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Abstract

Unintended dataset biases typically exist in ex-
isting Emotion Recognition in Conversations
(ERC) datasets, including label bias, where
models favor the majority class due to imbal-
anced training data, as well as the speaker and
neutral word bias, where models make unfair
predictions because of excessive correlations
between specific neutral words or speakers and
classes. However, previous studies in ERC gen-
erally focus on capturing context-sensitive and
speaker-sensitive dependencies, ignoring the
unintended dataset biases of data, which ham-
pers the generalization and fairness in ERC. To
address this issue, we propose a Training-Free
Debiasing framework (TFD) that operates dur-
ing prediction without additional training. To
ensure compatibility with various ERC models,
it does not balance data or modify the model
structure. Instead, TFD extracts biases from
the model by generating counterfactual utter-
ances and contexts and mitigates them using
simple yet empirically robust element-wise sub-
traction operations. Extensive experiments on
three public datasets demonstrate that TFD ef-
fectively improves generalization ability and
fairness across different ERC models'.

1 Introduction

Emotion recognition in conversations (ERC) has
garnered substantial research interest in recent
years (Mao etal., 2021; Xie et al., 2021; Jiang et al.,
2022; Tu et al., 2023b). This attention stems from
its promising applications in various domains, in-
cluding recommendation systems and dialogue gen-
eration (Tu et al., 2022a). ERC aims to identify the
emotion of each utterance in conversations. Current
efforts primarily focus on modeling context- and
speaker-sensitive dependencies (Lian et al., 2021).
This includes recurrent-based network (Hazarika
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Figure 1: The probability distribution of different speak-
ers and neutral words, confirms various biases in ERC.

et al., 2018; Majumder et al., 2019; Ghosal et al.,
2020; Jiao et al., 2020; Li et al., 2022), transformer-
based network (Zhong et al., 2019; Lian et al.,
2021; Shen et al., 2021a; Ong et al., 2022), and
graph-based network (Ghosal et al., 2019; Shen
et al., 2021b; Saxena et al., 2022).

Although these endeavors have achieved satis-
factory results, they all overlook unintended biases
present in the datasets, thereby impeding their gen-
eralization capabilities and fairness (Goyal et al.,
2017; Niu et al., 2021). Different from other tasks,
in ERC, these biases may manifest at both the ut-
terance level, such as label and speaker biases, as
well as the word level, like the neutral word bias.
Label bias, as depicted in Fig. 1, is evident in
the EmoryNLP dataset’s training set, where 32.9%
(2485 utterances) are labeled as ‘neutral’ and 6.3%
(474 utterances) are labeled as ‘sad’. Numerous
prior studies (Dixon et al., 2018; Zhang et al., 2020)
have indicated that models trained on such imbal-
anced data are susceptible to the tendency of pre-
dominantly predicting the majority class. Speaker
and neutral word biases arise from trained mod-
els exhibiting strong associations between specific
words and particular emotion categories. For in-
stance, in EmoryNLP, it is highly probable for
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Richard Burke to be associated with emotions such
as ‘joyful’, ‘neutral’, and ‘peaceful’, rather than
‘mad’ as depicted in Figure 1. Additionally, neutral
words also display such biases in emotion distribu-
tion. Consequently, models tend to unfairly assign
utterances containing these emotionless keywords
to specific categories based on biased statistical in-
formation, rather than relying on intrinsic textual
semantics (Qian et al., 2021; Liu and Avci, 2019;
Waseem and Hovy, 2016).

Existing debiasing methods mainly involve two
approaches: Data-level manipulations, like resam-
pling (Qian et al., 2020) and generating counter-
factual samples (Wang and Culotta, 2021), aim
to balance the training set but increase training
time. Model-level balancing mechanisms, such
as counterfactual reasoning (Tian et al., 2022) and
reweighting (Zhang et al., 2020), adjust category in-
fluence during training but require careful strategy
selection and retraining from scratch.

In contrast, our proposed Training-Free Debias-
ing framework (TFD) focuses on counterfactual
reasoning during the prediction process without
extra data augmentation and any training costs. Be-
cause generating counterfactual examples while
maintaining conversation structure integrity is chal-
lenging, inspired by Qian et al. (2021), we employ
a masking mechanism to obtain counterfactual ex-
amples from the original input data to extract biases
suffered from trained models. We then effectively
mitigate these extracted biases using empirically
robust element-wise subtraction operations. Our
main contributions are as follows:

e To our knowledge, we are the first debiasing
study for ERC.

e We propose a TFD to tackle biases in ERC
without extra data augmentation and any train-
ing costs, which employs counterfactual ut-
terances and contexts to extract these biases
suffered from the trained model.

e We conduct extensive experiments on three
public datasets to illustrate the effectiveness
of TFD in enhancing generalization and fair-
ness across various ERC models. And the
TFD-based baseline demonstrates the ability
to outperform state-of-the-art methods.

2 Related Work

ERC: The emotion generation theory (Gross and
Barrett, 2011) emphasizes the importance of con-

textual information for identifying emotions. RNN-
based models have been commonly used to cap-
ture context dependencies (Poria et al., 2017), but
they struggle to distinguish between historical ut-
terances (Lian et al., 2021). In order to overcome
this drawback, researchers have directed their at-
tention toward memory networks (Jiao et al., 2020;
Hazarika et al., 2018). Additionally, the role of
participants in emotional response classification
(ERC) is crucial (Wen et al., 2023), leading to the
development of speaker-specific (Kim and Vossen,
2021; Majumder et al., 2019), graph-based mod-
els (Ghosal et al., 2019; Tu et al., 2022b; Shen
etal., 2021b) and so on. However, these approaches
still lack commonsense knowledge, which is impor-
tant for human-like performance (Tu et al., 2023a).
To tackle this, researchers have integrated exter-
nal knowledge sources such as COMET (Bosselut
et al., 2019), SenticNet (Cambria et al., 2022) and
ConceptNet (Speer et al., 2017) into their mod-
els (Zhong et al., 2019; Ghosal et al., 2020; Zhao
et al., 2022). Despite these advancements, unin-
tended dataset biases have been neglected, which
hinders the generalization of ERC models.

Dataset debiasing: To address dataset bias, one
approach is to manipulate the data during model
training to prevent unintended biases from being
captured. These manipulations include techniques
like data balance or resampling methods mentioned
in studies such as (Geng et al., 2007; Kang et al.,
2016; Sun et al., 2018; Wang and Culotta, 2021),
as well as data augmentation methods described
by Qian et al. (2020). Another common strategy is
to incorporate model-level balancing mechanisms.
These mechanisms aim to mitigate bias by using un-
biased embeddings (Kaneko and Bollegala, 2019),
adjusting thresholds (Kang et al., 2019), and ap-
plying instance weighting techniques (Tian et al.,
2022; Zhao et al., 2017; Zhang et al., 2020). How-
ever, the data-level strategy results in additional
manual costs for data manipulations and longer
training time. On the other hand, the model-level
strategy necessitates a meticulous selection of bal-
ancing techniques and retraining whenever there
are changes in the balancing mechanisms.

3 Methodology

3.1 Task Definition

Consider a conversation C = {uj, uy, ..., u, } con-
sisting of n utterances. Each utterance u; is spoken
by one of the speakers in S = {s1,S2,...,8p}.
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Figure 2: The proposed TFD framework. The bias extraction and unbiased inference are only conducted during the
testing phase. Mathematical symbols in the illustration are consistent with the formulas in the paper.

The objective of the ERC task is to predict the emo-
tion label y; for each utterance u; by incorporating
the preceding w utterances {u;_y, ..., Wj—2, W;_1 }.
Y = {y1,y2,...,¥n} represents a predefined set
of emotions.

3.2 Overview

Considering the additional manual and training
costs brought by data-level and model-level de-
biasing approaches. we propose TFD, a Training-
Free Debiasing framework, which draws inspira-
tion from the effective use of counterfactual rea-
soning to address biases in computer vision, as
demonstrated in prior works (Tang et al., 2020;
Yang et al., 2021; Niu et al., 2021). TFD aims to
mitigate biases in trained models through counter-
factual reasoning in prediction. It can be integrated
into various ERC models, and we employ Roberta
as the classification model to exemplify its imple-
mentation. TFD comprises three primary compo-
nents: biased classification, bias extraction, and
unbiased inference (refer to Fig. 2).

3.3 Biased Classification

Input Format: Utterance representation x; is typ-
ically generated by directly inputting query utter-
ance u; into a pre-trained language model (PLM).
Considering that concatenating utterances alone
may not significantly improve results as PLMs lack
dialogue structure during pretraining. Therefore,
inspired by Kim and Vossen (2021), we integrate
dialogue structure and contextual information ex-

plicitly into the input text.

x; = {Xc(w;)} (1)
Xi = {Xn(Wi—w), oy Xp(wi-1)} (2)

where w represents the size of the context, X and
X, represent the encoding strategies for histori-
cal utterances and the current utterance, respec-
tively, without using future information. For X,
we prepend speaker says: at the start of historical
and current utterances to indicate the speaker’s in-
formation. Additionally, (s) and (/s) are employed
to enclose each utterance for emphasis. In essence,
the current utterance can be represented as follows:

Xe(ui) = (s) s; says : u; (/s) 3)

For Xy, speaker says: serves as the sole token,
considering the support of contexts and speakers.

Xp(uj) =sj says :uj, Vj € (i—w,i) (4)

Classification Module: Traditional fine-tuning
methods often use the class token for classifica-
tion because most tasks involve plain text without
specific structures. However, in our case, the in-
put text x; has a principal-subordinate structure,
where the query utterance takes the leading position
and the contexts play a supporting role. Moreover,
there is a temporal structure present. Therefore,
we propose a fine-tuning classification module that
considers the characteristics of ERC. The module’s
specifics will be outlined below.

E. = mean (PLM (x;)) 5)
E;, = mean (PLM (X;)) (6)
0; = MLP (FC(E. ® Ey)) (7)
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Figure 3: The comparison between factual ERC and
counterfactual ERC.

where 0; is the prediction emotion. E_/, is the
features of u; and its contexts, generated by PLM.
@ denotes a concatenation operation. FC is the
fully connected layer with Tanh activation func-
tion. MLP represents the multilayer perceptron.

3.4 Bias extraction

34.1 Causal Graph

Causal graph (Glymour et al., 2016) is a compre-
hensive representation of the causal relationships
among variables. It consists of nodes (variables)
and directed edges (arrows) that indicate causality.
In this directed acyclic Bayesian graphical model,
denoted as G = {N, £}, the nodes represent vari-
ables, and the arrows represent causal relationships
between them. For instance, x — Y indicates that
x is the cause and Y is the effect, meaning that the
value of Y is influenced by x.

We define the causal graph of ERC in Fig. 3.(a).
Nodes x, X and h represent the input utterance, its
context, and the combined feature of x and X re-
spectively. The final predictive logits o take inputs
from the three branches: the direct effect of the
input x and X on o via x — o and X — o, as well
as the indirect effect of the input x and X on o via
the combined feature h, i.e. h — o.

3.4.2 Speaker and Neutral Word Biases

As shown in Fig. 3.(b), there exists unobserved
confounders q and ¢, which is the cause of the
spurious correlation between the x, X and o. Such
unobserved confounders may occur due to trained
models exhibiting strong associations between spe-
cific words (such as neutral word and speaker) and
particular emotion categories. As a result, mod-
els tend to unfairly assign outputs containing these
keywords to specific categories based on biased sta-
tistical information, more than releasing on intro-
ductory textual semantics, which is actually not rea-
sonable for the ERC task. To decouple the spurious
correlation, we use the backdoor adjustments (Gly-

mour et al., 2016) with do-calculus to calculate the
corresponding intervention distribution:

P(o|do(x,%)) = P(o|do(x = ¢,X = ¢)) (8)

where ¢ and ¢ can take any form as long as they are
no longer influenced by q, effectively breaking the
connection between x, X and q. To extract neutral
word or speaker biases, in the causal intervention
operation, ¢ / & are set to c' /¢ or ¢ / &*, which
aims to retain only neutral words or speaker-related
words. By revealing specific words tied to the emo-
tion categories, the goal is to expose any spurious
connections in the trained model and emphasize
their potential negative impact.

cf = (s) {w1, (mask) , ..., wy, }{/s)
Vw; < (mask) ¢ S
&b = {W1, .o, Winy, }, VW, < (mask) ¢ S (10)

©))

where S denotes the set of speakers. In this case,
since the model cannot see any word except for
words related to speakers in x and X after mask-
ing, the final predictive logits of reflect the pure
influence of speakers to the trained biased model.
Similarly, we can also obtain the counterfactual ut-
terance and the counterfactual historical utterance
é;f and é;r by using pysentiment library? to deter-
mine non-neutral words for masking.

3.4.3 Label Bias

To address the bias of models to favor the majority
class in imbalanced data, we generate counterfac-
tual utterances ¢ and contexts ¢ through causal
intervention to extract label biases.

c; = (s){w1, (mask),...,wn,} (/s) (11)
(A:;ﬁ = {V/S\Il, ...,G\vmw},Vwi,vAvi — <mask> (12)

where (mask) is used to hide a single token in the
input sequence x. The corresponding predictive
logits o] only reflect the impact of the label bias
because the model cannot observe any words after
the complete masking.

3.5 Unbiased Inference

Debiasing predictive logits o; from the biased
trained model can be formulated using a simple
element-wise subtraction operation.

0, =0; — \o; — Bo;-r — 'yoi (13)

)

% Available at https:/pypi.python.org/pypi/pysentiment



Dialogues Utterances
Dataset - -
train ‘ val | test | train ‘ val test
IEMOCAP 120 31 5,810 1,623
MELD 1039 | 114 | 280 | 9,989 | 1,109 | 2610
EmoryNLP | 659 89 79 | 7,551 | 954 984

Metric
Weighted Avg. F1
Weighted Avg. F1 over 3 and 7 classes
Weighted Avg. F1 over 3 and 7 classes

Dataset | Classes
IEMOCAP 6

MELD 3and 7
EmoryNLP | 3 and 7

Table 1: Statistics of experimental datasets.

where )\, 3, and +y are three independent parameters.
It’s important to note that biases have varying im-
pacts on the final classification and are not equally
important. Thus, we use elastic scaling to deter-
mine three adjustable scaling factors that optimize
the model’s performance on the validation set.

4 Experiments

4.1 Datasets

We conduct experiments on three datasets: [EMO-
CAP (Busso et al., 2008), EmoryNLP (Zahiri and
Choi, 2018), and MELD (Poria et al., 2019a). The
statistics of datasets are shown in Table 1.

IEMOCAP consists of dyadic sessions where
actors perform improvisations or scripted scenarios.
Each utterance is labeled with one of the emotions:
angry, happy, sad, neutral, excited, or frustrated.
Since there is no dedicated validation set in this
dataset, we follow the approach from Shen et al.
(2021b) by using the last 20 dialogues from the
training set for validation.

MELD is a multi-party conversation dataset col-
lected from the TV show Friends. Each utterance is
annotated with one of the emotions: fear, surprise,
anger, disgust, sadness, neutral, or joy, and one of
the sentiments: neutral, negative, or positive.

EmoryNLP consists of multi-party sessions
from the TV show Friends and each utterance is la-
beled with one emotion from the set: joyful, scared,
peaceful, sad, powerful, mad, or neutral, along with
one sentiment, as suggested in Ghosal et al. (2020),
from the set: neutral, negative, or positive.

4.2 Comparison Models

We compare our proposed framework with vari-
ous ERC baselines, including RNN-based models:
CauAIN (Zhao et al., 2022), COSMIC (Ghosal
et al.,, 2020), DialogueRNN (Majumder et al.,
2019); Memory networks: CoMPM (Lee and

Lee, 2022), AGHMN (Jiao et al., 2020); Graph-
based models: DAG-ERC (Shen et al., 2021b),
SKAIG (Li et al., 2021); Transformer-based mod-
els: KET (Zhong et al., 2019), BERT_BASE (Ken-
ton and Toutanova, 2019), EmoBERTa (Kim and
Vossen, 2021), Roberta (Liu et al., 2019); Gen-
erative models: Curie (Olmo et al., 2021), Chat-
GPT (Ouyang et al., 2022)3.

4.3 Experimental Settings

All models mentioned in Table 4 have released
their source codes, and we have used the same
settings as the original papers. The Roberta-based
method (Baseline) described in this paper is based
on EmoBERTa (Kim and Vossen, 2021), with the
difference being that we do not consider the impact
of future utterances on the model. Furthermore, we
have utilized a grid search technique to determine
the optimal values for the parameters A, 5, and v
on the validation set. The grid search is performed
with a step size of 0.1 and a range spanning from
-2 to 2. The results reported in the tables are the
average scores from 5 random runs on the test set.

5 Experimental Results

5.1 Main Results

As shown in Table 2, fine-tuning at the utterance
level alone is unsatisfactory in ERC because it re-
lies on context and the speaker’s state information.
EmoBERTa, a redesigned Roberta model with ad-
justed input structures, exhibits significant perfor-
mance improvement. CoMPM surprisingly out-
performs other methods in IEMOCAP and MELD
datasets, showcasing the effectiveness of complex
memory mechanisms. Graph-based models gener-
ally surpass RNN-based models in IEMOCAP and
EmoryNLP datasets, capturing local context well in
lengthy conversations. However, in MELD, where
data is from TV shows, the coherence between
consecutive utterances may be lacking, reducing
the advantage of graph-based models. Large mod-
els underperform in ERC, possibly due to limita-
tions in capturing intricate interactions, especially
in lengthy conversations, as evidenced by their fail-
ure on the IEMOCAP dataset. Furthermore, Chat-
GPT’s understanding of emotions is not limited to
predefined categories, which may affect its emo-
tional comprehension. Prompt tuning the Curie
model improves performance but is not sufficient.

3Please refer to the appendix for the prompt templates used
for ChatGPT and Curie.



Methods IEMOCAP (6-cls) MELD (3-cls) MELD (7-cls) EmoryNLP (3-cls)  EmoryNLP (7-cls)
ChatGPT! 40.07 60.07 54.37 51.93 37.55
Curie} 57.33 - 65.01 - 37.40
BERT_BASE! 61.19 - 56.21 - 33.15
RoBERT? 54.55 72.12 62.02 55.28 37.29
EmoBERTa 68.57 - 65.61 - -
DialogueRNN? 61.21 66.10 56.27 48.93 31.70
KET’ 59.56 - 58.18 - 34.39
AGHMN’ 62.70 - 58.10 -
DAG-ERC’ 68.03 - 63.65 39.02
SKAIG” 66.96 - 65.18 - 38.88
COSMIC’ 65.28 73.20 65.21 56.51 38.11
CauAIN’ 67.61 - 65.46 - -
CoMPM’ 69.46 - 66.52 - 38.93
Baseline 69.18 72.57 65.00 56.84 38.81
Baseline® + TFD 7043 (1 1.25%) 7372 (1 1.15%) 66.19 (1 1.19%)  58.28 (1 1.41%) 40.51 (1 1.70%)
" wlo Label debiasing | 69.66 (| 0.77%)  72.61 (L 1.11%) 65.35 (1 0.94%)  57.05(] 1.23%)  39.19 (] 1.32%)
w/o Neutral word debiasing | 69.45 (] 0.98%)  72.77 (} 0.95%) 6531 (] 0.88%)  57.27 (| 1.01%) 39.28 (| 1.23%)
w/o Speaker debiasing 69.81 (L 0.62%)  72.78 (1 0.94%) 6528 (| 0.91%)  57.33 (| 0.95%) 39.48 (| 1.03%)

Table 2: Weighted Avg. F1 score (%) of different methods. Best test scores are in bold. ¥ represents our re-
implementation results. Results with * and 7 are respectively retrieved from Zhong et al. (2019) and Ghosal et al.
(2020). Results with ” are retrieved from the original papers.

This does not imply that generative methods are
ineffective for ERC; more task-specific factors like
imbalanced samples and long-term context model-
ing require careful consideration.

Considering that most methods rely on using
Roberta for utterance representation extraction, we
use Roberta as the underlying model to validate the
effectiveness of TFD. We can observe that the per-
formance on sentiment and emotion identification
of our proposed TFD-based method is significantly
boosted. And it achieves the best improvement re-
sult of F1 on the EmoryNLP dataset, i.e., 1.70%.
And the Baseline+TFD outperforms all compared
methods on different datasets, except for slightly
underperforming the CoMPM model on the MELD
dataset. The failure could possibly be attributed to
the elimination of the influence of future utterances
on our model, as evidenced by the performance gap
between our Baseline’ and EmoBERTa.

5.2 Ablation Studies

To investigate the impact of each component of our
proposed method, we conduct an ablation study
on Baseline® + TFD, and the results are shown in
Table 2. w/o represents the removing operation.
The results suggest that all components of the TFD
framework have worked and all the improvements
are statistically significant, as evidenced by the
paired t-test results with a p-value < 0.05.

5.2.1 Label Debiasing

Due to the tendency of models to prioritize the ma-
jority class, such as the emotions ‘joyful’, ‘scared’,
and ‘neutral’, imbalanced data often leads to in-
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Figure 4: Performance of Baseline$ on the EmoryNLP
validation set across different categories.

adequate recognition performance for utterances
belonging to the minority classes, as depicted in
Fig. 4. Fortunately, with the introduction of the
label debiasing strategy, this phenomenon has been
effectively mitigated. From Fig. 4, we find that
the debiased model significantly improves on the
other minority classes, such as ‘peaceful’, ‘sad’,
and ‘powerful’. Despite a marginal decline in per-
formance for the majority classes, the model ex-
hibits overall improvement, with an increase from
39.19 to 40.51. The advantages outweigh the draw-
backs in this case, which suggests the effectiveness
of label debiasing and the reported results presented
in Table 2 further validate this assertion.

5.2.2 Speaker and Neutral Word Debiasing

We have observed improvements in speaker and
neutral word debiasing across various datasets.
Specifically, when we applied the debiasing strat-
egy of removing the speaker and neutral words to
the EmoryNLP dataset, we noticed a significant
decrease in the model’s performance, resulting in
a respective drop of 1.03% and 1.23%. However,



Methods IEMOCAP (6cls) MELD (3cls) MELD (7-cls) EmoryNLP (3cls) EmoryNLP (7-cls)
Baseline 2.11 442 9.16 9.87 26.66
T w/ Label debiasing | 207 (1 0.04%) 416 (1 0.26%) 7.66 (| 1.50%) 834 (| 1.53%)  22.73(} 3.93%)
w/ Neutral word debiasing | 1.97 (| 0.14%)  4.05( 0.37%) 7.55( 1.61%)  8.54 (| 1.33%) 24.32 (] 2.34%)
w/ Speaker debiasing 2.08 (1 0.03%)  4.12(} 0.30%) 7.10(12.56%)  8.29 (| 1.58%) 23.42 (| 3.24%)

Table 3: Imbalance divergence or unfairness (%) of our underlying model (lower is better) for bias analysis.

the speaker debiasing approach does not yield the
expected results on the IEMOCAP dataset, as illus-
trated in Table 2. This disparity can be explained
by the distinction between the IEMOCAP dataset
and the other two datasets obtained from TV shows,
where each speaker possesses distinct personality
traits and emotional tendencies. In contrast, the
improvisations in IEMOCAP do not prioritize the
shaping of character images, naturally reducing
the inclination towards specific emotional expres-
sions. In neutral word debiasing, the effectiveness
varies to some degree, but overall, the debiasing
process demonstrates relatively consistent improve-
ment across various datasets due to the prevalent
presence of neutral words in conversations.

5.3 Hyper-parameter Analysis

We also explore the effects of different coefficients
on these debiasing strategies, as shown in Figure 5.
Generally, they exhibit a trend of initially increas-
ing and then decreasing, even falling below the
Baseline® in the case of the neutral word debiasing.
However, label debiasing is quite unique. After
an initial increase, it consistently maintains sta-
ble performance, consistently outperforming the
Baseline$. This reflects the severe impact of label
bias on model performance, while the bias associ-
ated with neutral words is relatively mild.

5.4 Bias Analysis

Based on prior research (Xiang et al.,, 2020;
Sweeney and Najafian, 2019; Qian et al., 2021),
we use imbalance divergence as a metric to mea-
sure the degree of unfairness in prediction results.
This metric allows us to assess how much a trained
model’s predictions favor specific predefined cate-
gories, quantifying the discriminatory nature of the
model’s behavior. A higher imbalance divergence
in the model’s predictions indicates more unfair-
ness. As shown in Table 3, our TFD has all resulted
in a decrease in the imbalance divergence of pre-
dicting outcomes. However, label debiasing does
not achieve a significant decrease in performance
on the IEMOCAP dataset compared to the other
two datasets. This could be because although all
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Figure 5: Performance of Baseline® with various debi-
asing strategies across different debiasing coefficients
on the validation set of dataset EmoryNLP.

three datasets have class imbalance issues in the
validation set, the severity is more pronounced in
the other two datasets. In the IEMOCAP dataset,
the ratio between the most frequent and least fre-
quent classes in the training set is approximately
2.98:1, while in MELD and EmoryNLP, the ratios
are 17.57:1 and 5.24:1, respectively. Additionally,
for speaker debiasing, since [IEMOCAP is derived
from improvisational performances with less em-
phasis on character portrayal, the bias related to
speakers is not as significant as in the other two
datasets. The reported results in Table 2 also reflect
this observation. However, neutral word debias-
ing shows a considerable decrease in performance
across all three datasets due to the generality of
neutral word debiasing.

5.5 Generalization Analysis

To evaluate the generalizability of our TFD frame-
work, we conduct the experiment on various ERC
models as shown in Table 4 and 5. With the excep-
tion of the imbalance divergence for AGHMN on
the IEMOCAP dataset and DialogueRNN on the 3-
class classification task on the MELD dataset, TFD
has been effective in all other cases. Moreover, the
F1 score for all methods has shown improvement,
which demonstrates the effectiveness and general-
ization ability of our TFD framework.

5.6 Case Study

As shown in Table 6, in the first utterance, the
speaker most likely expresses a neutral emotion,
leading the model to associate her with a neutral
emotion despite the phrase "Nice work." Removing
the speaker bias results in the correct prediction. In



Methods IEMOCAP (6-cls) MELD (3-cls) MELD (7-cls) EmoryNLP (3-cls) EmoryNLP (7-cls)
DialogueRNN 66.79 72.46 64.65 55.80 38.34
w/ TFD 66.94 (1 0.15%) 73.17 (1 0.71%) 64.81 (1 0.16%) 56.69 (1 0.89%) 39.39 (1 1.05%)
DAG-ERC 66.42 72.56 65.39 56.26 37.84
w/ TFD 66.57 (1 0.15%) 73.37 (1 0.81%) 65.53 (1 0.14%) 56.53 (1 0.27%) 38.59 (1 0.75%)
AGHMN?® 65.21 72.45 64.19 54.61 37.86
w/ TFD 65.46 (1 0.25%) 72.92 (1 0.47%) 64.76 (1 0.57%) 56.09 (1 1.48%) 38.64 (1 0.78%)
KET® 63.16 71.42 62.67 54.62 37.73
w/ TFD 64.57 (1 1.41%) 72.31 (1 0.89%) 63.46 (1 0.79%) 56.89 (1 2.27%) 38.39 (1 0.66%)
COSMIC 60.86 72.71 64.76 56.23 39.16
w/ TFD 61.50 (1 0.64%) 73.21 (1 0.50%) 64.99 (1 0.23%) 57.02 (1 0.79%) 39.85 (1 0.69%)

Table 4: Weighted Avg. F1 score (%) of different ERC methods for generalizability analysis.

Methods IEMOCAP (6-cls) MELD (3-cls) MELD (7-cls) EmoryNLP (3-cls) EmoryNLP (7-cls)
Baseline 2.11 4.42 9.16 9.87 26.66
w/ TFD 1.96 (4 0.15%) 4.02(] 0.40%) 6.98 (| 2.18%) 7.84 (1 2.03%) 18.18 (| 8.48%)
DialogueRNN: 10.82 5.96 13.29 11.80 22.22
w/ TFD 8.09 (J 2.73%) 6.90 (1 0.94%) 10.26 (| 3.03%) 7.69 (I 4.11%) 8.29 (| 13.93%)
DAG-ERC* 17.46 7.44 17.80 11.78 21.41
w/ TFD 17.32 (J 0.14%) 7.29 (J 0.15%) 15.88 (J 0.15%) 9.68 (| 2.10%) 17.92 (| 3.49%)
AGHMN 10.60 6.87 18.80 13.23 22.11
w/ TFD 10.60 (. 0.00%) 6.35 (J 0.52%) 16.99 (| 1.81%) 11.70 ( 1.53%) 16.71 (J 5.40%)
KET 13.01 7.43 12.52 11.44 21.83
w/ TFD 9.58 ({ 3.43%) 6.78 (1 0.65%) 10.06 ({ 2.46%) 5.77 (I 5.67%) 20.55 (J 1.28%)
COSMIC? 11.60 13.72 25.38 13.21 24.20
w/ TFD 11.32 (4 0.28%) 11.19 (J 2.53%) 10.11 ({ 15.27%) 10.66 (| 2.55%) 17.46 (| 6.74%)

Table 5: Imbalance divergence or unfairness (%) of different ERC methods for generalizability analysis.

ID Utterances for Prediction w/o TFD w/TFD Golden Label
1 RACHEL: Okay get your coat! Oh! When did you unhook this? Nice work! neural joyful

2 | CHANDLER: Act like a processor, people will think you’re a processor. You’re right. ~ joyful peaceful

3 RACHEL: Okay wait! neural anger

Table 6: Examples of utterances from the EmoryNLP dataset for the case study.

Methods IEMOCAP MELD EmoryNLP
Ours 70.43 66.19 40.51

~ wlo Emotion Shift | 7476~ ° 7540 5299
w/ Emotion Shift 65.02 59.52 36.24

Table 7: Analysis of TFD on Emotional Shift

the second utterance, because other neutral words
are infrequent, except for pronouns, the neutral
word "think" dominates the joyful emotion, which
is rectified when the neutral word bias is eliminated.
In the third utterance, the majority of samples in-
dicate a neutral emotion. Although the context
provides some clues, the model simply predicts the
majority class. However, after removing the label
bias, the model correctly predicts the emotion of
the utterance based on its context.

5.7 Error Analysis

Most errors can be attributed to class imbalance,
such as the low F1 score of 17.14 for the ‘power-
ful’ emotion in the EmoryNLP dataset. Our TFD
may also make mistakes, as shown in Fig. 4, where
certain samples of majority classes. This could

be because the coefficients used for the debiasing
strategy are less detailed, as they are applied to the
entire sample set instead of individual utterances or
conversations. The latter approach would require
significant tuning efforts. Furthermore, there are
distribution differences between the validation and
test sets, which can result in prediction errors for
certain samples. Another concern is the issue of
emotion shift (Poria et al., 2019b), where consec-
utive utterances express different emotions. This
has been challenging for previous approaches as
well. Table 7 shows that our TFD still struggles
to effectively handle samples with emotional shifts
compared to those without such shifts.

6 Conclusion

In this paper, we introduce TFD with counterfac-
tual reasoning as a solution to address unintended
dataset biases in ERC, which performs the debi-
asing operation only during the prediction phase
without additional data augmentation or training
expenses. Through extensive experiments on three
public datasets, we demonstrate that TFD effec-



tively promotes the generalization capability and
fairness of various ERC methods.
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Limitations

When facing significant distribution differences be-
tween the validation and test sets, it becomes chal-
lenging to ensure the effectiveness of a method.
In such cases, finding appropriate coefficients to
address the biased prediction results becomes diffi-
cult. As shown in Fig. 5, while Label debiasing can
always improve the model’s performance, Neutral
Word and Speaker debiasing are often unable to
consistently guarantee effectiveness. Furthermore,
label debiasing may not have an impact when deal-
ing with samples with highly balanced classes, as
label bias becomes negligible.
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Here is a new dialogue with 58 utterances.

1. Speaker 0: Guess what?

2. Speaker 1: what?

3. Speaker 0: I did it, T asked her to marry me. 4. Speaker 0: Yes, I did it.

5. Speaker 1: When?

6. Speaker 0: Oh my god, it was just last weekend..

7. Speaker 1: Oh, what, how- where how did you do it?

8. Speaker 0: She— well, she said yes, first of all, let me say that right off the bat. Well, I would

like to assume, too. But you never know these things, right?

9. Speaker 1: Okay good. I I assumed.

10. Speaker 1: oh-

11. Speaker 0: I did it up at Yosemite. We went camping right like we usually do. You know we

20 camping up there all the time. But, um- the waterfalls had died down a little bit, you know. And so uh- we-I had her climb up.

12. Speaker 0: You know- we did some- you know some rock climbing up the waterfalls and went up to this little pool that was up there.
And then, I- it's great. Um- You have to climb this little rock-

13. Speaker 1: uh-huh.

14. Speaker 0: and you can climb it and it’s covered in algae you know. So, I wanted her to climb it to go take a picture, like, back in this
little waterfall area, and she got back there and she took her picture. And then, I had her come back. And I was going to do the same thing.

56. Speaker: it's great. I'm a lucky man.
57. Speakerl: That's incredible yeah Congratulations.

58. Speaker0: Thank you. Predicting the emotion of the above utterances.

Predicting the emotion of the above each utterance according to its historical utterances. Write your answer in the form of id: emotion.
Each utterance is one of the emotions: 'happy','sad’, neutral" 'angry',excited!, or frustrated’.

Figure 6: Prompt template for ChatGPT.

;"1 Speaker0: Guess what? ->""completi
;"2 Speakerl: what? ->""completion":" neutral
:"3, Speaker0: 1 did it, I asked her to marry me. ->""completion":" excited"}
Speaker0: Yes, I did it. ->","completion":" excited"}
:'5. Speakerl: When? ->" "completion’:" excited"}

;"6 Speaker0: Oh my god. it was just last weekend. -
Speakerl: Oh, what, how- where how did you do
:"8. Speaker0: She--well, she said yes, first of al, let me

ings, right? ->" "completion”:" happy"

":"9. Speakerl: Okay good. I T assume
0. Speakerl: oh-->"."completion":" hapy

"compl excited
that right off the bat. Well, I would like to assume, too. But you never

ompletion"" excited"}

py'}

1. Speaker0: I did it up at Yosemite. We went camping right like we usually do. You know we go camping up there all the time.
But, um- the waterfalls had died down a little bit, you know. And so uh- we-T had her climb up. ->" "completion”:" happy"

{"prompt":"12. Speaker0: You know- we did some- you know some rock climbing up the waterfalls and went up to this little pool that was up
there. And then, I- it’s great. Um- You have to climb this little rock- ->" "completion":" happy"}

{"prompt":"13. Speakerl: uh-huh ->" "completion”:" neutral")

{"prompt":"14. Speaker0: and you can climb it and it's covered in algae you know. So, I wanted her to climb it to go take a picture, like, back in
this little water ea, and she got back there and she took her picture. And then, I had her come back. And I was going to do the same thing.
" "completion":" happy"}

{"prompt""56. Speaker(): i’s great. I'm a lucky man. ->","completi
{"prompt":"57. Speakerl: That's incredible yeah Congratulations. ->","completion"" happy"}
{"prompt":"S8. Speaker0: Thank you. ->""completion":" happy"}

Figure 7: Prompt template for the Curie model.

A Prompt Templates

In this section, we primarily focus on explaining
the methodology used to obtain the results for the
ChatGPT and prompt-tuned Curie model in this
paper. For ChatGPT, we employ a prompt tem-
plate, as depicted in Fig. 6, to extract the emotion
of each utterance in a conversation. This approach
ensures the utilization of contextual information
and facilitates the generation of well-formatted out-
put results. On the other hand, for the Curie model,
we directly access OpenAl’s API for implementa-
tion. We utilize the prompt example presented in

Fig. 7 to perform prompt-tuning, which enhances
the model’s performance in generating emotionally
appropriate responses.



