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ABSTRACT

High Dynamic Range Novel View Synthesis (HDR NVS) seeks to learn an HDR
3D model from Low Dynamic Range (LDR) training images captured under con-
ventional imaging conditions. Current methods primarily focus on static scenes,
implicitly assuming all scene elements remain stationary and non-living. How-
ever, real-world scenarios frequently feature dynamic elements, such as moving
objects, varying lighting conditions, and other temporal events, thereby present-
ing a significantly more challenging scenario. To address this gap, we propose
a more realistic problem named HDR Dynamic Novel View Synthesis (HDR
DNVS), where the additional dimension “Dynamic” emphasizes the necessity of
jointly modeling temporal radiance variations alongside sophisticated 3D trans-
lation between LDR and HDR. To tackle this complex, intertwined challenge,
we introduce HDR-4DGS, a Gaussian Splatting-based architecture featured with
an innovative dynamic tone-mapping module that explicitly connects HDR and
LDR domains, maintaining temporal radiance coherence by dynamically adapting
tone-mapping functions according to the evolving radiance distributions across
the temporal dimension. As a result, HDR-4DGS achieves both temporal radi-
ance consistency and spatially accurate color translation, enabling photorealistic
HDR renderings from arbitrary viewpoints and time instances. Extensive exper-
iments demonstrate that HDR-4DGS surpasses existing state-of-the-art methods
in both quantitative performance and visual fidelity. Source code is available at
https://github.com/prinasi/HDR-4DGS.

1 INTRODUCTION

Recent years have seen remarkable progress in Novel View Synthesis (NVS), which reconstructs
3D scene representations from multi-view images to enable photorealistic rendering from arbitrary
viewpoints. These advances have fueled applications in gaming (Niedermayr et al.| 2024), AR / VR
(Zhou et al., |2018), and autonomous driving (Wang et al.| |2024b). However, most existing NVS
methods (Gao et al., [2022; |Wu et al., 2024c) operate under two limiting assumptions: static scenes
and low dynamic range inputs. These constraints significantly hinder their applicability in real-world
environments, which often exhibit complex motion, time-varying illumination, and sensor-imposed
luminance clipping.

Dynamic Novel View Synthesis (DNVS) extends NVS to scenes with temporal dynamics, recon-
structing 4D radiance fields coherent in both space and time. Recent efforts in DNVS (Fang et al.,
2022} |Gao et al., 2021} [Tian et al., 2023; [Duan et al.l 2024; Yang et al.| 2024; (Cho et al., [2024)
have made notable progress in modeling dynamic geometry and appearance. However, they re-
main restricted to LDR imagery, which fails to capture the full spectrum of scene radiance. As
a result, these methods struggle under high-contrast conditions (e.g., direct sunlight or low-light
environments) where overexposure and underexposure lead to significant information loss. More
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fundamentally, LDR imaging is inherently misaligned with human visual perception, even under
moderate lighting conditions. While the human eye can adapt to luminance levels spanning over
ten orders of magnitude (Reinhard, 2020), typical LDR sensors cover only a narrow dynamic range.
In addition, LDR images compress radiance through nonlinear camera response functions (CRFs),
distorting local contrast, suppressing brightness gradients, and reducing color fidelity. These lim-
itations not only impair perceptual quality under extreme lighting but also degrade the realism of
ordinary scenes.

High Dynamic Range (HDR) imaging addresses these shortcomings by capturing a significantly
broader range of luminance and color. By preserving detail in both highlights and shadows and
maintaining fine-grained contrast, HDR techniques provide a closer match to the perceptual capa-
bilities of the human visual system. Recent works in HDR NVS (Huang et al., 2022;|Cai et al .| [2024;
Liu et al.| [2025a) have attempted to reconstruct HDR content from multi-exposure LDR images of
calibrated sensors. However, these methods are restricted to static scenes, implicitly assuming that
all elements remain fixed over time. In contrast, real-world HDR scenarios are inherently dynamic,
often involving moving objects, shifting illumination, and transient phenomena. These dynamics
violate the assumptions of existing HDR NVS pipelines and introduce significant challenges: non-
rigid motion and temporal variation create complex spatiotemporal inconsistencies, while the lack
of reliable luminance priors from sparse LDR observations leads to severe photometric ambiguities.

To bridge this gap, we introduce High Dynamic Range Dynamic Novel View Synthesis (HDR
DNVS), a new, more practical task that seeks to reconstruct temporally coherent HDR radiance
fields and dynamic geometry from sparse, time-varying LDR inputs. HDR DNVS demands the
joint modeling of evolving scene structure and HDR radiance, posing both geometric and photo-
metric challenges absent in prior static or LDR-constrained settings. To tackle this, we propose
HDR-4DGS, a novel framework based on Gaussian Splatting (Kerbl et al.| |2023)) and equipped
with a biologically inspired dynamic tone-mapping module. Drawing inspiration from human vi-
sual adaptation (Clifford et al., 2007, where retinal photoreceptors dynamically adjust to ambient
brightness, HDR-4DGS includes a dynamic radiance context learner that models temporal radiance
distributions. This is followed by per-channel tone-mapping functions that connect LDR repre-
sentations with HDR space in a temporally adaptive and spatially accurate manner. This module
explicitly bridges the LDR-HDR gap while maintaining radiance consistency and chromatic fidelity
across time and space. Although conceptually straightforward, our proposed model embodies an
intuitively elegant and computationally efficient design, which strategically adapts established se-
quential modeling techniques to address the core challenges of HDR DNVS with precision.

Our contributions are: (I) We introduce the HDR DNVS problem for the first time, which requires
learning 4D HDR radiance fields with dynamic geometry and temporally coherent appearance from
sparse LDR input. (I) We propose HDR-4DGS, a novel Gaussian Splatting architecture featuring
dynamic tone-mapping for adaptively bridging the LDR and HDR domains under complex spa-
tiotemporal variations. (III) To enable quantitative evaluation of HDR DNVS methods, we intro-
duce HDR-4D-Syn and HDR-4D-Real — two novel benchmark datasets comprising 8 high-fidelity
synthetic scenes and 4 real-world captured sequences, respectively. Each scene is meticulously an-
notated with ground-truth HDR images, time-varying 3D geometry, and synchronized multi-view
LDR observations. (IV) Extensive experiments show that HDR-4DGS achieves state-of-the-art per-
formance in both quantitative metrics and perceptual quality on challenging dynamic scenes.

2 RELATED WORK

Novel view synthesis (NVS) has seen transformative progress via neural rendering techniques.
Early multi-view geometric methods (Schonberger & Frahm), 2016; Wang et al., [2021)) face limi-
tations in handling occlusions, textureless regions, and computing efficiency (Jiang}, 2023)). Modern
approaches leverage continuous scene representations via deep networks, such as Neural Radiance
Fields (NeRF) (Mildenhall et al.,[2021)) and the variants (Deng et al.||2022; |[Roessle et al.| [2022; |Wei
et al.| 20215 Xu et al.| [2022) establishing coordinate-space implicit modeling for photorealistic syn-
thesis under spatial smoothness constraints. However, NeRF’s ray-marching paradigm suffers from
high computational costs (Luo et al.,|2024). In contrast, 3DGS (Kerbl et al., [2023) introduces an
efficient point-based representation by parameterizing scenes as anisotropic 3D Gaussians, decou-
pling geometry and appearance while enabling real-time rendering with complex visual effects (e.g.,
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specular highlights). Recent advances enhance 3DGS through frequency-domain supervision (Liang
et al.,[2024)), depth-regularized optimization (Chung et al., [2024} |Kung et al., 2024; L1 et al., |[2024),
and memory-efficient designs (Wang et al.| 2024c;|Chen et al., | 2024} |[Fan et al.,[2024; Lu et al.,[2024;
Yang et al.,|2025)), achieving superior rendering quality. Nevertheless, these methods predominantly
focus on static LDR scenes, limiting their applicability to real-world dynamic scenarios.

HDR novel view synthesis (HDR NVS) aims to reconstruct HDR scenes from multi-view LDR
images. Early works like HDR-NeRF (Huang et al.| [2022) extend neural radiance fields by incor-
porating an MLP-based tone-mapping module to bridge physical radiance and digital color spaces.
To realize real-time rendering, HDR-GS (Cai et al., [2024) introduces a 3DGS framework with a
neural tone-mapper that explicitly models HDR-to-LDR radiance transformations, achieving real-
time HDR rendering while surpassing NeRF-based quality. Recently, GaussHDR (Liu et al.|[2025a)
proposes to unify 3D and 2D tone mapping in 3D Gaussian Splatting to facilitate HDR render-
ing. However, a critical limitation of these methods is their exclusive focus on static scenes; none
explicitly model temporal dynamics, both in spatial and color space. Consequently, they are funda-
mentally unable to address the core challenges posed by real-world scenarios involving time-varying
geometry, non-rigid motion, or temporally evolving illumination.

Indeed, [Wu et al|(2024a) preliminarily investigated dynamic HDR reconstruction from LDR se-
quences. Interestingly, its has never carefully evaluated the HDR output, nor verifies its perfor-
mance on real-world scenes, leaving the HDR DNVS problem largely under-explored. To address
these issues, we introduce a purposed benchmark by carefully re-engineering its dataset and capture
a real-world dataset additionally, including LDR/HDR paired training imagery and HDR quanti-
tative assessment. We further propose a novel HDR DNVS model, HDR-4DGS, which delivers
significantly more accurate HDR renderings while operating an order of magnitude faster.

Dynamic novel view synthesis (DNVS) focuses on modeling dynamic scenes with time-varying
geometry and radiance. The key challenge lies in capturing intrinsic spatiotemporal correlations.
Building upon NeRF (Mildenhall et al., 2021), two primary approaches have emerged: i) implicit
/ explicit spatiotemporal representations decompose scenes into time-aware feature grids to learn
6D plenoptic functions (Cao & Johnsonl 2023} [Li et al.| [2022b; [Fridovich-Keil et al., [2023; Wang
et al.l 2023)), and ii) deformation-aware fields model motion through deformable transformations
(Pumarola et al) 2021} [Song et al. [2023; |Abou-Chakra et al.l 2024). Recent advances lever-
age 3DGS for dynamic rendering along two directions: i) deformation-based models (Wu et al.,
2024b; Kratimenos et al., [2024; Bae et al.| 2024} |Shan et al.l [2025) maintain canonical Gaussians
deformed via time-varying fields, trading precise motion tracking for temporal continuity; i) hyper-
dimensional representations (Yang et al.| [2024; |[Duan et al.l 2024) extend Gaussians to 4D by in-
troducing temporal centers and spatiotemporal rotations. However, all these methods are limited to
LDR outputs, and we extend this to high-fidelity HDR DNVS problem.

3 METHOD

Problem In HDR DNVS, we aim to learn a HDR 3D model F}, for a target dynamic scene G,
Fn: (V) — I?,,V,, that would render an HDR image IfZ,’V, for any timestamp ¢’ and viewpoint

V. To that end, we capture a set of multi-exposure LDR training images I' = {I},--- I, ... | 1.},
each I! associated with the exposure time e; sampled from the choices E = {ey,--- ,ep}, and the
camera viewpoint V; selected from @ distinct viewpoints V = {Vi,--- , Vo } where T denotes the

total timesteps and P the number of exposure time choices. We may have optional access to coupled
HDR training data I" = {I¢,--- [ I},

3.1 HDR-4DGS OVERVIEW

The HDR DNVS problem comes with additional complexity of time-evolving structures and il-
lumination as compared to HDR NVS. To overcome that, we introduce HDR-4DGS, a Gaussian
Splatting-based framework that reconstructs 4D spatiotemporal HDR radiance fields. HDR-4DGS
is composed of a generic dynamic scene representation model and a novel dynamic tone-mapping
mechanism. An overview is depicted in Fig.
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Figure 1: Overview of HDR-4DGS. (a) Input data and scene representation; (b) Our proposed
Dynamic Tone Mapper (DTM) for temporally adaptive HDR-LDR translation; (c) Loss formulation
for joint optimization of geometry, radiance, and tone mapping. ® : Dot product. ©: Concatenation.

3.2 DYNAMIC SCENE REPRESENTATION

HDR-4DGS can integrate with existing dynamic scene representation to better capture spatiotem-
poral variations. Specifically, we adopt the 4D Gaussian Splatting (4DGS) framework
2024 due to its conceptual elegance and coherent formulation of dynamic scenes.

4DGS extends the formulation of 3DGS (Kerbl et all, [2023)) by introducing a temporal dimension,
allowing pixel observations I to depend not only on spatial coordinates (u, v) in the image plane but
also on an explicit timestamp ¢. This reformulates the original 3DGS framework as:

(u,v,t) Zpl pi(u, v|t) e H 1—p,(t)p;(u,v|t)ey), (1)

where p; (t) is the marginal probability over time ¢, p;(u, v|t) is the conditional spatial probability
given t, such that p; (u, v, t) = p;(u,v|t) p;(t), and N denotes the number of Gaussian points. Time
and space are treated equally to form a unified 4D Gaussian model, where each Gaussian’s mean
is denoted by pt = (fa, fy, H=, (t¢), and its covariance matrix is defined by ¥ = RSSTRT with
appropriately extended rotation matrix R and scaling matrix .S. The marginal p(t) follows a one-
dimensional Gaussian distribution: p(t) = N (¢; ¢, X¢), where A/(+) denotes a normal distribution.

Additionally, 4DGS incorporates a 4D extension of spherical harmonics (SH) to represent the tem-
poral evolution of appearance. The view-dependent color c; is modeled using a combination of 4D
spherical harmonics, constructed by integrating traditional SH with Fourier series. This design en-
ables dynamic modeling of radiance variations across time, supporting the construction of a radiance
bank that facilitates HDR-LDR translation.

In our context, we extend the original color representation space of 4DGS from LDR colors to HDR
colors, enabling the accurate synthesis of high-fidelity radiance fields that capture a broader range
of luminance variations inherent in real-world dynamic scenes.
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3.3 DYNAMIC TONE MAPPER

To address the challenge of maintaining temporal radiance consistency in dynamic scenes, we pro-
pose a novel dynamic tone mapper (DTM), as shown in Fig. [T(b). DTM explicitly connects the
HDR and LDR domains by dynamically adapting per-channel tone-mapping functions in response
to evolving temporal radiance patterns. Given a timestamp ¢, exposure time e;, and current HDR
color attributes c? € RN*3 DTM translates HDR colors into their LDR counterparts:

c; =DTM(c;, e, t) 2
where ¢, € RV >3 denotes the resulting tone-mapped LDR colors.
Leveraging 4DGS’s explicit radiance modeling through 4DSH, DTM first constructs a radiance bank

by storing per-timestamp mean HDR color statistics. The radiance signature r! for each timestamp
is calculated as the average over all N Gaussian points:

1 N
X = ;cgﬁt €R?. 3)

A sliding window of k previous frames collects the sequence {r" , .}, which is processed by a
Dynamic Radiance Context Learner (DRCL) to generate a radiance context embedding:

f, = DRCL(r! ,.,) € RY, “4)

where d denotes the dimension of this context embedding. DRCL can be generally realized by any
existing sequence model such as RNN (Salehinejad et al.| [2017), LSTM (Staudemeyer & Morris,
2019), GRU (Cho et al.,|2014) or Transformer (Vaswani et al.,[2017).

To perform adaptive tone mapping, we concatenate the scaled HDR colors (converted to the loga-
rithmic domain) with the exposure time and radiance context embedding:

ci = go([log c,}f + log ey, f]), (5)

where gy is the per-channel tone-mapping function and [-] denotes concatenation. Scaling HDR col-
ors by exposure time aligns with the principles of the CRF, which models the mapping between scene
radiance and observed intensity as exposure-dependent. This normalization ensures consistent ap-
pearance modeling across varying exposure settings and facilitates stable learning. By incorporating
f;, DTM enables radiance context-aware HDR-to-LDR translation, improving radiance consistency
across time in dynamic scenes.

3.4 MODEL OPTIMIZATION

The overall objective function used to optimize HDR-4DGS is defined as:
Liotal = Liar + L, (6)

where L4, denotes the loss computed in the LDR domain, and Lpq, refers to the HDR reconstruction
loss. The weighting factor « is set to zero if HDR ground truth is unavailable during training.

To mitigate overfitting associated with directly applying 3D tone mapping on HDR Gaussian fields
(Liu et al.l 2025a), we adopt an extra pixel-level supervision in addition to existing ray-level su-
pervision over the dynamic tone mapper, which introduces additional constraints to facilitate robust
CRF learning: I}, = gg([log I}, + log ey, f]), where I}', ), is the HDR image rasterized by
the HDR Gaussian model, and Iff,Q p 1s the tone-mapped LDR image at time ¢. During training, we

supervise both the tone-mapped LDR image Ié’z p and the LDR image Ii$3 p rendered directly from
the LDR model. This dual supervision improves the learned tone mapper’s generalization capability,
as validated in our ablation (Tab. [5).

We define the image reconstruction loss as a weighted combination of L; and D-SSIM loss (Huang
et al., [2022; Nilsson & Akenine-Moller, 2020):

L(I;,12) = (1 =X)Ly (I1,I2) + ALpssim (L1, Iz), (7N
where I,/I5 are paired and A balances their contributions. Accordingly, the losses are defined as:
Ligr = E(IigDv L)+ E(Ié,:st L), Ln= E(iZ2D7 1), (®)
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Table 1: Results on HDR-4D-Syn. *: HDR only supervision; : LDR+HDR supervision.

HDR-4DGS' (Ours) | LDR+HDR | 30.40 0.914 0.097 30.69 0.927 0.097 76.86 48.63

Row | Method ‘ Supervision HDR LDR Training  Inference
PSNRT SSIMtT LPIPS| | PSNRT SSIM{ LPIPS] | time (min) speed (fps)

1 HexPlane LDR - - - 14.20 0.564 0.551 28.45 1.60
2 HexPlane* HDR 24.89 0.771 0.377 - - - 59.64 1.94
3 4DGS LDR - - - 13.92 0.549 0.281 116.25 75.82
4 4DGS* HDR 22.40 0.650 0.345 - - - 44.58 172.61
5 HDR-NeRF LDR 8.54 0.062 0.552 21.66 0.664 0.553 212.83 0.061
6 HDR-GS LDR 4.64 0.158 0.645 6.45 0.272 0.423 13.88 380.38
7 HDR-GS' LDR+HDR 14.33 0.360 0.482 10.84 0.372 0.378 22.50 255.21
8 HDR-HexPlane LDR 14.70 0.649 0.287 32.59 0.912 0.145 37.83 1.61
9 HDR-HexPlane' LDR+HDR | 29.30 0.844 0.223 31.09 0.896 0.185 54.31 1.33
10 HDR-4DGS (Ours) | LDR 25.88 0.865 0.076 33.16 0.949 0.055 69.38 40.80
11

et d

HDR-HexPlane HDR-4DGS round Truth HDR;HexPlane HDR-4DGS Ground Truth

Figure 2: Visual comparison of HDR DNVS on HDR-4D-Syn.
where I is the ground-truth LDR image. The tone-mapped HDR images i?} 9p and I} are derived

from rendered HDR image Iﬁ »p and ground-truth HDR image I7, respectively, using p-law com-

log (14 p-norm(I"))
o : log(1tu) ) : .
ization. This transformation aligns HDR and LDR domains for consistent comparison. Notably, we

choose the LDR images Ii,3 p rasterized by Gaussian Splatting as our final LDR rendering results.

pression: 1" = where p is a compression factor and norm(-) is min-max normal-

4 EXPERIMENTS

Datasets. Due to no benchmarks for HDR DNVS, we introduce two complementary datasets: HDR-
4D-Syn and HDR-4D-Real. HDR-4D-Syn consists of 8 synthetic dynamic scenes adapted from the
dataset by (2024a). It features multi-exposure video sequences captured under varying
exposure settings, accompanied by synchronized multi-view LDR video streams. Corresponding
HDR ground truth frames are re-synthesized to ensure high-fidelity supervision and evaluation. The
real-world dataset, HDR-4D-Real, captures 4 dynamic indoor scenes in real-world settings. Videos
are recorded under three distinct exposure times using six synchronized iPhone 14 Pro devices.
Ground truth HDR images are generated UltraFusion (Chen et al) 2025)), ensuring realistic and
high-quality HDR reconstructions. Further details are provided in Appendix [A-T]

Implementation details. HDR-4DGS is trained with the Adam optimizer using the same parameters

as 4DGS (Yang et al., [2024). For our dynamic tone mapper, the learning rate is set to 5 x 1074,
and the dimension of temporal radiance context features is set to 2. We adopt the same structure of

per-channel tone-mapping functions in our dynamic tone mapper as HDR-GS (Cai et al.| [2024)) and
GRU (Cho et all 2014) is adopted to implement the dynamic radiance context learner by default.
For equation |7} A is set to 0.2, and « is set to 0.6 if HDR ground truth is available.

Evaluation metrics. We adopt the PSNR and SSIM as quantitative metrics, LPIPS as an additional
perceptual metric. Following prior works (Cai et al., 2024; [Huang et al.| 2022} [Liu et al.| 20254), we
apply Photomatix Pro (HDRsoft Team| [2025) to convert HDR images into displayable LDR images
for qualitative visualization and fair comparison. Futhermore, training time and inference speed
(fps) are reported. Results are averaged over all scenes.

4.1 QUANTITATIVE EVALUATION

Competitors. We compare HDR-4DGS with latest alternatives: HexPlane (Cao & Johnson, |2023)),
4DGS (Yang et all, 2024), HDR-HexPlane (Wu et al), [2024a), HDR-NeRF (Huang et al., 2022)
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Table 2: Results on HDR-4D-Real. *: HDR only supervision; : LDR+HDR supervision.

Row | Method ‘ Supervision HDR LDR Training  Inference
PSNRT SSIM?T LPIPS| | PSNRT SSIM?T LPIPS| | time (min) speed (fps)
1 HexPlane LDR - - - 13.82 0.551 0.576 25.50 0.44
2 HexPlane* HDR 32.76 0.893 0.242 - - - 28.24 0.49
3 4DGS LDR - - - 7.99 0.072 0.620 42.50 290.57
4 4DGS* HDR 7.85 0.220 0.534 - - - 40.75 307.85
5 HDR-NeRF LDR 14.60 0.711 0.411 8.326 0.029 0.943 212.25 0.17
6 HDR-GS LDR 13.27 0.783 0.261 20.52 0.840 0.148 38.25 73.30
7 HDR-GS' LDR+HDR 29.40 0.936 0.097 20.85 0.834 0.182 56.50 64.88
8 HDR-HexPlane LDR 9.306 0.672 0.353 27.44 0.748 0.353 36.98 0.35
9 HDR-HexPlane' LDR+HDR 33.03 0.904 0.192 28.12 0.767 0.307 44.43 0.24
10 | HDR-4DGS (Ours) | LDR 14.50 0.884 0.200 26.88 0.825 0.221 98.75 35.27
11 HDR-4DGS' (Ours) | LDR+HDR | 25.13 0.909 0.162 30.69 0.927 0.097 76.86 48.63

excavator

HDR-HexPlane HDR-4DGS Ground Truth

Figure 3: Visual comparison of HDR DNVS on HDR-4D-Real.

and HDR-GS 2024). HDR-HexPlane preliminarily explores dynamic HDR synthesis by
extending HexPlane with exposure conditioning and a static Sigmoid tone mapper. However, it lacks
HDR supervision and omits explicit evaluation of HDR outputs, all of which have been addressed
here for both fair comparison and completeness.

Although HDR-GS and HDR-NeRF were originally designed for static scenes, we adapt them on
dynamic scenes to underscore the importance of explicit spatial modeling in dynamic HDR recon-
struction. All models are tested with their official implementations to ensure optimal performance.

Results. Tab. [T] and Tab. [2] present the results for both LDR and HDR DNVS on HDR-4D-Syn
and HDR-4D-Real, respectively. HDR-NeRF encounters numerical instability during training when
both LDR and HDR supervision are applied simultaneously, frequently leading failed optimization.
Meanwhile, 4DGS struggles to reconstruct HDR scenes on HDR-4D-Real under HDR-only super-
vision, as ground-truth HDR images generated via 2D methods lack multi-view consistency. We
highlight the following key findings, focusing on HDR DNVS performance:

(I) Superior HDR DNVS quality. HDR-4DGS consistently outperforms all competing methods,
including HDR-NeRF, HDR-GS, and HDR-HexPlane for HDR DNVS on HDR-4D-Syn, owing pri-
marily to our explicit spatiotemporal HDR radiance modeling and the integration of a dynamic tone
mapping mechanism that preserves temporal radiance coherence across views and exposures. In
contrast, HDR-GS and HDR-NeRF rely on static tone mappers, failing to accurately bridge the HDR
and LDR domains; while HDR-HexPlane achieves higher PSNR on HDR-4D-Real, we attribute this
largely to the noise in HDR ground truth and the known limitations of PSNR as a metric, particu-
larly its tendency to favor overly smooth or blurred reconstructions 2020), as visually
demonstrated in Fig. 0] As shown in Fig. [3|and videos in the supplementary material, HDR-4DGS
preserves significantly sharper spatial structure and more accurate color details than all competitors.
Although HDR-4DGS exhibits structural degradation in movable regions, we attribute this limitation
to the inherent expressive capacity of our base representation model, 4DGS, rather than instability in
HDR-4DGS’s handling of dynamic ranges. For further visual evidence, please refer to Fig. [I0]and
Fig. [TT]in the Appendix where the vanilla 4DGS 2024) suffers from even more severe
structural distortion and geometry loss. In contrast, our HDR-4DGS alleviates these degradations to
a noticeable extent, supporting the effectiveness of the proposed HDR modeling strategy.

(II) Effectiveness of dynamic tone mapping. Our dynamic tone mapper plays a central role in
enhancing HDR synthesis. By modeling exposure-dependent radiance dynamics with temporal con-
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Figure 4: Temporal variation with learned tone mapping patterns by DTM in two scenes.

text, it enables precise HDR-LDR translation and promotes stability during training and inference.
This proves essential not only for high-fidelity HDR rendering but also for generalizing under vary-
ing lighting conditions.

(III) Training flexibility and robustness. HDR-4DGS exhibits strong resilience across diverse
supervision settings. While both HDR-4DGS and HDR-HexPlane benefit from joint LDR-HDR
supervision, HDR-4DGS maintains competitive performance even with LDR-only supervision. This
highlights the ability of our dynamic tone mapper and radiance context learner to extract and exploit
temporal radiance correlations, enabling accurate HDR reconstruction even without HDR labels.

(IV) Practical efficiency. In addition to rendering quality, HDR-4DGS delivers substantial effi-
ciency improvements. It achieves up to 36 x and 200 faster inference compared to HDR-HexPlane
while preserving competitive training times on HDR-4D-Syn and HDR-4D-Real, respectively. This
efficiency gain is critical for scaling HDR synthesis to real-world, dynamic scenarios where run-
time performance is a key constraint. Note that adding HDR supervision leads to faster inference
for HDR-4DGS (Row 10 v.s. 11 in Tab. [T]and Tab. [2) since using HDR signal would effectively
compress the model, as there is no need for the model to generate redundant Guassian points to
approximate the transformation from LDR to HDR.

Overall, the results confirm that HDR-4DGS sets a new state of the art in HDR DNVS by jointly
optimizing HDR fidelity, dynamic tone adaptation, and inference efficiency both on synthetic and
real datasets.

4.2 DYNAMICS IN TONE MAPPING CAPTURED

To verify that our DTM learns dynamic rather than static tone mapping, we analyze scenes with pro-
nounced motion-induced brightness changes (e.g., Airplane and Bed). After training HDR-4DGS,
we extract the learned DTM module along with the radiance bank, both jointly define a dynamic
mapping from HDR radiance to LDR counterpart, with condition on the time. To assess the dynam-
ics of this learned mapping, we then sample different timestamps and visualize the corresponding
tone-mapping curves over the HDR intensity, ass illustrated in Fig.

We observe that (I) all curves are monotonically increasing (consistent with CRF definition (Huang
et al., 2022)) yet exhibit scene-specific patterns, indicating adaptive tone reproduction; (II) In the
Airplane scene, the red channel curve consistently lies above green and blue, reflecting the scene’s
dominant reddish tone. As the airplane moves from shadows to brighter regions, curves shift upward
over time, tracking increasing luminance; (IIT) In the Bed scene, curves gradually descend as the
bed unfolds and ambient lighting dims. These temporal dynamics confirm DTM’s ability to adapt
tone mapping to evolving lighting conditions and scene content.

4.3 QUALITATIVE RESULTS

While PSNR, SSIM, and LPIPS are commonly used metrics, they may not fully capture perceptual
quality, necessitating qualitative visual evaluation. As shown in Fig. [2] HDR-HexPlane fails to
reconstruct extreme radiance details, while HDR-4DGS successfully captures more intricate struc-
tures. From Fig. (3| it can be observed that HDR-GS struggles to reconstruct dynamic objects, and
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Figure 5: Comparison of HDR renderings’ temporal radiance variations.

HDR-HexPlane tends to produce over-smoothed results. In contrast, HDR-4DGS effectively repre-
sents the dynamic scene while preserving finer details. Meanwhile, temporal radiance consistency is
also challenged by HDR-HexPlane, while HDR-4DGS synthesizes spatiotemporally coherent HDR
results, as illustrated in Fig. [5] Please refer to Appendix [A.2]for more visualization comparisons.

4.4 ABLATION STUDY

We conduct ablation studies on the HDR-4D-Syn dataset (see Appendix [A.2|for more experiments).

Effect of joint HDR reconstruction. To validate the effect of our DTM, we train 4DGS on single-
exposure LDR images (exposure time 2.0s) and convert the synthesized LDR images of novel views
to HDR images with a variety of existing Single HDR Image Reconstruction models: EIN
[2025b), IntrinsicHDR 2024), KPNet (Wang et al| [2024a), KUNet 2022).

Tab. [3] shows that the two-stage pipeline

significantly underperforms our HDR-4DGS  Tyble 3: Results of 4DGS with independent HDR.
since converting single-exposure LDR inputs
to HDR is inherently ill-posed where the miss- ~ Method ‘
ing radiance information cannot be reliably re-  —posTEN e
covered in isolation from the scene reconstruc-  4DGS + InurinsicHDR
tion process. Our integrated approach instead  4pgs + KUNet
jointly optimizes radiance representation and _HDR-4DGS (Ours
novel-view synthesis, establishing its necessity and irreplaceability for high-fidelity HDR scene re-
construction.

HDR
PSNR{ SSIM{ LPIPS |

17.75 0.770 0.185
11.63 0.673 0.251
20.92 0.813 0.197
19.00 0.715 0.172
25.88 0.865 0.076

Effect of dynamic tone mapper. We conduct comparative experiments against an MLP variant
(part of HDR-GS 2024) and HDR-NeRF (Huang et all 2022), used for static tone-
mapping), two classical tone mappers Durand (Durand & Dorseyl, [2000) and Reinhard
and the static tone mapper adopted by HDR-HexPlane. Additionally, ablation studies
are performed to assess the contribution of extra pixel-level supervision (see Sec. [3.4). Key findings
are: (I) Tab. f]reveals that when replacing our dynamic tone mapper with other existing counterparts,
we observe significant performance degradation. This confirms that explicit modeling of temporal
radiance variations through our dynamic tone mapper is critical for maintaining HDR fidelity while
existing mappers are inferior in doing that. Further, complementary ablation studies with respect
to the scene representation verify that the observed performance gains are primarily attributable to
our dynamic tone mapper, rather than 4DGS alone. (II) Disabling the pixel-level supervision leads
to performance reduction (PSNR decreases by 1.03 dB), as shown in Tab. [5] This demonstrates
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Baseline

HDR-4DGS

Figure 6: Continuous radiance variations comparison of HDR DNVS. Photomatix Pro (HDRsoft
Team), |2025) is used to facilitate the comparison of radiance transition.

that joint optimization with both ray-level and pixel-level constraints provides essential supervisory
signals for learning physically plausible tone mapping operators.

In addition, to rigorously evaluate the efficiency of our proposed DTM in preserving continuous
radiance variations, we conduct ablation studies by substituting the DTM with an MLP baseline.
Specifically, we synthesize temporally coherent HDR sequences for a dynamic scene using both
architectures, as shown in Fig. [f] (also see Fig. where our HDR-4DGS with DTM achieves
superior temporal coherence in radiance transitions compared to baseline approach, validating the
effectiveness of our DTM in preserving HDR coherence in dynamic domain.

Table 4: Ablation on dynamic tone mapping. Table 5: Analysis of pixel-level supervision.
Method | PSNRT SSIM{ LPIPS| rm—— TR

Reinhard (Reinhard et al.|[2023) 22.10 0.812 0.210 Supervision | PSNRT SSIM?T  LPIPS|

Durand (Durand & Dorsey||2000) 22.85 0.825 0.195

MLP (HDR-GS) 2392 0841 0142 No %‘S‘-gg 8%22 8-})?2

DTM (Ours) 2588  0.865  0.076 Yes : - -

Temporal length. As described in Sec. [3.3] our proposed dynamic tone mapper (DTM) extracts
radiance cues from the past k timestamps in the radiance bank using a sliding window and a
dynamic radiance context learner. The hyper-parameter k

governs the trade-off between temporal context coverage and  Taple 6: Analysis of the temporal
computational efficiency: larger k captures extended radi- context length.

ance dynamics but risk redundancy and noise sensitivity (e.g., TR
scenes with large, rapid motions or complex illumination dy-  Row ‘ k ‘ PSNRT SSIMt LPIPS)
namics), while smaller k prioritizes immediate temporal cues

< 1 5 24.74 0.852 0.092
at the cost of modeling complex patterns (e.g., scenes char- % %8 %g;g 8.32(15 8.822
acterized by minor motion or slow illumination variation). 2 130 2420 085 0094

Through ablation experiments with k, as shown in Tab. [6]
we find that k£ = 20 achieves optimal performance, balancing responsiveness to dynamic scenes
with practical efficiency constraints.

5 CONCLUSION

This work introduces High Dynamic Range Dynamic Novel View Synthesis (HDR DNVS), address-
ing a critical limitation in prior HDR synthesis restricted to static scenes. We present HDR-4DGS,
a novel framework designed to reconstruct temporally coherent HDR radiance fields and dynamic
geometry from sparse, time-varying LDR observations. The key of HDR-4DGS lies in its dynamic
tone mapping module, which leverages a radiance bank and a dynamic radiance context learner
to drive per-channel tone-mapping functions that adaptively bridge HDR and LDR domains across
time. Extensive experiments demonstrate that HDR-4DGS significantly outperforms prior methods
in HDR rendering fidelity, temporal radiance consistency, and computational efficiency.

10
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6 ETHICS STATEMENT

This work is focused on advancing the technical capabilities of dynamic scene reconstruction and
HDR rendering from standard LDR video inputs. The proposed method, HDR-4DGS, is intended
for research and non-malicious applications such as virtual reality, cinematic content creation, and
immersive telepresence.

The synthetic data used in our experiments are generated in controlled simulation environments, and
the real-world scenes in our dataset were captured with the informed consent of all participants and
property owners. No personally identifiable information is included in the released data. We do
not anticipate direct negative societal impacts from this research; however, as with any novel view
synthesis technology, potential misuse (e.g., generating misleading visual content) could arise if de-
ployed without appropriate safeguards. We encourage responsible use and advocate for transparency
in synthetic media generation.

7 REPRODUCIBILITY STATEMENT

We are commiitted to the reproducibility of HDR-4DGS. The complete code will be publicly released
upon final acceptance of this paper. To facilitate verification prior to code release, we provide a
thorough description of our method in Sec. 3] and comprehensive implementation details in Sec. f]
and Appendix[A.2] Together, these sections cover all essential components of HDR-4DGS, enabling
independent replication of our results.
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A APPENDIX

A.1 DATASETS

This section elaborates on the HDR-4D-Syn and HDR-4D-Real datasets introduced in this work.
As summarized in Tab. [/| the HDR-4D-Syn dataset is synthesized with Blender which comprises
four monocular acquisition configurations (Airplane, Deer, Lego and Tank) where distinct exposure
times are applied across viewpoints, and four multi-view stereo configurations (Hook, Jump, Mutant
and Standup) characterized by multi-exposure LDR images capture per viewpoint. This design en-
ables comprehensive evaluation of dynamic scene reconstruction under varying lighting conditions
and camera setups. Notably, we explicitly use different exposure times rather than exposure value
to render multi-exposure images, which enables precise control over radiance sampling intervals,
aligning with recent paper conventions. Fig. [/|shows some example HDR images and LDR images
with different exposure times of different scenes in HDR-4D-Syn.

Table 7: Statistics of HDR-4D-Syn, HDR / LDR means the number of HDR / LDR images.

Training Testing . Exposure

Scenes | prames HDR LDR | Frames HDR LDR | Cameras | Resolution | ‘po ")
Airplane | 280 280 280 | 70 70 70 1 800x800 | 0.125/2/32
Deer 80 80 80 20 20 20 1 800x800 | 0.125/2/32
Hook 28 280 840 4 40 120 10 800x800 | 0.125/2/32
Jump 21 210 630 3 30 90 10 800x800 | 0.125/2/32
Lego 240 240 240 | 60 60 60 1 800x800 | 0.125/2/32
Mutant | 135 405 405 | 14 2 0 3 800x800 | 0.125/2/32
Standup | 51 255 765 8 40 120 5 800x800 | 0.125/2/32
Tank 136 136 136 | 34 34 34 1 800x800 | 0.125/2/32

As for the HDR-4D-Real dataset, to ensure capture accuracy and stability, we employed a fixed
multi-camera setup with six cameras securely mounted on tripods. Prior to introducing any dynamic
elements, we captured multi-view static images of the empty scene. These static images were pro-
cessed using COLMAP (Schonberger & Frahm, 2016) to compute precise intrinsic and extrinsic
camera parameters, establishing a stable and accurate spatial reference frame. Crucially, all camera
positions and optical parameters were rigorously maintained throughout the entire dynamic capture
sequence, eliminating the need for recalibration and guaranteeing consistent geometric alignment
across all timestamps. For each camera and each timestamp within the dynamic sequences, we
captured three images with different exposure times (e.g., 1/120s, 1/50s, and 1/20s), enabling the
subsequent synthesis of HDR ground truth. Finally, we adopt UltraFusion (Chen et al., 2025)) to
synthesize the corresponding HDR ground truth from multi-exposure LDR images. Tab. [§|summa-
rizes the statistics of HDR-4D-Real, and Fig. [§|shows some example HDR images and LDR images
with different exposure times of different scenes.

Remark. It is noted that using identical synchronized cameras is indeed common practice in dy-
namic scene capture, as evidenced by major datasets like the Neural 3D Video Dataset (L1 et al.,
2022al) (18-21 synchronized cameras), Google Immersive Dataset (Broxton et al.,|2020) (46-camera
rig), and Technicolor Light Field Dataset (Sabater et al., 2017) (4x4 synchronized array). This
approach is both a methodological convention and a practical necessity—synchronization ensures
temporal consistency critical for dynamic reconstruction, while identical camera models eliminate
radiometric calibration complexities from varying CRFs. Asynchronous capture or mixed camera
setups would introduce significant additional challenges, including temporal misalignment artifacts,

Table 8: Statistics of HDR-4D-Real, HDR / LDR means the number of HDR / LDR images.

Training Testing . Exposure
Scenes ‘ Frames HDR LDR ‘ Frames HDR LDR ‘ Cameras ‘ Resolution ‘ Time (s)
Bed 2 132 317 | 2 19 1 6 | 4032x3024 | 0.004/0.008/0.017
Excavator | 40 240 576 | 40 144 144 6 | 4032x3024 | 0.002/0.008/0.033
Tank 20 40 96 | 20 24 24 2 | 4032x3024 | 0.007/0.02/0.05
Toys 20 40 9% | 20 24 24 2 | 4032x3024 | 0.008/0.02/0.1

16



Published as a conference paper at ICLR 2026

Airplane

Lego

-
=
<
g
E
=

Tank

(@ ‘ (b) © (d (© ®

Figure 7: Comparative visualization of LDR and HDR image sequences across dynamic scenes
(Airplane, Lego, Mutant, Tank). Each row corresponds to a distinct scene, while columns (a) / (c) /
(e) present LDR images captured at varying exposure times and temporal intervals. Columns (b) /
(d) / (f) illustrate the HDR counterparts. e; : Exposure time.

e, = 0:004s er =0.008s

Bed

Excavator

(2) (b) (©) (d)

Figure 8: Dataset composition for dynamic scenes (Bed and Excavator) of HDR-4D-Real. Each row
corresponds to a distinct scene, with columns (a)—(c) displaying LDR images captured at varying
exposure settings but synchronized temporal instances. Columns (d) presents the corresponding
HDR images at matching temporal frames. e, : Exposure time.

inconsistent motion blur, and complex cross-camera radiometric calibration that could obscure the
core evaluation of HDR reconstruction capabilities. While robustness to such real-world variations
represents valuable future work with extra challenges, this work focuses on common practice aligned
with established conventions in the field.

A.2 ADDITIONAL EXPERIMENTS

Implementation details. Since Structure-from-Motion (SfM) (Schonberger & Frahm, [2016)) strug-
gles to perform reliably on dynamic monocular videos, we adopt different initialization strategies
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(a) HDR-HexPlane (b) HDR-4DGS (c¢) Ground Truth

Figure 9: PSNR prefers over-smooth or blurry images. HDR images are tone-mapped by Photomatix

Pro (HDRsoft Team|, 2025).

for synthetic and real-world scenes. Specifically, we randomly initialize 5 x 10 Gaussians for each
synthetic scene, while for real-world scenes, we initialize the Gaussians using a dense reconstructed
point cloud and and the input images are downsampled by a factor of 4. In both cases, we maintain
the same number of training iterations as 4DGS 2024). We conducted all the experi-
ments on a single NVIDIA RTX 4090 GPU.

Ablation study of the design of dynamic radiance context learner. The temporal radiance
variation modeling constitutes a critical component of our dynamic tone mapper, as the tem-
poral coherence of radiance decomposition directly influences HDR rendering performance.
To systematically evaluate architectural suitability,

we implement the dynamic radiance context learner Table 9: Analysis of DRCL design.

with multiple sequence models and quantitatively

compare their effectiveness. As shown in Tab. [9] Network \ PSNR? SV LPIPS |
while Transformer-based modules demonstrate the- RNN {Salehinejad et 2563 0847 0.100

12017
& Morris{2019 25.53 0.845 0.106
%

25.88 0.865 0.076

et a].]2017| 25.06 0.817 0.101

oretical advantages in long-term dependency model- GRU {Cho T ETT
ing [2023), our experiments reveal supe- ‘ ‘

rior performance when employing GRU. This observation aligns with recent findings in sequence
feature extraction, where GRU exhibits better efficiency in capturing local temporal patterns

2023).

Additional visualization results. Fig. and Fig. [I] provide additional visual comparisons of
DNVS performance on the HDR-4D-Syn and HDR-4D-Real datasets. It is observed that 4DGS
(Yang et all, [2024) consistently struggles to preserve fine-grained details and frequently exhibits
structural degradation in movable regions. In contrast, our HDR-4DGS demonstrably retains su-
perior detail fidelity, even when employing 4DGS as its underlying representation model. This
outcome further corroborates the efficacy of our proposed DTM in enhancing detail preservation, as
thoroughly discussed in Sec. [3.3]

Fig. and Fig. [I3] present additional HDR DNVS rendering results on the HDR-4D-Syn and
HDR-4D-Real datasets, respectively. Qualitative comparisons reveal that HDR-4DGS consistently
preserves fine structural details and generates visually compelling renderings. In contrast, HDR-
HexPlane tends to produce spatially blurred regions, while HDR-GS exhibits significant failure in
reconstructing dynamic content, resulting in incomplete renderings.

Similarly, Fig. [T4]and Fig. [T3]illustrate the LDR DNVS results on the same datasets. HDR-4DGS
demonstrates superior color fidelity and detail retention under LDR conditions. Conversely, HDR-
HexPlane again suffers from noticeable blurring artifacts, and HDR-GS fails to accurately recover
scene chromaticity, further compromising its ability to render dynamic objects with photometric
coherence.

Furthermore, accurate rendering of continuous radiance distributions in HDR DNVS is essential for
preserving high-fidelity radiance variations across complex lighting conditions, which often occur
in the real-world dynamic scenes. As demonstrated in Fig. [T6], our HDR-4DGS with dynamic tone
mapper featured by a dynamic radiance context learner achieves superior temporal coherence in
radiance transitions compared to baseline approaches, effectively capturing smoother details while
maintaining photometric consistency. Meanwhile, Fig. provides additional ablation study re-
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Figure 10: Additional visual comparison of DNVS on HDR-4D-Syn.

excavatof

4DS HDR-4DGS Ground Truth
Figure 11: Additional visual comparison of DNVS on HDR-4D-Real.

sults of continuous radiance variation comparisons of HDR DNVS, which again, demonstrate the
effectiveness of our method.

A.3 LIMITATIONS

While effective, our approach currently builds upon the existing 4DGS representation, which was
not specifically designed for HDR content. A promising direction for future work is to develop a
scene representation explicitly tailored to HDR 4D scenes which incorporats physically grounded
priors or adaptive radiance bases to better capture extreme illumination variations and enforce long-
range temporal coherence. Another key limitation is the use of a fixed temporal context window
in our dynamic tone mapper; an adaptive mechanism that modulates the receptive field based on
motion magnitude or radiance variance could significantly improve both computational efficiency
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Figure 12: Additional visual comparison of HDR DNVS on HDR-4D-Syn.

HDR-HexPlane HDR-4DGS Ground Truth

Figure 13: Additional visual comparison of HDR DNVS on HDR-4D-Real.
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Figure 14: Visual comparison of LDR DNVS on HDR-4D-Syn.
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Figure 15: Visual comparison of LDR DNVS on HDR-4D-Real.

Baseline

HDR-4DGS

Time

Figure 16: Additional ablation study results of continuous radiance variation comparisons of HDR
DNVS on HDR-4D-Syn.

and reconstruction accuracy. Moreover, when foreground and background share similar appear-
ance (e.g., scene jump in HDR-4D-Syn), HDR-4DGS may exhibit suboptimal color reproduction
or spatial blurring at dynamic boundaries, suggesting that explicit modeling of semantic or motion
boundaries could further disambiguate dynamic content and enhance radiometric consistency across
complex scene changes.

A.4 THE USAGE OF LARGE LANGUAGE MODELS (LLMS)

We clarify that the use of LLMs in this work is strictly limited to polishing the language and pre-
sentation of the manuscript. For instance, the original draft description of our datasets in Sec. [
read:
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Figure 17: Additional continuous radiance variation comparisons of HDR DNVS on HDR-4D-Syn.

“To address the lack of standardized benchmarks for HDR DNVS, we introduce two novel datasets
HDR-4D-Syn and HDR-4D-Real. The synthetic dataset, HDR-4D-Syn, comprising 8 synthetic dy-
namic scenes, is based on the dataset proposed by and features videos captured
under multi-exposure exposure settings, accompanied by synchronized multi-view LDR video se-
quences, and corresponding HDR ground truth is re-synthesized. The real-world dataset, HDR-
4D-Real, consists of 4 real-world indoor dynamic scenes and videos captured under three different
exposure times with six iPhone 14 Pro devices, where corresponding HDR images are obtained with

UltraFusion 2025).”

This raw draft was subsequently refined for clarity, grammar, and academic tone — the revised
version appearing in the final manuscript reflects only linguistic improvements, with no alteration to
technical content or factual claims.
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