
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RELATION EDITING FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge editing is a critical technique for the routine updating and mainte-
nance of LLMs. Existing research predominantly assumes changes only to the
object within subject-relation-object triples, with minimal exploration into tech-
niques for editing the relation. We term this task Relation Editing (distinct from
the established “Object Editing” paradigm). We first construct a dedicated rela-
tion editing dataset and benchmark existing algorithms, revealing a critical flaw:
even with successful edits, prominent methods suffer from the persistent retention
of outdated information, with rates reaching as high as 98.20%. Editing failures
stem primarily from two sources: the persistent retention of outdated relationships
and the presence of challenging editing samples. To address the first issue, we
propose a novel relation editing framework called Forgetting-and-Editing (FE).
We theoretically show that existing forgetting methods (i.e., model unlearning)
are unsuitable for this purpose and, to this end, introduce a new target assign-
ment strategy within our framework. To mitigate the second challenge, we intro-
duce a self-paced learning strategy, instantiated in a new algorithm named self-
paced AlphaEdit (SPaEdit). We conduct extensive experiments on our com-
piled relation-editing dataset and established object-editing benchmarks. Results
demonstrate that our proposed relation editing strategy achieves satisfactory per-
formance on the relation editing task. In addition, SPaEdit outperforms existing
SOTA methods on object-editing benchmarks. Our research also suggests further
study is warranted in relation editing, particularly on forgetting existing relations.

1 INTRODUCTION

Knowledge editing has emerged as a critical technique for precisely modifying factual associations
within LLMs without costly full retraining (Cao et al., 2021). This capability addresses the fun-
damental challenge posed by the static nature of LLMs, providing an efficient mechanism to up-
date their knowledge base with new facts or correct existing inaccuracies. The field has converged
on two distinct architectural strategies: weight-space editors that surgically alter transformer pa-
rameters (e.g., MEMIT’s layer-wise scaling (Meng et al., 2023)), versus non-invasive approaches
employing external memory or prompt-based adaptation (e.g., MELO’s dynamic LoRA (Yu et al.,
2024)). While effective in isolation, these methods face inherent trade-offs between edit precision
and knowledge retention stability. The recent breakthrough AlphaEdit (Fang et al., 2025) introduces
a novel null-space constrained approach that theoretically guarantees knowledge preservation while
enabling precise edits.

A knowledge triple takes the form (s, r, o), for subject s, relation r, and object o. Most current
research on knowledge editing focuses on changing the object ((s, r, o) → (s, r, o∗)) (Wang et al.,
2024b), but pays little attention to changing the relation ((s, r, o) → (s, r∗, o)), even though such
updates are common in practice. For instance, changing “Zinedine Zidane is a player for Real
Madrid” to “Zinedine Zidane is a coach of Real Madrid” means updating the relation while keeping
the subject and object the same. This is a frequent type of change that existing methods overlook.
We call editing that targets relation changes “Relation Editing”. In contrast, standard knowledge
editing is called “Object Editing”. The easiest way to handle relation editing is to simply give
the new triple (s, r∗, o) to current object-editing methods. If successful, separate research would
be unnecessary. To test this idea, we created a relation-editing dataset named ReEditBench from
available object-editing benchmarks. We then evaluated popular object-editing techniques including

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ROME (Meng et al., 2022), MEMIT (Meng et al., 2023), and AlphaEdit (Fang et al., 2025). All
methods performed poorly: first, although models learn the new triple (s, r∗, o), they still strongly
recall the old one (e.g., models edited with AlphaEdit keep 98.20% of the original knowledge).
Second, these methods perform especially poorly on hard-to-edit relations. Our initial analysis
shows that the editing success rate decreases as the difference grows between the model’s knowledge
of (s, r∗) and the object o.

To bridge the gap, we propose a Forgeting-and-Editing (FE) strategy that enables models to learn
new relations while forgetting old ones, thereby allowing existing object-editing algorithms to be
adapted for relation-editing tasks. However, our theoretical analysis shows that current model un-
learning strategies are inapplicable for direct use. Therefore, we propose a new target assignment
scheme for old relation forgetting. For the hard relation editing problem, we draw inspiration from
the classical self-paced learning concept (Kumar et al., 2010) and propose a self-paced knowledge
editing algorithm called Self-paced AlphaEdit (SPaEdit). This method first learns easier samples
based on the difficulty levels of knowledge tuples, then progressively incorporates more challenging
ones for iterative optimization, ultimately selecting the optimal solution through validation.

Tests on our constructed relation-editing dataset demonstrate that our FE strategy significantly en-
hances the performance of object-editing methods beyond their standalone application. Specifically,
on the Success metric, the FE strategy led to an average performance improvement of 10.07%, with
a peak improvement of 34.49%. Notably, combining the FE strategy with the proposed SPaEdit
yielded the best relation-editing performance. We also directly applied SPaEdit to existing object-
editing benchmark datasets (Levy et al., 2017; Meng et al., 2022) and found that it outperformed the
representative SOTA methods, including AlphaEdit. Additionally, a series of ablation experiments
and sensitivity analyses consistently demonstrated the superiority of the proposed FE strategy and
SPaEdit method.

2 PROBLEM DESCRIPTION AND ANALYSIS

2.1 PROBLEM DESCRIPTION

Knowledge editing aims to update factual triples stored in LLMs through single or sequential ed-
its (Wang et al., 2024b). Unlike existing knowledge editing which modifies the object o in a fact
tuple (s, r, o) (referred to object editing in this study), relation editing alters the relation r rather than
object o, resulting in a new tuple (s, r∗, o)1. In the locate-then-edit paradigm (Zhang et al., 2025;
Pan et al., 2025), each edit applies a perturbation ∆ to the model parameters W ∈ Rd1×d0 , where d0
and d1 denotes the dimensions of the FFN’s intermediate and output layers. Specifically, for updat-
ing h relation facts, let K1 = [k1 | k2 | · · · | kh] ∈ Rd0×h and K′

1 = [k′
1 | k′

2 | · · · | k′
h] ∈ Rd0×h

be the keys for the raw and the updated subject-relation pairs, respectively. The value matrix
V1 = [v1 | v2 | · · · | vh] ∈ Rd1×h remains unchanged. To our knowledge, there is currently
no dedicated research work focusing on relation editing. While RaKE (Wei et al., 2023) briefly
touches upon it, the task itself remains largely overlooked by the research community.

Directly applying the solution approach of object editing, the following optimization objective min-
imizing the error for updated relations while preserving existing knowledge is obtained:

∆ = argmin
∆̃
∥(W + ∆̃)K′

1 −V1∥2F . (1)

Table 1: Statistics of ReEditBench.

Data Source New
Relation

Conditional
Relation Total

ZsRE 2,000 2,000 4,000
Wikidata 1,700 2,218 3,918

Total 3,700 4,218 7,918

At first glance, existing object editing meth-
ods such as MEMIT and AlphaEdit can be di-
rectly applied in principle, essentially solving
the problem based on variations of Eqn. 1. To
verify whether object editing methods can be
directly applied to relations, we constructed
ReEditBench, a new benchmark for relation
editing. It was built through a rigorous four-
stage pipeline, with full details provided in Appendix A.1. First, we curate initial high-quality facts

1It should be noted that this study does not consider the scenario in which the user specifies a new object
for the original subject and object; instead, we assume that no relevant information is provided by the user.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

100% 50% 0% 50% 100%
Rate

PRUNE on LLaMA3-8B
NSE on LLaMA3-8B

MEMIT on LLaMA3-8B
FT on LLaMA3-8B

ROME on LLaMA3-8B
PRUNE on GPT2-XL

NSE on GPT2-XL
ROME on GPT2-XL

NSE on GPT-J-6B
ROME on GPT-J-6B

FT on GPT2-XL
FT on GPT-J-6B

RECT on LLaMA3-8B
PRUNE on GPT-J-6B

AlphaEdit on LLaMA3-8B
RECT on GPT2-XL

MEMIT on GPT2-XL
RECT on GPT-J-6B

MEMIT on GPT-J-6B
AlphaEdit on GPT2-XL
AlphaEdit on GPT-J-6B

32%

45%

48%

49%

50%

54%

59%

61%

62%

63%

69%

70%

76%

77%

79%

82%

85%

97%

97%

98%

99%

55%

53%

51%

64%

50%

52%

58%

61%

62%

63%

71%

66%

72%

79%

68%

78%

80%

91%

92%

91%

98%

Efficacy
Retention

(a) Efficacy vs. Retention across methods

0 5 10 15 20 25 30
Sample Difficulty

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
di

tin
g

Su
cc

es
s R

at
e

Sample Type
Hard Samples
Easy Samples

(b) Difficulty vs. Efficacy rate

Figure 1: Analysis of key challenges in relation editing. (a) The bar chart compares editing efficacy
(blue) with Retention of the original fact (pink), showing that old knowledge persists. (b) The scatter
plot shows a strong negative correlation between sample difficulty and Efficacy rate, indicating
performance decay on challenging samples.

from established knowledge-intensive benchmarks, primarily ZsRE (Levy et al., 2017) and Wiki-
data (Vrandečić & Krötzsch, 2014). Second, a generator LLM (DeepSeekV3 (Liu et al., 2024a))
automatically reframes these facts into relation-editing tasks, guided by two distinct patterns: new
relation and conditional relation. Third, all candidates are filtered automatically for structural in-
tegrity and semantic plausibility using scripts and a verifier LLM (DeepseekR1 (Guo et al., 2025)).
Finally, to quantify the dataset’s quality, we manually validated a 30% random sample and found
that 98.5% of the instances were valid, confirming the high quality of our generation pipeline. This
process yields 7,918 high-quality editing instances, with a detailed breakdown provided in Table 1.

2.2 RESULTS DIRECTLY WITH OBJECT EDITING

To investigate the direct applicability of existing object editing methods to the relation editing task,
we conducted a series of empirical evaluations. Our analysis of the results reveals two distinct
patterns. First, as shown in Fig. 1(a), while most editing methods achieve high success rates in
acquiring the new knowledge (blue bars), they concurrently retain the original, conflicting knowl-
edge at exceptionally high rates (pink bars). This creates a near-symmetrical visual pattern; for
instance, AlphaEdit on GPT-J (Wang & Komatsuzaki, 2021) pairs a success rate of approximately
99% with a retention rate of 98%. Second, Fig. 1(b) demonstrates a strong negative correlation
between the editing success rate and sample difficulty (measured as the magnitude of the initial
residual, ∥vi −Wk′

i∥22). The data clearly forms two distinct clusters, with “easy samples” (blue)
concentrated in a high-success region and “hard samples” (pink) occupying a low-success region.

To delve deeper into the intrinsic nature of these “hard samples”, we further investigated the role
of semantic similarity between the original relation r and the target r∗. Our analysis (detailed in
Appendix C.5) uncovers an intriguing trade-off: relations with high semantic proximity are easier
to learn but significantly harder to forget, whereas semantically divergent ones show the opposite
trend. However, while semantic analysis offers valuable explanatory insights, we find that the com-
putational residual remains the superior metric for quantifying difficulty in practice. This is because
semantic similarity captures only the linguistic dimension of difficulty. In contrast, the compu-
tational residual acts as a holistic proxy that aggregates all latent influencing factors—including
semantics, knowledge frequency, and structural complexity. It provides a direct, quantifiable sig-
nal of the actual optimization barrier the model faces, making it a more robust and computationally
efficient standard for our curriculum learning than semantic metrics alone.

These observations point to two fundamental and distinct limitations of current approaches in rela-
tion editing. First, the near-symmetrical pattern of success and retention indicates that these methods
perform an additive operation rather than a corrective overwrite, resulting in the problematic coex-
istence of both new and old knowledge. Second, they consistently fail on high-difficulty editing

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

samples. We therefore conclude that existing methods are ill-suited for this task, as they fail to
properly erase outdated information and lack the efficacy required for challenging edits.

3 METHODOLOGY
O

1

O
2

O
3

O
4

O
5

O
6

O
7

O
8

O
9

O
10

O
11

O
12

O
13

O
14

O
15

O
16

O
17

O
18

O
19

O
20

O
21

O
22

O
23

O
24

O
25

O
26

O
27

O
28

O
29

O
30

O
31

O
32

Original (O1 O32)

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

N13

N14

N15

N16

N17

N18

N19

N20

N21

N22

N23

N24

N25

N26

N27

N28

N29

N30

N31

N32

N
ew

 (N
1

N
32

)

Similarity between Original (O) and New (N) Knowledge

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
os

in
e

si
m

ila
ri

ty

Figure 2: Similarity heatmap between
original and new relation keys.

SPaEdit

Forget

Diff

Step

Diff

Step

Updateλ
Edit

Forgeting Data

Editing Data

Data

Select

(Forgeting Data)

(Editing Data)

Data

Select

ˆNew object vector () () [() ()]o o IDK o= + −υ υ υυ

1
ˆ(())ok , υ

1(())ok , υ

Relation

Editing

 
 
 

(, ,)s r o

(, *,)s r o

1(, ())ok υ

Figure 3: Overview of our proposed framework for relation
editing, combining a novel forgetting-and-editing (FE) strat-
egy with a Self-paced AlphaEdit (SPaEdit) algorithm.

The empirical findings from the previous section indicate that the retention of the old tuple (s, r, o)
constitutes the primary failure point when existing object editing methods are directly applied to
relation editing. Hence, a highly intuitive approach involves first forgetting the old tuple and then
incorporating new knowledge. This strategy has in fact been mentioned in several studies on object
editing (Ni et al., 2024; Jung et al., 2025). The present study also adopts this general strategy;
however, we will begin by introducing our theoretical analysis, which demonstrates that existing
model unlearning strategies are largely ineffective when directly applied to old relation forgetting.
Based on this analysis, we further propose a novel unlearning method. To mitigate degradation on
difficult cases, we further develop Self-Paced AlphaEdit (SPaEdit), which performs editing under
an easy-to-hard curriculum inspired by self-paced learning.

3.1 THEORETICAL INVESTIGATION

Conventionally, LLM unlearning methods (Yao et al., 2024; Wang et al., 2025) set the prediction
target for data to be forgotten either to “I don’t know” (IDK) or to a random response. However,
as will be explained mathematically, both strategies are ill-suited for old relation forgetting under
linear regression-based editing methods such as AlphaEdit and MEMIT.

Following prior studies (Meng et al., 2022; Fang et al., 2025) that formulate knowledge editing as
a linear regression task, we model the forgetting of old relations within this framework to facilitate
understanding. We consider a linear homogeneous regression problem (y = w⊤x) with a training
set D = {(xi, yi)} for i = 1, . . . , N , assuming yi ∈ [0, 1]. The set D is split evenly into Dg (normal
data) and Db (forgetting data), for which we examine two cases: (1) fixing each yi in Db to a constant
ŷ (simulating all objects changed to IDK), and (2) setting each yi in Db to a random value (simulating
random object assignments). By minimizing MSE, we obtain:

w∗ = (X⊤X)−1(X⊤
g yg +X⊤

b yb), (2)

where X ∈ RN×d is the feature matrix and y ∈ RN is the label vector, X⊤
g yg represents the signal

from the normal data, and X⊤
b yb represents the term from the forgetting data. The subsequent anal-

ysis will focus on how this term distorts the optimal solution w∗. Let w∗
g be the solution achieved

by only applying the normal data Dg . In the first case, with mathematical deduction, Eqn. 2 yields:

w∗
const = (X⊤X)−1(X⊤

g yg +
ŷN

2
u) = w∗

g +
ŷN

2
(X⊤X)−1u, (3)

where u = 1
|Db|

∑
i∈Db

xi. This implies that all predictions will be systematically distorted to-
ward ŷ (our theoretical conclusion closely aligns with a recent empirical observation in LLM un-
learning (Yuan et al., 2025): when the target token is identical, the output probability of the target

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

token (i.e., IDK in the case) increases for both unlearning and normal inputs), and the degree of
distortion depends on the correlation between the new input and (X⊤X)−1u.

In the second case, with mathematical deduction, we can obtain the expected solution as follows:

E[w∗
rand] = (X⊤X)−1(X⊤

g yg + E[X⊤
b yb]) = w∗

g + (X⊤X)−1(0.5|Db|E[x]). (4)

Similar to the first case, the random noise introduces a systematic bias in expectation in both normal
and unlearning samples, pulling the solution toward a direction determined by the irrelevant feature
mean, which forces the predicted values to skew toward 0.5 (average response in LLMs).

Our theoretical analysis shows that when using current model editing methods to forget old relations,
standard unlearning strategies cause normal knowledge to become systematically distorted.

3.2 KNOWLEDGE FORGETTING VIA TARGET SMOOTHING

Theoretical analysis shows conventional target assignment strategies for LLM unlearning are in-
effective for knowledge forgetting. Thus, the key to our approach is determining a suitable object,
denoted as ô, for the triplet (s, r, o) to be unlearned. This ô should neither be uniform across all sam-
ples nor randomly assigned. Furthermore, statistical analysis of the vector representations of (s, r)
and (s, r∗) reveals very high similarity across the dataset, as shown in Fig. 2. Given the properties
of linear regression, an additional guideline for selecting ô is that the difference between v(ô) and
v(o) is not large; otherwise, a significant disparity between these values, combined with the high
similarity of (s, r) and (s, r∗), would make the optimization problem significantly harder to solve.

Based on these three considerations, we directly generate the vector for ô in the following manner:

v(ô) = v(o) + γ[v(IDK)− v(o)], γ ∈ (0, 1). (5)

Our assignment strategy, controlled by the hyperparameter γ, is designed to satisfy three criteria:
nonconstant assignment, nonrandom assignment, and target vector proximity. As our analysis shows
(Appendix B.1), compared with fixed constant targets (e.g., “I don’t know”) or random responses,
it suppresses systematic bias, improves edit success, and reduces retention, while inducing smaller
perturbations to normal knowledge and yielding more stable optimization. Nevertheless, our exper-
iments reveal residual retention on some models, indicating that relation editing poses substantive
new challenges and merits dedicated investigation.

3.3 THE PROPOSED FORGETTING-AND-EDITING STRATEGY

Building upon the target smoothing derived in Section 3.2, we propose the Forgetting-and-Editing
(FE) strategy. This strategy serves as a comprehensive framework that integrates the “unlearning”
of outdated relations with the injection of new knowledge. Fig. 3 provides an illustrative overview
of this pipeline.

To achieve this dual objective, we construct a composite editing task. For a given batch of N relation
editing samples, where the i-th sample involves changing the relation from (si, ri, oi) to (si, r

∗
i , oi),

the procedure operates in two stages combined into a single optimization step:

• Stage 1: Constructing the Forgetting Pairs. We first compute the interpolated target v(ôi) using
Eqn. 5. We then form the forgetting pair (ki,v(ôi)), where ki is the key vector corresponding
to the original subject-relation (si, ri). This pair instructs the model to shift the representation
of the old relation toward a neutral state, effectively suppressing the activation of the outdated
knowledge.

• Stage 2: Constructing the Editing Pairs. Simultaneously, we construct the standard editing pair
(k′

i,v(oi)), where k′
i is the key vector for the new subject-relation (si, r

∗
i), and v(oi) is the target

value of the object. This pair ensures the model accurately captures the new relational association.

Joint Optimization. Finally, both the forgetting pairs and the editing pairs are concatenated to form
the full training set for the current batch:

Dtotal =

N⋃
i=1

{(ki,v(ôi)), (k
′
i,v(oi))}. (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1: SPaEdit

Input: K1 ∈ Rd×n, V1 ∈ Rd×n, W ∈ Rd×d, P ∈ Rd×d, Kp ∈ Rd×m, α, β, µ, λ0, T
Output: sequence of edited matrices {W(t)}Tt=1

λ← λ0;
for t = 1 to T do

for i = 1 to n do
ℓi ←

∥∥(W +∆P)ki − vi

∥∥2
2
;

zi ← 1(ℓi ≤ λ)

Z← diag(z1, . . . , zn),R← V1 −WK1;
∆P← RZK⊤

1 P
(
K1ZK

⊤
1 P+ βKpK

⊤
p P+ αI

)−1
;

W(t) ←W +∆P,W←W(t),λ← µλ;

return {W(t)}Tt=1;

This combined dataset Dtotal is then fed into the base editor (e.g., AlphaEdit or our SPaEdit). By
jointly optimizing for both objectives, the algorithm updates the weights to simultaneously unlearn
the old relation and acquire the new one, resolving the conflict inherent in relation editing.

3.4 IMPROVEMENT VIA SELF-PACED LEARNING

As demonstrated in our experimental analysis (Section 2.2), some knowledge edits are significantly
more challenging than others. This motivates us to incorporate self-paced learning (SPL), an easy-
to-hard curriculum, into the knowledge editing process. We integrate this strategy with SOTA Al-
phaEdit (Fang et al., 2025). To formulate our approach, we re-examine the original objective of
AlphaEdit, which seeks an optimal perturbation ∆:

argmin
∆

∥(W +∆P)K1 −V1∥2F + α∥∆P∥2F + β ∥∆PKp∥2F . (7)

Here, K1 and V1 are the keys and values of the facts to be edited. The objective incorporates two
regularizers: α-term constrains the update within the null space of AlphaEdit via the projector P,
and β-term penalizes interference with previously edited knowledge Kp. The baseline objective uses
uniform instance weighting and ignores difficulty. We therefore recast editing as SPL, introducing
binary selectors zi ∈ {0, 1} to build an adaptive curriculum, leading to the following objective:

min
∆,z
J (∆, z;λ) =

n∑
i=1

ziℓi(∆) + α∥∆P∥2F + β ∥∆PKp∥2F − λ
n∑

i=1

zi. (8)

Here, zi = 1 indicates that the i-th sample is included in the editing approach. λ > 0 is the pace
parameter that controls the curriculum’s difficulty. The sample-wise loss is the squared error for the
i-th edit: ℓi(∆) = ∥(W +∆P)ki − vi∥22 = ∥∆Pki − ri∥22, where ri = vi−Wki is the residual
for the i-th sample. We optimize Eqn. 8 via alternating minimization between ∆ and z.

With z fixed, the problem reduces to a regularized least-squares objective over the subset of “easy”
samples. Let Z = Z1/2 = diag(z). We solve for ∆:

min
∆

∥∥∥(∆PK1 − (V1 −WK1))Z
1/2

∥∥∥2
F
+ α∥∆P∥2F + β ∥∆PKp∥2F . (9)

This is a convex problem whose closed-form solution for the update ∆SPaEdit = ∆P is:

∆SPaEdit = (V1 −WK1)ZK1P
⊤ (

K1ZK
⊤
1 P+ βKpK

⊤
p P+ αI

)−1
. (10)

With ∆ fixed, we determine the optimal sample selection z∗ for each sample for the next iteration.
This step realizes an easy-to-hard curriculum by adjusting the difficulty threshold λ to progressively
incorporate more challenging samples:

z∗i (λ) =

{
1, if ℓi(∆) < λ

0, otherwise
. (11)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

This two-step process is iterated, with λ gradually increasing to incorporate more difficult samples
over time. Once these optimization iterations conclude, we obtain a series of W(t). We use a
validation set for model selection, stopping the iterative process when the validation loss plateaus.
Details on the validation set’s construction are provided in the Appendix A.1.2. The entire algorithm
is called SPaEdit as shown in Algorithm 1. Notably, compared to AlphaEdit, our approach incurs
minimal structural overhead, requiring only the introduction of the diagonal matrix Z to dynamically
control the optimization order of the samples.

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTAL SETUP

Base LLMs & Baseline Methods. We evaluate knowledge editing across three representative
LLMs: LLaMA3 (8B) (Meta, 2024), GPT-J (6B), and GPT2-XL (1.5B) (Radford et al., 2019).
Seven parametric editing methods are compared: MEMIT (Meng et al., 2023), RECT (Gu et al.,
2024), NSE (Jiang et al., 2024), ROME (Meng et al., 2022), Fine-Tuning (FT) (Zhu et al., 2020),
PRUNE (Ma et al., 2025), and AlphaEdit (Fang et al., 2025). Detailed descriptions of these baseline
methods are provided in Appendix A.2. We have ensured the accessibility of our work; all experi-
ments can be replicated from start to finish on a single, commonly available NVIDIA L40S(48G).

Metrics. Our evaluation metrics are chosen based on the specific task. For Relation Editing, we
focus on Success (holistic replacement) and Retention (forgetting), alongside Efficacy and Gener-
alization. For the standard Object Editing task, we use the canonical set of Efficacy, Generaliza-
tion, and Specificity for ZsRE, and expand this set with Fluency and Consistency for the generative
CounterFact benchmark. Detailed definitions are available in Appendix A.3.

Datasets. We evaluate our methods on ReEditBench, our novel benchmark constructed for the Re-
lation Editing task. To select the optimal model from our iterative algorithm, we use a validation set
to minimize a weighted loss that balances three key objectives: forgetting the old fact, learning the
new one, and generalization, with respective weights of 0.4, 0.4, and 0.2. The detailed construction
of this validation set is described in Appendix A.1.2. To further assess the universality and gener-
alization capabilities of our proposed SPaEdit algorithm, we also evaluate its performance on the
two object editing benchmarks: ZsRE (Levy et al., 2017) and CounterFact (Meng et al., 2022).
ReEditBench will be available once acceptance and codes are in the attachment.

4.2 EFFICACY OF THE FORGETTING-AND-EDITING STRATEGY ON RELATION EDITING

Setup. The results are shown under the standard sequential editing setting, where a total of 2000
samples were randomly drawn from the dataset for updates, with each edit consisting of 100 sam-
ples. For the relevant experimental runs, the forgetting parameter λ was set to 0.6, and the update
regularization coefficients α and β were set to 10 and 1, respectively.

Results. In our evaluation framework, we prioritize Success and Retention, since relation editing
must ensure that new knowledge reliably replaces old. Table 2 shows that our Forgetting-and-Editing
(FE) strategy consistently improves performance across methods and models: by markedly lowering
Retention (up to 40.85% reduction), it raises Success by up to 34.49%, while typically improving
Efficacy and Generalization. The seemingly high retention of some baselines is misleading, stem-
ming from low editing success that fails to challenge original knowledge and thus yields deceptively
low interference. In contrast, our strategy genuinely alters the knowledge relationship by pairing
high editing success with effective forgetting of outdated facts. We further show that replacing fixed
targets with our interpolation-based assignment yields substantially better unlearning than assigning
“I don’t Know” or random answers (see Appendix C.1), confirming the effectiveness of our design.
Nevertheless, Retention remains nontrivial in absolute terms, often around 50% in difficult settings,
indicating that fully clean forgetting is still unsolved and merits further study.

Analysis of the Forgetting Strategy. We present an empirical comparison of four unlearning strate-
gies in Fig. 4, with results that clearly validate our theoretical analysis from Section 3.1. The ex-
periments show that conventional unlearning strategies, which set the prediction target for outdated
knowledge to either a generic “I don’t know” response or a random value, are ineffective at reducing
the model’s knowledge retention. On the GPT-J model, for instance, these approaches yield retention

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Main Results on the Relational Editing Task
LLMs Method Success↑ Retention↓ Efficacy↑ Generalization↑

Original +FE Original +FE Original +FE Original +FE

LLaMA3

MEMIT 33.77 68.26 (+34.49) 51.70 58.82 (-7.12) 48.43 70.93 (+22.50) 49.09 67.00 (+17.91)
RECT 59.41 66.83 (+7.42) 72.78 59.45 (+13.33) 66.78 69.70 (+2.92) 54.63 58.96 (+4.33)
NSE 43.20 54.30 (+11.10) 53.73 52.24 (+1.49) 45.00 58.53 (+13.53) 59.26 58.55 (-0.71)
ROME 31.39 44.91 (+13.52) 60.47 56.36 (+4.11) 50.91 56.64 (+5.73) 50.93 56.80 (+5.87)
FT 48.88 63.45 (+14.57) 64.49 63.57 (+0.92) 49.96 71.01 (+21.05) 69.16 67.31 (-1.85)
PRUNE 29.40 29.81 (+0.41) 44.68 30.46 (+14.22) 44.04 34.25 (-9.79) 43.86 42.97 (-0.89)

AlphaEdit 52.18 78.46 (+26.28) 78.34 67.12 (+11.22) 79.17 83.24 (+4.07) 76.62 80.03 (+3.41)
SPaEdit(Ours) 54.45 81.71 (+27.26) 68.56 62.77 (+5.79) 83.23 87.37 (+4.14) 75.88 81.14 (+5.26)

GPT2-XL

MEMIT 56.31 57.79 (+1.48) 80.26 57.21 (+23.05) 85.23 84.67 (-0.56) 80.68 85.21 (+4.51)
RECT 54.60 54.72 (+0.12) 78.10 61.62 (+16.48) 82.35 84.08 (+1.73) 78.37 77.12 (-1.25)
NSE 45.00 45.45 (+0.45) 58.53 58.24 (+0.29) 59.26 59.99 (+0.73) 58.55 59.43 (+0.88)
ROME 45.74 45.82 (+0.08) 61.71 61.49 (+0.22) 61.70 61.39 (-0.31) 61.19 61.78 (+0.59)
FT 49.96 51.32 (+1.36) 71.01 67.25 (+3.76) 69.16 69.93 (+0.77) 67.31 67.58 (+0.27)
PRUNE 37.88 38.04 (+0.16) 52.62 39.14 (+13.48) 54.49 55.71 (+1.22) 52.99 52.60 (-0.39)

AlphaEdit 65.31 75.93 (+10.62) 91.31 50.46 (+40.85) 86.83 87.36 (+0.53) 84.51 85.50 (+0.99)
SPaEdit(Ours) 62.00 83.93 (+21.93) 68.55 48.78 (+19.77) 85.93 88.46 (+2.53) 87.36 87.50 (+0.14)

GPT-J

MEMIT 72.55 82.36 (+9.81) 92.98 71.94 (+21.04) 87.14 87.80 (-0.76) 84.69 84.89 (+0.20)
RECT 72.54 77.63 (+5.09) 91.67 74.54 (+17.13) 82.12 82.42 (+0.30) 81.90 82.10 (+0.20)
NSE 45.65 45.95 (+0.30) 62.13 61.12 (+1.01) 62.03 60.94 (-1.09) 61.52 61.63 (+0.11)
ROME 46.38 47.79 (+1.41) 63.34 29.27 (+34.07) 63.32 61.49 (-1.83) 63.24 63.78 (+0.54)
FT 51.19 61.10 (+9.91) 66.24 43.50 (+22.74) 70.79 78.72 (+7.97) 67.31 68.67 (+1.34)
PRUNE 55.71 63.05 (+7.34) 79.12 59.87 (+19.25) 77.25 77.00 (-0.25) 75.41 76.62 (-1.21)

AlphaEdit 65.99 89.98 (+23.99) 98.20 63.84 (+34.36) 85.53 85.64 (+0.11) 86.87 87.80 (+0.93)
SPaEdit(Ours) 78.46 91.02 (+12.56) 88.24 59.84 (+28.40) 75.93 88.08 (+12.15) 87.36 88.58 (+1.22)

rates as high as 77.2% and 77.9% respectively, which confirms that their inherent systematic biases
impede effective forgetting. In contrast, our proposed strategy, which works by interpolating the
value vector of the outdated fact towards a neutral state, performs exceptionally well and achieves
the best trade-off between the success and retention rates across all tested models (LLaMA3, GPT2-
XL, and GPT-J). Specifically, not only does our method rank among the highest in Success rate, but
more critically, it consistently achieves the lowest Retention rate in all cases.

Suc Ret
0

20

40

60

80

100

Sc
or

e
(%

)

52.2

78.5 80.6 81.6 78.3 74.8 76.9
67.1

LLaMA3

Suc Ret

65.3
70.5 70.6

75.9

91.3

54.8 56.9
50.1

GPT2-XL

Suc Ret

66.0

88.0
83.5

90.0 98.2

77.2 77.9

63.8

GPT-J

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

60

70

80

90

Su
c

(%
)

best =0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

best =0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

best =0.6

30

40

50

60

70

80

R
et

 (%
)

No-Forget

Forget-IDK

Forget-RND

Ours

Suc

Ret

Stable range

Figure 4: Ablation and Sensitivity Analysis of the Forgetting-and-Editing Strategy.

Sensitivity Analysis on Hyperparameter λ. Our sensitivity analysis for the interpolation factor λ,
shown in Fig. 4, reveals a clear trade-off between forgetting and learning. While a larger λ leads to
more effective forgetting (a monotonic decrease in the Retention rate), it also produces a concave
trajectory for the Success rate, which first increases and then decreases. We identify a broad optimal
window, λ ∈ [0.3, 0.7], where the Success rate is maximized without a significant compromise
in forgetting. The existence of such a wide effective range underscores the robustness of our FE
strategy and its low sensitivity to hyperparameter tuning, which is vital for practical deployment.

4.3 GENERALIZATION AND PERFORMANCE ON OBJECT EDITING BENCHMARKS

To assess generality, we use 100-example hard subsets from ZsRE and CounterFact. This section
focuses on the ZsRE results, which demonstrate state-of-the-art performance. The complete results
for CounterFact and an analysis of the sample difficulty distributions are available in Appendix C.2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Results on ZsRE. As demonstrated in Table 3, SPaEdit consistently establishes a new state-of-the-
art on the ZsRE benchmark across all tested models. Its commanding lead in Efficacy is particularly

Table 3: Object Editing Performance on ZsRE

LLM Method Efficacy↑ Generalization↑ Specificity↑

LLaMA3

ROME 31.87 32.4 32.26
MEMIT 86.07 82.39 33.33

AlphaEdit 81.87 78.11 33.03

SPaEdit 92.32 82.6 32.11

GPT2-XL

ROME 15.87 16.98 7.74
MEMIT 71.47 63.14 7.37

AlphaEdit 92.17 82.68 7.72

SPaEdit 98.96 89.89 7.23

GPT-J

ROME 23.69 27.9 24.12
MEMIT 94.86 90.02 28.22

AlphaEdit 96.26 90.46 28.15

SPaEdit 99.97 91.3 28.61

notable: achieving 92.32% on LLaMA3
(a significant improvement over AlphaEdit’s
81.87%) and a near-perfect 99.97% on GPT-
J. This superiority extends to Generaliza-
tion, where SPaEdit achieves the top score of
89.89% on GPT2-XL, and also leads in Speci-
ficity on GPT-J with 28.61%. The experimen-
tal findings reveal that the hard sample sub-
set poses a considerable challenge, causing no-
table performance degradation even for strong
methods like AlphaEdit that rely on single-pass
optimization. In stark contrast, SPaEdit not
only withstands this challenge but excels by
maintaining superior performance where other
methods falter. This highlights the advantage of
SPaEdit’s strategic, staged learning process: it
first builds a robust foundation on easier edits
before progressively incorporating more chal-
lenging ones, thereby avoiding optimization pitfalls that arise when attempting to resolve high-
residual errors simultaneously. Consequently, this approach not only provides an effective solution
for relation editing but also establishes a new state-of-the-art on traditional object editing tasks.
Furthermore, we report results on more comprehensive datasets in the Appendix C.3; despite the
near-saturation of performance metrics on these benchmarks, our method still maintains a slight but
consistent advantage over current field methods.

4.4 MECHANISTIC INSIGHT INTO SPAEDIT

To elucidate the mechanisms driving SPaEdit’s advantage, we visualize its internal curriculum dy-
namics and resulting cost-benefit profile in Fig. 5.

(a) Curriculum dynamics. This figure traces how the sample-difficulty distribution evolves under
our self-paced learning framework as parameters are updated. At the start (e.g., (t = 1)), the distri-
bution is right-skewed toward high difficulty, indicating many hard samples. As training proceeds
and parameters are optimized, proficiency increases and the mass shifts from the hard (right) to the
easy (left) region. By later iterations (e.g., (t = 13)), the distribution is left-skewed, meaning most
samples are easy. This progression demonstrates the effectiveness of the parameter updates.

(b) Cost-benefit analysis. The adaptive nature of SPaEdit is validated by its cost-benefit trade-
off. On tasks with a low proportion of hard samples, SPaEdit incurs negligible overhead, matching
the execution time of baselines while achieving superior efficacy. As task difficulty increases, it
strategically invests modest additional computation time, which yields a substantial gain in editing
success, in stark contrast to baselines whose performance degrades sharply. This favorable trade-
off demonstrates that SPaEdit efficiently allocates resources, ensuring both robustness and high
performance across a wide spectrum of difficulties.

5 RELATED WORK

Parameter-Based Knowledge Editing. Methods split into two families: meta-learning (KE (Cao
et al., 2021), MEND (Mitchell et al., 2022)) and locate-then-edit, which identifies fact-related
weights and applies a closed-form update (ROME (Meng et al., 2022), MEMIT (Meng et al., 2023)).
Subsequent work increases granularity to neurons or heads (LoFiT (Yin et al., 2024), FiNE (Pan
et al., 2025)), while AlphaEdit (Fang et al., 2025) improves safety and efficacy by projecting up-
dates into a knowledge-preserving null space. Despite implementation differences, prior art largely
defines editing as modifying the object o in (s, r, o); the relation r has been systematically over-
looked. We present the first systematic study of relation editing to fill this gap.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

T=13

T=11

T=9

T=7

T=5

T=3

0 5 10 15 20 25 30

Difficulty

T=1

(a) Curriculum dynamics

0 20 40 60 80 100
Proportion of Hard Samples (%)

0

1000

2000

3000

4000

5000

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
)

Concave Curve:
Initial investment is high,

but marginal cost decreases

AlphaEdit:
Faster, but unreliable
on challenging tasks

0

20

40

60

80

100

E
di

t S
uc

ce
ss

 R
at

e
(%

)

Performance Collapse

SPaEdit:
Higher total cost is the

price for guaranteed robustness

(b) Cost-benefit analysis

Figure 5: (a) shows easy-to-hard self-paced curriculum dynamics. (b) shows the cost–benefit trade-
off: modest extra time yields large efficacy gains on hard samples.

Temporal Adaptation and Unlearning. Machine unlearning seeks reliable removal of obso-
lete or private knowledge from LLMs. Gradient based approaches include forgetting losses (Yao
et al., 2024), orthogonal projection updates (Hoang et al., 2024), and Fisher weighted mask-
ing (Cha et al., 2024). Memory centric methods externalize edits to ensure isolation after editing
(GRACE (Hartvigsen et al., 2023), T-Patcher (Huang et al., 2023), KV scrubbing (Wang et al.,
2024a)). These methods assign fixed forget-set targets (e.g., “I don’t know” or random answers).
Because locate-then-edit is fundamentally a linear-regression update, such targets can induce sys-
tematic bias. We therefore propose an interpolation-based unlearning strategy tailored to this setting.

Curriculum and Self-Paced Learning. The principle of ordering samples from easy to hard is cen-
tral to Curriculum Learning (CL), which uses heuristics (Bengio et al., 2009), and Self-Paced Learn-
ing (SPL), which automates selection with regularized weights (Kumar et al., 2010). These concepts
have since been extended to modern deep learning, from being automated by RL controllers (Graves
et al., 2017) to being adapted for LLM instruction-tuning and continual learning (Ke et al., 2022;
Liu et al., 2024b; Ge et al., 2025). Despite this broad applicability, these principles have not yet been
systematically applied to knowledge editing. Our work bridges this gap by introducing a self-paced
learning framework tailored for this task, which yields substantial improvements on difficult edits.

6 CONCLUSIONS

In this work, we formalize Relation Editing and expose a key weakness of existing methods: they
retain outdated information and fail on difficult edits. We address this with two contributions: the
Forgetting-and-Editing (FE) framework, which introduces a targeted unlearning strategy to resolve
knowledge conflicts, and SPaEdit, a self paced algorithm for edits of varying difficulty. Our exper-
iments validate both: FE is effective on our new relation editing benchmark, and SPaEdit achieves
state of the art on this task and on standard object editing benchmarks. Despite these gains, fully
and permanently erasing obsolete relations remains challenging, so future work will develop more
effective unlearning mechanisms for relation editing.

ETHICS STATEMENT

Our research aims to enhance the capability of updating and maintaining knowledge within Large
Language Models (LLMs), which is crucial for ensuring their accuracy and timeliness in real-world
applications. Our proposed method for Relation Editing, particularly SPaEdit, significantly im-
proves the precision and reliability of knowledge correction in these models.

However, we recognize that any technology capable of directly modifying a model’s internal knowl-
edge carries potential risks. For instance, such techniques could be misused to introduce erroneous,
harmful, or biased information. We therefore strongly urge researchers in both academia and indus-

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

try to establish rigorous validation, oversight, and review mechanisms to ensure the ethical deploy-
ment and use of these techniques.

Despite these challenges, the original intent of model editing technology is positive, with the core
objective of facilitating efficient and effective updates for large models in the future. We encourage
researchers to leverage this technology responsibly and with care, collectively guiding its develop-
ment in a socially beneficial direction.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, Appendix A details our experimental setup, baselines, dataset construc-
tion, and evaluation metrics. All source code and data used in this study, including the SPaEdit
implementation and the ReEditBench dataset, are available at https://anonymous.4open.
science/r/RelEdit-7677. These resources enable independent verification and replication
of our results and encourage further research.

REFERENCES

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, ICML, pp. 41–48,
2009.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing
textual entailment challenge. TAC, 7(8):1, 2009.

Nicola Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In Proceed-
ings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP, pp.
6491–6506, 2021.

Sungmin Cha, Sungjun Cho, Dasol Hwang, and Moontae Lee. Towards robust and parameter-
efficient knowledge unlearning for llms. arXiv preprint arXiv:2408.06621, 2024.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third international workshop on paraphrasing (IWP2005), 2005.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He, and
Tat-Seng Chua. Alphaedit: Null-space constrained model editing for language models. In The
Thirteenth International Conference on Learning Representations, ICLR, 2025. URL https:
//openreview.net/forum?id=HvSytvg3Jh.

Chendi Ge, Xin Wang, Zeyang Zhang, Hong Chen, Jiapei Fan, Longtao Huang, Hui Xue, and
Wenwu Zhu. Dynamic mixture of curriculum lora experts for continual multimodal instruction
tuning. In Forty-second International Conference on Machine Learning, ICML, 2025. URL
https://openreview.net/forum?id=zpGK1bOlHt.

Alex Graves, Marc G Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, ICML, pp. 1311–1320, 2017.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and Nanyun
Peng. Model editing harms general abilities of large language models: Regularization to the
rescue. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP, pp. 16801–16819, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi.
Aging with grace: Lifelong model editing with discrete key-value adaptors. Advances in Neural
Information Processing Systems, NeurIPS, 36:47934–47959, 2023.

11

https://anonymous.4open.science/r/RelEdit-7677
https://anonymous.4open.science/r/RelEdit-7677
https://openreview.net/forum?id=HvSytvg3Jh
https://openreview.net/forum?id=HvSytvg3Jh
https://openreview.net/forum?id=zpGK1bOlHt

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, ICLR, 2021. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

Tuan Hoang, Santu Rana, Sunil Gupta, and Svetha Venkatesh. Learn to unlearn for deep neural
networks: Minimizing unlearning interference with gradient projection. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 4819–4828, 2024.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong.
Transformer-patcher: One mistake worth one neuron. In The Eleventh International Conference
on Learning Representations, ICLR, 2023. URL https://openreview.net/forum?id=
4oYUGeGBPm.

Houcheng Jiang, Junfeng Fang, Tianyu Zhang, An Zhang, Ruipeng Wang, Tao Liang, and
Xiang Wang. Neuron-level sequential editing for large language models. arXiv preprint
arXiv:2410.04045, 2024.

Dahyun Jung, Jaehyung Seo, Jaewook Lee, Chanjun Park, and Heui-Seok Lim. Come: An
unlearning-based approach to conflict-free model editing. In Proceedings of the 2025 Confer-
ence of the Nations of the Americas Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), NAACL, pp. 6410–6422, 2025.

Zixuan Ke, Haowei Lin, Yijia Shao, Hu Xu, Lei Shu, and Bing Liu. Continual training of language
models for few-shot learning. In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, EMNLP, pp. 10205–10216, 2022.

M Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models.
Advances in neural information processing systems, NeurIPS, 23, 2010.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
reading comprehension. arXiv preprint arXiv:1706.04115, 2017.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Liangxin Liu, Xuebo Liu, Derek F Wong, Dongfang Li, Ziyi Wang, Baotian Hu, and Min Zhang.
Selectit: Selective instruction tuning for llms via uncertainty-aware self-reflection. Advances in
Neural Information Processing Systems, NeruIPS, 37:97800–97825, 2024b.

Jun-Yu Ma, Hong Wang, Hao-Xiang Xu, Zhen-Hua Ling, and Jia-Chen Gu. Perturbation-restrained
sequential model editing. In The Thirteenth International Conference on Learning Representa-
tions, ICLR, 2025. URL https://openreview.net/forum?id=bfI8cp8qmk.

Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(eds.), Advances in Neural Information Processing Systems, NeurIPS, 2022. URL https://
openreview.net/forum?id=-h6WAS6eE4.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. In The Eleventh International Conference on Learning Representations,
ICLR, 2023. URL https://openreview.net/forum?id=MkbcAHIYgyS.

Meta. Llama 3, 2024. URL https://llama.meta.com/llama3/. Large language model
release.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast
model editing at scale. In International Conference on Learning Representations, ICLR, 2022.
URL https://openreview.net/pdf?id=0DcZxeWfOPt.

12

https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=4oYUGeGBPm
https://openreview.net/forum?id=4oYUGeGBPm
https://openreview.net/forum?id=bfI8cp8qmk
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=MkbcAHIYgyS
https://llama.meta.com/llama3/
https://openreview.net/pdf?id=0DcZxeWfOPt

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shiwen Ni, Dingwei Chen, Chengming Li, Xiping Hu, Ruifeng Xu, and Min Yang. Forgetting before
learning: Utilizing parametric arithmetic for knowledge updating in large language models. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL,
pp. 5716–5731, 2024.

Haowen Pan, Xiaozhi Wang, Yixin Cao, Zenglin Shi, Xun Yang, Juanzi Li, and Meng Wang. Precise
localization of memories: A fine-grained neuron-level knowledge editing technique for LLMs.
In The Thirteenth International Conference on Learning Representations, ICLR, 2025. URL
https://openreview.net/forum?id=5xP1HDvpXI.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, EMNLP, pp. 1631–1642, 2013.

Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85, 2014.

Ben Wang and Aran Komatsuzaki. Gpt-j-6b: A 6 billion parameter autoregressive language model,
2021.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang,
and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large
language models. Advances in Neural Information Processing Systems, NeurIPS, 37:53764–
53797, 2024a.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge
editing for large language models: A survey. ACM Computing Surveys, 57(3):1–37, 2024b.

Yaxuan Wang, Jiaheng Wei, Chris Yuhao Liu, Jinlong Pang, Quan Liu, Ankit Shah, Yujia Bao,
Yang Liu, and Wei Wei. LLM unlearning via loss adjustment with only forget data. In The
Thirteenth International Conference on Learning Representations, ICLR, 2025. URL https:
//openreview.net/forum?id=6ESRicalFE.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, TACL, 7:625–641, 2019.

Yifan Wei, Xiaoyan Yu, Huanhuan Ma, Fangyu Lei, Yixuan Weng, Ran Song, and Kang Liu.
Assessing knowledge editing in language models via relation perspective. arXiv preprint
arXiv:2311.09053, 2023.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Jiakuan Xie, Pengfei Cao, Yubo Chen, Kang Liu, and Jun Zhao. Revealing the deceptive-
ness of knowledge editing: A mechanistic analysis of superficial editing. arXiv preprint
arXiv:2505.12636, 2025.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. Advances in Neural
Information Processing Systems, NeurIPS, 37:105425–105475, 2024.

Fangcong Yin, Xi Ye, and Greg Durrett. Lofit: Localized fine-tuning on llm representations. Ad-
vances in Neural Information Processing Systems, NeurIPS, 37:9474–9506, 2024.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-indexed
dynamic lora. In Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, volume 38,
pp. 19449–19457, 2024.

Xiaojian Yuan, Tianyu Pang, Chao Du, Kejiang Chen, Weiming Zhang, and Min Lin. A closer look
at machine unlearning for large language models. In The Thirteenth International Conference
on Learning Representations, ICLR, 2025. URL https://openreview.net/forum?id=
Q1MHvGmhyT.

13

https://openreview.net/forum?id=5xP1HDvpXI
https://openreview.net/forum?id=6ESRicalFE
https://openreview.net/forum?id=6ESRicalFE
https://openreview.net/forum?id=Q1MHvGmhyT
https://openreview.net/forum?id=Q1MHvGmhyT

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhuoran Zhang, Yongxiang Li, Zijian Kan, Keyuan Cheng, Lijie Hu, and Di Wang. Locate-then-
edit for multi-hop factual recall under knowledge editing. In Forty-second International Confer-
ence on Machine Learning, ICML, 2025. URL https://openreview.net/forum?id=
kAWtGZIHzm.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix Yu, and
Sanjiv Kumar. Modifying memories in transformer models. arXiv preprint arXiv:2012.00363,
2020.

14

https://openreview.net/forum?id=kAWtGZIHzm
https://openreview.net/forum?id=kAWtGZIHzm

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

USE OF LARGE LANGUAGE MODELS

Per ICLR policy, we report that Large Language Models (LLMs) were used to assist with grammar
correction and language polishing for this paper. The human authors conceived all core ideas and
analysis, and take full responsibility for the final content.

A EXPERIMENTAL SETUP

A.1 DATASET CONSTRUCTION DETAILS

A.1.1 CONSTRUCTION OF TRAINING DATASET.

This section provides a detailed breakdown of the four-stage pipeline used to construct our ReEd-
itBench benchmark. The overall construction process is illustrated in Fig. 6. Our pipeline, which
yields 7,918 high-quality relation editing instances, is detailed below.

Figure 6: The construction process of our dataset.

Stage 1: Knowledge Collection. We began by sourcing our initial knowledge pool from established,
high-quality, knowledge-intensive benchmarks, primarily ZsRE and a curated subset of Wikidata.
These sources were chosen because they provide structured, fact-checked subject-relation-object
triplets (s, r, o), ensuring a factually grounded foundation for our benchmark. This step avoids the
noise and ambiguity often associated with sourcing facts directly from raw web text.

Stage 2: LLM-based Relation Generation. With the curated facts, we employed a powerful gen-
erator LLM, DeepSeekV3, to automatically reframe each fact into a plausible relation-editing task.
The generation was guided by a structured prompt that instructed the model to produce a new, re-
lated fact by modifying the relation r to r∗ while keeping the subject s and object o fixed. The
prompt encouraged the generation of two distinct types of relation edits to ensure diversity:

• New Relation: This involves a direct modification of the core relationship. For example, the fact
〈Parag Agrawal, CEO of, Twitter〉 could be reframed into a new target edit of 〈Parag Agrawal,
CTO of, Twitter〉.

• Conditional Relation: This involves adding a new contextual or temporal constraint to the origi-
nal relation. For instance, 〈Joe Biden, President of, USA〉 could be reframed to target 〈Joe Biden,
46th President of, USA〉.

The output of this stage was a large pool of candidate relation edits, each consisting of an original
triplet (s, r, o) and a target edited triplet (s, r∗, o).

Stage 3: Automated Filtering Pipeline. To ensure the structural and semantic quality of the gener-
ated candidates, we implemented a rigorous two-phase automated filtering process.

1. Script-based Filtering: An initial pass was conducted using scripts to validate the structural
integrity of all generated instances. This phase automatically discarded any malformed outputs,
such as those with empty fields, incorrect formatting, or structural deviations from the required
triplet format.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

2. LLM-based Verification: To mitigate the risk of the generator model favorably evaluating its
own outputs, we used a separate, independent verifier LLM, DeepseekR1. This verifier was
prompted to assess the factual and semantic plausibility of each candidate edit. It was tasked with
flagging and removing any instances that contained logical contradictions, factual hallucinations,
or were semantically incoherent, ensuring that only high-quality, believable edits proceeded.

Stage 4: Human Validation. As the final and most critical quality assurance step, we performed a
manual validation on a randomly sampled subset of the data. We sampled 30% of the automatically
filtered instances and presented them to human annotators. The annotators were tasked with verify-
ing the factual accuracy, logical consistency, and semantic coherence of each relation edit. The high
agreement rate among annotators and the low error rate observed during this process certified the
overall high quality and reliability of our automated generation and filtering pipeline.

A.1.2 CONSTRUCTION AND USAGE OF THE VALIDATION SET FOR MODEL SELECTION

Since our SPaEdit algorithm is an iterative process, a principled method is required to select the
optimal model checkpoint. We achieve this by constructing a dedicated validation set and evaluating
a composite loss function at each iteration.

1. Validation Set Construction. The validation set is created by randomly holding out 20% of
the editing instances from the full training dataset before the main editing process begins. For each
instance in this validation set, which consists of an original fact (s, r, o) and a target fact (s, r∗, o),
we define the following key-value pairs for evaluation:

• Original Key-Value Pair: (korg,vorg), where korg is the key vector corresponding to the original
subject-relation pair (s, r), and vorg is the value vector for the object o.

• New Key-Value Pair: (knew,vorg), where knew is the key for the new relation (s, r∗). Note that
the target value vector vorg remains the same.

• Paraphrased Key: kre, which is a semantic rephrasing of the new key knew. This is generated
using an external LLM to test for generalization.

• Forget Target: vforget, which is the target value for the unlearning process, computed via interpo-
lation as defined in Eq. (5): vforget = vorg + γ(vIDK − vorg).

2. Iterative Evaluation with a Weighted Loss Function. At each iteration t of the SPaEdit
algorithm, we compute the perturbation ∆t and obtain the intermediate edited model weights Wt =
W + ∆tP. We then evaluate this model on the validation set by calculating three distinct loss
components based on the squared L2-norm loss function ℓ(k,v) =

∥∥Wt k − v
∥∥2
2
:

1. Forgetting Loss (Lforget): This loss measures how successfully the model unlearns the original,
outdated fact. It is calculated by ensuring the output for the original key korg moves towards the
forget target vforget. This addresses two of your requirements: that the model learns to associate
korg with vforget, and consequently, that its association with vorg is suppressed.

Lforget(t) = E(korg,vforget)

[∥∥Wt korg − vforget
∥∥2
2

]
(12)

2. Efficacy Loss (Lefficacy): This loss assesses the direct acquisition of the new knowledge. It is the
error between the model’s output for the new key knew and the correct value vorg.

Lefficacy(t) = E(knew,vorg)

[∥∥Wt knew − vorg
∥∥2
2

]
(13)

3. Generalization Loss (Lgen): This loss evaluates whether the model can apply the new knowledge
to paraphrased prompts, ensuring semantic understanding rather than superficial memorization.

Lgen(t) = E(kre,vorg)

[∥∥Wt kre − vorg
∥∥2
2

]
(14)

where E[·] denotes the average loss over all samples in the validation set.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

3. Final Model Selection. The total validation loss at iteration T , denoted Lval(t), is a weighted
sum of these three components.

Lval(t) = wforget · Lforget(t) + wefficacy · Lefficacy(t) + wgen · Lgen(t) (15)
We use an early stopping strategy with a patience of 3 iterations to select the final model. We
track the minimum validation loss, L∗

val, observed so far. Training is terminated at the first iteration
T where the validation loss has not improved (i.e., decreased by more than a threshold ϵ) for 3
consecutive iterations. The final model is the checkpoint that corresponds to the best observed
validation loss L∗

val up to iteration T . In our experiments, the weights are set as hyperparameters to
balance the trade-offs between these objectives. For instance, we might use wforget = 0.4, wefficacy =
0.4, and wgen = 0.2.

A.2 BASELINE METHOD

ROME (Meng et al., 2022) Introduces a one-shot, locate-then-edit causal framework that rewrites
factual knowledge in large language models without disturbing unrelated parameters. The method
first pinpoints the single feed-forward key–value subspace storing the target fact, then derives the
optimal rank-one perturbation ∆W via gradients, embedding the new key–value mapping while
preserving the overall distribution. A subsequent KL-divergence minimization enforces that the
edited model behaves identically to the original on general text, yielding “local rewrite, global
preservation.” Experiments on GPT and BART show that ROME persistently and reliably updates
knowledge in a single edit, outperforming prior global fine-tuning or explicit memory approaches
with negligible side effects on unrelated facts and downstream tasks.

Fine-Tuning (FT) (Zhu et al., 2020) Formalizes knowledge editing as constrained fine-tuning of a
minimal parameter subset within the transformer. It freezes all weights except the up- and down-
projection matrices of a single MLP layer that gradient analysis identifies as causally critical for
the target fact. A small, fact-only dataset is constructed by cloze-style prompts, and standard cross-
entropy fine-tuning is performed with an additional L2 proximity term that penalizes deviation from
the original parameters. A trust-region optimizer keeps parameter drift within a preset radius, ensur-
ing that the update remains locally confined while the new association is encoded. This lightweight
fine-tuning paradigm yields reliable edits without the need for custom architectural modules.

MEMIT (Meng et al., 2023) Scales causal model editing from single facts to thousands by exploit-
ing the linear key–value associative memory implicit in feed-forward layers. It jointly identifies a
small set of critical layers and simultaneously applies rank-one updates to their MLP up-projection
matrices, rewriting all target associations in one forward pass. An under-determined least-squares
objective with ℓ2 and locality-of-edit regularizers ensures that the new memories satisfy output con-
straints while minimizing disturbance to unrelated knowledge, and a closed-form solution avoids
expensive iterative optimization.

RECT (Gu et al., 2024) Reformulates model editing as a low-rank, layer-wise correction problem
that explicitly accounts for causal traces of factual recall. Instead of a single update, RECT identifies
a minimal set of k contiguous MLP layers whose hidden representations are causally most respon-
sible for a given fact, and applies rank-r (r ≤ 4) updates only to their down-projection matrices.
A consistency loss that penalizes both output drift and internal representation shift is minimized,
ensuring that edited knowledge is both effective and faithful to the original distribution. Traceabil-
ity is enforced by an additional regularizer that collapses the updated subspace onto the principal
component of the fact’s context, enabling post-hoc verification.

NSE (Jiang et al., 2024) Reframes knowledge editing as neuron-level intervention within the feed-
forward layers of transformer LMs. The algorithm first detects a sparse subset of neurons whose
activations are maximally predictive of the target fact via integrated-gradients attribution. It then
introduces fact-specific scaling vectors that multiplicatively modulate the output of these neurons,
while additive bias terms shift their activation baselines to encode the new association. A two-stage
optimization alternates between (i) closed-form least-squares fitting of the scaling/bias parameters
to satisfy the editing objective and (ii) a distribution-preserving regularizer that minimizes KL diver-
gence on held-out corpora. By confining changes to a handful of neuron-specific parameters, NSE
achieves fine-grained edits without altering global layer weights.

PRUNE (Ma et al., 2025) Treats model editing as parameter-efficient subspace pruning within the
MLP blocks of transformer LMs. For each fact to be updated, it first identifies a task-specific sparse

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

mask over the rows of the up-projection matrix by gradient-based saliency scoring; the unmasked
weights are frozen. A subsequent low-rank adapter is then trained only on the pruned subspace to
encode the new key–value association, while a KL-divergence regularizer penalizes any deviation in
the model’s distribution on unrelated contexts. This pruning-plus-adaptation pipeline yields local-
ized, modular edits that can be independently stored, swapped, or revoked without re-touching the
original parameters.

AlphaEdit (Fang et al., 2025) Augments the locate-then-edit pipeline with a null-space projec-
tion that prevents any parameter perturbation from disturbing previously stored knowledge. Af-
ter obtaining the standard update ∆ via least-squares on the target key-value pairs, AlphaEdit
multiplies ∆ by the projection matrix P = U0U

⊤
0 , where U0 spans the left null space of the

covariance matrix built from keys of the preserved knowledge. The projected perturbation ∆P
satisfies ∆PK0 = 0, ensuring the edited model still outputs the original values for all pre-
served associations while focusing capacity on the new fact. The resulting closed-form update
∆P = (V1 −WK1)K

⊤
1 P

(
K1K

⊤
1 P + KpK

⊤
p P + I

)−1
plugs into existing editors with one

line of code and negligible runtime overhead.

A.3 METRICS

A.3.1 ZSRE METRICS

Following the previous work, this section defines each ZsRE metric given a LLM fθ, a knowledge
fact prompt (si, ri), an edited target output oi, and the model’s original output oic:

• Efficacy: Efficacy is calculated as the average top-1 accuracy on the edit samples:

Ei

{
oi = argmax

o
Pfθ (o|(si, ri))

}
(16)

• Generalization: Generalization measures the model’s performance on equivalent prompt of
(si, ri), such as rephrased statements N((si, ri)). This is evaluated by the average top-1 accu-
racy on these N((si, ri)):

Ei

{
oi = argmax

o
Pfθ (o|N((si, ri)))

}
(17)

• Specificity: Specificity ensures that the editing does not affect samples unrelated to the edit cases
O(si, ri). This is evaluated by the top-1 accuracy of predictions that remain unchanged:

Ei

{
oci = argmax

o
Pfθ (o|O((si, ri)))

}
(18)

A.3.2 COUNTERFACT METRICS

Following previous work, this section defines the evaluation metrics for the Counterfact dataset. To
ensure a consistent and fair comparison with the ZsRE benchmark, we adopt its top-1 accuracy-
based evaluation methodology for the Efficacy, Generalization, and Specificity metrics. Therefore,
we only present the definitions for the remaining metrics unique to this generative task evaluation:

• Fluency (generation entropy): Measure for excessive repetition in model outputs. It uses the
entropy of n-gram distributions:

−2

3

∑
k

g2(k) log2 g2(k) +
4

3

∑
k

g3(k) log2 g3(k) (19)

• Consistency (reference score): The consistency of the model’s outputs is evaluated by computing
the cosine similarity between the TF-IDF vectors of the model-generated text and a reference
Wikipedia text.

A.3.3 RELEDITBENCH METRICS

This section defines each ReLEditBench metric given an original fact (s, r, o) and a new fact
(s, r∗, o):

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• Success: The Success score is a joint metric that holistically verifies if a knowledge edit was
successful. As formulated in Eqn. 20, it requires two conditions to be met simultaneously: (i) the
model must no longer predict the original object o for the original query (s, r) and (ii) it must
correctly predict the new object o for the updated query (s, r∗).

Ex∼D

[
1
{
oi = argmax

¬o
Pfθ (o | (s, r))

}
, 1

{
oi = argmax

o
Pfθ (o | (s, r∗))

}]
(20)

• Retention: The Retain metric evaluates whether the model successfully retains the newly intro-
duced knowledge after the edit. As defined in Eqn. 21, it measures the probability that the new
object oi is the top prediction for the new prompt.

Ei

{
oi = argmax

o
Pfθ (o|(s, r))

}
(21)

• Efficient: The Efficacy score measures the model’s direct acquisition of the new fact. It is defined
in Eqn. 22 as the probability that the new object oi is the top prediction for the new prompt (s, r∗).
A high score signifies that the new knowledge has been successfully instilled.

Ei

{
oi = argmax

o
Pfθ (o|(s, r∗))

}
(22)

• Generalization: This metric evaluates if the model can apply the new knowledge beyond the
specific prompt it was edited on. As shown in Eqn. 23, it measures the model’s ability to predict
the correct object o′ when presented with a set of paraphrased or semantically equivalent prompts
N((s, r∗)):

Ei

{
o = argmax

o′
Pfθ (o

′|N((s, r∗)))
}

(23)

A.4 EXPERIMENTAL DETAILS

This appendix details the hyperparameters used in our experiments. It is divided into two parts: the
first outlines the base configuration parameters for the Large Language Models (LLMs), and the
second elaborates on the key hyperparameters for our proposed SPaEdit and Forgetting-and-Editing
(FE) strategies.

A.4.1 MODEL CONFIGURATION PARAMETERS

The following table summarizes the main configuration parameters used for each of the three base
models. These are primarily defined within their respective JSON configuration files.

Table 4: Base configuration parameters for the LLMs used in the experiments.

Parameter Value Description
model name EleutherAI gpt-j-6B, Specifies the pretrained language model.

gpt2-xl, Llama3-8B
layers [3-8], [13-17], [4-8] The target Transformer layers for editing.
v num grad steps 25 or 20 Number of gradient steps for value vector computation.
v lr 5e-1 or 1e-1 Learning rate used during value vector computation.
v loss layer 27, 47, 31 The specific model layer used to compute the edit loss.
kl factor 0.0625 Weight of the KL-divergence regularization term.
mom2 dataset wikipedia Dataset for computing second-moment statistics.
rewrite module tmp Varies by model Template for the path to the module being rewritten.

Key Hyperparameters for the SPaEdit and FE Strategies In addition to the base configurations,
our proposed algorithms are governed by several key hyperparameters that control the editing and
forgetting behavior.

• Forgetting Interpolation Factor (γ): This is the core hyperparameter of our FE strategy, as
defined in Eqn. 5. It controls the degree of interpolation from the original fact’s value vector,
v(o), towards a neutral “I don’t know” state, v(IDK). A higher γ value enforces a more thorough
forgetting of the outdated information. In our experiments, this was set to 0.4 for GPT-J-6B and
0.6 for both LLaMA3-8B and GPT2-XL to achieve an optimal balance between forgetting and
learning.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• Update Regularization Coefficients (α and β): These coefficients in the SPaEdit objective func-
tion (Eqn. 7) regularize the update perturbation ∆ to maintain model stability.

– α constrains the overall magnitude of the update, preventing large, potentially disruptive
changes to the model’s parameters.

– β minimizes the edit’s impact on a set of preserved knowledge keys Kp, ensuring that unre-
lated information is not corrupted.

Throughout our experiments, we set α = 10 and β = 1 to apply strong general regularization
while precisely preserving prior knowledge.

• Self-Paced Learning Curriculum Parameters (λ0, µ, and T): These parameters define the
“easy-to-hard” curriculum for the SPaEdit algorithm, as outlined in Algorithm 1.

– λ0 (Initial Pace Parameter): The initial difficulty threshold, which determines the set of the
“easiest” samples to be edited at the beginning of the process.

– µ (Pace Growth Factor): The multiplicative factor by which the difficulty threshold λ is
increased in each iteration (λ ← µλ). This controls the pace at which more challenging
samples are introduced into the training set.

– T (Max Iterations): The Max number of iterations in the curriculum, defining the overall
length of the optimization process.

For our experiments, we set the initial pace to λ0 = 10, the growth factor to µ = 1.1, and the total
number of iterations to T = 20. This configuration allows the model to first converge on easy
edits before gradually incorporating more difficult ones, enhancing overall robustness and success
rate.

B IMPLEMENTATION DETAILS AND RELATED PROOFS

B.1 THEORETICAL ANALYSIS OF THE FORGETTING-AND-EDITING STRATEGY

We analyze the proposed Forgetting-and-Editing (FE) strategy within the linear regression frame-
work. The core of our strategy is to generate a modified representation for the target object through
interpolation:

v(ô) = v(o) + γ[v(IDK)− v(o)], γ ∈ (0, 1). (24)

This operation is performed for each sample in the forgetting set Db. To analyze its effect within the
regression framework, we translate this representation-level operation into label-space formulation.
For any sample i in Db, the modified target label becomes:

v(ôi) = (1− γ)v(oi) + γv(IDK). (25)

Extending this operation to the entire forgetting set of M samples, we define:

• The original label vector: yb = [v(o1),v(o2), ...,v(oM)]⊤

• The IDK label vector: yIDK = [v(IDK),v(IDK), ...,v(IDK)]⊤

The FE strategy effectively applies the same linear interpolation to each corresponding element of
these vectors, yielding the modified label vector:

yFE
b = [v(ô1),v(ô2), ...,v(ôM)]⊤

= yb + γ(yIDK − yb).
(26)

Substituting this into the closed-form solution of the linear regression problem yields:

w∗
FE = (X⊤X)−1(X⊤

g yg +X⊤
b y

FE
b)

= (X⊤X)−1
(
X⊤

g yg +X⊤
b [yb + γ(yIDK − yb)]

)
= w∗

g + γ(X⊤X)−1X⊤
b (yIDK − yb),

(27)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where w∗
g = (X⊤X)−1X⊤

g yg is the solution trained solely on normal data.

Comparative Advantages. The proposed Feature Editing (FE) strategy offers distinct advantages
over methods that employ a fixed value (e.g., I don’t know) or random answers for forgetting. Unlike
the constant bias introduced by a fixed label or the uncontrolled bias from random assignment, our
approach generates a non-constant, data-dependent bias term γ(X⊤X)−1X⊤

b (yIDK − yb). This key
difference prevents systematic bias and preserves prediction diversity. Furthermore, the hyperpa-
rameter γ provides precise and continuous control over the forgetting strength, a feature unavailable
in conventional methods. The optimization process remains stable due to the proximity between
the original and target features, avoiding large gradients. Finally, the adjustment is highly targeted,
effectively removing specific information while minimizing distortion to the model’s normal knowl-
edge.

B.2 FORMULATION OF THE MULTI-OBJECTIVE OPTIMIZATION PROBLEM

The fundamental goal of parameter-modifying knowledge editing is to find a minimal perturbation
∆, to a model’s weight matrix, W, such that the edited model W′ = W+∆ reflects new knowledge
without catastrophically forgetting existing information. This can be framed as a multi-objective
optimization problem.

Let us define the key components:

• New Knowledge (Update Set): A set of new facts to be incorporated, represented by key-value
pairs {(ki,vi)}. We can stack these into matrices K1 (keys) and V1 (values). The objective
is to make the model output V1 when given K1. The error for this is captured by the term
Lupdate = ∥(W +∆)K1 −V1∥2F .

• Preserved Knowledge (Preservation Set): The vast set of existing knowledge that must remain
unchanged. This is represented by key-value pairs {(kj ,vj)} stacked into matrices K0 and V0.
Since the pre-trained model W is assumed to already store this knowledge, we have WK0 ≈ V0.
The objective is to minimize the change in output for these keys, giving an error term Lpreserve =
∥(W +∆)K0 −V0∥2F .

• Regularization: To prevent the perturbation ∆ from becoming excessively large and harming
the model’s general abilities, a regularization term on the perturbation itself is included, Lreg =
∥∆∥2F .

Combining these objectives, we arrive at the standard optimization problem for knowledge editing:

min
∆
L(∆) = ∥(W +∆)K1 −V1∥2F︸ ︷︷ ︸

Update Error

+α ∥(W +∆)K0 −V0∥2F︸ ︷︷ ︸
Preservation Error

+β ∥∆∥2F︸ ︷︷ ︸
Regularization

(28)

where α and β are hyperparameters that balance the trade-off between the objectives.

We can simplify this expression. Since WK0 = V0, the preservation term becomes ∥(W+∆)K0−
WK0∥2F = ∥∆K0∥2F . For the update term, we can define the residual matrix R = V1 −WK1,
which represents the error that the edit must correct. The term thus becomes ∥∆K1 −R∥2F . The
simplified objective is:

min
∆
L(∆) = ∥∆K1 −R∥2F + α∥∆K0∥2F + β∥∆∥2F (29)

Incorporating the Null-Space Projection. A key innovation from methods like AlphaEdit is to
constrain the update ∆ to the null-space of the preserved knowledge. This theoretically guarantees
that the edit does not interfere with this knowledge. This is achieved using a projection matrix P.

• Let Kp be the matrix of keys for the knowledge we wish to explicitly preserve. Kp is the concrete
realization of the abstract K0 used to build the projector.

• The null-space projection matrix P is constructed such that for any matrix A, the update AP
satisfies (AP)Kp = 0. P is symmetric (P = P⊤) and idempotent (P2 = P).

By replacing the raw perturbation ∆ with the projected perturbation ∆P, we enforce this non-
interference constraint. The optimization objective is adapted to solve for an optimal update within

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

this safe subspace. The preservation term is now implicitly handled by the projection, but can be
kept as a soft constraint, while the regularization term is applied to the projected update. This leads
to an objective of the form:

min
∆
L(∆) = ∥∆PK1 −R∥2F + α′∥∆P∥2F + β′∥∆PKp∥2F (30)

Here, the hyperparameters α′ and β′ now regularize the magnitude of the projected update and
explicitly penalize any residual interference with the preserved set Kp.

Introducing Self-Paced Learning (SPL). The final step in the paper’s methodology (SPaEdit) is
the introduction of a self-paced learning curriculum. This acknowledges that not all edits are equally
difficult. The model should first learn from “easy” samples and gradually incorporate “harder” ones.
This is implemented via a binary selection matrix Z.

• Z is a diagonal matrix where each diagonal entry zi ∈ {0, 1}.
• At each iteration, zi = 1 if the i-th sample is deemed “easy” (i.e., its loss is below a certain

threshold λ); otherwise, zi = 0.
• This selection matrix is applied only to the update error term, effectively masking out the hard

samples for the current iteration. To keep the objective quadratic, we use its square root, Z1/2

(which is equal to Z since its elements are 0 or 1).

By integrating the selection matrix Z into Eqn. 30, we arrive at the final optimization problem as
formulated in the paper:

min
∆
L(∆) = ∥(∆PK1 −R)Z1/2∥2F + α∥∆P∥2F + β∥∆PKp∥2F (31)

This final form is what the paper uses to derive a closed-form solution for the projected update
∆SPaEdit = ∆P. The key terms are:

• ∆: The raw perturbation matrix we are solving for.
• P: The null-space projection matrix, which is symmetric (P = P⊤) and idempotent (P2 = P).

• Z: The diagonal selection matrix (Z = Z⊤, Z2 = Z, Z1/2 = Z).

• K1,R,Kp, α, β: As defined previously.

B.3 DERIVATION OF THE CLOSED-FORM SOLUTION

The objective function L(∆) is convex with respect to ∆. We can find the minimum by taking the
gradient with respect to ∆ and setting it to zero.

First, we expand the objective using the trace operator, as ∥X∥2F = Tr(X⊤X).

L(∆) = Tr
(
((∆PK1 −R)Z)⊤((∆PK1 −R)Z)

)
+ αTr

(
(∆P)⊤(∆P)

)
+ βTr

(
(∆PKp)

⊤(∆PKp)
)

(32)

= Tr
(
Z(K⊤

1 P
⊤∆⊤ −R⊤)(∆PK1Z−RZ)

)
+ αTr

(
P⊤∆⊤∆P

)
+ βTr

(
K⊤

p P
⊤∆⊤∆PKp

)
(33)

Using the properties P = P⊤ and the cyclic property of the trace, we can rewrite each term:

L(∆) =Tr(∆PK1ZK
⊤
1 P∆⊤)− 2Tr(∆PK1ZR

⊤) + Tr(RZR⊤)

+ αTr(∆PP∆⊤) + βTr(∆PKpK
⊤
p P∆⊤) (34)

Now, we compute the gradient ∇∆L(∆). Using the matrix calculus identities ∇XTr(BX⊤) = B
and ∇XTr(XBX⊤C) = CXB+C⊤XB⊤:

∇∆L(∆) =2(∆PK1ZK
⊤
1 P)− 2(RZK⊤

1 P)

+ 2α(∆PP) + 2β(∆PKpK
⊤
p P) (35)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Since P = P2, we can simplify ∆PP = ∆P. Setting the gradient to zero to find the minimum:

2(∆PK1ZK
⊤
1 P)− 2(RZK⊤

1 P) + 2α(∆P) + 2β(∆PKpK
⊤
p P) = 0 (36)

Dividing by 2 and rearranging to isolate terms with ∆:

(∆PK1ZK
⊤
1 P) + α(∆P) + β(∆PKpK

⊤
p P) = RZK⊤

1 P (37)

Let ∆SPaEdit = ∆P represent the final projected update. We can factor ASPaEdit out from the left-
hand side:

∆SPaEdit(K1ZK
⊤
1 P+ αI+ βKpK

⊤
p P) = RZK⊤

1 P (38)

Finally, by right-multiplying by the inverse of the term in the parenthesis, we obtain the closed-form
solution for the effective update ∆SPaEdit:

∆SPaEdit = (RZK⊤
1 P)(K1ZK

⊤
1 P+ βKpK

⊤
p P+ αI)−1 (39)

This is the rigorous derivation for the update rule. The matrix (K1ZK
⊤
1 P + βKpK

⊤
p P + αI)

is guaranteed to be invertible because K1ZK
⊤
1 P and βKpK

⊤
p P are positive semi-definite, and

the addition of the regularizer αI (for α > 0) makes the entire matrix positive definite and thus
invertible.

Note: Some papers may present a slightly simplified version of this formula. The version derived
here is the one that follows directly and rigorously from the stated optimization objective. For
instance, the final P in the term RZK⊤

1 P might be omitted in some implementations, but including
it is mathematically consistent as the entire equation operates within the projected subspace.

C MORE EXPERIMENTAL RESULTS

C.1 COMPREHENSIVE ABLATION STUDY ON FORGETTING STRATEGIES

To provide a comprehensive validation of our Forgetting-and-Editing (FE) design, we conducted
an extensive ablation study. We compare the performance of several editing methods under four
distinct conditions: 1) the Baseline method without any forgetting component; 2) using a naive IDK
forgetting target; 3) using a Random forgetting target; and 4) using Our proposed interpolation-based
FE strategy.

The results are detailed in Table 5. We present the core metrics of Retention (↓) and Efficacy (↑) to
facilitate a direct comparison of the trade-offs involved in each strategy across all models and key
methods.

Table 5: Side-by-side comparison of forgetting strategies across all models and key methods. For
each strategy, we report Retention (lower is better) and Efficacy (higher is better). Our proposed
strategy consistently achieves the best balance, delivering the lowest retention while simultaneously
maximizing efficacy.

LLM Method No-Forgetting + FE (IDK) + FE (Random) + FE (Ours)

Retention ↓ Efficacy ↑ Retention↓ Efficacy↑ Retention↓ Efficacy↑ Retention↓ Efficacy↑

LLaMA3 AlphaEdit 88.34 89.17 76.11 75.23 76.90 78.19 74.50 83.24
SPaEdit 88.56 83.23 75.92 83.48 70.41 82.17 68.56 87.37

GPT2-XL AlphaEdit 91.31 88.83 60.25 83.45 65.81 84.90 50.46 87.36
SPaEdit 68.55 85.93 55.18 80.15 61.33 81.82 48.78 88.46

GPT-J AlphaEdit 98.20 99.53 81.67 89.12 85.43 81.30 77.84 85.64
SPaEdit 88.24 85.93 65.40 88.31 72.88 89.04 59.84 88.08

Analysis of Results. The side-by-side comparison in Table 5 provides a clear and consistent picture
across all experimental settings, revealing the critical impact of the chosen forgetting strategy:

• Naive Strategies Lead to an Unfavorable Trade-off: While applying naive forgetting targets
like IDK and Random generally succeeds in lowering Retention compared to the No-Forgetting
baseline, this benefit comes at a significant and often unacceptable cost. In most cases, particularly

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

on GPT2-XL, these strategies lead to a noticeable degradation in Efficacy. For instance, SPaEdit’s
Efficacy on GPT2-XL drops from 85.93% to 80.15% with IDK. Even in scenarios where Effi-
cacy does not drop (e.g., SPaEdit on LLaMA3), the improvement is marginal and the Retention
rate remains substantially higher than what our method achieves. This demonstrates that naive
approaches force a difficult trade-off: one must sacrifice the model’s ability to learn new facts in
order to forget old ones.

• Our FE Strategy is the Most Effective at Unlearning: A key, unambiguous finding is that our
proposed strategy is the most powerful tool for unlearning. Across every model and for both
AlphaEdit and SPaEdit, our method consistently achieves the lowest Retention rate. On GPT2-
XL, it reduces SPaEdit’s Retention to just 48.78%, a figure far superior to any other strategy,
proving its state-of-the-art capability in erasing outdated knowledge.

• Synergistic Effect: A Superior Balance of Forgetting and Learning: Most critically, our strat-
egy is the only one that resolves the trade-off, creating a synergistic synergistic effect. It not
only achieves the best unlearning (lowest Retention) but does so while consistently maintaining or
significantly improving Efficacy. For our SPaEdit method, applying the “Ours” strategy boosted
Efficacy from 83.23% to 87.37% on LLaMA3 and from 85.93% to 88.46% on GPT2-XL, all
while achieving the lowest Retention scores. This stands in stark contrast to the compromised
performance of naive approaches and confirms that our carefully designed forgetting targets do
not disrupt learning but actually facilitate a cleaner, more effective integration of new knowledge.

In conclusion, this comprehensive ablation confirms that how a model is instructed to “forget” is as
important as the instruction to “learn.” Our interpolation-based target assignment provides a robust,
effective, and non-destructive mechanism for unlearning, establishing a new SOTA for clean and
efficient relational editing.

C.2 ADDITIONAL EXPERIMENTAL RESULTS ON OBJECT EDITING

To provide a more comprehensive validation of our method, we present further results on the de-
manding CounterFact benchmark. This dataset is particularly challenging, focusing on counter-
intuitive factual edits that require precise model updates.

Table 6: Object Editing Performance on the CounterFact Hard Subset. SPaEdit consistently out-
performs prior methods, notably achieving state-of-the-art Fluency, indicating higher-quality text
generation post-edit.

LLM Method Efficacy↑ Generalization↑ Specificity↑ Fluency↑ Consistency↑

LLaMA3

ROME 32.02 33.41 34.31 425.55 13.01
MEMIT 69.22 65.61 30.54 629.68 53.15

AlphaEdit 79.21 73.54 30.92 629.91 56.67

SPaEdit (Ours) 92.80 95.21 42.51 631.11 56.78

GPT2-XL

ROME 39.42 30.01 5.82 592.64 65.09
MEMIT 70.45 72.98 7.93 465.78 53.58

AlphaEdit 83.22 83.91 8.54 621.76 55.62

SPaEdit (Ours) 92.66 94.82 9.62 629.26 54.52

GPT-J

ROME 32.05 37.01 25.76 514.82 15.64
MEMIT 79.22 78.27 27.58 618.93 57.84

AlphaEdit 87.52 86.13 28.76 621.80 59.28

SPaEdit (Ours) 92.77 93.12 38.73 622.52 59.66

The results, detailed in Table 6, reinforce the superiority of SPaEdit. It achieves near-perfect Efficacy
across all models while also setting a new state-of-the-art in Fluency, with scores like 631.11 on
LLaMA3. This indicates that its edits not only correct facts but also produce higher-quality, more
natural language. This is accomplished while maintaining strong Generalization and Specificity,
demonstrating a robust and well-balanced editing profile even on this difficult benchmark.

Analysis of Sample Difficulty Distribution. To conduct a more rigorous evaluation, our experi-
ments focus on curated subsets of recognized hard cases from ZsRE and CounterFact, rather than the

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

full benchmarks which are often dominated by simple samples. We define sample difficulty using
the initial residual norm, ∥vi−Wki∥22, which measures the initial error. The difficulty distributions
of these selected subsets are visualized in Fig. 7.

(a) ZsRE Hard Subset (b) CounterFact Hard Subset

Figure 7: Difficulty distributions of the hard sample subsets. These subsets provide a more challeng-
ing evaluation than the full benchmarks. (a) The ZsRE hard subset has a varied difficulty distribution.
(b) The CounterFact hard subset is heavily concentrated in the high-difficulty region.

As the figure illustrates, the two hard subsets present distinct challenge profiles. The selected
ZsRE hard subset (Fig. 7a) exhibits a mixed difficulty distribution, spanning a broad spectrum from
medium to high difficulty. In contrast, the CounterFact hard subset (Fig. 7b) constitutes a more
extreme challenge, with nearly all samples concentrated in the high-difficulty range. This subset
serves as an effective stress test for an algorithm’s robustness.

This challenge-focused evaluation environment provides a compelling motivation for our proposed
SPaEdit algorithm. The self-paced, “easy-to-hard” curriculum of SPaEdit is precisely engineered
for such scenarios. It can intelligently identify the relatively easier samples even within a difficult
set to begin the optimization process, building a robust update path to eventually solve the highly
challenging edits where traditional, one-shot methods often fail.

C.3 FULL BENCHMARK PERFORMANCE AND SATURATION ANALYSIS

To provide a comprehensive evaluation, we report the performance of SPaEdit and baseline meth-
ods on the complete CounterFact and ZsRE datasets in Table 7. With the inclusion of these full-
dataset results, we can approach the evaluation with a holistic perspective.

When these high aggregate scores are analyzed alongside the sample difficulty histograms presented
in Fig. 7, a critical trend emerges: existing state-of-the-art methods have achieved near-saturation
performance on the “easy” and “medium” portions of the data distribution. The primary failure mode
for current technology lies almost exclusively within the “hard” tail. This observation validates our
strategic focus on difficult subsets (as detailed in Appendix C.2); since the general case is largely
solved, the frontier of knowledge editing research must shift toward these challenging, high-residual
scenarios.

As shown in Tab. 7, SPaEdit not only dominates on the hard subsets but also consistently achieves
the best performance across the full benchmarks, ensuring robustness not just on average, but where
it matters most.

C.4 GENERAL CAPABILITY TESTS

C.4.1 GENERAL CAPABILITY BENCHMARKS

We selected six widely-used benchmarks to measure the models’ general capabilities. These tasks
cover multiple dimensions, from sentiment analysis to logical reasoning, providing a holistic view
of a model’s core language abilities.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 7: Full Dataset Performance. Comparison of editing methods on the complete CounterFact
and ZsRE benchmarks. SPaEdit consistently achieves SOTA performance across all metrics.

LLM Method CounterFact ZsRE
Eff. ↑ Gen. ↑ Spe. ↑ Flu. ↑ Consis. ↑ Eff. ↑ Gen. ↑ Spe. ↑

LLaMA3

ROME 64.40 61.42 49.44 449.06 3.31 2.01 1.80 0.69
MEMIT 65.65 64.65 51.56 437.43 6.58 34.62 31.28 18.49
AlphaEdit 98.90 94.22 67.88 622.49 32.40 94.47 91.13 32.55

SPaEdit (Ours) 99.24 94.62 69.37 624.69 33.73 95.72 93.07 33.25

GPT2-XL

ROME 54.60 51.18 52.68 366.13 0.72 47.50 43.56 14.27
MEMIT 94.70 85.82 60.50 477.26 22.72 79.17 71.44 26.42
AlphaEdit 99.50 93.95 66.39 597.88 39.38 94.81 86.11 25.88

SPaEdit (Ours) 99.65 94.78 67.83 599.52 40.23 95.92 87.63 27.25

GPT-J

ROME 57.50 54.20 52.05 589.42 3.22 56.42 54.65 9.86
MEMIT 98.55 95.50 63.64 546.28 34.89 94.91 90.22 30.39
AlphaEdit 99.75 96.38 75.48 618.50 42.08 99.79 96.00 28.29

SPaEdit (Ours) 99.82 96.82 76.23 620.35 44.33 99.83 97.12 30.47

• SST(The Stanford Sentiment Treebank) (Socher et al., 2013) A classic sentiment analysis task
requiring the model to classify the sentiment of movie reviews as positive or negative.

• MRPC (Microsoft Research Paraphrase Corpus) (Dolan & Brockett, 2005) A paraphrase de-
tection task where the model must determine if two given sentences are semantically equivalent.

• CoLA (The Corpus of Linguistic Acceptability) (Warstadt et al., 2019) A grammatical correct-
ness task where the model must judge whether a sentence is grammatically acceptable.

• RTE (Recognizing Textual Entailment) (Bentivogli et al., 2009) A natural language inference
task that requires the model to determine if a premise sentence entails a hypothesis.

• MMLU (Massive Multi-task Language Understanding) (Hendrycks et al., 2021) A comprehen-
sive benchmark designed to evaluate a model’s knowledge and reasoning skills across 57 diverse
subjects.

• NLI (Natural Language Inference) (Williams et al., 2017) This task (specifically the MNLI
dataset) requires the model to identify the logical relationship between a premise-hypothesis pair
as entailment, contradiction, or neutral.

C.4.2 RESULTS AND ANALYSIS

We conducted a sequential editing experiment on the LLaMA3-8B model to evaluate the long-
term impact of various editing methods on the model’s general capabilities. Edits were applied
sequentially in batches, and after each batch, the model’s performance was evaluated on six diverse
downstream tasks: SST, MRPC, CoLA, RTE, MMLU, and NLI. We compare our method, SPaEdit,
against four baselines: AlphaEdit,RECT, PRUNE, and MEMIT.

The results are presented in Fig. 8. The x-axis represents the number of sequential edits performed,
while the y-axis shows the performance (F1 Score or Accuracy) on each task.

By analyzing the performance curves in Fig. 8, we can draw the following key conclusions:

Catastrophic Forgetting in Unconstrained Methods: As a baseline, the MEMIT, RECT, and
PRUNE methods show a severe performance collapse. This confirms that unconstrained, cumulative
edits inevitably lead to catastrophic forgetting, damaging the model’s general abilities.

Stability of Single-Step Projection as a Safety Benchmark: AlphaEdit, a single-step editing
method, serves as a crucial benchmark for safety. Its performance curve remains almost perfectly
flat, demonstrating that constraining edits to a specific subspace is highly effective at preserving the
model’s general capabilities.

SPaEdit:Validating the Safety of the Iterative Process. The most significant finding from this
experiment is that SPaEdit’s iterative optimization process does not degrade general capabilities. Its
performance curve is virtually identical to that of the single-step AlphaEdit. This provides powerful

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 8: A comparison of the impact of different editing methods on general capability during
sequential editing. Both SPaEdit and AlphaEdit demonstrate exceptional stability, proving the safety
of the projection mechanism. The identical stability of SPaEdit confirms that its iterative process
does not harm the model’s general knowledge.

evidence that each step within SPaEdit’s self-paced curriculum remains safely within the constrained
subspace. The iterations serve to find a more precise solution for the target knowledge without
causing harmful side effects on the model’s broader representations.

In summary, this experiment decisively demonstrates that the iterative nature of SPaEdit is a key
advantage, not a liability. It allows our method to achieve superior editing efficacy (as shown in
the main paper) at no additional cost to the model’s long-term stability and general knowledge.
SPaEdit thus offers the best of both worlds: the safety of projection-based methods and the enhanced
performance of iterative refinement.

C.5 IMPACT OF SEMANTIC SIMILARITY ON RELATION EDITING

In this section, we visually investigate the influence of semantic properties on the relation editing
task. Specifically, we analyze how the semantic distance between the original relation r and the
target relation r∗ affects both the learning of new knowledge and the forgetting of outdated informa-
tion. Furthermore, we provide visual evidence justifying our choice of the computational residual
∥vi −Wki∥2 as the primary metric for difficulty estimation in our self-paced curriculum.

Asymmetric Impact of Semantic Similarity. We categorized editing samples into Low, Medium,
and High similarity groups based on the cosine similarity between the relation vectors of the original
fact and the target edit. As illustrated in Fig. 9(a), we observe a significant asymmetric impact on
editing outcomes:

• Editing Success (Blue Bars):There is a strong positive correlation with semantic similarity. As
relations become semantically closer (e.g., “CEO” → “CTO”), the editing success rate climbs
sharply from 45.2% to 95.1%. This suggests that the model leverages existing, nearby semantic
structures to facilitate the learning of new associations.

• Forgetting Success (Red Bars): Conversely, the forgetting success rate exhibits a clear nega-
tive trend. Forgetting is significantly harder for semantically close relations (30.7%) compared
to distant ones (65.8%). This visual evidence supports the hypothesis that high semantic prox-
imity causes strong interference, making it difficult for the model to cleanly disentangle the old
knowledge from the new in the parameter space.

Justification for Computational Residual. Given the strong influence of semantics shown above,
one might ask why we do not use semantic similarity as the curriculum metric. We answer this by

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Low Similarity Medium Similarity High Similarity
Semantic Similarity between Relations

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

45.2%

68.9%

95.1%

65.8%

55.3%

30.7%

0.0%0.0%

(a) Asymmetric Impact on Outcomes

Editing Success
Forgetting Success

0.0 0.2 0.4 0.6 0.8 1.0
Semantic Similarity

0

5

10

15

20

Su
cc

es
s

(b) Relationship with Editing Success

Figure 9: Analysis of Semantic Similarity. (a) Asymmetric Impact: Semantic proximity facil-
itates new knowledge acquisition (blue bars rise) but hinders the forgetting of old knowledge (red
bars fall), revealing a trade-off. (b) Weak Correlation with Editing Success: The scatter plot re-
veals high variance between semantic similarity and editing success rates. The weak correlation
(Pearson |r| ≈ 0.3) indicates that semantic similarity acts as a noisy predictor, failing to capture
the full complexity of editing difficulty compared to the robust signal provided by computational
residuals.

analyzing the relationship between semantic similarity and the computational residual (our chosen
difficulty metric) in Fig. 9(b).

1. Superior Predictive Capability: The scatter plot in Fig. 9(b) reveals that semantic similarity
is a noisy predictor of performance. The data points are highly dispersed with only a weak
correlation (Pearson |r| ≈ 0.3) to editing success. This contrasts sharply with the computational
residual (shown in Fig. 1(b)), which exhibits a strong, distinct negative correlation with success.
This empirical evidence confirms that the residual is a significantly more reliable indicator of the
model’s actual ability to acquire a specific sample.

2. Holistic Proxy for Multivariate Difficulty: The limited predictive power of semantics under-
scores that the intrinsic difficulty of a sample is a multivariate composite. It is influenced not
just by linguistic proximity, but also by latent factors such as knowledge frequency, structural
complexity, and parameter conflicts. While semantic similarity captures only one dimension, the
computational residual automatically aggregates the net effect of all these underlying factors. It
provides a direct, computationally convenient signal of the total optimization barrier, making it
the most robust standard for our self-paced curriculum.

C.6 ROBUSTNESS ANALYSIS AGAINST SUPERFICIAL EDITING ATTACKS

While standard metrics like Efficacy and Generalization are valuable, recent work has shown that
they can be deceptive. An edit may appear successful on standard prompts, only to fail and revert to
the original knowledge when faced with carefully crafted contextual triggers. This phenomenon is
termed “superficial editing” (Xie et al., 2025).To perform a more rigorous stress-test of SPaEdit’s
robustness, we evaluated its performance against the adversarial attack framework proposed in their
work.

Experimental Setup. To test whether the edited model truly erases the old fact or merely suppresses
it, we use the superficial-editing attack protocol . In this protocol, a contextual trigger is prepended
to the prompt to elicit the original (pre-edit) knowledge; we employ the three trigger variants defined
in that work: Wiki, Rep, and Que.

• Wiki: The attack prefix is a Wikipedia summary of the original answer, o.

• Rep: The attack prefix is a simple repetition of the original answer, o.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

• Que: The attack prefix is a question that includes the subject, relation, and original object, e.g.,
“Is Joe Biden the President of the U.S.?”.

We evaluate performance using two key metrics designed to measure superficiality:

• Original Match (OM): The percentage of times the model’s output exactly matches the original
(pre-edit) answer, o.

• Original Probability (OP): The percentage of times the model assigns a higher probability to the
original answer o than the new answer o∗.

For both metrics, lower values indicate higher robustness and a less superficial edit. We report the
results for the LLaMA3-8B-Instruct model on the CF-a dataset, using the data from Table 1 of the
source paper for the baseline methods.

Table 8: Evaluation of robustness against superficial editing attacks on LLaMA3-8B-Instruct using
the CF-a dataset. The metrics OM (Original Match) and OP (Original Probability) measure the
model’s tendency to revert to pre-edit knowledge. Lower scores are better. Best results are high-
lighted in bold.

Method Wiki Attack Rep Attack Que Attack
OM ↓ OP ↓ OM ↓ OP ↓ OM ↓ OP ↓

ROME 54.95 58.24 61.74 64.02 38.37 38.37
MEMIT 52.75 54.95 40.15 42.42 37.21 37.21
PMET 70.33 72.43 66.67 71.97 39.29 41.67
r-ROME 54.95 57.14 64.39 68.18 40.48 40.48
AlphaEdit 72.53 73.62 68.18 71.97 34.52 35.71

SPaEdit+FE(Ours) 50.81 27.23 38.52 33.84 33.19 35.11

Results and Analysis. The results in Table 8 confirm that superficial editing is a significant chal-
lenge for all tested methods, with high-performing editors like AlphaEdit and PMET showing con-
siderable vulnerability (over 70% OM on the Wiki attack). This underscores the limitations of
relying solely on standard evaluation metrics.

In this challenging setting, our proposed SPaEdit method demonstrates markedly superior robust-
ness. Across all three attack types, SPaEdit achieves the lowest (best) scores for both Original Match
(OM) and Original Probability (OP). For instance, under the most difficult Wiki attack, SPaEdit re-
duces the OM score to 50.81%, a substantial improvement over methods like AlphaEdit (72.53%)
and MEMIT (52.75%).

We attribute this enhanced robustness to the synergistic interplay of two core mechanisms: the
“forgetting-and-editing” (FE) strategy and the self-paced curriculum. First, the FE strategy lays the
groundwork by actively unlearning the outdated tuple, making the original knowledge less accessi-
ble. Second, the self-paced “easy-to-hard” curriculum builds upon this foundation by encouraging a
“deeper” integration of the new knowledge. Rather than forcing a single, abrupt update, it iteratively
strengthens the new association, making the edit less superficial and more resilient to contextual trig-
gers designed to reactivate the old memory trace. The combination of these two mechanisms makes
SPaEdit a uniquely reliable and practical solution for real-world knowledge updating.

C.7 STABILITY ANALYSIS

Qualitative Analysis. To evaluate the robustness and reliability of our proposed SPaEdit method,
we conducted a rigorous stability analysis. Edit stability is a critical metric as it measures how
consistently a method performs across different subsets of editing tasks, reflecting its reliability in
real-world scenarios where the nature of edits can vary. For this experiment, we compared SPaEdit
against three prominent baseline methods: AlphaEdit, ROME, and MEMIT.

Experimental Design. The experimental procedure involved randomly sampling 100 instances
from the ZsRE benchmark. Each of the four editing methods was then applied to this same set of 100

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

samples to perform the knowledge edits. To generate a robust statistical distribution of performance,
this entire process—sampling and editing—was repeated 100 times. This methodology allows us to
observe the variance and consistency of each algorithm’s success rate.

Figure 10: Edit stability analysis on the ZsRE benchmark. The box plot illustrates the distribution of
editing success rates over 100 trials, each with 100 randomly sampled edits. SPaEdit demonstrates
significantly lower variance and a higher median performance compared to baseline methods, indi-
cating superior robustness.

Results. The results of this analysis are visualized in a box plot in Fig. 10. The findings clearly
highlight the superior stability of SPaEdit. SPaEdit: Our method consistently achieves high perfor-
mance, with its success rates concentrated in a remarkably narrow and high-achieving range of 85%
to 95%. This minimal variance indicates that SPaEdit is highly reliable and its effectiveness is not
heavily dependent on the specific samples being edited. AlphaEdit: While also performing well, it
exhibits a wider variance, with success rates typically falling between 75% and 90%. MEMIT: Its
performance is more varied, with a broader range from 60% to 95%. ROME: This method demon-
strated the least stability, with its performance distribution spanning a very wide range from 10% to
40%, suggesting its outcomes are highly sensitive to the chosen edit instances.

Conclusion. The compact performance distribution for SPaEdit powerfully underscores its robust-
ness. Unlike competing methods whose effectiveness can fluctuate significantly depending on the
task, SPaEdit delivers predictable and consistently high-quality results. This stability is a key ad-
vantage for practical deployment where dependable performance is essential.

C.8 ITERATIVE RUNTIME OF SPAEDIT

Theoretical Analysis. A core tenet of SPaEdit is its self-paced, “easy-to-hard” curriculum. The
computational cost of each iteration is primarily dictated by the closed-form update for the per-
turbation matrix ∆P, specifically the matrix inversion step shown in Equation 9: (K1ZK

⊤
1 P +

βKpK
⊤
p + αI)−1.

The key component here is the selection matrix Z, a diagonal matrix where each entry zi ∈ {0, 1}
determines if the i-th sample is included in the current update. In the initial iterations, the pace
parameter λ is small, and only the ”easiest” samples are selected (i.e., most si = 0). Consequently,
the selection matrix Z is very sparse. The effective size of the matrices being multiplied and inverted
(e.g., K1Z) is small, leading to a low computational cost. As training progresses, λ increases, more
challenging samples are incorporated (more zi flip to 1), and Z becomes denser. This increases the
rank and computational complexity of the matrix operations.

Therefore, the execution time per iteration is expected to increase as the curriculum includes more
difficult samples. This behavior is not a drawback but a fundamental design choice: SPaEdit strategi-
cally allocates more computational resources only as they are needed to handle progressively harder
edits, ensuring overall efficiency. Our empirical results, shown in Fig. 11, confirm this theoretical
expectation.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 11: SPaEdit iteration time analysis. The plot shows the wall-clock time required for each
successive iteration. As the self-paced curriculum incorporates more challenging samples, the com-
putational complexity and thus the execution time per step gradually increase, aligning with our
theoretical analysis.

C.9 QUALITATIVE ANALYSIS.

This qualitative analysis evaluates a critical capability: the ability to completely and cleanly replace
an existing piece of factual knowledge with a new one. The goal is to determine if the outdated
fact (the “Edit Target”) is truly erased from the model’s output or if it merely “leaks” through in
a corrupted form. The No-Forget method consistently fails this test. Across all cases, it is unable
to move past the original fact and defaults to generating the outdated answer, such as S.C. Beira-
Mar in Case 1 or TSR in Case 2. Conventional unlearning strategies also fail decisively, exposing a
critical flaw. As seen in all three cases, both Forget-IDK and Forget-RND still generate the forbidden
original answer. For instance, even when attempting to state “I don’t know,” the model still outputs
the token TSR (Case 2) or soprano (Case 3). This demonstrates that the underlying memory is
so resilient that the unlearning attempt only destabilizes the generation process without actually
removing the knowledge. The model is left in a conflicted state, haunted by the ghost of the original
fact. In stark contrast, our method is the only one that succeeds in the knowledge replacement task.
In every case, the outdated information is completely absent from its output. Instead, the model
confidently generates the new target knowledge, such as SV Neulengbach (Case 1), Bandai (Case
2), and mezzo-soprano (Case 3). This proves that our approach achieves a genuine and effective
knowledge update, cleanly overwriting the old fact where other methods leave behind a corrupted
and conflicted remnant.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

C.9.1 CASE 1

Case Study on GPT-J

Editing Prompt What team is Tonel affiliated with?

Answer S.C. Beira-Mar

Generation Output

No-Forget (OE) Tonel is affiliated with the Brazilian football club,S.C. Beira-Mar.

Forget-IDK I don’t know. Tonel is often linked to S.C. Beira-Mar.

Forget-RND Tonel is affiliated with River. . . and S.C. Beira-Mar. . . Madrid.

Ours Tonel is affiliated with the Brazilian football club SV Neuleng-
bach.

C.9.2 CASE 2

Case Study on LLaMA3

Editing Prompt What business published Player’s
Guide to the Dragonlance Campaign?

Edit Target TSR

Generation Output

No-Forget (OE) The publisher of the Player’s Guide to the Drag-
onlance Campaign was TSR

Forget-IDK The publisher of the Player’s Guide to the Drag-
onlance Campaign was I don’t TSR.

Forget-RND The publisher was TSR. x y z.

Ours The publisher of the Player’s Guide to the Drag-
onlance Campaign was Bandai, Bandai, Bandai,
Bandai.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

C.9.3 CASE 3

Case Study on GPT-J

Editing Prompt What type of voice does
Krassimira Stoyanova have?

Edit Target soprano

Generation Output

No-Forget (OE) Krassimira Stoyanova has a soprano voice.

Forget-IDK Krassimira Stoyanova’s voice type is I don’t know
a soprano.

Forget-RND Krassimira Stoyanova’s voice type is soprano
mezzo-soprano a mezzo-soprano.

Ours Krassimira Stoyanova has a mezzo-soprano
voice.

D VISUALIZING THE REEDITBENCH COUNTERFACT AND ZSRE DATASETS
THROUGH EXAMPLES

To provide a clearer, more intuitive understanding of the data used in our evaluations, this section
presents several illustrative examples from the ReEditBench, ZsRE, and Counterfact datasets. These
examples are chosen to showcase the structure, diversity, and types of factual knowledge targeted in
our experiments.

Fig. 12 illustrates the fundamental structure of our ReEditBench dataset. Each entry is structured as
a knowledge replacement task, defined by a subject, a relation, and a pair of objects: the outdated
(original) object and the new (target) object. This format is designed to directly test a model’s ability
to perform a precise factual update.

Fig. 13 and 14 provide a closer look at the source datasets. The ZsRE dataset, as shown in Fig. 13,
typically consists of standard factual recall prompts covering a wide range of general knowledge. In
contrast, the Counterfact dataset (Fig. 14) is specifically designed to be more challenging. It often
contains less common or counter-intuitive facts, which serve as a stress test for an editor’s ability to
override a model’s strong, pre-existing biases.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 12: Some examples of the ReEditBench dataset

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Figure 13: Some examples of the ZsRE dataset

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Figure 14: Some examples of the Counterfact dataset

36

	INTRODUCTION
	Problem Description and Analysis
	Problem Description
	Results directly with Object Editing

	Methodology
	Theoretical Investigation
	Knowledge Forgetting via Target Smoothing
	The Proposed Forgetting-and-Editing Strategy
	Improvement via Self-paced Learning

	Experiments and Analysis
	Experimental Setup
	Efficacy of the Forgetting-and-Editing Strategy on Relation Editing
	Generalization and Performance on Object Editing Benchmarks
	Mechanistic Insight into SPaEdit

	Related Work
	Conclusions
	EXPERIMENTAL SETUP
	Dataset Construction Details
	Construction of training dataset.
	Construction and Usage of the Validation Set for Model Selection

	Baseline Method
	Metrics
	ZsRE METRICS
	COUNTERFACT METRICS
	ReLEditBench METRICS

	Experimental details
	Model Configuration Parameters

	Implementation details and related proofs
	Theoretical Analysis of the Forgetting-and-Editing Strategy
	Formulation of the Multi-Objective Optimization Problem
	Derivation of the Closed-Form Solution

	More Experimental Results
	Comprehensive Ablation Study on Forgetting Strategies
	Additional Experimental Results on Object Editing
	Full Benchmark Performance and Saturation Analysis
	GENERAL CAPABILITY TESTS
	General Capability Benchmarks
	Results and Analysis

	Impact of Semantic Similarity on Relation Editing
	Robustness Analysis against Superficial Editing Attacks
	Stability Analysis
	Iterative Runtime of SPaEdit
	Qualitative Analysis.
	Case 1
	Case 2
	Case 3

	Visualizing the ReEditBench Counterfact and ZsRE Datasets Through Examples

