
SAFE: Finding Sparse and Flat Minima to Improve Pruning

Dongyeop Lee 1 Kwanhee Lee 1 Jinseok Chung 1 Namhoon Lee 1

Abstract
Sparsifying neural networks often suffers from
seemingly inevitable performance degradation,
and it remains challenging to restore the origi-
nal performance despite much recent progress.
Motivated by recent studies in robust optimiza-
tion, we aim to tackle this problem by finding
subnetworks that are both sparse and flat at the
same time. Specifically, we formulate pruning
as a sparsity-constrained optimization problem
where flatness is encouraged as an objective. We
solve it explicitly via an augmented Lagrange dual
approach and extend it further by proposing a gen-
eralized projection operation, resulting in novel
pruning methods called SAFE and its extension,
SAFE+. Extensive evaluations on standard im-
age classification and language modeling tasks
reveal that SAFE consistently yields sparse net-
works with improved generalization performance,
which compares competitively to well-established
baselines. In addition, SAFE demonstrates re-
silience to noisy data, making it well-suited for
real-world conditions.

1. Introduction
Over the past decades, the emergence of computers and the
accumulation of digital data have made machine learning
a viable tool for everyday applications. However, modern
machine learning systems have also grown in complexity
with the rapid advances in hardware and databases, demand-
ing significant computational and memory resources. This
has led to a surge of interest in strategies to reduce these
substantial computational costs.

One major approach is sparsification, which aims to find
solutions with mostly zero entries. This has been studied for
many years in various large-scale applications in machine
learning (LeCun et al., 1989; Hassibi & Stork, 1992), signal

1POSTECH, South Korea. Correspondence to: Dongyeop Lee
<dylee23@postech.ac.kr>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

processing (Blumensath & Davies, 2009), and statistics (Tib-
shirani, 1996; Beck & Teboulle, 2009). Notably, the recent
success of highly overparameterized deep neural networks
in achieving human-level computer vision and natural lan-
guage processing tasks has drastically scaled these models
to proportions never seen before, which has spurred con-
siderable research on sparsifying neural networks (Hoefler
et al., 2021). Since the pioneering work of Han et al. (2015),
many works have proposed to remove redundant parameters
by various tactics ranging from those discussed in the survey
work of Hoefler et al. (2021) to their applications to large
foundation models (Kwon et al., 2022; Frantar & Alistarh,
2023; Sun et al., 2024). However, it is witnessed that ex-
cessive pruning usually results in performance decline due
to the reduced capacity, potentially impairing deep learning
models to handle tasks of high complexity. Is there a way
to restore this performance loss?

We attend to recent studies that have demonstrated that the
generalization performance of a model is closely linked to
the flatness of the solution landscape (Keskar et al., 2017;
Jiang et al., 2020a). This insight has led to the development
of techniques such as sharpness-aware minimization (SAM)
(Foret et al., 2021), which explicitly regularizes the sharp-
ness of the solution during the optimization process. SAM
has been shown to deliver exceptional performance across
various domains (Chen et al., 2022; Bahri et al., 2022) and
has also demonstrated robustness to label noise (Baek et al.,
2024). In light of the SAM’s success, there has been grow-
ing interest in applying these techniques to model pruning.
Research by Na et al. (2022) has explored how sharpness-
aware training affects model compressibility, while Peste
et al. (2022) and Bair et al. (2023) have examined different
strategies to alter this process for pruning, with the goal
of enhancing performance and robustness. Nevertheless,
the exploration of sharpness-aware techniques within the
context of sparsification is still at an early stage. We believe
there is considerable potential to integrate these approaches
more effectively into the sparsification process, which could
lead to significant advancements in the development of effi-
cient and robust deep learning models.

In this work, we aim to achieve exactly that, by proposing
to frame it as a sharpness-aware sparsity-constrained opti-
mization problem to simultaneously consider both sharpness
and sparsity during the training process. To tackle this, we

1

SAFE: Finding Sparse and Flat Minima to Improve Pruning

use an augmented Lagrangian dual-based approach well
established in the optimization literature with convergence
guarantees, and propose a new optimization-based pruning
method called SAFE. We evaluate SAFE across standard
benchmark tasks in image classification and large language
model post-training pruning, and compare with existing al-
ternatives to demonstrate that (i) it induces flatness on the
sparse solutions, (ii) yielding performance improvements
in the resulting sparse models, and (iii) its robustness to
label noise, common image noise, and adversarial noise,
and its (iv) effectiveness compared to similar sharpness-
minimization-inspired pruning techniques. These aspects
support the effectiveness and generality of our method, and
we conclude by discussing current limitations and potential
ideas for future work.

2. Background
2.1. Sparsity

Throughout the years, various techniques to induce spar-
sity in machine learning systems have been developed to
simplify models for efficiency, interpretability, and gener-
alization. This is usually framed as solving the following
optimization problem with sparsity constraint:

min
∥x∥0≤d

f(x), (1)

where f is the objective we wish to minimize, x is the opti-
mization variable, ∥x∥0 denotes the L0-norm, which counts
the non-zero entries within x, and d is the number of pa-
rameters we wish to preserve. The goal is to find a solution
x with desired sparsity that minimizes f . Exactly solving
this optimization problem is challenging due to the combi-
natorial nature of the L0-norm, as it requires an exhaustive
search over all possible configurations of zeros within x.
Consequently, several approaches have been proposed, such
as relaxing the L0 norm as in LASSO (Tibshirani, 1996),
or employing advanced optimization techniques, including
proximal methods like FISTA (Beck & Teboulle, 2009) and
iterative hard thresholding (Blumensath & Davies, 2009).
Additionally, strategies like optimal brain damage and sur-
geon (LeCun et al., 1989; Hassibi & Stork, 1992) have
been explored to sparsify multi-layer perceptrons through
second-order approximations of the objective function.

The recent success of increasingly large deep neural net-
works has further accelerated this trend, spurring the de-
velopment of various methods to sparsify neural networks
at different stages of training, each offering distinct advan-
tages depending on the scenario (Hoefler et al., 2021). For
instance, pruning before training (Lee et al., 2019; Tanaka
et al., 2020; Wang et al., 2020) is advantageous for improv-
ing computational efficiency during training by enabling
sparse training, while post-training pruning (Frantar & Al-

istarh, 2023; Sun et al., 2024; Kwon et al., 2022) is ideal
for enhancing inference efficiency in pre-trained models,
particularly when the training process can be too costly
due to large-scale data or complex models such as large
language models (LLM). A widely adopted strategy in post-
training pruning is layer-wise reconstruction error mini-
mization, which ensures that the pruned model maintains
accuracy by preserving layer-wise output approximations
(Frantar & Alistarh, 2023; Sun et al., 2024; Meng et al.,
2024). This approach enables efficient pruning of large
models by solving smaller subproblems independently for
each layer, reducing computational overhead while preserv-
ing the signal in model representations. Optimization-based
techniques have been proposed to refine this idea further,
improving sparsity while minimizing performance degra-
dation. Additionally, extensions of these methods explore
structured sparsity patterns, such as block-wise sparsity, to
enhance hardware efficiency while maintaining competi-
tive accuracy. Also, recent studies hint at the possibility
of finding an initial random sparse network that can be
trained to achieve comparable performance to dense net-
works, although this generally involves several rounds of
expensive training (Frankle & Carbin, 2019). Among var-
ious approaches, this work primarily focuses on pruning
during training (Peste et al., 2021; Zhou et al., 2021; Kusu-
pati et al., 2020; Lin et al., 2020; Sanh et al., 2020; Evci
et al., 2020), which is known for achieving best results by
guiding the model toward desired sparsity during training
(Hoefler et al., 2021), and can be ideal for moderately sized
models with adequate computational resources for training.
Despite this, preserving the original dense performance re-
mains challenging due to the complexity of tasks handled by
deep learning models, often leading to the use of heuristics
to manage these difficulties.

2.2. Flat Minima

In-depth empirical analyses into the optimization properties
of deep neural network training, especially with regards
to mini-batch training, have revealed a surprising correla-
tion between well-generalizing solutions and their flatness
(Keskar et al., 2017; Jiang et al., 2020b). This finding has
prompted numerous studies aiming to understand the pre-
cise nature of this relationship (Andriushchenko et al., 2023;
Neyshabur et al., 2017; Zhou et al., 2020), and its impact
on neural network pruning, as explored by Lee et al. (2021),
who link the challenge of training highly sparse networks
to sharper loss landscapes based on an analysis of scaling
properties under varying sizes of mini-batches and classical
optimization theory.

This also motivated researchers to develop various tech-
niques to explicitly induce flat minima during training (Foret
et al., 2021; Izmailov et al., 2018; Orvieto et al., 2022;
Chaudhari et al., 2017). Among them, sharpness-aware min-

2

SAFE: Finding Sparse and Flat Minima to Improve Pruning

imization (SAM) by Foret et al. (2021) aims to tackle this
by solving the following min-max optimization problem:

min
x

max
∥ϵ∥2≤ρ

f(x+ ϵ), (2)

where we minimize the objective function over the entire ϵ-
neighborhood with radius ρ, i.e., seek flat minima. Solving
the inner maximization problem for the first-order Taylor
approximation gives the following update rule for SAM:

xt+1 = xt − η∇f

(
xt + ρ

∇f(xt)

∥∇f(xt)∥2

)
.

This has been shown to be effective in improving general-
ization performance and robustness across various domains
(Chen et al., 2022; Bahri et al., 2022; Baek et al., 2024).

The success of sharpness minimization techniques has natu-
rally led to exploring their implications for neural network
pruning. Na et al. (2022) studied whether a flatter loss land-
scape can be more compressible by employing SAM during
iterative magnitude pruning for fine-tuning BERT models.
Shin et al. (2025) observed that the generalization benefits
of SAM can be leveraged with sparsity for overparameter-
ized neural networks. Inspired by SAM, Peste et al. (2022)
proposed compression-aware minimization (CrAM) to min-
imize the loss increase induced by perturbation from com-
pression, which aims to induce robustness to post-training
one-shot pruning of any sparsity. Bair et al. (2023) sug-
gested performing additional sharpness-aware training to
pre-trained models, with larger perturbation given to coordi-
nates of low importance score (i.e., parameters to be pruned)
to incur less loss increase when pruning.

While these efforts represent initial attempts to verify the ef-
fectiveness of sharpness minimization or its loosely inspired
variants in enhancing pruning, we believe that sharpness
minimization can be more effectively integrated into the
sparsification process. Thus, in this work, we aim to weave
this sharpness-minimization objective with the sparsifica-
tion process to enhance the quality of the sparsified network
via principled optimization-based approaches that are well
established in the literature.

3. Method
In this section, we present a detailed derivation of our
flatness-inducing sparsification algorithm Sparsification via
ADMM with Flatness Enforcement or SAFE.

3.1. Problem Formulation

We begin by proposing the following min-max optimization
problem with sparsity constraint:

min
∥x∥0≤d

max
∥ϵ∥2≤ρ

f(x+ ϵ), (3)

where f is the objective function to minimize, d is the num-
ber of parameters to preserve, and ρ is the radius of the
perturbation ϵ. Thus the goal is to find a sparse solution
x⋆ that minimizes the objective function in the whole ϵ-
neighborhood, i.e., seek flat minima.

3.2. Augmented Lagrangian Based Approach

A standard approach for solving such constrained optimiza-
tion problems is to employ Lagrangian duality or projected
gradient descent. However, the discrete nature of L0-norm
makes Lagrangian duality infeasible, while projected gra-
dient descent, despite its computational efficiency for L0

constraints, can struggle with highly non-convex objectives
in neural network optimization. To leverage the smooth
optimization of Lagrangian and efficiency of projection, we
leverage augmented Lagrangian as described below.

To achieve this, we first employ variable splitting, a widely
used trick, usually to separately deal with objective mini-
mization and constraint satisfaction (Boyd et al., 2011). Pre-
cisely, instead of directly imposing the sparsity constraint on
variable x, we first split it into variables x and z as follows:

min
x,z

max
∥ϵ∥2≤ρ

f(x+ ϵ) + I∥·∥0≤d(z) s.t. x = z,

where I∥·∥0≤d(z) is an indicator function for the sparsity
constraint:

I∥·∥0≤d(z) :=

{
0 if ∥z∥0 ≤ d

∞ else.

We then slightly alter the Lagrangian by adding a penalty
term λ/2∥x−z∥22 with penalty parameter λ, which preserves
equivalence to the original problem while also acting as a
proximal term for the projection step. This alteration is a
form of augmented Lagrangian, which we apply to form the
Lagrangian dual problem of the following:

max
u

,min
x,z

(
L(x, z, u) := max

∥ϵ∥2≤ρ
f(x+ ϵ) + I∥·∥0≤d(z)

− λ

2
∥u∥22 +

λ

2
∥x− z + u∥22

)
,

where u is a scaled dual variable for the equality constraint
scaled by 1/λ. Here, the projection can be computed ef-
ficiently via hard thresholding operation (Blumensath &
Davies, 2009), which sets all entries of x but the d ele-
ments with the largest magnitudes to zero. Applying dual
ascent leaves us with the following x, z-minimization and
u-maximization:

xk+1, zk+1 = min
x,z

max
∥ϵ∥2≤ρ

f(x+ ϵ) + I∥·∥0≤d(z)

+
λ

2
∥x− z + u∥22

uk+1 = max
u

λ

2
∥x− z + u∥22 −

λ

2
∥u∥22.

3

SAFE: Finding Sparse and Flat Minima to Improve Pruning

To minimize each x and z separately with iterative first-order
optimization and exact projection operation respectively, we
compute x and z in an alternating manner which gives the
following iteration:

xk+1 = argmin
x

max
∥ϵ∥2≤ρ

f(x+ ϵ) +
λ

2
∥x− zk + uk∥22

zk+1 = proj∥·∥0≤d(xk+1 + uk)

uk+1 = uk + xk+1 − zk+1,

where proj∥·∥0≤d is a projection operation onto the spar-
sity constraint (i.e., the hard thresholding operator), and
u-maximization is solved through applying a single step of
gradient ascent with a step size of λ on y, which is to ensure
that the iterate stays within feasibility once reached.

3.3. x-minimization

For the x-minimization step, we first approximately solve
the ϵ-maximization via first-order approximation of f :

ϵ⋆(x) ≈ argmax
∥ϵ∥2≤ρ

f(x) + ϵ⊤∇f(x) = ρ
∇f(x)

∥∇f(x)∥2
,

which we apply back to the objective

xk+1 = argmin
x

f (x+ ϵ⋆(x)) +
λ

2
∥x− zk + uk∥22.

We solve this using gradient descent, where we remove
higher-order terms in the gradient as in Foret et al. (2021),

∇x

(
f (x+ ϵ⋆(x)) +

λ

2
∥x− zk + uk∥22

)
= (I +����∇ϵ⋆(x))∇f(x)

∣∣
x+ϵ⋆(x)

+ λ(x− zk + uk)

= ∇f

(
x+ ρ

∇f(x)

∥∇f(x)∥2

)
+ λ(x− zk + uk), (4)

thus leading to the following x-minimization steps:

x
(t+1)
k = x

(t)
k − η(t)

(
∇f
(
x
(t)
k + ρ

∇f(x
(t)
k)

∥∇f(x
(t)
k)∥2

)
+ λ(x

(t)
k − zk + uk)

)
, (5)

where t, η(t) are the current step of x-minimization and its
step-size, respectively.

3.4. Extension to Generalized Projection

While the Euclidean projection onto an L0 constraint natu-
rally yields magnitude-based sparsification, this often yields
subpar performance in practice compared to more advanced
saliency scores that account for the objective function. To

naturally integrate these into the projection operation, we de-
sign a generalized distance metric that introduces a positive-
definite diagonal matrix P that provides a framework to
incorporate these advanced saliencies of the form P

1/2
[i,i]|x[i]|

in a principled manner:

zk+1 = projP∥·∥0≤d(xk+1 + uk)

:= argmin
∥z∥0≤d

1

2
∥z − (xk+1 + uk)∥2P

= argmin
∥z∥0≤d

1

2
(z − (xk+1 + uk))

⊤P(z − (xk+1 + uk))

Geometrically, this can be understood as modifying the
underlying distance metric to better represent the local geo-
metric structure (e.g., the Hessian) of the original objective
function. We call this SAFE+, where we leverage various
saliency scores within the projection step, which we de-
scribe in detail below.

We lay out some notable examples of advanced saliency
scores and the corresponding P. The simplest case is
P = I, where the projection reduces to standard hard
thresholding as it corresponds to the Euclidean norm, yield-
ing the original SAFE. Taking this further, setting it as
the diagonal Hessian, i.e., P = diag(∇2f(x)), corre-
sponds to Optimal Brain Damage (LeCun et al., 1989),
a second-order pruning method that aims to remove pa-
rameters with minimal impact on the loss function. Also,
using P = diag(∇f(x)∇f(x)⊤) aligns with the first-order
pruning method SNIP (Lee et al., 2019), which removes pa-
rameters based on gradient sensitivity. Furthermore, Wanda
(Sun et al., 2024), a layer-wise pruning method for language
models, corresponds to taking P = diag(A⊤A) where
A ∈ RN×d is an activation with batch size N and feature
dimension d from a particular layer to prune. This corre-
sponds to the diagonal Hessian of the reconstruction error
for a single linear layer (Sun et al., 2024).

This generalized projection allows SAFE+ to integrate di-
verse sparsification strategies all within its constrained opti-
mization framework, thus enhancing both effectiveness and
robustness in model pruning. Our empirical evaluation in
Section 4.3 demonstrates its effectiveness in large language
model pruning, though the methodology is not confined to
this domain and is widely applicable.

3.5. Final Algorithm: SAFE and SAFE+

Our final algorithm is summarized in Algorithm 1. We pro-
vide an intuitive description of how our algorithm performs
sparsification. Every few steps of x-minimization, SAFE
observes where the closest point on the sparsity constraint
from the current x is and register it on z. While performing
flatness-inducing minimization of the objective function on
x, it penalizes the x iterate to slightly move closer to z, the

4

SAFE: Finding Sparse and Flat Minima to Improve Pruning

Algorithm 1 SAFE and SAFE+ algorithms

Require: Target parameter count d, total train iteration T ,
dual-update interval K, learning rate η(t), perturbation
radius ρ, penalty parameter λ, importance matrix P.

1: Initialize x(0)

2: u = 0
3: for t in T do
4: if tmodK = 0 then
5: if SAFE then
6: z = proj∥·∥0≤d(x

(t+1) + u)

7: else if SAFE+ then
8: z = projP∥·∥0≤d(x

(t+1) + u)
9: end if

10: u = u+ x(t+1) − z
11: end if
12: x(t+1/2) = x(t) − η(t)∇f

(
x(t) + ρ · ∇f(x(t))

∥∇f(x(t))∥2

)
13: x(t+1) = x(t+1/2) − η(t)λ(x(t) − z + u)
14: end for
15: return proj∥·∥0≤d(x

(T))

latest estimate of the sparse solution. This gradually moves
the dynamics of x towards sparsity without incurring a sud-
den change of loss, all while performing flatness induction,
yielding a sparse and flat minima.

In practice, particularly for image classification, we intro-
duce scheduling to the penalty parameter λ from zero to
the target value in a cosine curve in order to apply less
restriction in the initial phases of training, which slightly
improves performance. Details of the ablation study on this
scheduling strategy can be found in Appendix F.4.

3.6. Convergence Analysis

Here we present a convergence analysis of SAFE. Precisely,
we first prove that our proposed iterative sharpness mini-
mization in the x-update converges, then build the rest of
the proof upon a well-studied result of ADMM (Boyd et al.,
2011; Wang et al., 2019; Huang et al., 2021).

We start with standard assumptions used in the literature:

Assumption 3.1. (Lower bounded on constraint) The func-
tion f is lower bounded on A. That is, there exists a constant
fmin := mina∈A f(a) and fmin > −∞.

Assumption 3.2. (β-smoothness) The function f is differ-
entiable, and its gradient is β-smooth. That is, ∥∇f(x) −
∇f(y)∥ ≤ β∥x− y∥
Assumption 3.3. (µ-weak convexity) There exists a con-
stant µ ≥ 0 such that f is µ-weakly convex. i.e., f(x) +
µ
2 ∥x∥

2 is convex.

We also define the following notion of stationarity for the
optimization problem (1) from Huang et al. (2021):

Definition 3.4. (δ-stationary point) We say a point x̄ is a
δ-stationary point of the optimization problem (1) if x̄ ∈
argmina∈A

∥∥a−
(
x̄− δ−1∇f(x̄)

)∥∥ ,
i.e., the point x̄ cannot be locally improved using projected
gradient descent with step-size δ−1. With this definition,
we ultimately demonstrate that SAFE converges to this δ-
stationary point, which is a necessary condition for the
optimal solution to problem (1).

We first provide the central lemma on the convergence of
our sharpness minimizing x iterates:

Lemma 3.5. (Convergence of x-minimization) Suppose
that Assumptions 3.1 and 3.2 hold and let {x(t)

k } be
generated by Equation (5) in Algorithm 1 with step-size
η(t) and perturbation radius ρ(t) satisfying

∑∞
t=1 η

(t) =

∞,
∑∞

t=1 η
(t)ρ(t) < ∞, lim supt ρ

(t) < 1/β. Let L̂(x) =
f(x) + λ

2 ∥x− z + u∥22 and assume that infx∈N L̂(x(t)) >

−∞. Then ∇L̂(x(t)) → 0.

The detailed proof is provided in Appendix A.1. This shows
that running Equation (5) produces a sequence that con-
verges to the stationary point of the augmented Lagrangian
L̂ with respect to x.

We use this to derive the convergence of SAFE as the fol-
lowing corollary:

Corollary 3.6. (Convergence of SAFE) Suppose that As-
sumptions 3.1-3.3 hold. Assume further that δ is chosen
large enough so that δ−1β2 − (δ − µ)/2 < 0. Let (x̄, z̄, ū)
be a limit point of SAFE algorithm. Then x̄ is a δ-stationary
point of the optimization problem (1).

This demonstrates that SAFE converges to the stationary
point of the sparsity-constrained optimization problem (1).
We note that, while the technical contributions of our anal-
ysis might be considered modest, SAFE is built on a the-
oretically rigorous foundation, unlike many other pruning
techniques that often rely primarily on ad-hoc intuitions.

4. Experiments
In this section, we demonstrate that SAFE converges to
sparse and flat solutions, leading to performance improve-
ments over baselines in both image classification and lan-
guage modeling tasks. We also show that SAFE is robust
to noisy label training and corruptions during inference.
The codes to reproduce the results are provided in JAX and
PyTorch, with further details provided in Appendix B.5.

4.1. Convergence to Sparse and Flat Solutions

We first show that SAFE successfully guides training towards
sparse and flat solutions compared to naive baselines on a
simple neural network model. Specifically, we analyze the

5

https://github.com/LOG-postech/safe-jax
https://github.com/LOG-postech/safe-torch

SAFE: Finding Sparse and Flat Minima to Improve Pruning

0.04 0.02 0.00 0.02 0.04
Weight value

0

2000

4000

6000

8000

10000

Co
un

t
SGD weight distribution

(a) Dense training

0.04 0.02 0.00 0.02 0.04
Weight value

0

2000

4000

6000

8000

10000

Co
un

t

SAFE weight distribution

(b) SAFE

0.5 0.0 0.5

0.5

0.0

0.5

Sharpness: 0.2

0.01
0.02

0.03
0.04

0.05

(c) ADMM

0.5 0.0 0.5

0.5

0.0

0.5

Sharpness: 0.09

0.01
0.02

0.03

0.04

0.05

(d) SAFE

Figure 1: (a-b) Weight distributions of densely-trained model and model trained with SAFE, and (c-d) loss landscape and
maximum Hessian eigenvalue of minima found by ADMM and SAFE. SAFE yields sparse and flat solutions.

90.0 95.0 98.0 99.0 99.5
Sparsity (%)

85

87

89

91

93

95

Ac
cu

ra
cy

 (%
)

VGG-19 / CIFAR-10

SAFE
ADMM
LTH
GMP
PBW
MLPrune

90.0 95.0 98.0 99.0 99.5
Sparsity (%)

73

77

81

85

89

93

Ac
cu

ra
cy

 (%
)

ResNet-20 / CIFAR-10

SAFE
ADMM
GMP

90.0 95.0 98.0 99.0 99.5
Sparsity (%)

40

47

54

61

68

75

Ac
cu

ra
cy

 (%
)

VGG-19 / CIFAR-100

SAFE
ADMM
LTH
GMP
PBW
MLPrune

90.0 95.0 98.0 99.0 99.5
Sparsity (%)

10

23

36

49

62

75

Ac
cu

ra
cy

 (%
)

ResNet-32 / CIFAR-100

SAFE
ADMM
LTH
GMP
PBW
MLPrune

Figure 2: Validation accuracy (mean±std) of VGG-19 and ResNet-20/32 models on CIFAR-10/100 pruned across different
sparsity levels and methods. SAFE consistently achieves superior performance across a broad range of sparsity levels.

weight distributions of models trained with standard dense
training and SAFE to assess its sparsification capability. We
also measure sharpnesses of SAFE and compare it to that of
ADMM (Zhang et al., 2018) as a non-sharpness-minimizing
baseline, by computing maximum Hessian eigenvalues and
visualizing loss landscapes. The results are presented in Fig-
ure 1. Our findings indicate that SAFE effectively induces
sparsity while simultaneously enforcing flatness, as evi-
denced by the concentration of weights near zero in contrast
to dense training and a wider minimum with a lower Hessian
eigenvalue compared to ADMM. This result demonstrates
the effectiveness of SAFE in tackling the sharpness-aware
sparsity-constrained optimization problem (3). Further ex-
perimental details are provided in Appendix B.2.

4.2. Evaluations on Image Classification

In this section, we show that SAFE can achieve outstand-
ing generalization performance among various methods for
CIFAR-10/100 image classification tasks (Krizhevsky et al.,
2009). Specifically, we evaluate pruning performance on
VGG-19 (Simonyan, 2014) and ResNet-20/321 (He et al.,

1Following the convention Wang et al. (2020); Zhou et al.
(2021), we double the number of channels from standard ResNet
models.

2016) using a range of representative pruning methods, in-
cluding PBW (Han et al., 2015), GMP (Kurtic & Alistarh,
2022; Zhu & Gupta, 2017), LTH (Liu et al., 2024; Frankle &
Carbin, 2019), ADMM (Zhang et al., 2018), and MLPrune
(Zeng & Urtasun, 2018), some of which achieves competi-
tive to state-of-the-art performance in image classification
(Hoefler et al., 2021). We mostly use standard values for
common hyperparameters such as training epochs, learning
rate, and weight decay (Zhou et al., 2021) and tune the hy-
perparameters unique to SAFE, which we report in detail in
Appendix B. Notably, we do not perform additional training
after pruning, and instead perform a cost-efficient statistical
correction on the batch-norm layers with only a few forward
passes (batch-norm tuning or BNT), which is a common
practice in the literature (Hubara et al., 2021; Frantar & Al-
istarh, 2022; Peste et al., 2022). We refer to Appendix B.3
for full experimental details. The final validation accuracies
are provided in Figure 2 and Table 7 of Appendix C.

Our findings show that across most configurations and spar-
sity levels, SAFE generally outperforms all baselines. Also,
SAFE exhibits greater robustness under extreme sparsity
compared to non-sharpness-minimized approaches (e.g.,
99.5%). Crucially, SAFE achieves these results without
requiring costly retraining, whereas PBW and IMP depend

6

SAFE: Finding Sparse and Flat Minima to Improve Pruning

Table 1: Perplexities (mean±std) of LLaMa models pruned to various sparsity levels using different methods. SAFE archives
competitive performance, while SAFE+ outperforms baselines across all settings.

LLaMa-2 LLaMa-3

7B 13B 8B
Sparsity Method Wikitext/C4 Wikitext/C4 Wikitext/C4

0% Dense 5.47 / 7.26 4.88 / 6.72 6.23 / 9.53

50%

Magnitude 16.03 / 21.33 6.82 / 9.37 134.20 / 273.3
SparseGPT 6.99±0.03 / 9.20±0.03 6.06±0.03 / 8.20±0.01 9.36±0.11 / 13.96±0.02

Wanda 6.92±0.01 / 9.23±0.00 5.98±0.01 / 8.28±0.01 9.71±0.03 / 14.88±0.04

ALPS 6.87±0.01 / 8.98±0.00 5.96±0.02 / 8.09±0.04 9.05±0.12 / 13.40±0.06

SAFE 6.78±0.01 / 8.93±0.00 5.76±0.01 / 7.85±0.02 9.59±0.06 / 14.60±0.04

SAFE+ 6.56±0.01 / 8.71±0.00 5.67±0.01 / 7.74±0.01 8.62±0.06 / 13.26±0.06

60%

Magnitude 1864 / 2043 11.81 / 14.62 5335 / 7438
SparseGPT 10.19±0.08 / 12.86±0.05 8.31±0.09 / 10.85±0.09 15.46±0.40 / 21.25±0.18

Wanda 10.75±0.07 / 13.87±0.01 8.43±0.07 / 11.55±0.01 22.06±0.19 / 32.28±0.37

ALPS 9.55±0.00 / 11.24±0.03 7.54±0.03 / 9.87±0.05 14.03±0.35 / 18.72±0.15

SAFE 9.20±0.04 / 11.51±0.04 7.18±0.03 / 9.59±0.03 15.90±0.25 / 22.26±0.16

SAFE+ 8.30±0.06 / 10.59±0.00 6.78±0.04 / 9.02±0.15 12.18±0.22 / 17.30±0.02

4:8

Magnitude 15.91 / 31.61 7.32 / 9.96 212.5 / 336.3
SparseGPT 8.42±0.05 / 10.73±0.03 7.02±0.06 / 9.33±0.04 12.16±0.20 / 17.36±0.06

Wanda 8.64±0.03 / 11.35±0.01 7.01±0.02 / 9.70±0.03 13.84±0.04 / 21.14±0.06

ALPS 8.11±0.09 / 10.21±0.04 6.81±0.07 / 9.33±0.04 11.38±0.17 / 16.10±0.10

SAFE 8.21±0.01 / 10.61±0.04 6.60±0.02 / 8.95±0.02 12.15±0.14 / 17.90±0.15

SAFE+ 7.59±0.03 / 9.88±0.01 6.37±0.03 / 8.61±0.01 10.51±0.13 / 15.67±0.02

2:4

Magnitude 37.77 / 74.70 8.88 / 11.72 792.8 / 2245
SparseGPT 11.00±0.20 / 13.54±0.03 8.78±0.09 / 11.26±0.11 15.87±0.32 / 22.45±0.12

Wanda 12.17±0.02 / 15.60±0.11 9.01±0.04 / 12.40±0.01 23.03±0.38 / 34.91±0.31

ALPS 9.99±0.19 / 12.04±0.04 8.16±0.17 / 10.35±0.18 14.53±0.33 / 19.74±0.18

SAFE 10.53±0.13 / 13.20±0.07 7.64±0.05 / 10.10±0.01 17.49±0.27 / 24.45±0.13

SAFE+ 8.96±0.07 / 11.34±0.03 7.20±0.04 / 9.52±0.01 13.39±0.23 / 19.03±0.01

on multiple rounds of retraining. These results highlight
the effectiveness of SAFE in preserving model accuracy
during sparsification, especially under aggressive pruning
scenarios.

4.3. Evaluation on Large Language Model Pruning

Here we scale our evaluations to modern large-scale settings
and demonstrate that SAFE also delivers competitive perfor-
mance against state-of-the-art LLM post-training pruning
techniques.

For this purpose, we adapt SAFE and SAFE+ to sequen-
tially optimize the reconstruction error minimization (REM)
objective for each transformer block (Shin et al., 2024),
similarly to other LLM pruning techniques. For SAFE+,
we incorporate Wanda projection z-step, which identifies
superior subnetworks compared to naive magnitude-based
pruning in LLMs without compromising efficiency (Sun
et al., 2024).

With this, we prune one of the most widely adopted language
model family, LLaMA2-7b/13b (Touvron et al., 2023) and
the more recent LLaMA3-8b (Meta, 2024), to 50% and
60% sparsities, as well as structured 4:8 and 2:4 sparsities.
We compare SAFE with state-of-the-art LLM post-training

pruning methods such as SparseGPT (Frantar & Alistarh,
2023), Wanda (Sun et al., 2024), ALPS (ADMM-based)
(Meng et al., 2024), as well as magnitude pruning (Han
et al., 2015) and evaluate the perplexity on Wikitext2 (Mer-
ity et al., 2022) and C4 validation sets. We follow the
common practice of randomly selecting 128 samples from
the C4 training dataset (Raffel et al., 2020). We refer to Ap-
pendix B.4 for experimental details. The results are reported
in Table 1.

We find that SAFE performs competitively to state-of-the-art
methods, while SAFE+ surpasses them across all models
and sparsity settings. Considering that these baselines are
tailored specifically to pruning LLMs, this demonstrates the
flexibility of SAFE in adapting to different scenarios. More-
over, our method is more efficient than ALPS, which re-
quires ×2.54 more runtime than SAFE (see Appendix E.2).

4.4. Robustness to Noisy Data

Noisy data pose significant challenges in real-world sce-
narios. To address this, we evaluate SAFE on three repre-
sentative challenges: incorrect training labels (Song et al.,
2022), inference-time input corruption that arises naturally
(Hendrycks & Dietterich, 2019), and corruptions that are de-

7

SAFE: Finding Sparse and Flat Minima to Improve Pruning

Table 2: Noisy label training. Validation accuracy is mea-
sured for sparse models trained with ADMM and SAFE
under various levels of label noise and sparsity. SAFE is
much more robust to label noise.

Noise ratio
Sparsity Method 25% 50% 75%

70% ADMM 77.00±0.91 59.18±0.55 32.62±0.89

SAFE 90.58±0.30 86.51 ±0.16 67.01±0.54

80% ADMM 76.18±0.56 62.67±0.38 32.86±1.12

SAFE 91.25±0.12 86.55±0.07 66.49±0.56

90% ADMM 79.40±0.12 66.64±0.13 36.84±0.94

SAFE 90.68±0.21 86.49±0.06 64.72 ±0.61

95% ADMM 77.71±0.52 67.10±1.37 39.68±1.44

SAFE 89.86±0.11 85.18±0.15 64.25±0.36

liberately introduced by adversaries (Szegedy et al., 2014).

Training on noisy labels To assess the robustness of SAFE
against label noise, we randomly corrupt {25%, 50%, 75%}
of labels in CIFAR-10 and use it to train ResNet-20 with
both SAFE and ADMM. The same hyperparameters from
Section 4.2 are used in all experiments. As presented in
Table 2, we observe that SAFE consistently outperforms
ADMM across all levels of label noise and sparsity, with
accuracy improvements ranging from +10% to +30%.

Additionally, we observe that ADMM relies heavily on spar-
sity to mitigate label noise, exhibiting an overall trend of
increasing accuracy with higher sparsity levels. This de-
pendence is further reflected in the sparse double descent
pattern reported at the 25% noise ratio (He et al., 2022),
where accuracy initially declines up to 80% sparsity, rises
sharply to 79% at 90% sparsity, and then drops again to 77%
at 95% sparsity. This contributes to the overall decreasing
performance gap between ADMM and SAFE, which may be
interpreted as the benefit of sharpness-minimization dimin-
ishing with fewer parameter (Shin et al., 2025). However,
more crucially, the overall under-performance of ADMM
indicates that sparsity alone is a poor remedy for label noise,
highlighting the effectiveness of SAFE—particularly its flat-
ness enforcement—in reducing the impact of label noise.
This aligns well with previous observations that sharpness-
minimization can enhance robustness toward label noise
(Baek et al., 2024). Also, the lack of double descent in
SAFE suggests that its effectiveness may be attributed to
sharpness minimization functioning as an effective regular-
izer, as supported by the claims of Nakkiran et al. (2021)
that ‘optimal’ regularization can mitigate the double descent
phenomenon.

Evaluation on corrupted image We evaluate the sparse
models trained with ADMM and SAFE, as obtained in Sec-
tion 4.2, on the CIFAR-10 test set with common image
corruptions and adversarial perturbations. Specifically, for

Table 3: Evaluation on corrupted data. CIFAR-10C is used
for common corruptions, and l∞ and l2 PGD attacks are
used to generate adversarial corruption on the validation set
of CIFAR-10. SAFE improves robustness over naturally and
adversarially corrupted images.

Common corruption (avg.) Adversarial

Sparsity Method intensity=3 intensity=5 l∞-PGD l2-PGD

90% ADMM 70.06±0.03 52.01±0.38 49.81±1.02 49.71±1.06

SAFE 73.98±0.09 55.11±0.27 56.43±1.03 56.36±1.11

95% ADMM 68.87±0.25 50.56±0.07 49.84±1.78 49.68±1.79

SAFE 72.92±0.41 54.86±0.51 51.40±0.89 51.36±0.94

98% ADMM 65.46±0.24 48.65±0.04 43.33±1.59 43.42±1.60

SAFE 68.20±0.47 49.96±0.83 43.34±0.90 43.41±1.03

99% ADMM 59.21±0.47 43.81±0.44 30.29±0.64 30.32±0.58

SAFE 66.02±0.56 49.34±1.03 43.70±1.28 32.70±1.28

99.5% ADMM 55.72±0.44 41.55±0.78 23.25±1.92 23.25±1.85

SAFE 56.58±0.36 42.27±0.63 29.48±0.68 29.45±0.74

common corruptions, we use CIFAR-10C (Hendrycks &
Dietterich, 2019), a benchmark consisting of CIFAR-10 test
images corrupted with 19 types of real-world noise (e.g., fog,
snow, etc.) and distortions (e.g., jpeg compression, contrast,
etc.) at five levels of intensity. We average the performance
across all corruption types for intensity levels 3 and 5. For
adversarial noise, we follow Zhang et al. (2024) and use a
10-step Projected Gradient Descent (PGD) attack on each
sparse model under l∞ and l2 norm with bound ϵ = 1/255
and 3/255 and step size α = ϵ/4, respectively. As shown
in Table 3, SAFE enhances robustness to both common and
adversarial image corruptions, aligning with previous work
on sharpness minimization (Zhang et al., 2024; Wei et al.,
2023).

4.5. Comparison with Other SAM-based pruner

To strengthen the comparison with closely related baselines,
we compare SAFE to two pruning baselines inspired by
SAM—IMP+SAM (Na et al., 2022) and CrAM (Peste et al.,
2022)—on ResNet-20/CIFAR-10 across multiple sparsity
levels.

IMP+SAM (Na et al., 2022) involves applying SAM dur-
ing iterative magnitude pruning (Liu et al., 2024; Frankle
& Carbin, 2019). While it was initially introduced for lan-
guage model finetuning, we adapt this method to image clas-
sification and use the same training epochs and sharpness-
minimization hyperparameters as SAFE to ensure fair com-
parison. Pruning is performed every 10 epochs with sparsity
increasing either linearly, following Na et al. (2022), or cu-
bically (Zhu & Gupta, 2017), with the latter yielding better
performance.

Compression-Aware Minimizer (CrAM) (Peste et al., 2022),
on the other hand, builds upon the robust optimization
principles of SAM to train compressible models by en-

8

SAFE: Finding Sparse and Flat Minima to Improve Pruning

Table 4: Comparison with SAM+IMP and CrAM on ResNet-
20/CIFAR-10. SAFE outperforms over all sparsity levels.

Sparsity

Method 90% 95% 98% 99% 99.5%

IMP+SAMlinear 90.44±0.11 80.30±0.12 36.03±4.19 18.30±2.80 13.80±0.52

IMP+SAMcubic 93.49±0.05 92.50±0.05 89.24±0.06 83.74±0.14 73.73±0.30

CrAM 93.25±0.08 90.18±1.80 69.53±12.36 45.17±20.86 10.00±0.00

CrAM+ 94.21±0.19 93.62±0.06 91.75±0.41 88.82±0.18 81.30±0.56

CrAM+
Multi 93.61±0.08 92.21±0.79 91.05±0.34 88.83±0.19 85.25±0.27

SAFE 93.44±0.01 92.59±0.09 89.58±0.10 87.47±0.07 79.55±0.13

SAFE Multi 92.74±0.09 91.98±0.13 88.89±0.13 86.42±0.10 83.00±0.15

couraging them to maintain strong post-compression per-
formance under the presence of small perturbations as
minx max∥ϵ∥≤ρ f(C(x+ ϵ)) given some compression op-
eration C. This leads to the CrAM update rule xt+1 =
xt − η∇f(C(x + ρ∇f(x))). Along with this, we ad-
ditionally compare two variant introduced in Peste et al.
(2022): CrAM+ and CrAM+

Multi. CrAM+ simply adds the
original gradient ∇f(x) in the update as xt+1 = xt −
η [∇f(C(x+ ρ∇f(x))) +∇f(x))], whereas CrAM+

Multi
additionally changes the target sparsity at each iteration
chosen randomly from a predefined set. We run these us-
ing the optimal hyperparameters as suggested in Peste et al.
(2022). It should be noted that these techniques are some-
what auxiliary to the core robust optimization mechanism
that connects CrAM to SAFE, and thus, care must be taken
when associating their performance gains with the central
strategy defining CrAM. For better comparison, we apply
the Multi-strategy to SAFE by changing the target sparsity
every z-updates, which we denote as SAFE Multi.

As shown in Table 4, SAFE and SAFE Multi outperforms
IMP+SAM and CrAM, and demonstrates competitive perfor-
mance relative to CrAM+ and CrAM+

Multi. We suspect that
the pruning operation in IMP+SAM may be overly abrupt,
potentially disrupting with the effectiveness of sharpness
minimization. Conversely, although CrAM+ and CrAM+

Multi
achieve strong results, the substantially weaker performance
of plain CrAM suggests that caution is warranted when
attributing these gains to the effectiveness of their robust op-
timization formulation inspired by sharpness-minimization.
In contrast, when SAFE and SAFE Multi are compared re-
spectively to their counterparts for CrAM+, we can observe
that SAFE deliver competitive performance without rely-
ing on additional techniques, highlighting the intrinsic ef-
fectiveness of its smooth penalization via the augmented
Lagrangian and split-variable structure of the ADMM frame-
work to jointly balance sharpness minimization and sparsity.
We additionally observe similarly strong performance over
IMP+SAM on language model pruning in Appendix D.

5. Conclusion
In this work, we propose an effective and principled ap-
proach called SAFE to obtain sparse and flat solutions by
solving a constrained optimization problem based on the
augmented Lagrangian, which we further extend to SAFE+

by proposing a generalization for the projection operation.
We show that SAFE can be applied to neural network prun-
ing, and as a result, it not only obtains the desired flatness
as well as high sparsity in the given deep model, but also
enhances its generalization performance quite significantly,
far better than the compared baselines, as validated across
standard benchmarks. Interestingly, SAFE preserves its ro-
bustness to various data noise during both training and infer-
ence, which stems from the original sharpness minimization
strategy. Finally, we compare with more directly related
SAM-inspired baselines, demonstrating the intrinsic effec-
tiveness of SAFE without reliance on auxiliary techniques.
We believe that this principled approach for obtaining sparse
and flat solutions—concepts that have often been explored
rather separately in the literature—offers significant poten-
tial.

Acknowledgements
This work was partly supported by the Institute of Infor-
mation & communications Technology Planning & Evalua-
tion (IITP) grant funded by the Korean government (MSIT)
(IITP-2019-0-01906, Artificial Intelligence Graduate School
Program (POSTECH) and RS-2022-II220959, (part2) Few-
Shot learning of Causal Inference in Vision and Language
for Decision Making), the National Research Foundation
of Korea (NRF) grant funded by the Korean government
(MSIT) (2022R1F1A1064569, RS-2023-00210466, RS-
2023-00265444).

Impact Statement
This paper presents work aimed at advancing the field of
Machine Learning, with the potential to influence both the-
oretical understanding and practical applications. While
our contributions do not directly raise immediate concerns
requiring specific emphasis, we acknowledge that advance-
ments in this domain can have far-reaching societal impli-
cations. We will ensure ongoing discourse on the broader
impact of our work in diverse contexts if the need is later
recognized.

References
Andriushchenko, M., Croce, F., Müller, M., Hein, M., and

Flammarion, N. A modern look at the relationship be-
tween sharpness and generalization. ICML, 2023.

Baek, C., Kolter, J. Z., and Raghunathan, A. Why is sam

9

SAFE: Finding Sparse and Flat Minima to Improve Pruning

robust to label noise? ICLR, 2024.

Bahri, D., Mobahi, H., and Tay, Y. Sharpness-aware mini-
mization improves language model generalization. ACL,
2022.

Bair, A., Yin, H., Shen, M., Molchanov, P., and Alvarez,
J. Adaptive sharpness-aware pruning for robust sparse
networks. arXiv, 2023.

Beck, A. and Teboulle, M. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM,
2009.

Benbaki, R., Chen, W., Meng, X., Hazimeh, H., Pono-
mareva, N., Zhao, Z., and Mazumder, R. Fast as chita:
Neural network pruning with combinatorial optimization.
ICML, 2023.

Blumensath, T. and Davies, M. E. Iterative hard threshold-
ing for compressed sensing. Applied and computational
harmonic analysis, 2009.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends® in Machine learning, 2011.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018.

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Bal-
dassi, C., Borgs, C., Chayes, J., Sagun, L., and Zecchina,
R. Entropy-SGD: Biasing gradient descent into wide
valleys. ICLR, 2017.

Chen, X., Hsieh, C.-J., and Gong, B. When vision trans-
formers outperform resnets without pre-training or strong
data augmentations. ICLR, 2022.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen, E.
Rigging the lottery: Making all tickets winners. ICML,
2020.

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
Sharpness-aware minimization for efficiently improving
generalization. ICLR, 2021.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. ICLR, 2019.

Frantar, E. and Alistarh, D. Optimal brain compression:
A framework for accurate post-training quantization and
pruning. NeurIPS, 2022.

Frantar, E. and Alistarh, D. Sparsegpt: Massive language
models can be accurately pruned in one-shot. ICML,
2023.

Goodfellow, I. J., Bengio, Y., and Courville, A. Deep Learn-
ing. MIT Press, 2016.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
NeurIPS, 2015.

Hassibi, B. and Stork, D. Second order derivatives for
network pruning: Optimal brain surgeon. NeurIPS, 1992.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. CVPR, 2016.

He, Z., Xie, Z., Zhu, Q., and Qin, Z. Sparse double descent:
Where network pruning aggravates overfitting. ICML,
2022.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre,
B., Steiner, A., and van Zee, M. Flax: A neural network
library and ecosystem for JAX, 2023. URL http://
github.com/google/flax.

Hendrycks, D. and Dietterich, T. Benchmarking neural
network robustness to common corruptions and perturba-
tions. ICLR, 2019.

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and
Peste, A. Sparsity in deep learning: Pruning and growth
for efficient inference and training in neural networks.
JMLR, 2021.

Huang, T., Singhania, P., Sanjabi, M., Mitra, P., and Raza-
viyayn, M. Alternating direction method of multipliers
for quantization. International Conference on Artificial
Intelligence and Statistics, 2021.

Hubara, I., Chmiel, B., Island, M., Banner, R., Naor, J.,
and Soudry, D. Accelerated sparse neural training: A
provable and efficient method to find n: m transposable
masks. NeurIPS, 2021.

Izmailov, P., Wilson, A., Podoprikhin, D., Vetrov, D., and
Garipov, T. Averaging weights leads to wider optima and
better generalization. UAI, 2018.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and
Bengio, S. Fantastic generalization measures and where
to find them. ICLR, 2020a.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and
Bengio, S. Fantastic generalization measures and where
to find them. ICLR, 2020b.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,
M., and Tang, P. T. P. On large-batch training for deep
learning: Generalization gap and sharp minima. ICLR,
2017.

10

http://github.com/google/flax
http://github.com/google/flax

SAFE: Finding Sparse and Flat Minima to Improve Pruning

Khanh, P. D., Luong, H.-C., Mordukhovich, B. S., and Tran,
D. B. Fundamental convergence analysis of sharpness-
aware minimization. NeurIPS, 2024.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv, 2017.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kurtic, E. and Alistarh, D. Gmp*: Well-tuned gradual
magnitude pruning can outperform most bert-pruning
methods. arXiv, 2022.

Kusupati, A., Ramanujan, V., Somani, R., Wortsman, M.,
Jain, P., Kakade, S., and Farhadi, A. Soft threshold weight
reparameterization for learnable sparsity. ICML, 2020.

Kwon, W., Kim, S., Mahoney, M. W., Hassoun, J., Keutzer,
K., and Gholami, A. A fast post-training pruning frame-
work for transformers. NeurIPS, 2022.

LeCun, Y., Denker, J., and Solla, S. Optimal brain damage.
NeurIPS, 1989.

Lee, N., Ajanthan, T., and Torr, P. Snip: Single-shot network
pruning based on connection sensitivity. ICLR, 2019.

Lee, N., Ajanthan, T., Torr, P., and Jaggi, M. Understand-
ing the effects of data parallelism and sparsity on neural
network training. ICLR, 2021.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T.
Visualizing the loss landscape of neural nets. NeurIPS,
2018.

Lin, T., Stich, S. U., Barba, L., Dmitriev, D., and Jaggi, M.
Dynamic model pruning with feedback. ICLR, 2020.

Liu, B., Zhang, Z., He, P., Wang, Z., Xiao, Y., Ye, R., Zhou,
Y., Ku, W.-S., and Hui, B. A survey of lottery ticket
hypothesis. arXiv, 2024.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Re-
thinking the value of network pruning. International
Conference on Learning Representations, 2019.

Meng, X., Behdin, K., Wang, H., and Mazumder, R. Alps:
Improved optimization for highly sparse one-shot pruning
for large language models. NeurIPS, 2024.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. ICLR, 2022.

Meta. The llama 3 herd of models. arXiv, 2024.

Na, C., Mehta, S. V., and Strubell, E. Train flat, then com-
press: Sharpness-aware minimization learns more com-
pressible models. EMNLP, 2022.

Nakkiran, P., Venkat, P., Kakade, S. M., and Ma, T. Optimal
regularization can mitigate double descent. ICLR, 2021.

Neyshabur, B., Bhojanapalli, S., McAllester, D., and Srebro,
N. Exploring generalization in deep learning. NeurIPS,
2017.

Orvieto, A., Kersting, H., Proske, F., Bach, F., and Lucchi,
A. Anticorrelated noise injection for improved general-
ization. ICML, 2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. NeurIPS, 2019.

Peste, A., Iofinova, E., Vladu, A., and Alistarh, D. Ac/dc:
Alternating compressed/decompressed training of deep
neural networks. NeurIPS, 2021.

Peste, A., Vladu, A., Kurtic, E., Lampert, C. H., and Alis-
tarh, D. Cram: A compression-aware minimizer. ICLR,
2022.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. JMLR, 2020.

Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A.,
and Rastegari, M. What’s hidden in a randomly weighted
neural network? CVPR, 2020.

Sanh, V., Wolf, T., and Rush, A. Movement pruning: Adap-
tive sparsity by fine-tuning. NeurIPS, 2020.

Shin, S., Park, W., Lee, J., and Lee, N. Rethinking pruning
large language models: Benefits and pitfalls of recon-
struction error minimization. EMNLP, 2024.

Shin, S., Lee, D., Andriushchenko, M., and Lee, N. Critical
influence of overparameterization on sharpness-aware
minimization. UAI, 2025.

Simonyan, K. Very deep convolutional networks for large-
scale image recognition. arXiv, 2014.

Song, H., Kim, M., Park, D., Shin, Y., and Lee, J.-G. Learn-
ing from noisy labels with deep neural networks: A sur-
vey. TNNLS, 2022.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
ICLR, 2024.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties
of neural networks. ICLR, 2014.

11

SAFE: Finding Sparse and Flat Minima to Improve Pruning

Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. Prun-
ing neural networks without any data by iteratively con-
serving synaptic flow. NeurIPS, 2020.

Tibshirani, R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 1996.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv, 2023.

Wang, C., Zhang, G., and Grosse, R. Picking winning
tickets before training by preserving gradient flow. ICLR,
2020.

Wang, Y., Yin, W., and Zeng, J. Global convergence of
admm in nonconvex nonsmooth optimization. J. Sci.
Comput., 2019.

Wei, Z., Zhu, J., and Zhang, Y. Sharpness-aware minimiza-
tion alone can improve adversarial robustness. 2023.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. M. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv, 2020.

Zeng, W. and Urtasun, R. Mlprune: Multi-layer pruning for
automated neural network compression. arXiv, 2018.

Zhang, T., Ye, S., Zhang, K., Tang, J., Wen, W., Fardad, M.,
and Wang, Y. A systematic dnn weight pruning frame-
work using alternating direction method of multipliers.
In ECCV, 2018.

Zhang, Y., He, H., Zhu, J., Chen, H., Wang, Y., and Wei,
Z. On the duality between sharpness-aware minimization
and adversarial training. ICML, 2024.

Zhou, P., Feng, J., Ma, C., Xiong, C., Hoi, S. C. H., et al.
Towards theoretically understanding why sgd generalizes
better than adam in deep learning. NeurIPS, 2020.

Zhou, X., Zhang, W., Xu, H., and Zhang, T. Effective sparsi-
fication of neural networks with global sparsity constraint.
CVPR, 2021.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring
the efficacy of pruning for model compression. arXiv,
2017.

12

SAFE: Finding Sparse and Flat Minima to Improve Pruning

A. Convergence analysis of SAFE

In this section, we show that SAFE converges to a stationary point of the augmented Lagrangian. Precisely, we first prove that
our proposed sharpness minimized x-minimization iterate converges to the stationary point for the augmented Lagrangian
for the original loss function (i.e., L̂(x) = f(x) + λ/2∥x− z + u∥2) with respect to x. With this result, build the rest of the
proof upon a well-studied result of ADMM (Boyd et al., 2011; Wang et al., 2019; Huang et al., 2021).

Prior to providing detailed proofs of core lemmas and corollary, we first describe the properties of the augmented Lagrangian
L̂(x) based on the Assumptions 3.2 and 3.3.

Defining strong convexity as:

Definition A.1. (α-strong convexity) Let f be differentiable. f is α-strongly convex if there exists α > 0 such that
f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ α

2 ∥y − x∥2,

we present the smoothness and strong convexity of L̂(x) through the following lemma:

Lemma A.2. Let f be β-smooth and µ-weakly convex. Then L̂(x) = f(x) + λ
2 ∥x− z + u∥2 is also (β + λ)-smooth and

(λ− µ)-strongly convex for λ > µ.

Proof. From Assumption 3.2, we have

∥∇L̂(x)−∇L̂(x)∥ = ∥∇f(x) + λ(x− z + u)−∇f(y)− λ(y − z + u)∥
≤ ∥∇f(x)−∇f(y)∥+ ∥λx− λy∥
≤ (β + λ)∥x− y∥

thus by definition, L̂ is (β + λ)-smooth.

Also, from first-order condition of convexity of f(x) + µ
2 ∥x∥

2 from Assumption 3.3, we have

f(y) +
µ

2
∥y∥2 ≥ f(x) +

µ

2
∥x∥2 + ⟨∇f(x) + µx, y − x⟩

⇒ f(y) ≥ f(x) + ⟨∇f(x) + µx, y − x⟩+ µ

2
∥x∥2 − µ

2
∥y∥2

⇒ f(y) ≥ f(x) + ⟨∇f(x) + µx, y − x⟩ − µ

2
⟨y + x, y − x⟩

⇒ L̂(y) ≥ L̂(x) + ⟨∇L̂(x), y − x⟩ − µ

2
⟨y − x, y − x⟩+ λ

2
⟨y − x, y − x⟩

⇒ L̂(y) ≥ L̂(x) + ⟨∇L̂(x), y − x⟩+ λ− µ

2
∥y − x∥2.

Since λ− µ > 0, by definition L̂ is (λ− µ)-strongly convex.

A.1. Proof of Lemma 3.5

We provide the convergence proof of our sharpness minimizing x iterates. We mostly follow the procedure of Khanh et al.
(2024), with the objective and the update rule altered to match our configurations. Before we proceed, we recall prior results
from Khanh et al. (2024)

Lemma A.3. (Lemma B.1 of Khanh et al. (2024)) Let {a(t)}, {b(t)}, {c(t)} be sequences of nonnegative numbers satisfying
the conditions

a(t+1) − a(t) ≤ b(t)a(t) + c(t) for sufficient large t ∈ N, (a)

{b(t)} is bounded,
∞∑
t=1

b(t) = ∞,

∞∑
t=1

c(t) < ∞, and
∞∑
t=1

b(t)a(t) < ∞. (b)

Then we have that a(t) → 0 as t → ∞

With this, we derive the convergence of our sharpness minimizing x iterates in the following lemma:

13

SAFE: Finding Sparse and Flat Minima to Improve Pruning

Lemma A.4. (Convergence of x-minimization) Suppose that Assumption 3.1 and 3.2 hold and let {x(t)
k } be generated by

Equation (5) in Algorithm 1 with step-size η(t) and perturbation radius ρ(t) satisfying

∞∑
t=1

η(t) = ∞,

∞∑
t=1

η(t)ρ(t) < ∞, lim sup
t

ρ(t) < 1/β. (6)

Let L̂(x) = f(x) + λ
2 ∥x− z + u∥22 and assume that infx∈N L̂(x(t)) > −∞. Then ∇L̂(x(t)) → 0.

Proof. Let the gradient of our sharpness minimizing x iterate Equation (4) as

g(t) := ∇f

(
x(t) + ρ(t)

∇f(x(t))

∥∇f(x(t))∥

)
+ λ(x(t) − z + u),

where we drop the subscript denoting the outer SAFE iterate for simplicity. We also denote β̂ := β − µ. We first begin from
the β̂-smooothness of L̂ from Lemma A.2 as

L̂(x(t+1)) ≤ L̂(x(t)) + ⟨∇L̂(x(t)), x(t+1) − x(t)⟩+ β̂

2
∥x(t+1) − x(t)∥2

= L̂(x(t))− η(t)⟨∇L̂(x(t)), g(t)⟩+ β̂η(t)2

2
∥g(t)∥2

= L̂(x(t))− η(t)(1− β̂η(t))⟨∇L̂(x(t)), g(t)⟩+ β̂η(t)2

2

(
∥g(t) −∇L̂(x(t))∥2 − ∥∇L̂(x(t))∥2

)
. (7)

Here, we bound each ∥g(t) −∇L̂(x(t))∥ and ⟨g(t),∇L̂(x(t))⟩ using the β̂-smoothness as follows

∥g(t) −∇L̂(x(t))∥ =

∥∥∥∥∇f

(
x(t) + ρ(t)

∇f(x(t))

∥∇f(x(t))∥

)
+ λ(x(t) − z + u)−

(
f(x(t)) + λ(x(t) − z + u)

)∥∥∥∥
=

∥∥∥∥∇f

(
x(t) + ρ(t)

∇f(x(t))

∥∇f(x(t))∥

)
− f(x(t))

∥∥∥∥
≤ β

∥∥∥∥x(t) + ρ(t)
∇f(x(t))

∥∇f(x(t))∥
− x(t)

∥∥∥∥
= βρ(t), (8)

and using this result, we have that

⟨g(t),∇L̂(x(t))⟩ = ⟨g(t) −∇L̂(x(t)),∇L̂(x(t))⟩+ ∥L̂(x(t))∥2

≥ −∥g(t) −∇L̂(x(t))∥ · ∥∇L̂(x(t))∥+ ∥L̂(x(t))∥2

≥ −βρ(t)∥∇L̂(x(t))∥+ ∥L̂(x(t))∥2. (9)

Applying Equation (8) and (9) back to Equation (7) gives

14

SAFE: Finding Sparse and Flat Minima to Improve Pruning

L̂(x(t+1)) = L̂(x(t))− η(t)(1− β̂η(t))⟨∇L̂(x(t)), g(t)⟩+ β̂η(t)2

2

(
∥g(t) −∇L̂(x(t))∥2 − ∥∇L̂(x(t))∥2

)
≤ L̂(x(t))− η(t)(1− β̂η(t))

(
−βρ(t)∥∇L̂(x(t))∥+ ∥∇L̂(x(t))∥2

)
+

β̂3η(t)2ρ(t)2

2
− β̂η(t)2

2
∥∇L̂(x(t))∥2

= L̂(x(t))− η(t)

2
(2− β̂η(t))∥∇L̂(x(t))∥2 + β̂η(t)ρ(t)(1− β̂η(t))∥∇L̂(x(t))∥+ β̂3η(t)2ρ(t)2

2

≤ L̂(x(t))− η(t)

2
(2− β̂η(t))∥∇L̂(x(t))∥2 + β̂η(t)ρ(t)

2
(1− β̂η(t))

(
1 + ∥∇L̂(x(t))∥2

)
+

β̂3η(t)2ρ(t)2

2

= L̂(x(t))− η(t)

2
(2− β̂η(t) − β̂ρ(t) + β̂2η(t)ρ(t))∥∇L̂(x(t))∥2 + β̂η(t)ρ(t)

2
(1− β̂η(t)) +

β̂3η(t)2ρ(t)2

2

= L̂(x(t))− η(t)

2
(2− β̂η(t) − β̂ρ(t) + β̂2η(t)ρ(t))∥∇L̂(x(t))∥2 + β̂η(t)ρ(t)

(
1− β̂η(t) + β̂2η(t)ρ(t)

2

)

From here, we find c1 > 0 and c2 ∈ (0, 1) and T ∈ N such that

1

2
(2− β̂η(t) − β̂ρ(t) + β̂2η(t)ρ(t)) ≥ c1,

1− β̂η(t) + β̂2η(t)ρ(t)

2
≤ c2, and βη(t) < 1 for all t > T,

where applying this gives us

L̂(x(t+1)) ≤ L̂(x(t))− c1η
(t)∥∇L̂(x(t))∥2 + c2βη

(t)ρ(t). (10)

Also, defining w(t) := c2
∑∞

i=t βη
(i)ρ(i) for t ∈ N, we get that w(t) → 0 as t → ∞ and w(t) − w(t+1) = c2βη

(t)ρ(t) for
all t ∈ N. Then Equation (10) can be rewritten as

L̂(x(t+1)) + w(t+1) ≤ L̂(x(t)) + w(t) − c1η
(t)∥∇L̂(x(t))∥2. (11)

Here we telescope this bound from t = T to ∞ and combine with inf f(x(t)) > −∞ and w(t) → 0 as t → ∞ that

c1

∞∑
t=T

η(t)∥∇L̂(x(t))∥2 ≤
∞∑
t=T

(L̂(x(t))− L̂(x(t+1)) + w(t) − w(t+1)) (12)

≤ L̂(x(K))− inf
T∈N

L̂(x(t)) + w(K) < ∞ (13)

We finally employ Lemma A.3 with a(t) := ∥∇L̂(x(t))∥, b(t) := β̂η(t), and c(t) := β̂η(t)ρ(t) for all t ∈ N to derive
L̂(x(t)) → 0. Here, condition (a) is satisfied due to the estimates

a(t+1) − a(t) = ∥∇L̂(x(t+1))∥ − ∥∇L̂(x(t))∥
≤ ∥∇L̂(x(t+1))−∇L̂(x(t))∥

≤ β̂∥x(t+1) − x(t)∥ = β̂η(t)∥g(t)

≤ β̂η(t)(∥∇L̂(x(t))∥+ ∥g(t) −∇L̂(x(t))∥)

≤ β̂η(t)(∥∇L̂(x(t))∥+ ∥g(t) −∇L̂(x(t))∥)
= b(t)a(t) + c(t) for all k ∈ N.

Also, the conditions in (b) hold by Equation (6) and
∑∞

t=1 η
(t)∥∇L̂(x(t))∥2 < ∞. Thus from Lemma A.3, ∥∇L̂(x(t))∥ =

a(t) → 0 as t → ∞.

This shows that running Equation (5) produces a sequence that converges to the stationary point of the augmented Lagrangian
L̂(x, z, u) = f(x) + I∥·∥0≤d(z) +

λ
2 ∥u∥

2
2 +

λ
2 ∥x− z + u∥22 with respect to x. This is crucial for convergence of SAFE as

we show in the following section.

15

SAFE: Finding Sparse and Flat Minima to Improve Pruning

A.2. Proof of Corollary 3.6

Here we prove the convergence of SAFE. This is a straightforward procedure: given our convergence guarantee of the x
iterates in Lemma A.4, the convergence properties of SAFE can be described in terms of classical ADMM. Thus, in this
section, we walk through the convergence analysis of ADMM as provided in Huang et al. (2021) and demonstrate how our
sharpness minimizing x iterates is applied within the proof.
Corollary A.5. (Convergence of SAFE) Suppose that Assumptions 3.1-3.3 hold. Assume further that δ is chosen large
enough so that δ−1β2 − (δ − µ)/2 < 0. Let (x̄, z̄, ū) be a limit point of SAFE algorithm. Then x̄ is a δ-stationary point of
the optimization problem (1).

Proof. By Lemma 3.5, every xk+1 found by running Equation (5) until convergence is the stationary point of the augmented
Lagrangian, i.e. ∇L̂(xk+1, zk, uk) = 0. This gives us the standard update rule of classical ADMM, where the results of
Huang et al. (2021) can be adapted directly.

B. Experimental Details
We present various details of our experimental setup. All experiments are run across three different seeds, and the results are
provided as the mean and the standard error.

B.1. Hyperparameters

Table 5: Hyperparameter details used/searched for SAFE and SAFE+. Here, perturbation radius and dual interval were
searched only in ResNet-20/CIFAR-10 and LLaMa-2-7b, then applied across all settings and target sparsity.

Vision Language

Epoch 200 (ResNet20) or 300 (others) 30

Base optimizer SGD Adam

Batch size 128 (or 126 when using 3 GPUs for data parallelism) 8

Learning rate 0.1 0.0002

Learning rate schedule cosine linear

Warm-up epoch 5 2

Weight decay 0.0001 0

Momentum 0.9 0.9

BNT sample size 10000 -

Perturbation radius (ρ) {0.01, 0.05,0.1, 0.2, 0.5} {0.0001,0.0002, 0.0005, 0.01}
Dual-update interval (K) {1, 2, 4, 8, 16,32, 64, 128, 256, 512, 1024, 2048} {16,32, 64}
Penalty parameter (λ) {10−4, 10−3, 10−2, 10−1} {0.001, 0.005, 0.01, 0.05, 0.1}
Penalty schedule cosine warmup constant

Table 6: Best performing penalty parameter of SAFE for VGG-19 and ResNet-20/32.

Sparsity
CIFAR-10 CIFAR-100

VGG-19 ResNet-20 VGG-19 ResNet-32

70~95% 10−4 10−3

98% 10−3 10−3

99%
99.5% 10−2 10−2

10−3

10−2

16

SAFE: Finding Sparse and Flat Minima to Improve Pruning

Across all experimental settings, the values for hyperparameters remain consistent, with the exception of the penalty
parameter λ. We report these in Table 5. Basic hyperparameters such as learning rate, batch size, weight decay, and
momentum are set to standard values commonly used in the literature (Kusupati et al., 2020; Ramanujan et al., 2020; Liu
et al., 2019). For SAFE-specific hyperparameters, including perturbation radius and dual-update interval, values were
optimized on ResNet-20/CIFAR-10, LLaMa-2-7b and applied universally across all settings, with only the penalty parameter
λ for image classification tasks being adjusted for each setting, which we report in Table 6. This demonstrates the general
applicability of its hyperparameter values across different tasks.

Also, we use a cosine warmup schedule for the penalty parameter for the vision tasks, which increases the penalty parameter
from 0 to the final target value with a cosine curve throughout training iterations.

B.2. Experimental Details in Section 4.1

Here we train the standard 3-layer MLPs (with hidden layers of 300 and 100) on MNIST. For the sparsity experiment, we
run standard dense training and SAFE with target sparsity of 90% and plot the distributions of weights. For the flatness
measurements, we run SAFE and ADMM (Zhang et al., 2018) (a simple non-sharpness-aware baseline) with target sparsity
of 90%. We then plot the loss landscape of the found solutions using standard visualization methods (Li et al., 2018), and
compute their maximum Hessian eigenvalue (sharpness) using the power iteration method.

B.3. Experimental Details in Section 4.2

We use standard ResNet and VGG architectures, with VGG having batch-norm layers instead of using dropout. For data
augmentation, we used standard techniques such as random cropping and flipping. We used SGD for the base optimizer for
SAFE and all baselines. All CIFAR experiments are conducted using a single or three NVIDIA RTX 3090, where a batch
size of 126 was used in this case. For CIFAR-10/100, we trained ResNet-20 for 200 epochs, and ResNet-32 and VGG-19 for
300 epochs.

B.4. Experimental Details in Section 4.3

Training data is processed following the standard settings in SparseGPT (Frantar & Alistarh, 2023), where we randomly
sample 128 data points with a sequence length of 2048 from the first shard of C4 (Raffel et al., 2020). All experiments were
conducted on a single GPU (NVIDIA A6000 or L40S) or HPU (Intel Gaudi2). We use LLaMa-2-7b-hf, LLaMA-2-13b-hf,
and LLaMA-3.1-8 B models from the HuggingFace model hub (Wolf et al., 2020), implemented in PyTorch (Paszke et al.,
2019). For SAFE and SAFE+, we perform pruning over 30 epochs using the Adam (Kingma & Ba, 2017) optimizer as the
base optimizer, with the hyperparameter β set to (0.9, 0.95), without weight decay.

B.5. Implementation and Reproduction Details

The code to reproduce the results of the paper is provided in JAX (Bradbury et al., 2018; Heek et al., 2023) and PyTorch
(Paszke et al., 2019). Specifically, the result of SAFE all image classification tasks are produced using JAX, while we used
PyTorch for LLMs as it is more abundantly available in PyTorch. Specifically, all image classification experiments
using SAFE were conducted in JAX, while PyTorch was used for LLM experiments, due to better support for official
implementations and pretrained checkpoints of widely adopted models such as LLaMA. For all competing methods, we
used the official implementations provided by the original authors on GitHub, with default hyperparameters as specified in
their respective papers.

17

https://github.com/LOG-postech/safe-jax
https://github.com/LOG-postech/safe-torch

SAFE: Finding Sparse and Flat Minima to Improve Pruning

C. Detailed Results for Image Classification Tasks
We present precise numeric values for Figure 2 in Table 7.

Table 7: Validation accuracy of VGG-19 and ResNet-20/32 models pruned with SAFE and various baseline methods, trained
on CIFAR-10 and CIFAR-100, across different sparsity levels. The results show that SAFE generally outperforms the
baseline methods across all evaluated sparsity levels, indicating its robustness and effectiveness in maintaining accuracy
even under high sparsity conditions.

Sparsity

Dataset Model Method 90% 95% 98% 99% 99.5%

CIFAR-10

VGG-19

GMP 93.37±0.09 93.13±0.12 93.08±0.09 92.70±0.19 90.63±0.14

PBW 93.87 93.57 92.83 90.89 10.00
MLPrune 93.70 93.45 92.48 91.44 88.18
LTH 93.51 92.92 92.34 - -
ADMM 93.86±0.10 93.62±0.03 93.58±0.07 92.54±0.07 88.53±0.16

SAFE 94.65±0.05 94.44±0.08 94.05±0.05 93.93±0.17 93.56±0.02

ResNet-20
GMP 92.94±0.08 91.81±0.14 89.42±0.17 85.15±0.19 75.83±0.47

ADMM 91.88±0.05 89.96±0.27 86.96±0.09 82.25±0.12 73.72±2.85

SAFE 93.44±0.01 92.59±0.09 89.58±0.1 87.47±0.07 79.55±0.13

CIFAR-100

VGG-19

GMP 72.00±0.06 71.81±0.04 69.55±0.03 66.98±0.06 62.77±0.49

PBW 72.41 70.53 58.91 1.00 1.00
MLPrune 71.56 70.31 66.77 60.10 50.98
LTH 72.78 71.14 68.95 - -
ADMM 72.93±0.07 71.17±0.16 70.02±0.34 67.23±0.34 43.40±0.71

SAFE 73.67±0.21 72.83±0.13 71.73±0.09 70.02±0.2 67.23±0.19

ResNet-32

GMP 71.69±0.22 69.10±0.24 65.15±0.30 58.10±0.17 42.93±0.37

PBW 72.19 68.42 58.23 43.00 20.75
MLPrune 70.33 61.73 37.86 22.38 13.85
LTH 68.99 65.02 57.37 - -
ADMM 70.85±0.45 68.74±0.31 63.75±0.06 49.13±0.22 12.34±0.73

SAFE 73.89±0.24 72.33±0.08 67.74±0.24 62.77±0.11 51.45±0.32

D. Additional Comparison with IMP+SAM on LLM pruning

We extend the experiment in Section 4.5 to LLM pruning, where we prune
LLama2-7b to 50% sparsity by applying IMP+SAM to block-wise reconstruc-
tion error objective similarly to SAFE. Here, We similarly perform pruning every
5 epochs with sparsity increasing linearly or cubically over the same number of
epoch as SAFE for fair comparison. As shown in Table 8, SAFE outperforms
IMP+SAM in LLM tasks similarly to results in image classification.

Table 8: Comparison with IMP+SAM
on LLaMA2-7b for 50% sparsity.

Perplexity
Method C4 / WikiText

IMP+SAM 18.27 / 176.00
SAFE 8.91 / 6.79

E. Computation Cost Analysis LLM Pruning
We provide theoretical and empirical analysis of the computation costs of SAFE and various baselines in LLM pruning.

E.1. Theoretical Computation Complexity

We compare the time complexity in terms of hidden dimensions d, number of data N or batch size b, number of iterations k,
and number of layers in a single transformer block LB to observe how the computation cost scales. The results are given in
Table 9.

We observe that while the computation cost of SAFE, similarily to ALPS, scales with the iteration, it does not scale with the
size of the dataset N . Also, it only scales quadratically with the hidden dimension of the model. In comparison, SparseGPT

18

SAFE: Finding Sparse and Flat Minima to Improve Pruning

Table 9: Time complexity analysis for LLM post-pruning techniques

Method Time Complexity Explanation

SparseGPT O(LB(Nd2 + d3)) Hessian computation over N samples (Nd2) + Hessian inverse (d3) for LB layers in a single block
Wanda O(LB(Nd+ d2)) Activation norm computation (Nd) + weight multiplication (d2) for LB layers in a single block

ALPS O(LB(N
2 + d3 + kd3))

Hessian computation over N samples (Nd2) + eigendecomposition (d3)
+ penalized inverse for k ADMM iterations (kd3) for LB layers in a single block

SAFE O(LBbkd
2) Backpropagation through LB layers in a single block for k iterations

and ALPS scale cubically. Given that scaling model and data sizes are a central strategy in the development of large language
models, this highlights the advantage and adequecy of SAFE in the current era of large-scale models.

E.2. Wall-clock Time

We report the wall clock time required for each pruning method on the LLaMA-2-
7B model at 50% sparsity. Specifically, Table 10 shows the time taken to prune the
first transformer block consisting of the self-attention and the feed-forward module.
All measurements were conducted on a single Nvidia A6000 GPU to ensure a fair
comparison across pruning methods.

Table 10: Wall-clock time

Method Time (s)

Magnitude 0.48
Wanda 3.98
SparseGPT 15.82
ALPS 788.66
SAFE 310.68

F. Ablation Study
We conduct ablation of various hyperparameters of SAFE on ResNet-20 trained on CIFAR-10.

F.1. Effects of Penalty Parameter λ

0.0001 0.001 0.01 0.1
Sparsity=0.7

0.92

0.94

Va
l a

cc
ur

ac
y

Dense
Sparse
Sparse (BNT)

0.0001 0.001 0.01 0.1
Sparsity=0.8

0.0001 0.001 0.01 0.1
Sparsity=0.9

0.0001 0.001 0.01 0.1
Sparsity=0.95

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Penalty parameter ()

0.0001 0.001 0.01 0.1
Sparsity=0.7

0.92

0.94

Va
l a

cc
ur

ac
y

Dense
Sparse
Sparse (BNT)

0.0001 0.001 0.01 0.1
Sparsity=0.8

0.0001 0.001 0.01 0.1
Sparsity=0.9

0.0001 0.001 0.01 0.1
Sparsity=0.95

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Penalty parameter ()

(a) Dense/sparse validation accuracies

0.0001 0.001 0.01 0.1
Penalty parameter ()

10 1

100

101

Di
st

. t
o

co
ns

tra
in

t Sparsity
0.7
0.8
0.9
0.95

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Distance to constraint

Figure 3: Effect of the penalty parameter λ on final validation accuracy of dense/sparsified models (a) and the distance from
the constraint (b) over various levels of sparsity. Larger λ relieves the performance drop in the final projection step while
degrading the performance of the original dense model. Also, BNT provides larger benefits for smaller λ and the target
sparsity

We observe how the penalty parameter λ impacts various aspects of the final model in terms of the validation accuracy of
the final network before and after projection (denoted as dense/sparse model in the legend, respectively) and the distance to
the constraint. We vary λ between {10−4, 10−3, 10−2, 10−1} and observe this for target sparsity of {0.7, 0.8, 0.9, 0.95},
with is reported in Figure 3. We find that while larger λ relieves the performance degradation in the final projection step by
pushing the network closer to the sparsity constraint during training, it also degrades the performance of the original dense
model. This indicates that a balance between objective minimization and constraint satisfaction would yield the best results.
We also find that the model becomes more sensitive to λ for higher target sparsity, where the degree to which large λ incurs
performance degradation while small λ results in failure of the model to get sufficiently close to the constraint becomes
much more severe. This highlights the challenge of training a model with extreme sparsity, which demands a careful balance
between minimizing the objective function and satisfying the sparsity constraint.

19

SAFE: Finding Sparse and Flat Minima to Improve Pruning

F.2. Effects of Batch-norm Tuning

We also observe how re-evaluating the batch statistics (i.e., batch-norm tuning or BNT) for the final projected parameters
impacts the performance of sparse networks over various sparsities. Our assumption is that it should be helpful when the
parameters change greatly after projection, which will cause the hidden features to deviate from the statistics computed
during training. The results are presented in Figure 3. We observe that the benefits of BNT are pronounced when λ is small,
where the distance to the constraint is the largest, fitting our assumption. However, we also observe that it fails to recover
the performance in higher sparsity, despite having a similar distance to the constraint. We suspect it is due to the degraded
quality of the sparse network having more impact on the performance in high sparsity, rather than the misalignment of the
batch-norm statistics.

F.3. Effects of dual-update interval K

1 2 4 8 16 32 6412
8
25

6
51

2
10

24
20

48

Dual-update interval (K)

0.930

0.935

0.940

De
ns

e
va

l a
cc

ur
ac

y

Sparsity
0.7
0.8
0.9
0.95

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Dense validation accuracy

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48

Dual-update interval (K)

0.80

0.85

0.90

Sp
ar

se
 v

al
 a

cc
ur

ac
y

Sparsity
0.7
0.8
0.9
0.95

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Sparse validation accuracy

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48

Dual-update interval (K)

2

3

4

5

Di
st

. t
o

co
ns

tra
in

t

Sparsity
0.7
0.8
0.9
0.95

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) Distance to constraint

Figure 4: Effect of the dual-update interval K on final validation accuracy of dense/sparsified models (a, b) and the final
distance from the constraint (c) over various levels of sparsity. In our search range, K has little impact on accuracy and
distance to the constraint. However, in target sparsity of 95%, large K fails to sufficiently push the network towards the
sparsity constraint, resulting in performance degradation on the sparsified network.

We observe how the dual-update interval K impacts the final validation accuracy before and after projection (denoted as
dense/sparse val accuracy, respectively) and the distance to the constraint in Figure 4. We find that within our search range,
K has little impact on the final network. However, in the case of target sparsity of 95%, we can observe that large K fails to
sufficiently push the network towards the sparsity constraint, resulting in performance degradation of the sparsified network.
We can expect this trend to appear for all sparsity levels under increasing values of K, since this will result in less execution
of dual ascent iteration for constraint satisfaction.

F.4. Effect of λ Scheduling

Table 11: Validation accuracy for various penalty parameter λ schedules on ResNet-20 trained on CIFAR-10. The use of
scheduling generally improves the final accuracy of the sparse network, especially at extreme sparsity.

Sparsity

70% 80% 90% 95%

Constant 93.79±0.16 93.33±0.10 92.13±0.13 90.78±0.16

Linear 93.78±0.04 93.66±0.17 93.06±0.04 92.20±0.01

Cosine 93.98±0.09 93.67±0.13 92.20±0.09 92.59±0.09

There are many strategies employed by the community known to boost performance for deep neural network training. One
such strategy is scheduling, which has been a de facto for important hyperparameters such as learning rate (Goodfellow
et al., 2016). In particular, gradual sparsity schedules (Zhu & Gupta, 2017; Benbaki et al., 2023) have been widely adopted
to enforce less sparsity in the initial phases of training. Here we observe whether a similar effect can be transferred to the

20

SAFE: Finding Sparse and Flat Minima to Improve Pruning

0 50 100 150 200
Epochs

0.0

f

Pe
na

lty
 p

ar
am

et
er

Schedule
constant
cosine
linear

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Schedules

0 50 100 150 200
Epochs

0.2

0.4

0.6

0.8

Sp
ar

se
 v

al
. a

cc
ur

ac
y

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Sparse val. acc.

0 50 100 150 200
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

De
ns

e
va

l.
ac

cu
ra

cy

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) Dense val. acc.

0 50 100 150 200
Epochs

0

10

20

30

40

50

Di
st

. t
o

co
ns

tra
in

t

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) Distance to constraint

Figure 5: Effects of different choices of penalty parameter schedules (a) on validation accuracy of sparsified/dense network
(b-c) and the distance to the target sparsity constraint (d) over the training process of ResNet-20/CIFAR-10 using SAFE
on 95% sparsity. It is observed that scheduling yields better performance, seemingly allowing the network to move away
from the constraint in the initial phases to focus more on training, which potentially underscores its impact on securing
performance.

penalty parameter λ, an important parameter for controlling how strongly to push toward the sparsity constraint at any point
during training. Precisely, we test whether a slow increase from zero to the targeted penalty λf will yield improvements over
constant λ. We train ResNet-20 on CIFAR-10 to {70%, 80%, 90%, 95%} sparsity with SAFE using linear, cosine schedules,
and constant λ, and observe how this affects the final accuracy of the sparse network in Table 11. We find that scheduling
consistently yields overall higher accuracy, especially in extreme sparsity where it yields +2% increase.

To gain further insight as to how this occurs, we analyze how scheduling affects various aspects of training through the
validation accuracy of the nearest sparse network (sparse val. acc.), the validation accuracy of the dense network (dense
val. acc.), and the distance to the constraint in Figure 5. Here, we observe that while constant penalty pushes the network
drastically close to sparsity in the initial stages, scheduling allows the network to temporarily stray away from the constraint.
This seems to highlight that the initial phase of training is important for securing the performance of the final sparse network.

21

