
PACE: Improving Prompt with Actor-Critic Editing for Large
Language Model

Anonymous ACL submission

Abstract
Large language models (LLMs) have show-001
cased remarkable potential across various tasks002
by conditioning on prompts. However, the qual-003
ity of different human-written prompts leads004
to substantial discrepancies in LLMs’ perfor-005
mance, and improving prompts usually neces-006
sitates considerable human effort and expertise.007
To this end, this paper proposes Prompt with008
Actor-Critic Editing (PACE) for LLMs to en-009
able automatic prompt editing. Drawing inspi-010
ration from the actor-critic algorithm in rein-011
forcement learning, PACE leverages LLMs as012
the dual roles of actors and critics, conceptual-013
izing prompt as a type of policy. PACE refines014
prompt, taking into account the feedback from015
both actors performing prompt and critics criti-016
cizing response. This process helps LLMs bet-017
ter align prompt to a specific task, thanks to real018
responses and thinking from LLMs. We con-019
duct extensive experiments on 24 instruction020
induction tasks and 21 big-bench tasks. Experi-021
mental results indicate that PACE elevates the022
relative performance of medium/low-quality023
human-written prompts by up to 98%, which024
has comparable performance to high-quality025
human-written prompts. Moreover, PACE also026
exhibits notable efficacy for prompt generation.027

1 Introduction028

The rapid development of LLMs has led to notable029

advancements in artificial intelligence. LLMs, such030

as ChatGPT (OpenAI, 2023), have emerged as es-031

sential tools in various application scenarios, in-032

cluding automatic question-answering (Gabburo033

et al., 2023; Carta et al., 2022), embodied agent034

(Lanchantin et al., 2023; Seraj, 2023), and code035

generation (Shen et al., 2022; Jiang et al., 2023;036

Dong et al., 2023b), among others. They have037

demonstrated remarkable capabilities in handling038

a range of tasks. However, their efficacy is not039

universal and often depends on how we interact040

with them - namely, how we provide appropriate041

prompts.042

Sum
Rhymes

Negation

Sentiment

Membership

Larger animal

Starting with

Word in context

Cause selection

Sentence similarity

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

Figure 1: The human-written prompt performance of ten
tasks proposed in Instruction Induction dataset (Hon-
ovich et al., 2022a), where each task contains about
eight human-written prompts, with absolute perfor-
mance differences between 29% and 93% for each task
(refer to Appendix C for detailed results).

The interaction between users and LLMs is heav- 043

ily mediated by prompts. These prompts can be 044

understood as entry points, shaping and directing 045

the LLMs’ enormous reserves of knowledge and 046

computational abilities toward specific outcomes. 047

Therefore, just as a key unlocks a door or a com- 048

mand instructs a computer program, prompts guide 049

the response mechanisms of LLMs, determining 050

the range and depth of answers they provide. Fig- 051

ure 1 vividly illustrates the sensitivity of LLMs 052

to the quality and specificity of prompts. Even 053

when posed with the same underlying task, vary- 054

ing the phrasing or approach of a prompt can yield 055

vastly different results. For instance, while one 056

prompt might retrieve a broad overview, another, 057

only slightly rephrased (adding “in detail”), could 058

elicit a detailed response. This variability under- 059

scores not only the importance of crafting thought- 060

ful and effective prompts but also the nuanced com- 061

plexities embedded within this task. 062

The variability in LLM performance with 063

prompts is primarily caused by two key factors: 064

1. Human Articulation Limitations: Humans inher- 065

ently think and communicate in a manner that is 066

filled with nuances, emotions, and subjectivities. 067

1

When posing questions or presenting requirements,068

they might inadvertently omit vital details or in-069

troduce ambiguities. Our natural way of commu-070

nication is also peppered with cultural references,071

idioms, and shorthand that might not always be072

clear or universally understood. Therefore, human-073

written prompts can sometimes express incomplete,074

ambiguous, or even erroneous requirements. This075

not only affects the accuracy of the output but might076

also skew it in unintended directions. 2. Cognitive077

Discordance between Humans and LLMs: Even078

when we assume that a prompt is perfectly articu-079

lated, another challenge arises. There is an intrin-080

sic cognitive gap between human comprehension081

and the way language models interpret information.082

Human comprehension and cognition need to be083

“translated” into expressions that align with LLM’s084

expectations. Thus, a well-phrased requirement085

from a human perspective may still lead to an LLM086

output that feels off or unexpected to humans. As a087

result, crafting high-quality prompts is usually not088

accomplished in one go but requires trial and error.089

In general, humans develop prompts in two090

stages: 1. Summarizing the initial prompt: The091

first stage involves crafting a preliminary version092

of a prompt. It is a process that often draws upon093

existing data, prior knowledge, or a specific need094

within a given context. 2. Improving and editing095

prompts: The second stage is characterized by a096

continuous process of improvement, modification,097

and fine-tuning. This stage is crucial because it098

takes the initial draft to a polished level, where099

the prompt becomes more precise, clear, and po-100

tentially more effective in eliciting the desired re-101

sponse from an LLM. This stage often involves iter-102

ative feedback loops, close scrutiny. However, ex-103

isting approaches of automatic prompt engineering104

concentrate primarily on the first stage (Reynolds105

& McDonell, 2021; Honovich et al., 2022a; Zhou106

et al., 2023), while overlooking the second stage107

that significantly enhances the quality of prompts.108

Intuitively, the effect and human effort of the sec-109

ond stage far surpass those of the first stage, as it110

is relatively straightforward for humans to draft a111

preliminary version of the prompt. Consequently,112

there emerges an imperative need for advancements113

in automatic prompt editing for LLMs.114

In this paper, we propose an effective approach115

named PACE to tackle automatic prompt editing116

for LLMs. This approach draws inspiration from117

the actor-critic algorithm, a well-known technique118

in the realm of reinforcement learning. PACE re- 119

purposes LLMs as both the actor and the critic. 120

Conceptually, a prompt can be viewed as a policy 121

that directs the behavior of the LLM. The actor, 122

or the LLM, performs tasks based on this policy 123

(prompt), while the critic provides a form of super- 124

vision, identifying how well the actor is perform- 125

ing based on the provided prompts. On this basis, 126

PACE improves the quality of the prompt, thereby 127

optimizing the performance of LLMs on specific 128

tasks. We conduct extensive experiments to eval- 129

uate the effectiveness of PACE on 24 instruction 130

induction tasks and 21 big-bench tasks. The exper- 131

imental results indicate the effectiveness of PACE 132

for automatic prompt editing and generation. 133

2 PACE 134

We consider a task T , accompanied by demonstra- 135

tion data D = {(X,Y)}. For the task T , given an 136

input X , a corresponding desired output is Y . The 137

objective of automatic prompt editing is to identify 138

a prompt p such that, when a LLM M is queried 139

with the concatenation of this prompt and a spec- 140

ified input [p;X], it generates the corresponding 141

output Y . Therefore, we aim to find the prompt p 142

that maximizes the expectation of score s(p,X, Y) 143

over possible pairs (X,Y). 144

p⋆ = argmax
p

s(p) = argmax
p

E(X,Y)s(p,X, Y), 145

where argmax means to return the parameter that 146

is the maximum value of the function, E indicates 147

the expectation, and s is a score function. 148

Owing to the vast and potentially infinite search 149

space, there are significant challenges in obtaining 150

optimal prompts. Following the previous work 151

(Reynolds & McDonell, 2021; Honovich et al., 152

2022a; Zhou et al., 2023), we leverage the capabil- 153

ities of LLM to approximate the inference of the 154

most likely prompt p with a high score. To further 155

augment the proficiency of LLM in generating or 156

refining prompts, we introduce the PACE approach, 157

which consists of the actor-critic paradigm and iter- 158

ative algorithm. 159

2.1 Actor-Critic Paradigm 160

As shown in Figure 2, given a prompt generated by 161

LLM or human, we use LLMs in dual roles: as both 162

the actor and the critic. Prompt p in this context is 163

conceptualized as a policy guiding the LLM. The 164

better the prompt, the more effective the LLM’s 165

2

CritiquesActions

task

LLM / User

prompt

Actions

Actors Critics

Critiques

Update

Figure 2: The paradigm of PACE.

response to a particular task. A policy, in reinforce-166

ment learning terms, is a strategy that the model167

uses to determine its actions based on its current168

state. By treating prompts as a policy, we can lever-169

age the concepts of reinforcement learning to guide170

the iterative refinement of the prompts. Specifi-171

cally, in PACE, we use role instruction (Dong et al.,172

2023a) to construct both actors and critics:173

Actor: The actor refers to the LLM that executes174

a task based on a given prompt. The response175

generated by the LLM is a direct consequence of176

the prompt, and it serves as an action taken by177

the actor in the environment of natural language178

processing tasks. Formally, for a prompt p and an179

input X , the action a generated by the actor can be180

represented as:181

a = factor([p;X],M), (1)182

where f∗ is regarded as the mapping of LLM from183

input to output. Specifically, the input parameter184

in [] will be represented in the form of the cor-185

responding template1, which is then fed into the186

given LLM M to obtain the output.187

Critic: The critic refers to the LLM that evalu-188

ates the effectiveness of the response generated by189

the actor. Specifically, the critic will assess if the190

response effectively addresses the task defined by191

the prompt. The feedback from the critic is then192

used to adjust and optimize the prompts, allowing193

for a continuous cycle of prompt improvement. For194

the response a, the critic then evaluates [p;X; a]195

and the desired output Y to derive a critique c as:196

c = fcritic([p;X; a;Y],M). (2)197

2.2 Iterative Algorithm198

The goal of PACE is to refine the prompt to opti-199

mize the LLM’s performance for a specific task.200

1The template can be found in Appendix B.

The process involves iteratively improving the 201

prompt using feedback from the actor and the critic. 202

Considering the bias caused by inputs and sam- 203

pling can render critiques imprecise, thus affect- 204

ing the outcomes of prompt editing. In a single 205

iteration, the PACE approach employs n actors 206

to execute the given prompt across varied inputs. 207

Concurrently, n critics evaluate the performance of 208

these actors, providing constructive criticism. This 209

process culminates in the aggregation of n feed- 210

back opinions, offering more holistic guidance for 211

prompt editing. Note that n is a hyperparameter 212

and is set to 4 in this paper. 213

We start with an initial prompt p0, where p0 214

can be an empty prompt, which is equivalent to 215

generating from scratch based on LLM. For each 216

iterative step t, the candidate prompt pt can be 217

refined according to the aggregation of n feedback 218

c≤n as: 219

pt+1 = fupdate([pt; c≤n],M). (3) 220

To evaluate the efficacy of candidate prompt pt 221

in each iteration, we employ a score function s to 222

assess pt based on demonstration or valid data. The 223

score function can be broadly categorized into two 224

types: 225

1. Log Probability involves leveraging an LLM 226

to compute the log probability of the output Y . 227

Intuitively, a prompt that can produce an answer 228

with a higher log probability is more likely to be 229

selected in practical applications. 230

2. Practical Evaluation Metric entails generat- 231

ing samples directly and then assessing them using 232

the practical evaluation metric of the task, such as 233

Accuracy, BLEU (Papineni et al., 2002), BertScore 234

(Zhang et al., 2020), and so forth. 235

In this paper, we focus on the second type of 236

score function, for two primary reasons: firstly, 237

some LLMs, owing to competitive business consid- 238

3

erations, might not disclose generation probabili-239

ties; secondly, employing the practical evaluation240

metric tends to bridge the disparity during testing,241

generally resulting in enhanced performance.242

We continue the iteration until convergence is243

achieved or until the predefined maximum number244

of iterations is reached. The prompt p⋆ derived245

from this iterative process serves as the finalized246

prompt tailored for the specific task. The detailed247

pseudocode of PACE is outlined in Algorithm 1.248

Algorithm 1 Pseudocode of PACE approach.
Require: Initial prompt p0, Demonstrate data D of Task T ,

Score function s, and LLM M.
Ensure: Prompt p⋆.
1: Initial t = 0 and p⋆ = p0.
2: repeat
3: for i from 1 to n do
3: Sample (Xi, Yi) from D.
3: i-th actor Ai generates an action ai via Eq. (1).
3: i-th critic Ci evaluates ai to yield a critique ci via

Eq. (2).
4: end for
5: pt is updated base on c≤n via Eq. (3).
6: p⋆ = max(s(p⋆), s(pt+1)).
7: t = t+ 1.
8: until Convergence or a maximum number of iterations.
9: return p⋆

3 Experiment Setup249

Benchmarks. We perform a comprehensive eval-250

uation on Instruction Induction (Honovich et al.,251

2022a) and Big-Bench (Suzgun et al., 2023) to252

demonstrate the efficacy of PACE.253

Instruction Induction (Honovich et al., 2022a)254

consists of 24 diverse instruction induction tasks,255

each comprising a multitude of human-written256

prompts. These tasks cover numerous areas of lan-257

guage understanding, ranging from fundamental258

sentence structures to the identification of similari-259

ties and causal relationships.260

Big-Bench (Suzgun et al., 2023) is composed261

of 21 more challenging tasks covering many as-262

pects of language understanding, including emo-263

tional understanding, context-free questions and264

answers, reading comprehension, summaries, algo-265

rithms, and various reasoning tasks. Each task has266

a human-written prompt.267

Detailed descriptions of each task in two bench-268

marks can be found in Appendix A.269

Implementation Details. In all experiments, we270

invoke ChatGPT as our base model through its API,271

namely gpt-3.5-turbo. We employ ‘0301’ version272

of gpt-3.5-turbo, which is a snapshot from March273

1st 2023, and will not receive updates. To increase 274

the stability of LLM’s output, we set the decoding 275

temperature to 0 and top_p to 1. Moreover, we set 276

max_tokens to 512 for generation. For hyperpa- 277

rameters of PACE, we set the number of agents n 278

to 4 and that of candidates in each iteration to 2. 279

For fairness, the number of candidates in other ap- 280

proaches is set to 4*2 = 8. Unless otherwise stated, 281

the maximum number of iterations is set to 1, i.e., 282

we use only 1 iteration step for prompt editing in 283

total. The experiments are run five times and the 284

average results are reported. 285

4 Experimental Results 286

In this section, we detail the results of our compre- 287

hensive experiments which offer compelling evi- 288

dence of the effectiveness of PACE in improving 289

the performance of LLMs. Note that in most exper- 290

iments, we only present the average results from all 291

experiments for each benchmark. Detailed results 292

for each task are available in the Appendix. 293

4.1 The Effect of PACE in Prompt Editing 294

In Instruction Induction, we evaluated the per- 295

formance of PACE under various initial prompts, 296

which included: 297

• Worst Human-Written Prompt (W-HWP): 298

The least effective prompt among all human- 299

written prompts included in the task2; 300

• Medium Human-Written Prompt (M- 301

HWP): Its efficacy is at the median compared 302

to all human-written prompts in the task; 303

• Best Human-Written Prompt (B-HWP): 304

Out of all human-written prompts provided 305

in the task, it yielded the best results; 306

• Butter Fingers: The variant of M-HWP with 307

a 15% misspelling rate introduced randomly. 308

As shown in Table 1, we observe that PACE 309

is effective with human-written prompts of vary- 310

ing quality. PACE was successful in substantially 311

enhancing the performance of LLMs that were 312

initially provided with medium-quality and low- 313

quality human-written prompts, including M-HWP, 314

W-HWP, and Butter Fingers. In many cases, the 315

LLMs using the PACE-refined prompts achieved 316

2We evaluate all human-written prompts of the task on the
base model and then rank their performance. Detailed result
can be find in Appendix C

4

Table 1: The Performance of PACE under Various Initial Prompts on Instruction Induction

Task W-HWP + PACE M-HWP + PACE B-HWP + PACE Butter Fingers + PACE APE

active_to_passive 1 0.99 1 1 1 1 0.02 1 1
antonyms 0.77 0.85 0.82 0.86 0.85 0.87 0.76 0.81 0.82
cause_and_effect 0 0.53 0.36 0.73 0.84 0.85 0.04 0.61 0.5
common_concept 0.05 0.06 0.08 0.15 0.15 0.16 0.01 0.04 0.04
diff 0.87 1 0.94 1 1 1 0.92 1 0.88
first_word_letter 0.6 1 0.8 1 1 1 0 1 1
informal_to_formal 0.46 0.59 0.52 0.6 0.64 0.67 0.57 0.54 0.5
larger_animal 0.2 0.53 0.46 0.93 0.93 0.95 0 0.26 0.49
letters_list 0.56 1 0.73 1 1 1 0.02 0.91 1
negation 0.5 0.76 0.63 0.82 0.79 0.83 0 0.78 0.81
num_to_verbal 0.44 1 0.59 1 1 1 0.27 1 0.98
ortho_starts_with 0.35 0.44 0.36 0.52 0.72 0.71 0.47 0.37 0.42
rhymes 0 0.56 0.56 0.6 0.61 0.61 0.3 0.57 0.12
second_word_letter 0.95 1 0.96 1 0.99 1 0.31 1 0.25
sentence_similarity 0 0.42 0.2 0.28 0.38 0.35 0 0.01 0.11
sentiment 0.5 0.91 0.66 0.91 0.91 0.92 0 0.89 0.85
singular_to_plural 0.99 1 0.99 1 1 1 0.98 0.99 1
sum 0.07 1 0.99 1 1 1 0.64 1 0.37
synonyms 0.11 0.12 0.13 0.16 0.15 0.17 0.12 0.14 0.39
taxonomy_animal 0.42 0.92 0.74 0.85 0.98 0.96 0.28 0.86 0.69
translation_en-de 0.81 0.84 0.82 0.84 0.84 0.84 0.8 0.83 0.81
translation_en-es 0.87 0.83 0.87 0.88 0.9 0.89 0.82 0.77 0.88
translation_en-fr 0.88 0.88 0.88 0.86 0.89 0.88 0.78 0.91 0.86
word_in_context 0 0.16 0.28 0.57 0.54 0.58 0 0.49 0.23
Average 0.47 0.72 0.64 0.78 0.79 0.8 0.36 0.71 0.62

performance levels comparable to, and in some317

cases even surpassing, those using high-quality318

human-written prompts, i.e., B-HWP. Remark-319

ably, even for B-HWP, PACE manages to offer320

a marginal improvement. A notable highlight is the321

performance of PACE under the Butter Fingers set-322

ting, which encapsulates reading comprehension323

challenges. Prompts under this category can be324

notoriously difficult, often with inherent errors or325

misconstructions. However, the ability of PACE326

to detect, correct, and improve these prompts is327

nothing short of commendable. A staggering en-328

hancement of up to 98% in the LLM’s performance329

is a testament to PACE’s robust error rectification330

capabilities. Equally impressive is the breadth of331

PACE’s effectiveness. These improvements aren’t332

isolated to specific tasks or certain domains. On333

the contrary, a consistent positive trend is observed334

across a diverse suite of 24 tasks, suggesting the335

generalizability of PACE.336

It has been observed that the performance of337

APE (Zhou et al., 2023) is comparable to that of338

a medium human-written prompt. However, our339

proposed PACE outperforms APE, even under chal-340

lenging conditions like the worst human-written341

prompts and the "Butter Finger" settings, under-342

scoring the superiority of our approach. We also343

compare the efficiency of PACE and APE and find344

that the running time of PACE is slightly lower than 345

APE (about 0.78×), which is acceptable. Moreover, 346

it’s essential to highlight that for many tasks, espe- 347

cially those requiring an initial draft or a general 348

directive, humans can often produce a satisfactory 349

first attempt without much effort. For instance, hu- 350

mans can provide a broad overview or a general 351

description of the intended subject. The real chal- 352

lenge, and where computational models like PACE 353

come into play, is refining and optimizing these 354

drafts to produce a high-quality final product. 355

In Big-Bench, each task is provided with only a 356

single instruction, which limits our ability to screen 357

prompts of varying qualities, unlike the tasks taken 358

in Instruction Induction. For this reason, the only 359

instruction we have by default is M-HWP, and in 360

addition to the Butter Fingers setting, we have 361

introduced two new settings: 362

• Empty: The initial prompt is an empty string; 363

• APE prompt: The initial prompt is generated 364

by LLM with APE (Zhou et al., 2023). 365

Figure 3 elucidates the impact of PACE on 366

both Instruction Induction and Big-Bench across 367

four distinct settings. It is evident that PACE ex- 368

hibits consistent improvements across all four set- 369

tings, highlighting its robust capability to navi- 370

gate through these specific conditions effectively. 371

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M-HWP Butter Fingers Empty APE promt

Initial prompt PACE

(a) Instruction Induction.

0

0.05

0.1

0.15

0.2

0.25

M-HWP Butter Fingers Empty APE promt

Initial prompt PACE

(b) Big-Bench.

Figure 3: The Performance of PACE under Various
Initial Prompts.

The enhancement with the application of PACE on372

the APE prompt means that even for other LLM-373

generated prompts, PACE can be further improved374

and enhanced to achieve better results, because375

PACE takes into account realistic feedback and376

LLM cognitive processes. It is worth noting the377

effect shown by PACE when initialized with an378

Empty prompt. This implies that PACE’s utility is379

not confined to the mere editing of pre-existing380

prompts. It is equally adept at crafting initial381

prompts from scratch, underlining its versatile and382

comprehensive applicative potential. The flexibility383

demonstrates PACE’s versatility and its potential384

in a wide array of scenarios. Furthermore, the com-385

parative analysis between PACE and APE reveals386

the superiority of PACE in enhancing performance387

across both two benchmarks.388

In conclusion, the results from Figure 3 accen-389

tuate the effectiveness and adaptability of PACE390

across different benchmarks and settings. Whether391

refining existing prompts or creating new ones,392

PACE consistently delivers enhanced results.393

4.2 Ablation Study394

In this section, we delve deeper into the analysis of395

PACE through an ablation study, which is designed396

0.55

0.6

0.65

0.7

0.75

0.8

PACE Actor Only Crtic Only w/o Actor and Critic

Instruction Induction

0

0.05

0.1

0.15

0.2

0.25

PACE Actor Only Crtic Only w/o Actor and Critic

Big-Bench

Figure 4: The ablation Study of PACE on Both Two
Public Benchmark Datasets.

to gauge the individual contributions and effective- 397

ness of each module incorporated in APCE. 398

Figure 4 provides a clear visual representation 399

of our findings. We observed that both roles – the 400

actor and the critic – are instrumental in the overall 401

efficiency of PACE. The actor’s primary function is 402

to execute the prompt, offering real-time feedback 403

to the LLM. This feedback is not merely mechani- 404

cal but is crucial in dynamically shaping the prompt 405

based on changing conditions or requirements. On 406

the other hand, the critic operates at a meta-level, 407

assessing the quality and relevance of the feedback. 408

Through thoughtful evaluation, the critic aids the 409

LLM in refining and editing the prompt to ensure 410

optimal results. 411

Comparative analysis between the two roles re- 412

veals that the critic possesses a slightly higher sig- 413

nificance in enhancing the system’s performance, 414

followed closely by the actor. The critic’s evalua- 415

tive capabilities ensure that the system doesn’t veer 416

off-course, while the actor provides the necessary 417

operational feedback to keep the system in check. 418

It is also worth noting the stark difference in perfor- 419

mance when these roles are absent. Methods that 420

do not incorporate the actor and critic mechanisms 421

lag noticeably in effectiveness. This disparity is ev- 422

ident on both benchmarks we tested, underscoring 423

the importance of these components in PACE. 424

6

In essence, our ablation study underscores the425

synergistic relationship between the actor and critic426

in PACE. While each has its unique function, to-427

gether they substantially elevate the system’s effi-428

ciency and accuracy.429

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

text-davinci-002 text-davinci-003 ChatGPT GPT-4

Initial prompt PACE

(a) Instruction Induction.

0

0.05

0.1

0.15

0.2

0.25

0.3

text-davinci-002 text-davinci-003 ChatGPT GPT-4

Initial prompt PACE

(b) Big-Bench.

Figure 5: The performance of PACE with Different
LLMs.

4.3 Comparison with different LLMs430

In this section, our aim is to underscore the ver-431

satility and generality of the PACE methodology.432

To do so, we have decided to utilize an array of433

different LLMs for the PACE task, including ‘text-434

davinci-002’, ‘text-davinci-003’, ‘ChatGPT’, and435

‘GPT-4’. This diverse selection not only showcases436

the breadth of models available but also ensures a437

comprehensive assessment across different model438

capabilities and specializations.439

Referring to Figure 5, the visual representation440

distinctly showcases that irrespective of the model441

chosen, the PACE method consistently enhances442

the quality of the initial prompt. This not only443

strengthens the argument for the efficacy of PACE444

but also demonstrates the robustness of the LLMs445

in refining textual inputs. This observation is piv-446

otal, as it suggests that the approach is model-447

agnostic to some extent, and the gains are not just448

circumstantial or confined to specific LLMs.449

In summary, the consistent improvement ob- 450

served across diverse models unequivocally demon- 451

strates that the PACE methodology serves as a uni- 452

versally applicable technique. This technique is 453

instrumental in enhancing the performance of vari- 454

ous LLMs by refining the prompts with which they 455

are provided. 456

4.4 Effect of Iteration numbers 457

In this section, our primary objective is to assess 458

the impact of varying the number of iterations on 459

our process or system. It’s crucial to understand 460

how iteration numbers can influence the outcomes, 461

as this can shed light on the stability, efficiency, 462

and effectiveness of the procedure in question. By 463

systematically altering the iteration count, we can 464

derive insights into the optimal number needed to 465

achieve the desired results without overcomplicat- 466

ing or overburdening the system. 467

In the exploration of the impact of iteration num- 468

bers, it’s pivotal to understand how iterations influ- 469

ence the outcome. As depicted in Figure 6, there’s 470

a clear trend showcasing the correlation between 471

the number of iterations and the editing effect. The 472

pattern suggests a dynamic evolution, wherein the 473

editing effect witnesses a surge with increasing 474

iterations, up to a point beyond which the effect 475

plateaus and eventually stabilizes. 476

This stabilization of the editing effect after a 477

certain number of iterations indicates a saturation 478

point or a threshold beyond which additional itera- 479

tions don’t contribute significantly to enhancing the 480

effect. What’s noteworthy from the observed data 481

is that typically, three iterations seem to strike an 482

optimal balance. In summary, it is recommended to 483

limit the number of iterations to less than 3, which 484

can effectively balance cost and effect. 485

5 related work 486

Recent advancements in transformer-based LLMs 487

have not only improved the model’s performance 488

across various NLP tasks (Vaswani et al., 2017; 489

Devlin et al., 2018; Brown et al., 2020) but have 490

also revealed emergent capabilities, including few- 491

shot in-context learning, zero-shot problem solving, 492

chain of thought reasoning, instruction following, 493

and instruction induction (Cobbe et al., 2021; Wei 494

et al., 2022; Kojima et al., 2022; Sanh et al., 2022; 495

Wei et al., 2021; Ouyang et al., 2022; Honovich 496

et al., 2022b). While we share the sentiment with 497

these works about the potential of LLMs, our focus 498

7

(a) Instruction Induction. (b) Big-Bench.

Figure 6: Effect of Iteration numbers

lies in enhancing their performance through prompt499

editing strategies.500

Automatic prompt engineering with training.501

Some work improves prompts by tuning soft502

prompts in a differentiable manner. For instance,503

the work (Lester et al., 2021; Qin & Eisner, 2021)504

employs soft prompts to tailor the behavior of505

LLMs. Similarly, efforts like those of (Hao et al.,506

2022; Deng et al., 2022; Zhou et al., 2022) delve507

into training auxiliary models or directly train-508

ing the prompt generator (Hao et al., 2022; Wang509

et al., 2022). While these efforts show the poten-510

tial of differentiable tuning, they face limitations511

when LLMs are only accessed via APIs, which512

limits access to the model’s internals. Addition-513

ally, the prompts generated from such methods514

often yield incoherent languages (Hambardzumyan515

et al., 2021). Therefore, another type of work im-516

proves prompts via discrete manipulations using517

Reinforcement Learning (Shin et al., 2020; Zhang518

et al., 2023; Deng et al., 2022), which requires train-519

ing a reward model. However, it is challenging to520

train an excellent and generalizable reward model.521

Automatic prompt engineering without training.522

Several works have recently explored the poten-523

tial of using LLMs themselves to guide prompt524

optimization without training (Reynolds & Mc-525

Donell, 2021; Honovich et al., 2022a). The work526

(Zhou et al., 2022) employs the Monte Carlo sam-527

pling technique for this purpose. Similarly, the528

work (Prasad et al., 2022) introduced an evolu-529

tionary search approach for prompts, leveraging530

LLM-paraphrased and swapped segments of the531

original prompt. The work (Chen et al., 2023) fo-532

cuses on refining SQL-generation prompts using533

LLM feedback. The work (Pryzant et al., 2023)534

considers ‘gradients’ to guide LLMs for classifica- 535

tion tasks. However, these methods usually grapple 536

with ambiguous semantic orientation or a confined 537

task-specific scope. 538

For automatic prompt editing, EvoPrompt (Guo 539

et al., 2023) uses a genetic algorithm to mutate the 540

original prompt. PROmpting (Yang et al., 2023) 541

leverages LLMs as optimizers, where the optimiza- 542

tion task is described in natural language. Both of 543

them are two concurrent works. The main differ- 544

ence between PACE and them is that EvoPrompt 545

does not provide feedback or reflect on execution 546

results to LLMs, similar to PACE w/o the actor and 547

critic, whereas PROmpting only lacks reflection, 548

akin to PACE w/o the critic. Detailed comparison 549

results can be found in Appendix D. 550

In this paper, PACE refines prompts for LLMs 551

using the actor-critic paradigm, which provides 552

effective guidance in editing and can be applied to 553

various tasks. 554

6 Conclusion and Discussion 555

In this paper, we have proposed PACE, an inno- 556

vative approach to automatic prompt editing for 557

LLMs, drawing inspiration from the Actor-Critic 558

paradigm in reinforcement learning. Our exper- 559

iments confirm the potential of PACE in signifi- 560

cantly enhancing the effectiveness of prompts, lead- 561

ing to improved LLM performance across a variety 562

of tasks. By treating the prompt as a form of pol- 563

icy and conceptualizing LLMs as both actors and 564

critics, we have presented a fresh perspective on 565

how prompts can be optimized to better guide the 566

output of LLMs. The remarkable improvements 567

with PACE in prompt editing and generation under- 568

score the value of this perspective and its potential 569

to transform the field of prompt engineering. 570

8

References571

Tom Brown, Benjamin Mann, Nick Ryder, Melanie572
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind573
Neelakantan, Pranav Shyam, Girish Sastry, Amanda574
Askell, et al. Language models are few-shot learners.575
Advances in neural information processing systems,576
33:1877–1901, 2020.577

Thomas Carta, Pierre-Yves Oudeyer, Olivier Sigaud,578
and Sylvain Lamprier. EAGER: asking and an-579
swering questions for automatic reward shaping in580
language-guided RL. In NeurIPS, 2022.581

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and582
Denny Zhou. Teaching large language models to583
self-debug. arXiv preprint arXiv:2304.05128, 2023.584

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,585
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,586
and John Schulman. Training verifiers to solve math587
word problems. arXiv preprint arXiv:2110.14168,588
2021.589

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan590
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P591
Xing, and Zhiting Hu. Rlprompt: Optimizing dis-592
crete text prompts with reinforcement learning. arXiv593
preprint arXiv:2205.12548, 2022.594

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and595
Kristina Toutanova. Bert: Pre-training of deep bidi-596
rectional transformers for language understanding.597
arXiv preprint arXiv:1810.04805, 2018.598

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-599
collaboration code generation via chatgpt. CoRR,600
abs/2304.07590, 2023a.601

Yihong Dong, Ge Li, and Zhi Jin. CODEP: grammatical602
seq2seq model for general-purpose code generation.603
In ISSTA, pp. 188–198. ACM, 2023b.604

Matteo Gabburo, Siddhant Garg, Rik Koncel-605
Kedziorski, and Alessandro Moschitti. Learning an-606
swer generation using supervision from automatic607
question answering evaluators. In ACL (1), pp. 8389–608
8403. Association for Computational Linguistics,609
2023.610

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao611
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu612
Yang. Connecting large language models with evolu-613
tionary algorithms yields powerful prompt optimizers.614
CoRR, abs/2309.08532, 2023.615

Karen Hambardzumyan, Hrant Khachatrian, and616
Jonathan May. Warp: Word-level adversarial repro-617
gramming. arXiv preprint arXiv:2101.00121, 2021.618

Yaru Hao, Zewen Chi, Li Dong, and Furu Wei. Opti-619
mizing prompts for text-to-image generation. arXiv620
preprint arXiv:2212.09611, 2022.621

Or Honovich, Uri Shaham, Samuel R. Bowman, and622
Omer Levy. Instruction induction: From few exam-623
ples to natural language task descriptions. CoRR,624
abs/2205.10782, 2022a.625

Or Honovich, Uri Shaham, Samuel R Bowman, and 626
Omer Levy. Instruction induction: From few ex- 627
amples to natural language task descriptions. arXiv 628
preprint arXiv:2205.10782, 2022b. 629

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, 630
and Ge Li. Self-planning code generation with large 631
language model. CoRR, abs/2303.06689, 2023. 632

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, 633
Yutaka Matsuo, and Yusuke Iwasawa. Large lan- 634
guage models are zero-shot reasoners. arXiv preprint 635
arXiv:2205.11916, 2022. 636

Jack Lanchantin, Sainbayar Sukhbaatar, Gabriel Syn- 637
naeve, Yuxuan Sun, Kavya Srinet, and Arthur Szlam. 638
A data source for reasoning embodied agents. In 639
AAAI, pp. 8438–8446. AAAI Press, 2023. 640

Brian Lester, Rami Al-Rfou, and Noah Constant. The 641
power of scale for parameter-efficient prompt tuning. 642
In Proceedings of the 2021 Conference on Empirical 643
Methods in Natural Language Processing, pp. 3045– 644
3059, 2021. 645

OpenAI. ChatGPT, 2023. URL https://openai. 646
com/blog/chatgpt/. 647

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car- 648
roll L Wainwright, Pamela Mishkin, Chong Zhang, 649
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 650
Training language models to follow instructions with 651
human feedback. arXiv preprint arXiv:2203.02155, 652
2022. 653

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 654
Jing Zhu. Bleu: a method for automatic evaluation 655
of machine translation. In ACL, pp. 311–318. ACL, 656
2002. 657

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit 658
Bansal. Grips: Gradient-free, edit-based instruction 659
search for prompting large language models. arXiv 660
preprint arXiv:2203.07281, 2022. 661

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen- 662
guang Zhu, and Michael Zeng. Automatic prompt op- 663
timization with "gradient descent" and beam search. 664
CoRR, abs/2305.03495, 2023. 665

Guanghui Qin and Jason Eisner. Learning how to ask: 666
Querying lms with mixtures of soft prompts. In 667
Proceedings of the 2021 Conference of the North 668
American Chapter of the Association for Computa- 669
tional Linguistics: Human Language Technologies, 670
pp. 5203–5212, 2021. 671

Laria Reynolds and Kyle McDonell. Prompt program- 672
ming for large language models: Beyond the few-shot 673
paradigm. In CHI Extended Abstracts, pp. 314:1– 674
314:7. ACM, 2021. 675

Victor Sanh, Albert Webson, Colin Raffel, Stephen 676
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine 677
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, 678
et al. Multitask prompted training enables zero-shot 679

9

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

task generalization. In The Tenth International Con-680
ference on Learning Representations, 2022.681

Esmaeil Seraj. Embodied, intelligent communication682
for multi-agent cooperation. In AAAI, pp. 16135–683
16136. AAAI Press, 2023.684

Sijie Shen, Xiang Zhu, Yihong Dong, Qizhi Guo,685
Yankun Zhen, and Ge Li. Incorporating domain686
knowledge through task augmentation for front-end687
javascript code generation. In ESEC/SIGSOFT FSE,688
pp. 1533–1543. ACM, 2022.689

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric690
Wallace, and Sameer Singh. AutoPrompt: Eliciting691
knowledge from language models with automatically692
generated prompts. In Empirical Methods in Natural693
Language Processing (EMNLP), 2020.694

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-695
bastian Gehrmann, Yi Tay, Hyung Won Chung,696
Aakanksha Chowdhery, Quoc V. Le, Ed Chi, Denny697
Zhou, and Jason Wei. Challenging big-bench tasks698
and whether chain-of-thought can solve them. In699
ACL (Findings), pp. 13003–13051. Association for700
Computational Linguistics, 2023.701

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob702
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz703
Kaiser, and Illia Polosukhin. Attention is all you704
need. Advances in neural information processing705
systems, 30, 2017.706

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa707
Liu, Noah A Smith, Daniel Khashabi, and Hannaneh708
Hajishirzi. Self-instruct: Aligning language model709
with self generated instructions. arXiv preprint710
arXiv:2212.10560, 2022.711

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,712
Adams Wei Yu, Brian Lester, Nan Du, Andrew M713
Dai, and Quoc V Le. Finetuned language models are714
zero-shot learners. In International Conference on715
Learning Representations, 2021.716

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten717
Bosma, Ed Chi, Quoc Le, and Denny Zhou. Chain of718
thought prompting elicits reasoning in large language719
models. arXiv preprint arXiv:2201.11903, 2022.720

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanx-721
iao Liu, Quoc V. Le, Denny Zhou, and Xinyun722
Chen. Large language models as optimizers. CoRR,723
abs/2309.03409, 2023.724

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schu-725
urmans, and Joseph E Gonzalez. Tempera: Test-time726
prompt editing via reinforcement learning. In The727
Eleventh International Conference on Learning Rep-728
resentations, 2023.729

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.730
Weinberger, and Yoav Artzi. Bertscore: Evaluat-731
ing text generation with BERT. In ICLR. OpenRe-732
view.net, 2020.733

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, 734
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy 735
Ba. Large language models are human-level prompt 736
engineers. arXiv preprint arXiv:2211.01910, 2022. 737

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, 738
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy 739
Ba. Large language models are human-level prompt 740
engineers. In ICLR. OpenReview.net, 2023. 741

10

A Implementation Details 742

Table 2: The 24-instruction induction task proposed in the work Honovich et al. (2022b) is described in detail. For
convenience, the original table in the work Honovich et al. (2022b) is reproduced here.

Category Task Instruction Demonstration

Spelling First Letter Extract the first letter of the input word. cat → c

Second Letter Extract the second letter of the input word. cat → a

List Letters Break the input word into letters, separated by
spaces.

cat → c a t

Starting With Extract the words starting with a given letter
from the input sentence.

The man whose car I hit last week sued
me. [m] → man, me

Morpho-
syntax

Pluralization Convert the input word to its plural form. cat → cats

Passivization Write the input sentence in passive form. The artist introduced the scientist. →
The scientist was introduced by the
artist.

Syntax Negation Negate the input sentence. Time is finite → Time is not finite.

Lexical
Semantics

Antonyms Write a word that means the opposite of the input
word.

won → lost

Synonyms Write a word with a similar meaning to the input
word.

alleged → supposed

Membership Write all the animals that appear in the given
list.

cat, helicopter, cook, whale, frog, lion
→ frog, cat, lion, whale

Phonetics Rhymes Write a word that rhymes with the input word. sing → ring

Knowledge Larger Animal Write the larger of the two given animals. koala, snail → koala

Semantics Cause Selection Find which of the two given cause and effect
sentences is the cause.

Sentence 1: The soda went flat. Sen-
tence 2: The bottle was left open. →
The bottle was left open.

Common
Concept

Find a common characteristic for the given ob-
jects.

guitars, pendulums, neutrinos → in-
volve oscillations.

Style Formality Rephrase the sentence in formal language. Please call once you get there →
Please call upon your arrival.

Numerical Sum Sum the two given numbers. 22 10 → 32

Difference Subtract the second number from the first. 32 22 → 10

Number to Word Write the number in English words. 26 → twenty-six

Multi-
lingual

Translation Translate the word into German / Spanish /
French.

game → juego

GLUE Sentiment
Analysis

Determine whether a movie review is positive or
negative.

The film is small in scope, yet perfectly
formed. → positive

Sentence
Similarity

Rate the semantic similarity of two input sen-
tences on a scale of 0 - definitely not to 5 - per-
fectly.

Sentence 1: A man is smoking. Sen-
tence 2: A man is skating. → 0 - defi-
nitely not

Word in Context Determine whether an input word has the same
meaning in the two input sentences.

Sentence 1: Approach a task. Sentence
2: To approach the city. Word: ap-
proach → not the same

11

Table 3: A detailed description of Big-Bench Instruction Induction, a clean and tractable subset of tasks with clear
human-written instructions.

Name Description Keywords

gender inclusive
sentences german

Given a German language sentence that does
not use gender-inclusive forms, transform it
to gender-inclusive forms

free response, grammar, inclusion, non-
English, paraphrase

movie recommenda-
tion

Recommend movies similar to the given list
of movies emotional intelligence, multiple choice

object counting
Questions that involve enumerating objects
of different types and asking the model to
count them

free response, logical reasoning

operators Given a mathematical operator definition in
natural language, apply it

free response, mathematics, numerical
response

question selection
Given a short answer along with its context,
select the most appropriate question which
to the given short answer

multiple choice, paraphrase, reading
comprehension, summarization

ruin names Select the humorous edit that ’ruins’ the in-
put movie or musical artist name

emotional understanding, multiple
choice

snarks Determine which of two sentences is sarcas-
tic

emotional understanding, humor, multi-
ple choice

tense Modify the tense of a given sentence free response, paraphrase, syntax

word sorting Sort a list of words algorithms, free response

word unscrambling Unscramble the given letters to form an En-
glish word

free response, implicit reasoning, tok-
enization

B Templates of Actor, Critic, and Update743

The purpose of these templates is to allow LLMs to produce corresponding responses when acting as744

actor, critic, and update. Note that these templates are not optimal, and we can improve these templates to745

get better results.746

B.1 Actor747

Instruction: [TASK_INSTRUCTION],748

Input: [INPUT],749

Output:750

B.2 Critic751

I gave you an instruction:[TASK_INSTRUCTION]. Based on this instruction they produced the following752

input-prediction pairs and the corresponding ground truth:753

Input: [INPUT],754

Prediction: [PREDICTION],755

Ground Truth: [GROUNDTRUTH],756

According to Input, Prediction, and Ground Truth, give the critical advice on how to improve the757

instruction:758

B.3 Update759

I gave you an instruction:[TASK_INSTRUCTION]. Based on the instruction they produced the following760

critical advices: [Critical_Advices]. Taking these critical advices into consideration, the improved761

instruction was:762

12

C Details of Human-written Prompt and Performance in Instruction Induction 763

Each task contains multiple human-written prompts and their performances on the base model. 764

C.1 Case Selection 765

• 0.88: Which of the following sentences is the cause? 766

• 0.8: Which of the two events is the cause? 767

• 0.6: Each input consists of two sentences, where one is the cause and the other is the outcome. Write 768

The cause sentence. 769

• 0.52: The input is a cause and effect. Write the cause. 770

• 0.36: The input is a cause and effect, write the cause. 771

• 0.2: The input consists of two sentences. One is the cause of the other. Write the cause sentence. 772

• 0.04: Find the cause in the following cause and effect pair. 773

• 0.0: Output the sentence describing the cause (the other sentence is what happened as a result). 774

• 0.0: Output the cause (other sentence describes what happened as a result). 775

C.2 Starting With 776

• 0.72: Write a word from the following sentence that starts with the bracketed letter. 777

• 0.65: Output all the tokens in the input that start with the letter in []. 778

• 0.57: Output all tokens in the sentence that start with the letter in []. 779

• 0.55: Write all the words of the input that start with the letter in the square brackets. 780

• 0.43: Write all the words from the sentence that start with the letter in the square brackets. 781

• 0.4: For each input, list all the words in the sentence that begin with the character in brackets at the 782

end of the sentence. 783

• 0.36: Write all the words in the following sentence that start with the bracketed letter, in their original 784

order. 785

• 0.35: For each input sentence, list all the words in the sentence that begin with the character written 786

inside the brackets. 787

C.3 Sum 788

• 1.0: You are given two numbers as input. Apply the + operator to them and output the answer. 789

• 1.0: For each input, write the sum of the two numbers that appears there. 790

• 0.7: Write the result of adding the two numbers. 791

• 0.51: Write the sum of the pair of numbers for each input. 792

• 0.29: sum the numbers in the input. 793

• 0.24: Add the following numbers. 794

• 0.19: Apply the + operator on the two numbers. 795

• 0.07: Write the sum of the two numbers. 796

13

C.4 Rhymes797

• 0.62: What is a word that rhymes with the input token.798

• 0.62: Write a word that rhymes with the input.799

• 0.6: Write a word that rhymes with the input.800

• 0.6: Write a word that rhymes with the input word.801

• 0.6: Write a word that rhymes with each of the following input words.802

• 0.59: For each word in the input write another word that rhymes with it.803

• 0.58: Write a word that rhymes with the input word.804

• 0.0: Write a rhyme for the following word.805

C.5 Negation806

• 0.79: Write a negated version of the given sentence.807

• 0.79: Negate the given sentence.808

• 0.79: Negate the following sentence:.809

• 0.78: Write the negation.810

• 0.72: Change the fact stated in the sentence to an opposite fact.811

• 0.69: Output the negation of the input.812

• 0.68: You will be given a sentence that states a fact (that might be true or not). Try to state the813

opposite fact.814

• 0.5: For each input, write a sentence that expresses the exact opposite meaning of the input.815

C.6 Sentiment816

• 0.91: Write "positive" if the input is a positive review, and "negative" if the input is a negative review.817

• 0.87: Determine whether the sentiment is positive or negative.818

• 0.87: Classify the sentiment of the input sentence (options are positive or negative).819

• 0.85: Output whether the sentiment is positive or negative.820

• 0.85: Given an input text, output whether the sentiment is positive or negative.821

• 0.82: For each input, determine if the sentiment in the input is prone to negative or positive opinion.822

• 0.76: Output whether the sentiment of the input sentence is positive or negative.823

• 0.5: For each input, determine whether it expresses a positive or a negative opinion.824

14

C.7 Membership 825

• 0.98: Write all animals from the list of words. 826

• 0.96: Write only the animals from the list of words. 827

• 0.95: Extract animals. 828

• 0.93: List the animals from the given words. 829

• 0.91: List which of the following are animals. 830

• 0.9: Find the animals in the following list of words. 831

• 0.89: Extract all animals from the input list. 832

• 0.86: Extract all animals from the list. 833

• 0.42: Find the animals in the list. 834

C.8 Large Animal 835

• 0.93: Write which of the pair of animals in each input is larger. 836

• 0.93: Write the bigger animal of the two. 837

• 0.93: Write the bigger animal. 838

• 0.93: For each input, write which of the two animals is bigger. 839

• 0.59: find the larger between the following pair of animals. 840

• 0.52: output which of the animals in the input is bigger. 841

• 0.46: Which is bigger? 842

• 0.4: Which of the following animals is bigger? 843

• 0.2: which of the animals separated by , is bigger. 844

C.9 Word in Context 845

• 0.57: Each input consists of two sentences (Sentence 1 and Sentence 2), and a word that appears in 846

at least one sentence as is or in a modified way (Word). Classify whether the meaning of this word is 847

the same in both sentences (options are "same" or "not the same"). 848

• 0.53: Write "same" if the word has the same meaning in both sentences, otherwise write "not the 849

same". 850

• 0.52: Each input consists of two sentences (Sentence 1 and Sentence 2) and a word that appears 851

in both of them (Word). Classify whether the meaning of this word is the same in both sentences 852

(options are "same" or "not the same"). 853

• 0.5: Given two sentences and a common word, output "same" if the common word has the same 854

meaning in both sentences, and "not the same" otherwise. 855

• 0.49: Given two sentences and a common word, output "same" if the common word has the same 856

meaning in both sentences, otherwise output "not the same". 857

• 0.48: "same" if the word has the same meaning in both sentences, otherwise "not the same". 858

• 0.0: Whether the meaning of the word is the same or not in both sentences. 859

15

• 0.0: For each input, determine whether the two sentences (marked ’Sentence 1’ and ’Sentence 2’)860

use the selected word (marked ’Word:’) with the same meaning or not.861

• 0.0: For each input, determine if the keyword (marked in ’Word:’) is used in the same meaning in862

both the sentences (marked ’Sentence 1’ and ’Sentence 2’).863

• 0.0: Determine whether the meaning of the word is the same in both sentences.864

C.10 Sentence Similarity865

• 0.38: Rate from 0 (definitely not) to 5 (perfectly) the degree in which both sentences describe the866

same event.867

• 0.37: Rate from 0 (definitly not) to 5 (perfectly) the degree in which the two sentences describe the868

same thing.869

• 0.26: Each input consists of two sentences (Sentence 1 and Sentence 2). Rate on a scale of 0 to 5870

whether Sentence 1 is a paraphrase of Sentence 2.871

• 0.22: Score from 0 to 5 whether the two sentences describe the same event.872

• 0.2: Score from 0 to 5 whether the two sentences describe the same event (5 being highest and 0873

lowest).874

• 0.0: Each input consists of two sentences (Sentence 1 and Sentence 2). Rate on a scale of 0 to 5875

whether those sentences are paraphrases of each other, and also give a brief textual description of876

the rating (0 being definitely not, 2 being possibly, 3 being probably, 4 being almost perfectly and 5877

being perfectly). Use " - " to separate them.878

16

D Comparison of PACE and Other Methods 879

We try to reproduce these two concurrent works (i.e. PROmpting (Yang et al., 2023) and EvoPrompt (Guo 880

et al., 2023)) following the original prompt and pseudo code in these papers. We conduct the comparison 881

experiment on the public benchmark - Instruction Induction, following the experimental setup in our 882

paper. Specifically, we keep the setups consistent for all methods, including base LLM = ChatGPT (i.e., 883

‘gpt-3.5-turbo-0301’), number of input prompts = 1 (the default setups for PROmpting and EvoPrompt are 884

20 and 10 respectively, but many tasks do not have so many human-written prompts, so we only input the 885

Worst Human-Written Prompt), the number of output candidate prompts = 8, and the number of iteration 886

rounds = 1. 887

The experimental results show that under the same setups, the performance improvement of PACE is 888

significantly better than PROmpting (Yang et al., 2023) and EvoPrompt (Guo et al., 2023), benefiting 889

from real feedback (actors) and reflection (critics) of LLMs. In contrast, the inferior performance of 890

PROmpting and EvoPrompt could be linked to their reliance on a substantial volume of human-written 891

prompts. However, due to the limitations of the dataset, we only entered a single human-written prompt in 892

this experiment. 893

Table 4: Comparison between PACE versus PROmpting (Yang et al., 2023) and EvoPrompt (Guo et al., 2023).

Instruction Worst Human-Written Prompt PROmpting EvoPrompt PACE

active_to_passive 1 1 1 0.99

antonyms 0.77 0.82 0.82 0.85

cause_and_effect 0 0 0 0.53

common_concept 0.05 0.08 0.06 0.06

diff 0.87 1 1 1

first_word_letter 0.6 0 0.2 1

informal_to_formal 0.46 0.53 0.53 0.59

larger_animal 0.2 0.59 0.07 0.53

letters_list 0.56 0.48 0.46 1

negation 0.5 0.78 0.23 0.76

num_to_verbal 0.44 1 0.12 1

orthography_starts_with 0.35 0.37 0.43 0.44

rhymes 0 0.02 0 0.56

second_word_letter 0.95 0.45 0.45 1

sentence_similarity 0 0.05 0.05 0.42

sentiment 0.52 0.13 0.22 0.91

singular_to_plural 0.99 0.98 0.97 1

sum 0.07 0.99 1 1

synonyms 0.11 0.15 0.14 0.12

taxonomy_animal 0.42 0.73 0.73 0.92

translation_en-de 0.81 0.82 0.82 0.84

translation_en-es 0.87 0.86 0.83 0.83

translation_en-fr 0.88 0.86 0.87 0.88

word_in_context 0 0 0.01 0.16

Average 0.47 0.53 0.46 0.72

17

E Efficiency Comparison894

We compare our proposed PACE to the previous prompt generation method APE, adhering to the895

experimental setup in our paper. As shown in the following table, we can find that the running time of896

PACE is acceptable and slightly lower than APE.897

Table 5: Efficiency Comparison of APE and PACE

Instruction APE Time (s) PACE Time (s)

antonyms 193.3841718 170.4483252

cause_and_effect 165.4218265 146.9358413

common_concept 272.4779725 221.5746787

diff 441.1818587 171.3038456

first_word_letter 239.3755522 160.1741374

informal_to_formal 220.3962668 131.0239611

larger_animal 301.950026 257.6089029

letters_list 196.5197048 144.7002583

taxonomy_animal 325.9682828 170.7813251

negation 191.3055882 177.4928019

num_to_verbal 193.1570891 187.8281341

active_to_passive 192.6067982 200.9731977

singular_to_plural 162.0425067 166.054487

rhymes 262.3620207 323.8450603

second_word_letter 223.0662 170.4889729

sentence_similarity 370.5423006 298.4649165

sentiment 197.7973852 178.7309837

orthography_starts_with 224.0993353 206.3742661

sum 279.8155023 172.6397824

synonyms 320.181802 161.5457189

translation_en-de 163.7373747 164.0702665

translation_en-es 178.9501115 190.471509

translation_en-fr 216.419857 186.9464092

word_in_context 374.4830073 247.1816087

Average 246.1351059 191.9858079

18

F Details of Performance 898

Table 6: Details of task Performance in Instruction Induction benchmark.

0 1 2 3 4 5

active_to_passive 1 1 1 1 1 1
antonyms 0.81 0.85 0.87 0.85 0.88 0.87
cause_and_effect 0.04 0.53 0.89 0.93 0.89 0.85
common_concept 0.06 0.06 0.15 0.15 0.15 0.17
diff 1 1 0.95 1 1 0.99
first_word_letter 0.01 1 1 1 1 1
informal_to_formal 0.53 0.59 0.59 0.64 0.53 0.6
larger_animal 0.07 0.21 0.64 0.65 0.63 0.61
letters_list 0.48 1 1 1 1 1
negation 0.26 0.76 0.75 0.76 0.75 0.76
num_to_verbal 0.2 1 1 1 1 1
orthography_starts_with 0.37 0.44 0.42 0.37 0.29 0.34
rhymes 0 0.56 0.75 0.82 0.34 0.4
second_word_letter 0.45 1 1 1 1 0.99
sentence_similarity 0.05 0.42 0.42 0.41 0.45 0.46
sentiment 0.13 0.91 0.94 0.89 0.87 0.87
singular_to_plural 0.98 1 0.99 0.99 0.99 0.98
sum 0.99 1 1 1 1 1
synonyms 0.13 0.12 0.1 0.32 0.36 0.46
taxonomy_animal 0.74 0.92 0.96 0.94 0.83 0.74
translation_en-de 0.82 0.84 0.85 0.9 0.89 0.86
translation_en-es 0.87 0.83 0.86 0.89 0.95 0.94
translation_en-fr 0.87 0.88 0.81 0.84 0.78 0.75
word_in_context 0 0.16 0.23 0.23 0.16 0.16

Table 7: Details of task Performance in Big-Bench benchmark.

0 1 2 3 4 5

gender_inclusive_sentences_german 0.175 0.2 0.2 0.2 0.225 0.225
hyperbaton 0 0.14 0.4 0.51 0.57 0.51
movie_recommendation 0 0.2 0.29 0.27 0.21 0.27
object_counting 0 0.5 0.47 0.44 0.41 0.46
operators 0 0.024 0 0 0 0
question_selection 0 1 1 1 0.02 0.98
ruin_names 0 0.356 0.6 0.3 0.556 0.289
snarks 0 0.514 0.514 0.541 0.595 0.568
tense 0.728 0.828 0.811 0.811 0.811 0.811
word_sorting 0 0 0.42 0.46 0.46 0.43
word_unscrambling 0.19 0.45 0.45 0.53 0.58 0.46

19

