partial components dominates the majority of the gra-

dient norm. Due to these differences, we demonstrate that
the search space dimensions required for pre-trained mod-
els to reach optimal solutions during fine-tuning are com-
pressed, allowing effective adaptation to downstream tasks
by fine-tuning only a small portion of parameters. Based on
this, we propose a component-sparse fine-tuning strategy,
named SIFT. We validate the effectiveness of using SIFT
for fine-tuning on varied tasks including GLUE Benchmark
and instruction-tuning for large language models. Further-
more, we have further discussions on SIFT, highlighting
its efficiency from the comparison of different component
selection methods and the performance trends of different
methods as it varies with the number of trainable parame-
ters. Overall, we demonstrates the feasibility of fine-tuning
language models entirely in a component-sparse way.

Impact Statement
The main motivation of this work has been to design a
simple but efficient fine-tuning method with a better un-
derstanding of pre-trained models. By uncovering certain
important features and properties within pre-trained models,
such as the quasi-sparsity of gradients proposed in this paper,
we aim to utilize resources more efficiently during the fine-
tuning process. This work can be of interest to researchers
focusing on efficient fine-tuning and sparsity in deep models.
There is no foreseeable negative societal/ethical impact of
our work at this time.
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A. A Primer on PAC-Bayesian Generalization Error Bounds.
Due to limited pages of the main paper, all statements regarding PAC-Bayesian theory in the main text are kept as concise
as possible. Therefore, in this section, we primarily address readers unfamiliar with PAC Learning or PAC-Bayesian
Theorems. We will rigorously restate the theorems mentioned in the main paper, providing proofs for the simpler theorems
and referencing related papers for the complex one.

The theorems in this section are introduced in previously published works. The presented overview here serves as a reminder
and provides references for the readers as needed. The notation in this section remains consistent with that in the main paper.

Theorem A.1. If H is a finite hypothesis space, for any hypotheses h ∈ H, any loss functions l bounded in [0, 1], 0 < δ < 1,
with a probability at least 1− δ over the selection of n i.i.d. samples,

R̂(h) ≤ R(h) +

√
log(|H|) + log(1/δ)

2n

.

Proof. Using Hoeffding’s inequality, for any ϵ > 0,

P{∆(h) = R̂(h)−R(h) ≥ ϵ} ≤ e−2nϵ2

Applying the Union Bound,

P{∃h ∈ H,∆(h) > ϵ} ≤
∑
h∈H

P{∆(h) > ϵ} ≤ |H|e−2nϵ2

Let |H|e−2nϵ2 = δ, and solve the equation for ϵ, we have ϵ =
√

log(|H|)+log(1/δ)
2n .

Theorem A.2. (McAllester, 1998). If H is a finite hypothesis space, for any probability distribution P over H that assigns
non-zero values, any hypotheses h ∈ H, any loss functions l bounded in [0, 1], 0 < δ < 1, with a probability at least 1− δ
over the selection of n i.i.d. samples,

R̂(h) ≤ R(h) +

√
log(1/P(h)) + log(1/δ)

2n

.

Proof. For any fixed h ∈ H, considering the Chernoff Bound, we have

P{∆(h) >

√
log(1/P(h)) + log(1/δ)

2n
} = P{∆2(h) >

log(1/P(h)) + log(1/δ)

2n
} ≤ P(h)δ

Then using the Union Bound,

P{∃h ∈ H,∆(h) >

√
log(1/P(h)) + log(1/δ)

2n
} ≤

∑
h∈H

P{∆(h) >

√
log(1/P(h)) + log(1/δ)

2n
} ≤

∑
h∈H

P(h)δ = δ

Theorem A.3. (McAllester, 2003). For any probability distribution P on a possibly uncountable hypothesis space H and
any measurable loss function l, with a probability at least 1− δ,

∀Q on H, E
h∼Q

[R(h)] ≤ E
h∼Q

[R̂(h)] +

√
KL(Q||P ) + log(n/δ) + 2

2n− 1

A weak version of Theorem A.3 is first introduced in (McAllester, 1999). The complete proof of Theorem A.3 is in
(McAllester, 2003). (Maurer, 2004; Catoni, 2007; Thiemann et al., 2017) have developed refinements on it.
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B. Experimental Details
B.1. GLUE Benchmark Setting

The table 5 shows our hyper-parameters settings on the GLUE benchmark experiments.

Table 5. The hyperparameters of the GLUE Benchmark experiments

METHOD
DATASET MNLI SST-2 MRPC COLA QNLI QQP RTE STS-B

OPTIMIZER ADAMW
WARMUP RATIO 0.06
LR SCHEDULE LINEAR

SIFT

BATCH SIZE 32
EPOCHS 10 15 20 20 10 20 20 30

LEARNING RATE 7E-5 7E-5 7E-5 7E-5 5E-5 7E-5 7E-5 8E-5
WEIGHT DECAY 0.1

MAX SEQ. LENGTH 512
SPARSITY RATE 0.8%
SIFT MODULES Wq,Wk,Wv,Wo

B.2. Instruction-tuning Setting

The table 6 shows our hyper-parameters settings on the Instruction-tuning experiments.

Table 6. The hyper-parameters of the Instruction-tuning experiments

METHOD
MODEL LLAMA-7B LLAMA-13B LLAMA-33B

OPTIMIZER ADAMW
WARMUP RATIO 0.03
LR SCHEDULE LINEAR

FULL

BATCH SIZE 128
EPOCHS 3

LEARNING RATE 2E-5
WEIGHT DECAY 0.

MAX SEQ. LENGTH 2048

LORA

BATCH SIZE 128
EPOCHS 3

LEARNING RATE 2E-4 2E-4 1E-4
WEIGHT DECAY 0.

MAX SEQ. LENGTH 2048
LORA RANK rq = rv = 128
LORA ALPHA 256

SIFT

BATCH SIZE 128
EPOCHS 3

LEARNING RATE 2E-4 9E-5 8E-5
WEIGHT DECAY 0.

MAX SEQ. LENGTH 2048
SPARSITY RATE 5% 4% 3 %
SIFT MODULES Wq,Wk,Wv,Wo

B.3. Results of differernt categories in MMLU Benchmark

Figures 7, 8, and 9 serve as a supplement to Table 3, illustrating the score comparisons for various categories on MMLU
benchmark under different configurations.

13



Sparse is Enough in Fine-tuning Pre-trained Large Language Models

Figure 7. MMLU Evaluation results of Llama-7b fine-tuned by different methods

Figure 8. MMLU Evaluation results of Llama-13b fine-tuned by different methods

Figure 9. MMLU Evaluation results of Llama-33b fine-tuned by different methods
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B.4. Generated Code Samples in HumanEval Benchmark

Table 7. Generated Code Samples.
MODEL METHOD GENERATED SAMPLES PASSED

PROMPT

from typing import List\n\n\n
def below_zero(operations: List[int]) -> bool:\n
\"\"\" You’re given a list of deposit and withdrawal
operations on a bank account that starts with\n
zero balance. Your task is to detect if at any point
the balance of account fallls below zero, and\n
at that point function should return True.
Otherwise it should return False.\n
>>> below_zero([1, 2, 3])\n
False\n
>>> below_zero([1, 2, -4, 5])\n
True\n
\"\"\"\n",
"entry_point": "below_zero", "canonical_solution":
" balance = 0\n\n
for op in operations:\n
balance += op\n
if balance < 0:\n
return True\n\n
return False\n",
"test": "\n\nMETADATA = {\n ’author’: ’jt’,\n
’dataset’: ’test’\n}\n\n\ndef check(candidate):\n
assert candidate([]) == False\n
assert candidate([1, 2, -3, 1, 2, -3]) == False\n
assert candidate([1, 2, -4, 5, 6]) == True\n
assert candidate([1, -1, 2, -2, 5, -5, 4, -4]) == False\n
assert candidate([1, -1, 2, -2, 5, -5, 4, -5]) == True\n
assert candidate([1, -2, 2, -2, 5, -5, 4, -4]) == True\n

LLAMA-7B

VANILLA return operations[0] < 0 FALSE

FULL

if operations[-1] < 0:\n
return True\n
else:\n
return False

FALSE

LORA

if operations[0] < 0:\n
return True\n
else:\n
return False\n

FALSE

SIFT

balance = 0\n
for operation in operations:\n
balance += operation\n
if balance < 0:\n
return True\n
return False

TRUE
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