
Under review as a conference paper at ICLR 2023

UPCYCLED-FL: IMPROVING ACCURACY AND PRIVACY
WITH LESS COMPUTATION IN FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) is a distributed learning paradigm that allows multiple
decentralized edge devices to collaboratively learn toward a common objective
without sharing local data. However, even though local data is not exposed directly,
privacy concerns nonetheless exist as sensitive information can be inferred from
intermediate computations. As the same data is repeatedly used over an itera-
tive process, information leakage accumulates substantially over time, making it
difficult to balance the trade-off between privacy and accuracy. In this paper we
introduce Upcycled-FL, a novel federated learning framework, where first-order
approximation is applied at every even iteration. Under such a scheme, half of
the steps incur no privacy loss and require much less computation. This means
less noise injection is needed for a given privacy guarantee, which in turn leads to
higher accuracy. Theoretically, we establish the convergence rate performance of
Upcycled-FL and provide privacy analysis based on objective and output pertur-
bations. Experiments on real-world data show that Upcycled-FL consistently
outperforms existing methods over heterogeneous data, and significantly improves
privacy-accuracy trade-off, while reducing 48% of the training time on average.

1 INTRODUCTION

Federated learning (FL) has emerged as an important paradigm for learning models in a distributed
fashion, whereby data is distributed across different edge devices and the goal is to jointly learn
from the distributed data. This is facilitated by a central server and learning is conducted through
an iterative process of interactions between the central server and local devices: at each iteration,
each device performs certain computation using its local data; the local results are collected and
aggregated by the central server; the aggregated result is then sent to local devices and used to update
local results; and so on till the learning task is deemed accomplished.

Although the data of each device is not shared directly with the central server, sensitive information is
nonetheless exposed by making inferences from the intermediate local computations. It is thus critical
to ensure the learning process is privacy-preserving. Many techniques have been proposed to protect
device’s privacy in FL, including anonymization-based methods (e.g., k-anonymity (Samarati &
Sweeney, 1998)), perturbation-based (e.g., differential privacy (Dwork, 2006)), and encryption-based
methods (e.g., homomorphic encryption, secure multi-party computation). We consider differential
privacy (DP) in our framework because: (i) it allows rigorous quantification of the total privacy
leakage and is suitable for complex algorithms and tools such as FL; (ii) it can defend against attackers
regardless of their background knowledge; (iii) it can provide heterogeneous privacy guarantees for
devices with less computational costs; and (iv) it can be tailored to different types of privacy attacks
such as membership/attribute inference attacks.

Differential privacy has been widely used in federated learning to provide privacy guarantees. Specifi-
cally, Zhang et al. (2022) uses the Gaussian mechanism for a federated learning problem and propose
an incentive mechanism to encourage users to share their data and participate in the training process.
Zheng et al. (2021) introduces f -differential privacy, a generalized version of Gaussian differential
privacy, and propose a federated learning algorithm satisfying this new notion. Wang et al. (2020b)
proposes a new mechanism called Random Response with Priori (RRP) to achieve local differential
privacy and apply this mechanism to the text data by training a Latent Dirichlet Allocation (LDA)
model using a federated learning algorithm. Triastcyn & Faltings (2019) adapts the Bayesian privacy

1

Under review as a conference paper at ICLR 2023

accounting method to the federated setting and propose joint accounting method for estimating client-
level and instance-level privacy simultaneously and securely. Wei et al. (2020) presents a private
scheme that adds noise to parameters at the random selected devices before aggregating and provides
a convergence bound. Kim et al. (2021) combines the Gaussian mechanism with gradient clipping
in federated learning to improve the privacy-accuracy tradeoff. Asoodeh et al. (2021) considers
a different setting where only the last update is publicly released and the central server and other
devices are assumed to be trustworthy.

In all these studies, the local data is used in every update and privacy leakage occurs at every iteration.
While some of these studies aim to improve the privacy-accuracy trade-off, most have focused
on finding a tighter bound on privacy loss (by adopting a different privacy notion/mechanism or
privacy analysis tool), while the algorithmic property of the underlying federated learning remains
unchanged. By contrast, our study aims to improve the privacy-accuracy trade-off by modifying the
federated learning algorithm itself; this improvement on the algorithmic property is independent of
the privacy notion/mechanism or the analysis method. Controlling information leakage by modifying
an algorithm was also proposed in Zhang et al. (2018) in a fully distributed setting (i.e., without
central server) in the case of the Alternating Direction Method of Multipliers (ADMM) framework,
where data across devices are i.i.d. and the objective is convex. By contrast, in this paper we address
heterogeneity across data and non-convex optimization objectives, in a federated learning setting.

Specifically, we propose a novel federated learning framework called Upcycled Federated Learning
(Upcycled-FL)1, in which privacy leakage is controlled such that it only occurs during half of the
updates. This is attained by modifying the even iterations of the learning algorithm with first-order
approximation, which allows us to compute the update using existing results from previous iterations
without using data. Moreover, the updates in even iterations only involve addition/subtraction
operations on existing results, the computational costs can be reduced significantly.

We emphasize that the idea of upcycling is orthogonal to (1) the baseline FL algorithm, and (2) the
DP algorithm. In this paper we adopt FedProx(Li et al., 2020) as the baseline framework, but the
essence of our proposed updating rule can be applied to other FL frameworks, such as FedNova
(Wang et al., 2020a) and pFedMe (T Dinh et al., 2020). We develop two private DP-enhanced
Upcycled-FL algorithms by adopting objective perturbation/output perturbation as examples and
quantify their privacy loss, while noting that most of the general DP algorithms can also be embedded
in Upcycled-FL.

It’s worth mentioning that, empirically Upcycled-FL also outperforms existing baseline algorithm
under device and statistical heterogeneity. In real-world scenarios, local data are often non-identically
distributed across different devices; different devices are also often equipped with different spec-
ifications and computation capabilities. Such heterogeneity often causes instability in the model
performance and leads to divergence. Many approaches have been proposed to tackle this issue.
For example, FedAvg (McMahan et al., 2017) uses a random selection of devices at each iteration
to reduce the negative impact of statistical heterogeneity; however, it may fail to converge when
heterogeneity increases. Other methods include FedProx (Li et al., 2020), a generalization and
re-parameterization of FedAvg that adds a proximal term to the objective function to penalize
deviations in the local model from the previous aggregation, and FedNova (Wang et al., 2020a) that
re-normalizes local updates before updating to eliminate objective inconsistency. It turns out that
Upcycled-FL exhibits superior performance in the presence of heterogeneity because gradients
encapsulate information on data heterogeneity, the reusing of which leads to a boost in performance.

Our main contributions are summarized as follows.

• We propose Upcycled-FL (Algorithm 2), a novel federated learning framework in which infor-
mation leakage only happens during half of updates and can better handle heterogeneous data.

• We conduct convergence analysis (Section 4, Theorem 4.6) and identify a sufficient condition for
the convergence of Upcycled-FL.

• We develop a private version of Upcycled-FL using output perturbation and objective perturba-
tion (Section 5, Theorem 5.2) and conduct privacy analysis to quantify the privacy guarantee.

1The word “upcycle" refers to reusing material so as to create higher-quality things than the original.

2

Under review as a conference paper at ICLR 2023

• We evaluate Upcycled-FL and Private Upcycled-FL on real-world data (Section 6).
Results show that the proposed algorithms significantly outperform the existing algorithms in terms
of the accuracy-privacy trade-off and especially for heterogeneous data.

2 PROBLEM FORMULATION AND PRELIMINARIES

Consider a FL system consisting of a central server and a set I of agents. Each agent i has its local
data Di and they can be non-i.i.d across the agents. The goal of FL is to learn a model ω ∈ Rd from
data ∪i∈IDi by solving the following optimization:

minω f(ω) :=
∑

i∈I piFi(ω;Di) := Ei(Fi(ω;Di)), (1)

where pi =
|Di|∑

j∈I |Dj | is the size of agent i’s data as a fraction of the total data samples, Ei(·) is

defined as the expectation over agents, Fi(ω;Di) is the local loss function associated with agent i
and depends on local dataset Di. In this work, we allow Fi(ω;Di) to be possibly non-convex.

FL Algorithm. Let ωt
i be agent i’s local

model parameter at time t. In FL, the model is
learned through an iterative process: at each
time step t, (1) local computations: each ac-
tive agent updates its local model ωt

i using
its local data Di; (2) local models broadcasts:
local models (or gradients) are then uploaded
to the central server; (3) model aggregation:
the central server aggregates results received
from agents to update the global model pa-
rameter ωt =

∑
i∈I piω

t
i ; (4) model updat-

ing: the aggregated model is sent back to
agents and is used for updating local mod-
els at t + 1. In this work, we will focus on
FedProx framework and propose our algo-
rithm based on it. The details of FedProx
are given in Algorithm 1.

Algorithm 1 FedProx (Li et al., 2020)
1: Input: µ > 0, {Di}i∈I , ω0

2: for t = 1, 2, ..., T do
3: The central server sends the current global

model parameter ωt to all the agents.
4: A subset of agents get active and each active

agent updates its local model by finding (ap-
proximate) minimizer of local loss function:

ωt+1
i = argmin

ω
Fi(ω;Di) +

µ

2
||ω − ωt||2.

5: Each agent sends its local model to server.
6: The central server updates the global model

by aggregating all local models:

ωt+1 =
∑

i∈I piω
t+1
i .

During the iterative procedure, each agent’s local computations are exposed to third parties: its
models/gradients need to be uploaded to central server, and the global model calculated based on
them are shared with all agents. Privacy concerns arise as private data, though not exposed directly,
may nonetheless be inferred from this process. Thus, it is critical to develop private FL algorithms
that attain high accuracy. In this work, we adopt differential privacy as the notion of privacy.

Differential Privacy (Dwork, 2006). Differential privacy (DP) centers around the idea that the output
of a certain computational procedure should be statistically similar given singular changes to the
input, thereby preventing meaningful inference from observing the output. To illustrate the guarantee
of DP, consider an attacker aiming at inferring private information of a target individual, whose data
may or may not have contributed to a computation. The attacker is able to observe the computational
outcome, and may have access to any arbitrary side information DP ensures that regardless of what
side information the attacker has, they can learn almost nothing new about the target individual from
the computational outcome.

In FL, the information exposed by each agent i includes all intermediate computations {ωt
i}2Mt=1.

Consider a randomized FL algorithm A(·) that generates a sequence of private local models {ω̂t
i}2Mt=1,

we say it satisfies DP for agent i over 2M iterations if the following holds for any possible output
O ∈ Rd × · · · × Rd, and for any two neighboring local datasets Di, D′

i:

Pr({ω̂t
i}2Mt=0 ∈ O|Di) ≤ exp (ε) · Pr({ω̂t

i}2Mt=0 ∈ O|D′
i) + δ.

where ε ∈ [0,∞) bounds the privacy loss, and δ ∈ [0, 1] loosely corresponds to the probability that
algorithm fails to bound the privacy loss by ε. Two datasets are neighboring datasets if they are
different in at most one data point.

3

Under review as a conference paper at ICLR 2023

3 PROPOSED ALGORITHM: UPCYCLED-FL

Main idea: Fundamentally, the accumulation of privacy loss over iterations stems from the fact that
the agent’s data Di is used in every update. If the updates can be made without directly using this
original data, but only from computational results that already exist, then the privacy loss originating
from these updates will be zero, and meanwhile the computational cost may be reduced significantly.
Based on this idea, we propose Upcycled-FL, which modifies FedProx such that the earlier
computations are repeatedly used for new updates.

Upcycling Information: Next, we present Upcycled-FL and illustrate how total information
leakage is reduced under this method.

We modify FedProx by applying first-order approximation to even iterations. Specifically, at even
iteration 2m, we expand Fi(ω;Di) at ω2m−1

i (local model in the previous iteration):

Fi(ω;Di) = Fi(ω
2m−1
i ;Di) +∇Fi(ω

2m−1
i ;Di)

T (ω − ω2m−1
i) +O(||ω − ω2m−1

i ||2),

We approximate term O(||ω− ω2m−1
i ||2) by λm

2 ||ω− ω2m−1
i ||2 for some constant λm ≥ 0, then the

even update under such an approximation becomes:

ω2m
i = argmin

ω
Fi(ω;Di) +

µ

2
||ω − ω2m−1||2

= argmin
ω
∇Fi(ω

2m−1
i ;Di)

Tω +
µ

2
||ω − ω2m−1||2 +O(||ω − ω2m−1

i ||2)

≈ argmin
ω
∇Fi(ω

2m−1
i ;Di)

Tω +
µ

2
||ω − ω2m−1||2 + λm

2
||ω − ω2m−1

i ||2. (2)

Note that in the above even update, the only term that depends on dataset Di is ∇Fi(ω
2m−1
i ;Di),

which can be derived directly from the previous odd iteration. Specifically, according to first-order
condition, the following holds at odd iterations:

ω2m−1
i = argmin

ω
Fi(ω;Di) +

µ

2
||ω − ω2m−2||2 =⇒ ∇Fi(ω

2m−1
i ;Di) + µ(ω2m−1

i − ω2m−2) = 0.

Plug ∇Fi(ω
2m−1
i ;Di) into even updates equation 2, we have

ω2m
i ≈ argmin

ω
µ(ω2m−2 − ω2m−1

i)Tω +
λm

2
||ω − ω2m−1

i ||2 + µ

2
||ω − ω2m−1||2. (3)

Solving equation 5 by first-order condition, even updates are reduced to:

ω2m
i ≈ ω2m−1

i +
µ

µ+ λm
(ω2m−1 − ω2m−2). (4)

It turns out that with first-order approximation, dataset Di is not used in the even updates. Instead,
the even updates only involve addition/subtraction operations on the existing results from previous
iterations (i.e., ω2m−1

i , ω2m−1, ω2m−2): the computational cost is reduced significantly. Note that the
first-order approximation is only applied to even iterations, the odd iterations should remain the same
as FedProx to ensure Eqn. equation 3 holds. The entire updating procedure of Upcycled-FL is
summarized in Algorithm 2.

Because Di is only used in odd iterations, information leakage only happens during odd updates.
Intuitively, the reduced information leakage would require less perturbation to attain a certain level
of privacy guarantee, which further results in the higher accuracy and improved privacy-accuracy
tradeoff. In the following sections, we first analyze the convergence property of Upcycled-FL and
then introduce the privacy mechanisms to satisfy differential privacy.

4 CONVERGENCE ANALYSIS

In this section, we analyze the convergence property of Upcycled-FL. Note that we do not require
local functions Fi(·) to be convex. Moreover, we consider practical settings where data are non-i.i.d
across different devices. Similar to Li et al. (2020), we introduce a measure below to quantify the
dissimilarity between devices in network.

4

Under review as a conference paper at ICLR 2023

Definition 4.1 (B-Dissimilarity (Li
et al., 2020)). The local function
Fi is B-dissimilar if ∀ω, we have
Ei[||∇Fi(ω)||2] ≤ ||∇f(ω)||2B2.

where Ei(·) denotes the expectation over
devices (Eqn. 1). Parameter B ≥ 1 cap-
tures the statistical heterogeneity across
different devices: when all devices are ho-
mogeneous with i.i.d data, we have B = 1
for all local functions; the larger value of
B, the more dissimilarity among devices.
Assumption 4.2. Local functions Fi are
B-dissimilar and L-Lipschitz smooth.

Note that B-dissimilarity can be satisfied
if the divergence between the gradient of
the local function and that of the aggre-
gated global function is bounded, as stated
below.
Lemma 4.3. ∀i, there exists B such
that Fi is B-dissimilar if ||∇Fi(ω) −
∇f(ω)|| ≤ κi,∀ω for some κi.

Assumption 4.4. hi(ω;ω
t) :=

Fi(ω;Di) +
µ
2 ||ω − ωt||2 are ρ-strongly

convex.

The above assumptions are fairly standard.
They first appeared in Li et al. (2020) and
are adopted in subsequent works.

Algorithm 2 Proposed framework: Upcycled-FL
1: Input: λm > 0, µ > 0, {Di}i∈I , ω0

2: for m = 1, 2, ...,M do
3: The central server sends the current global

model parameter ω2m−2 to all the agents.
4: A subset of agents are selected to be active and

each active agent updates its local model by
finding minimizer of local loss function:

ω2m−1
i ← argmin

ω
Fi(ω;Di)+

µ

2
||ω−ω2m−2||2.

5: Agents send local models to central server.
6: The central server updates the global model by

aggregating all local models:

ω2m−1 =
∑

i∈I piω
2m−1
i .

7: The central server sends the aggregated global
model parameter ω2m−1 to all the agents.

8: Each active agent updates its local model using
existing information

ω2m
i ← ω2m−1

i +
µ

µ+ λm
(ω2m−1 − ω2m−2).

9: Active agents send their local models to central
server, who then updates the global model by
aggregating all local models

ω2m =
∑

i∈I piω
2m
i .

Note that strongly convex assumption is not on local objective Fi(ω;Di), but the regularized function
Fi(ω;Di) +

µ
2 ||ω− ωt||2, i.e., the assumption can be satisfied by selecting a sufficiently large µ > 0.

As shown in Section 6, our algorithm still converges empirically even when Assumption 4.2, 4.4 don’t
hold (e.g., DNN). Next, we provide theoretical guarantee on the convergence of Upcycled-FL by
showing that the global objective function decreases over two consecutive odd iterations.
Lemma 4.5. Let Sm be the set of K randomly selected local devices got updated (i.e., active devices)
at iterations 2m− 1 and 2m, and ESm

[·] be expectation with respect to the choice of devices. Then
under Assumptions 4.2 and 4.4, we have

ESm
[f(ω2m+1)] ≤ f(ω2m−1)−C1C1C1||∇f(ω2m−1)||2 +C2C2C2h

1
m +C3C3C3h

2
m,

where h1
m = ||∇f(ω2m−1)|| · ||ω2m−1 − ω2m−2||, h2

m = ||ω2m−1 − ω2m−2||2. The details of C1C1C1,
C2C2C2, C3C3C3 (expressed as functions of L,B, 1

µ ,
1
ρ ,

1
K , µ

λm
) are in Appendix D Equation 10 - 12.

Lemma 4.5 characterizes the relation of values of objective function over two consecutive odd
iterations. It is easy to verify C2C2C2,C3C3C3 ≥ 0. By rearranging and telescoping, we get the following
convergence rate of Upcycled-FL.
Theorem 4.6 (Convergence rate of Upcycled-FL). Under the same assumptions of Lemma 4.5, if
C1C1C1 > 0, we have

min
m∈[M]

E[||∇f(ω2m−1)||2] ≤ 1

M

M∑
m=0

E[||∇f(ω2m−1)||2]

≤ f(ω0)− f(ω∗)

MC1C1C1
+

∑M
m=0C2C2C2h

1
m

MC1C1C1
+

∑M
m=0C3C3C3h

2
m

MC1C1C1
,

where ω0 and ω∗ denote the initial and the optimal model parameters.

Theorem 4.6 indicates tunable µ and λm are key parameters that control the convergence (rate) and
robustness of Upcycled-FL. Specifically, µ penalizes the deviation of local model ω2m

i from global

5

Under review as a conference paper at ICLR 2023

aggregated model ω2m−1, while λm penalizes the deviation of local model ω2m
i from local model in

the previous update ω2m−1
i . Note that the condition C1C1C1 := C1

(
L,B, 1

µ ,
1
ρ ,

1
K

)
> 0 does not depend

on λm, i.e., with the proper choice of local functions Fi and proximal term µ, Theorem 4.6 will hold
for any λm. However, λm affects convergence rate by impacting C2C2C2 := C2

(
L,B, 1

µ ,
1
ρ ,

1
K , µ

µ+λm

)
and C3C3C3 := C3

(
L, 1

µ ,
1
ρ ,

1
K , µ

µ+λm

)
. Specifically, as λm

µ gets larger, C2C2C2 and C3C3C3 become smaller, thus
convergence rate bound is tighter. We will empirically examine the impacts of µ and λm in Section 6.

The convergence rate also depends on data heterogeneity, captured by dissimilarity B. When B = 0
(i.i.d. clients), C1C1C1 > 0 must hold, while as B increases, C1C1C1 becomes negative. Nevertheless, in
Section 6 we empirically show Upcycled-FL will still converge on highly heterogeneous datasets.
Assumption 4.7. ||ω2m−1 − ω2m−2|| ≤ h,∀m and ||∇f(ω)|| ≤ d, ∀ω.

Assumption 4.7 is rather mild; it only requires that the difference of aggregated weights between two
consecutive iterations and the gradient ||∇f(ω)|| are bounded. Under this assumption, we have the
following corollary.
Corollary 4.8 (Convergence to the stationary point). Under the same assumptions of Theorem 4.6
and Assumption 4.7, for fixed µ,K, if λm is taken such that µ

µ+λm
= O

(
1√
M

)
, then the convergence

rate of Upcycled-FL reduces to O(1√
M
).

Corollary 4.8 provides a guidance on how to choose the value of λm to guarantee the convergence
of Upcycled-FL, i.e., by taking an increasing sequence of {λm}Mm=1. Intuitively, increasing λm

during the training helps stabilize the algorithm, because the deviation of local models from previous
update is penalized more under a larger λm.

5 PRIVATE UPCYCLED-FL

In this section, we present a privacy-preserving version of Upcycled-FL. Many perturbation
mechanisms can be adopted to achieve differential privacy such as objective perturbation (Chaudhuri
et al., 2011; Kifer et al., 2012), output perturbation (Chaudhuri et al., 2011; Zhang et al., 2017),
gradient perturbation (Bassily et al., 2014; Wang et al., 2017), etc. Next, we will use output
perturbation and objective perturbation for illustrating that our algorithm has a better performance
than Private FedProx and Private FedAvg(other methods can also be adopted as discussed in
Section 7). Note that both methods are used for generating private updates at odd iterations, which
can be used directly for even updates, as detailed below.

Output perturbation: the private odd updates ω̂2m−1
i are generated by first clipping the local models

ω2m−1
i and then adding a noise random vector nm

i to the clipped model:

Clip odd update: ξ(ω2m−1
i) = ω2m−1

i /max
(
1,

||ω2m−1
i ||2
τ

)
Perturb with noise: ω̂2m−1

i = ξ(ω2m−1
i) + nm

i

where parameter τ > 0 is the clipping threshold; the clipping ensures that if ||ω2m−1
i ||2 ≤ τ , then

update is preserved, otherwise it is scaled to be of norm τ .

Objective perturbation: a random linear term ⟨nm
i , ω⟩ is added to the objective function in odd

(2m+1)-th iteration, and the private local model ω̂2m+1
i is found by solving a perturbed optimization:

Perturb objective function: ω̂2m+1
i = argmin

ω
Fi(ω;Di) +

µ

2
||ω − ω2m||2 + ⟨nm

i , ω⟩,

Given noisy ω̂2m−1
i generated by either method, local models in even iterations can be updated, i.e.,

ω̂2m
i = ω̂2m−1

i +
µ

µ+ λm
(ω̂

2m−1 − ω̂
2m−2

), (5)

where the aggregated models ω̂
2m−1

=
∑

i∈I piω̂
2m−1
i and ω2m−2 =

∑
i∈I piω̂

2m−2
i are all

calculated based on the noisy local models.

6

Under review as a conference paper at ICLR 2023

Privacy Analysis. Next, we conduct privacy analysis and theoretically quantify the total privacy
loss of private Upcycled-FL. Because even updates are computed directly using already private
intermediate results (Eqn. equation 5) without using dataset Di, no privacy leakage occurs at even
iterations. This can be formally stated as the following lemma.
Lemma 5.1. For any m = 1, 2, · · · , if the total privacy loss up to 2m− 1 can be bounded by εm,
then the total privacy loss up to the 2m-th iteration can also be bounded by εm.

Lemma 5.1 is straightforward; it can be derived directly by leveraging a property of differential privacy
called immunity to post-processing (Dwork et al., 2014), i.e., a differentially private output followed
by any data-independent computation remains satisfying differential privacy. In particular, consider
settings where local loss function Fi(ωi,Di) := 1

|Di|
∑

d∈Di
F̂i(ωi, d) for some F̂i. Then the

guarantee of privacy is presented in Theorem 5.2 (output perturbation) and 5.3 (objective perturbation)
below. The total privacy loss in the following theorem is composed using moments accountant method
(Abadi et al., 2016).
Theorem 5.2. Consider the private Upcycled-FL over 2M iterations under output perturbation
with noise nm

i ∼ N (0, σ2I), then for any ε ≥ Mτ2

2σ2|Di|2 , the algorithm is (ε, δ)-DP for agent i for

δ = exp

(
− Mτ2

2σ2|Di|2
(εσ2|Di|2

Mτ2
− 1

2

)2
)
.

Equivalently, for any δ ∈ [0, 1], the algorithm is (ε, δ)-DP for agent i for

ε = 2

√
Mτ2

2σ2|Di|2
log(

1

δ
) +

Mτ2

2σ2|Di|2
.

Theorem 5.3. Consider the private Upcycled-FL over 2M iterations under objective perturbation
with noise nm

i ∼ exp (−αm
i ||nm

i ||2). Suppose F̂i is generalized linear model (Iyengar et al., 2019;
Bassily et al., 2014)2 that satisfies ||∇F̂i(ω; d)|| < u1, |F̂ ′′

i | ≤ u2. Let feature vectors be normalized
such that its norm is no greater than 1, and suppose u2 ≤ 0.5|Di|µ holds. Then the algorithm
satisfies (ε, 0)-DP for agent i where ε =

∑M
m=0

2αm
i u1µ+2.8u2

|Di|µ .

The assumptions on F̂i are again fairly standard in the literature, see e.g., (Chaudhuri et al., 2011;
Zhang & Zhu, 2016; Zhang et al., 2018). Theorem 5.2 and 5.3 show that the total privacy loss
experienced by each agent accumulates over iterations and privacy loss only comes from odd
iterations. In contrast, if consider differentially private FedProx, accumulated privacy loss would
come from all iterations. Therefore, to achieve the same privacy guarantee, private Upcycled-FL
requires much less perturbation per iteration than private FedProx. As a result, accuracy can be
improved significantly. Experiments in Section 6 show that Upcycled-FL significantly improves
privacy-accuracy trade-off compared to other methods.

6 EXPERIMENTS

In this section, we empirically evaluate Upcycled-FL and compare it with two algorithms:
FedAvg (McMahan et al., 2017) and FedProx (Li et al., 2020). We first consider non-private algo-
rithms to examine the convergence rate and robustness of Upcycled-FL against statistical/device
heterogeneity. Then, we adopt both output perturbation and objective perturbation to evaluate the
performance of Private Upcycled-FL.

Experimental setup. We run experiments on both synthetic and real data.

• Synthetic data: using the method in Li et al. (2020), we generate Synthetic(iid),
Synthetic(0,0), Synthetic(0.5,0.5), Synthetic(1,1), four datasets with in-
creasing statistical heterogeneity.

• Real data: we adopt 2 datasets. 1) Femnist, a federated version of Emnist (Cohen et al., 2017);
2) Sentiment140(Sent140), a text sentiment analysis task on tweets (Go et al., 2009). Both
of the datasets can be obtained from LEAF (Caldas et al., 2018).

2In supervised learning, the sample d = (x, y) corresponds to the feature and label pair. Function F̂i(ω, d)
is generalized linear model if it can be written as a function of ωTx and y.

7

Under review as a conference paper at ICLR 2023

Table 1: Training(testing) accuracy of FedAvg, FedProx, Upcycled-FL under approxi-
mate same training time: FedAvg/FedProx/Upcycled-FL are trained over synthetic data for
80/80/160 iterations, and are trained over Femnist,Sent140 for 150/150/300 iterations. For
Upcycled-FL, λ = 0.04, 0.12, 0.21, 0.43 is set based on the value of µ = 0.1, 0.3, 0.5, 1, respec-
tively. Upcycled-FL significantly outperforms FedAvg and FedProx.

Dataset Proximal term
Accuracy(%)

FedAvg FedProx Upcycled-FL

Synthetic(iid)
µ = 0.1

97.80%(97.51%)
96.86%(96.34%) 97.88%(97.51%)

µ = 0.3 95.18%(94.88%) 96.31%(96.05%)

Synthetic(0,0)
µ = 0.1

78.41%(76.27%)
81.66%(79.50%) 84.41%(82.44%)

µ = 0.3 81.73%(79.35%) 83.83%(81.58%)

Synthetic(0.5,0.5)
µ = 0.5

79.53%(78.97%)
79.55%(79.46%) 82.61%(82.64%)

µ = 1 80.11%(80.20%) 82.74%(82.64%)

Synthetic(1,1)
µ = 0.5

69.70%(71.12%)
75.36%(76.67%) 82.78%(83.07%)

µ = 1 75.69%(76.58%) 82.88%(82.69%)

Femnist
µ = 0.1

20.43%(20.01%)
82.86%(83.73%) 86.37%(85.91%)

µ = 0.3 76.10%(76.66%) 81.94%(82.12%)

Sent140
µ = 0.1

73.41%(71.13%)
75.29%(72.57%) 78.12%(72.38%)

µ = 0.3 72.86%(71.38%) 74.27%(73.02%)

To simulate device heterogeneity, we randomly select a fraction of devices to train at each round,
and assume there are stragglers that cannot train for full rounds; both devices and stragglers are
selected by random seed to ensure they are the same for all algorithms. We also consider several
learning algorithms: we learn logistic regression on synthetic data; multilayer perceptron (MLP)
and deep CNN on Femnist; Stacked LSTM on Sent140. For Femnist, we present the results
on MLP here and other results in Appendix F. Because even iterations of Upcycled-FL only
involve addition/subtraction operations with almost no computational cost, we train Upcycled-FL
with double iterations compared to FedAvg and FedProx in approximately same training time.
Unless explicitly stated, the results we report are averaged outcomes over all devices. More details of
experimental setup are in Appendix F.1.

Convergence and Heterogeneity. We evaluate the convergence rate, training time, and accuracy
of Upcycled-FL under different parameter settings. We take λm = λ,∀m while we observe the
similar results for time-varying λm. Table B illustrates the comparison of training/testing accuracy
under high device heterogeneity (90% stragglers), more results are in Appendix F. The results show
that Upcycled-FL outperforms both FedProx and FedProx on all datasets. While FedAvg
achieves good performance on Synthetic(iid), it is not robust to heterogeneous data. When
data is i.i.d., adding the proximal term may hurt the performance (Li et al., 2020). However, the
proximal term help stabilize the algorithm and can significantly improve the performance in practical
setting when data is heterogeneous. Importantly, Upcycled-FL is more robust to the level of
heterogeneity and the choice of hyper-parameter µ than FedProx, that it could attain significant and
consistent improvements for all settings. In practice, µ needs to be carefully tuned; with the optimal
selections of µ, Upcycled-FL could achieve 2% ∼ 7% improvement on accuracy compared to
FedProx.

The reasons why Upcycled-FL outperforms other algorithms are the following: (1) the gradients
in odd iterations are reused in the subsequent even iterations, so that more information of data
heterogeneity is captured to make better updates; (2) because computations of even updates are highly
efficient, it could accommodate more local gradient descent updates within the same training time.

Figure 1(a)1(b) illustrate the convergence of Upcycled-FL on Synthetic(0.5,0.5) and
Femnist (in comparison with FedProx and FedAvg), and examine the impact of hyper-parameter
λm. Loss in y-axes indicates the averaged loss of all devices. In each iteration, 30% of devices
are selected with 90% stragglers. It is worth noting that Upcycled-FL could attain a comparable
performance as FedProx in the first 80 (resp. 240) iterations on Synthetic(0.5,0.5) (resp.
Femnist), with 50% (resp. 20%) of SGD computation reduced. Additional results on other datasets
are in Appendix F.4.

The effect of λm = λ on convergence rate of Upcycled-FL is also evaluated in Figure
1(a)1(b) (right). Although the sufficient conditions in Theorem 4.6 and Corollary ?? suggest that
Upcycled-FL converges when λ is sufficiently large, the experiments indicate that Upcycled-FL

8

Under review as a conference paper at ICLR 2023

(a) Synthetic(0.5,0.5) (b) Femnist

Figure 1: Convergence of Upcycled-FL compared to FedProx, FedAvg under approxi-
mate same training time (left) and impact of λm on convergence rate of Upcycled-FL (right)
for two datasets: (a) µ=0.5, λ=0.21, the final training(testing) accuracy is Upcycled-FL
82.61%(82.64%), FedProx 79.55%(79.46%), FedAvg 79.53%(78.97%); (b) µ=0.3, λ=0.13, the
final training(testing) accuracy is Upcycled-FL 81.94%(82.12%), FedProx 76.10%(76.66%),
FedAvg 20.43%(20.01%).

(a) Synthetic(iid) (b) Synthetic(0,0) (c) Synthetic(iid) (d) Synthetic(0,0)

Figure 2: Comparison of Private Upcycled-FL and Private FedProx using objective
perturbation ((a)(b)) and output perturbation ((c)(d)) with δ = 0.001. We take µ = 0.1, λ = 0.04 for
all datasets. ϵ̄ denotes the average ϵ among all devices. In both experiments, the privacy of Private
Upcycled-FL is strictly stronger than Private FedProx.

indeed easily converges in practice for small λ. Furthermore, we observe that models with smaller λ
tend to converge faster. This is because that λ controls step size µ

µ+λ (Eqn. equation 4): a larger λ
results in smaller step size and thus slower convergence.

Privacy-Accuracy Tradeoff. We next inspect accuracy-privacy tradeoff of Private
Upcycled-FL and compare it with Private FedProx. We adopt both objective perturba-
tion and output perturbation to preserve privacy; these are just two examples while other privacy-
preserving techniques can also be used. For each parameter setting, we perform 10 independent runs
of experiment and record both the mean and range of their losses. To precisely quantify privacy,
we focus on settings without device heterogeneity (no straggler) and low statistical heterogeneity
(Synthetic(iid), Synthetic(0,0)). More results can be found in F.5.

Figure 2(a)2(b) shows the performance (average loss and the respective privacy loss ϵ) of Private
Upcylced-FL and Private FedProx compared to non-private Upcylced-FL on synthetic
data using objective perturbation. As expected, Private Upcycled-FL is much more stable
and significantly improves both privacy and accuracy over Private FedProx; this is because
information leakage only happens during half of updates in Private Upcycled-FL so that
it requires much less perturbation to attain the same privacy guarantee. Specifically, Private
Upcycled-FL experiences 9.5% less privacy loss than Private FedProx while having
11.0%(11.5%) higher accuracy in average and reducing 48% of training time. We also conduct
the similar experiments using output perturbation (Figure 2(d)2(c)). Results show that Private
Upcycled-FL experiences 12.0% less privacy loss than Private FedProx in average while
having 6.1%(6.2%) higher accuracy in average and reducing 48% of training time.

We also conduct experiments with different α to examine accuracy-privacy tradeoff (the larger α cor-
responds to the less perturbation and thus higher accuracy). We see that Private Upcycled-FL
consistently outperforms Private FedProx. These results are presented in Appendix F.5.1.

7 DISCUSSION

In Appendix A we discuss an equivalent interpretation of Upcycled-FL, other FL framework,
other privacy analysis tools and amplification techniques, as well as the limitation of our work.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Shahab Asoodeh, Wei-Ning Chen, Flavio P Calmon, and Ayfer Özgür. Differentially private federated
learning: An information-theoretic perspective. In 2021 IEEE International Symposium on
Information Theory (ISIT), pp. 344–349. IEEE, 2021.

Brendan Avent, Aleksandra Korolova, David Zeber, Torgeir Hovden, and Benjamin Livshits.
{BLENDER}: Enabling local search with a hybrid differential privacy model. In 26th {USENIX}
Security Symposium ({USENIX} Security 17), pp. 747–764, 2017.

Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsampling: tight analyses
via couplings and divergences. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pp. 6280–6290, 2018.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient
algorithms and tight error bounds. In 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science, pp. 464–473. IEEE, 2014.

Amos Beimel, Hai Brenner, Shiva Prasad Kasiviswanathan, and Kobbi Nissim. Bounds on the sample
complexity for private learning and private data release. Machine learning, 94(3):401–437, 2014.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empirical risk
minimization. Journal of Machine Learning Research, 12(3), 2011.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist
to handwritten letters. In 2017 international joint conference on neural networks (IJCNN), pp.
2921–2926. IEEE, 2017.

Cynthia Dwork. Differential privacy. In International Colloquium on Automata, Languages, and
Programming, pp. 1–12. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3-4):211–407, 2014.

Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision.
CS224N project report, Stanford, 1(12):2009, 2009.

Jingchen Hu, Joerg Drechsler, and Hang J Kim. Accuracy gains from privacy amplification through
sampling for differential privacy. arXiv preprint arXiv:2103.09705, 2021.

Roger Iyengar, Joseph P Near, Dawn Song, Om Thakkar, Abhradeep Thakurta, and Lun Wang.
Towards practical differentially private convex optimization. In 2019 IEEE Symposium on Security
and Privacy (SP), pp. 299–316. IEEE, 2019.

Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
What can we learn privately? SIAM Journal on Computing, 40(3):793–826, 2011.

Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private convex empirical risk minimization and
high-dimensional regression. In Conference on Learning Theory, pp. 25–1. JMLR Workshop and
Conference Proceedings, 2012.

Muah Kim, Onur Günlü, and Rafael F Schaefer. Federated learning with local differential privacy:
Trade-offs between privacy, utility, and communication. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2650–2654. IEEE, 2021.

10

Under review as a conference paper at ICLR 2023

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Systems,
2:429–450, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Nicolas Papernot, Martín Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal Talwar. Semi-
supervised knowledge transfer for deep learning from private training data. arXiv preprint
arXiv:1610.05755, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Pierangela Samarati and Latanya Sweeney. Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. 1998.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau envelopes.
Advances in Neural Information Processing Systems, 33:21394–21405, 2020.

Aleksei Triastcyn and Boi Faltings. Federated learning with bayesian differential privacy. In 2019
IEEE International Conference on Big Data (Big Data), pp. 2587–2596. IEEE, 2019.

Di Wang, Minwei Ye, and Jinhui Xu. Differentially private empirical risk minimization revisited:
Faster and more general. Advances in Neural Information Processing Systems, 30, 2017.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020a.

Yansheng Wang, Yongxin Tong, and Dingyuan Shi. Federated latent dirichlet allocation: A local
differential privacy based framework. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 6283–6290, 2020b.

Yu-Xiang Wang, Stephen Fienberg, and Alex Smola. Privacy for free: Posterior sampling and
stochastic gradient monte carlo. In International Conference on Machine Learning, pp. 2493–2502.
PMLR, 2015.

Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled rényi differential
privacy and analytical moments accountant. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 1226–1235. PMLR, 2019.

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek,
and H Vincent Poor. Federated learning with differential privacy: Algorithms and performance
analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020.

Jiaqi Zhang, Kai Zheng, Wenlong Mou, and Liwei Wang. Efficient private erm for smooth objectives.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 3922–3928,
2017.

Lefeng Zhang, Tianqing Zhu, Ping Xiong, Wanlei Zhou, and Philip Yu. A robust game-theoretical
federated learning framework with joint differential privacy. IEEE Transactions on Knowledge
and Data Engineering, 2022.

Tao Zhang and Quanyan Zhu. Dynamic differential privacy for admm-based distributed classification
learning. IEEE Transactions on Information Forensics and Security, 12(1):172–187, 2016.

11

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Under review as a conference paper at ICLR 2023

Xueru Zhang, Mohammad Mahdi Khalili, and Mingyan Liu. Recycled admm: Improve privacy and
accuracy with less computation in distributed algorithms. In 2018 56th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), pp. 959–965. IEEE, 2018.

Qinqing Zheng, Shuxiao Chen, Qi Long, and Weijie Su. Federated f-differential privacy. In
International Conference on Artificial Intelligence and Statistics, pp. 2251–2259. PMLR, 2021.

Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Abhradeep
Thakurta. Amplification by shuffling: From local to central differential privacy via anonymity. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2019. URL https://arxiv.org/
abs/1811.12469.

12

https://arxiv.org/abs/1811.12469
https://arxiv.org/abs/1811.12469

Under review as a conference paper at ICLR 2023

A DISCUSSION

An equivalent model and additional interpretation. Recall the even update ω2m =
∑

i∈I piω
2m
i =∑

i∈I piω
2m−1
i + µ

µ+λm
(ω2m−1−ω2m−2). If we view two consecutive steps (odd followed by even)

as a single step in the iteration, we can obtain an equivalent model where selected devices train and
submit local weights ωm

i ; the central server computes the aggregated weights ωm =
∑

i∈I piω
m
i and

updates the global model using ωm
global = ωm−1

global +
2µ+λm

µ+λm
(ωm − ωm−1

global). It can be seen that this
method effectively allows the global model to not only average but also to move more toward the
changing direction. It’s worth pointing out that this updating rule is not the same as increasing local
learning rate, which does not reuse any existing information, nor will it result in the same updating
direction. The illustration of the difference and more discussion are in Appendix F.6.

Other FL framework. We have developed Upcycled-FL based on FedProx. But the essence of
our proposed updating rule can be applied to other FL frameworks, such as FedNova (Wang et al.,
2020a), pFedMe (T Dinh et al., 2020).

Other perturbation methods & privacy analysis tools. In this work, we primarily adopt out-
put/objective perturbation to make Upcycled-FL differentially private. This is just an example
we use to illustrate how Upcycled-FL can improve privacy-accuracy tradeoff. Other perturbation
methods can also be used and our conclusion would still hold. Similarly, in privacy analysis we
have adopted (ε, δ)-differential privacy and moments accountant method (Abadi et al., 2016) to
compose privacy loss. Other privacy notion and composition theorems can also be used. This is
because our key idea for improving privacy-accuracy trade-off (i.e., revealing less information) is
subject to algorithm itself and is orthogonal to the choice of the perturbation method and the privacy
definition/analysis tools.

Other privacy amplification techniques. Our approach improves privacy-accuracy trade-off by
directly modifying FL algorithms. It can also be combined with other techniques to further strengthen
the privacy protection, such as privacy amplification by sampling (Balle et al., 2018; Beimel et al.,
2014; Hu et al., 2021; Wang et al., 2019; Kasiviswanathan et al., 2011; Wang et al., 2015; Abadi et al.,
2016), leveraging non-private public data (Avent et al., 2017; Papernot et al., 2016), amplification by
shuffling (Úlfar Erlingsson et al., 2019), etc.

Limitations & Negative Societal Impacts. (1) Although Upcycled-FL outperforms existing
FL framework on heterogeneous data, there’s still space to improve accuracy on data that is highly
heterogeneous. (2) The hyper-parameter λ could be analysed more precisely. One interesting direction
is to take hessian matrix into consideration, and provide more accurate approximation. (3) This work
has solely focused on accuracy and privacy, while unfairness issue is not considered. When data
is non-i.i.d. across different devices, it is possible that our method may have disparate impact on
devices with less data. Incorporating fairness into our method is a potential future direction.

B NOTATION TABLE

I set of agents
Di dataset of agent i
pi size of agent i’s data as a fraction of total data samples
ωt
i agent i’s local model parameter at time t

ωt aggregated model at central server at t
ω̂t
i differentially private version of ωt

i

Fi local objective function of agent i
f overall objective function
nt
i random noise added to agent i at time t

µ hyper-parameter for proximal term in FedProx and Upcycled-FL
λm hyper-parameter for first-order approximation at even iteration 2m in Upcycled-FL

13

Under review as a conference paper at ICLR 2023

C LEMMAS

Lemma C.1. Define ω̃t = Ei(ω
t
i). Suppose conditions in Theorem 4.6 hold. Then the following

holds for all m:

f(ω̃2m+1) ≤ f(ω2m−1)− Ĉ1

(
L,B,

1

µ
,
1

ρ

)
||∇f(ω2m−1)||2

+Ĉ2

(
L,B,

1

µ
,
1

ρ
,

µ

µ+ λm

)
||∇f(ω2m−1)|| · ||ω2m−1 − ω2m−2||

+Ĉ3

(
L,B,

1

µ
,
1

ρ
,

µ

µ+ λm

)
||ω2m−1 − ω2m−2||2

where coefficients satisfy

Ĉ1

(
L,B,

1

µ
,
1

ρ

)
=

1

µ
− LB

µ2ρ
− LB2

2ρ2

Ĉ2

(
L,B,

1

µ
,
1

ρ
,

µ

µ+ λm

)
=

(L2

µ2ρ
+

L+ µ

µ2
+

L(L+ ρ)B

ρ2

) µ

µ+ λm

Ĉ3

(
L,B,

1

µ
,
1

ρ
,

µ

µ+ λm

)
=

L(L+ ρ)2

2ρ2
µ2

(µ+ λm)2

Lemma C.2. Let Sm be the set of K randomly selected local devices got updated at iterations
2m− 1 and 2m, and ESm [·] be expectation with respect to the choice of devices. Then we have

ESm
[f(ω2m+1)] ≤ f(ω̃2m+1) + C̃1

(
B,L,

1

K
,
1

ρ

)
||∇f(ω2m−1)||2

+C̃2

(
B,L,

1

K
,
1

ρ
,

µ

µ+ λm

)
||∇f(ω2m−1)|| · ||ω2m−1 − ω2m−2||

+C̃3

(
B,L,

1

K
,
1

ρ
,

µ

µ+ λm

)
||ω2m−1 − ω2m−2||2

where coefficients satisfy

C̃1

(
B,L,

1

K
,
1

ρ

)
=

2B2

Kρ2
+

2LB + ρ

ρ

√
2

K

B

ρ

C̃2

(
B,L,

1

K
,
1

ρ
,

µ

µ+ λm

)
=

(4LB
Kρ2

+
2LB + ρ

ρ

√
2

K

L

ρ
+ 2L

L+ ρ

ρ

√
2

K

B

ρ

)
· µ

µ+ λm

C̃3

(
B,L,

1

K
,
1

ρ
,

µ

µ+ λm

)
=

(2

K

L2

ρ2
+ 2L

L+ ρ

ρ

√
2

K

L

ρ

)
·
(µ

µ+ λm

)2

D PROOFS

Proof of Lemma C.1

Proof. Since local functions Fi are L-Lipschitz smooth, at iteration 2m− 1, we have

f(ω̃2m+1)

≤ f(ω2m−1) + ⟨∇f(ω2m−1), ω̃2m+1 − ω2m−1⟩+ L

2
||ω̃2m+1 − ω2m−1||2

= f(ω2m−1) + ⟨∇f(ω2m−1),− 1

µ
∇f(ω2m−1) + Φ2m+1⟩+ L

2
||ω̃2m+1 − ω2m−1||2

≤ f(ω2m−1)− 1

µ
||∇f(ω2m−1)||2 + 1

µ
||∇f(ω2m−1)|| · ||Φ2m+1||+ L

2
||ω̃2m+1 − ω2m−1||2

where

Φ2m+1 =
1

µ
∇f(ω2m−1) + ω̃2m+1 − ω2m−1 = Ei

[1
µ
∇Fi(ω

2m−1) + ω2m+1
i − ω2m−1

]
(6)

14

Under review as a conference paper at ICLR 2023

By first-order condition, the following holds at (2m+ 1)-th iteration:

ω2m+1
i − ω2m−1 = − 1

µ
∇Fi(ω

2m+1
i) + ω2m − ω2m−1

Plug into Eqn. equation 6, we have

Φ2m+1 = Ei

[1
µ

(
∇Fi(ω

2m−1)−∇Fi(ω
2m+1
i)

)
+ ω2m − ω2m−1

]
By L-Lipschitz smoothness and Jensen’s inequality, we have

||Φ2m+1|| ≤ Ei

[1
µ
||∇Fi(ω

2m−1)−∇Fi(ω
2m+1
i)||

]
+ ||ω2m − ω2m−1|| (7)

≤ Ei

[L
µ
||ω2m−1 − ω2m+1

i ||
]
+ ||ω2m − ω2m−1||

≤ Ei

[L
µ
||ω2m+1

i − ω2m||
]
+

L+ µ

µ
||ω2m − ω2m−1||

Since hi are ρ-strongly convex, Fi is L-Lipschitz smooth, and ω2m+1
i = argminω hi(ω;ω

2m) we
have

||ω2m+1
i − ω2m|| ≤ 1

ρ
||∇hi(ω

2m+1
i ;ω2m)−∇hi(ω

2m;ω2m)|| = 1

ρ
||0−∇Fi(ω

2m)||

≤ L

ρ
||ω2m − ω2m−1||+ 1

ρ
||∇Fi(ω

2m−1)|| (8)

Plug in Eqn. equation 7,

||Φ2m+1|| ≤ L

µρ
Ei[||∇Fi(ω

2m−1)||] +
(L2

µρ
+

L+ µ

µ

)
||ω2m − ω2m−1||

Consider the following term

||ω̃2m+1 − ω2m−1|| = ||Ei[ω
2m+1
i]− ω2m−1|| ≤ Ei[||ω2m+1

i − ω2m−1||] (9)

≤ Ei[||ω2m+1
i − ω2m||+ ||ω2m − ω2m−1||]

≤ L+ ρ

ρ
||ω2m − ω2m−1||+ 1

ρ
Ei

[
||∇Fi(ω

2m−1)||
]

Because Fi is B-dissimilar, we have

Ei

[
||∇Fi(ω

2m−1)||
]
≤ B||∇f(ω2m−1)||

Therefore,

f(ω̃2m+1)

≤ f(ω2m−1)− 1

µ
||∇f(ω2m−1)||2 + 1

µ
||∇f(ω2m−1)|| · ||Φ2m+1||+ L

2
||ω̃2m+1 − ω2m−1||2

≤ f(ω2m−1)−
(1

µ
− LB

µ2ρ
− LB2

2ρ2

)
||∇f(ω2m−1)||2

+
(L2

µ2ρ
+

L+ µ

µ2
+

L(L+ ρ)B

ρ2

)
||∇f(ω2m−1)|| · ||ω2m − ω2m−1||

+
L(L+ ρ)2

2ρ2
||ω2m − ω2m−1||2

After applying first-order approximation in even iterations, we have

ω2m − ω2m−1 =
µ

µ+ λm
(ω2m−1 − ω2m−2)

15

Under review as a conference paper at ICLR 2023

Therefore,

f(ω̃2m+1) ≤ f(ω2m−1)−
(1

µ
− LB

µ2ρ
− LB2

2ρ2

)
||∇f(ω2m−1)||2

+
(L2

µ2ρ
+

L+ µ

µ2
+

L(L+ ρ)B

ρ2

) µ

µ+ λm
||∇f(ω2m−1)|| · ||ω2m−1 − ω2m−2||

+
L(L+ ρ)2

2ρ2
µ2

(µ+ λm)2
||ω2m−1 − ω2m−2||2

The Lemma C.1 is proved.

Proof of Lemma C.2

Proof. Because local function Fi is L-Lipschitz smooth, f is local Lipschitz continuous.

f(ω2m+1) ≤ f(ω̃2m+1) + L0||ω2m+1 − ω̃2m+1||
where L0 is the local Lipschitz continuouty constant. Moreover, we have

L0 ≤ ||∇f(ω2m−1)||+ L(||ω̃2m+1 − ω2m−1||+ ||ω2m+1 − ω2m−1||)
Therefore,

ESm
[f(ω2m+1)]

≤ f(ω̃2m+1)

+ ESm

[(
||∇f(ω2m−1)||+ L(||ω̃2m+1 − ω2m−1||+ ||ω2m+1 − ω2m−1||)

)
||ω2m+1 − ω̃2m+1||

]
= f(ω̃2m+1) +

(
||∇f(ω2m−1)||+ L||ω̃2m+1 − ω2m−1||

)
· ESm [||ω2m+1 − ω̃2m+1||]

+ LESm

[
||ω2m+1 − ω2m−1|| · ||ω2m+1 − ω̃2m+1||

]
≤ f(ω̃2m+1) +

(
||∇f(ω2m−1)||+ 2L||ω̃2m+1 − ω2m−1||

)
· ESm [||ω2m+1 − ω̃2m+1||]

+ LESm

[
||ω2m+1 − ω̃2m+1||2

]
When K devices are randomly selected, by Eqn. equation 8, we have

ESm

[
||ω2m+1 − ω̃2m+1||2

]
≤ 1

K
Ei

[
||ω2m+1

i − ω̃2m+1||2
]
≤ 2

K
Ei

[
||ω2m+1

i − ω2m||2
]

≤ 2

K
Ei

[L2

ρ2
||ω2m − ω2m−1||2 + 1

ρ2
||∇Fi(ω

2m−1)||2 + 2L

ρ2
||ω2m − ω2m−1|| · ||∇Fi(ω

2m−1)||
]

≤ 2

K

L2

ρ2
||ω2m − ω2m−1||2 + 2B2

Kρ2
||∇f(ω2m−1)||2 + 4LB

Kρ2
||ω2m − ω2m−1|| · ||∇f(ω2m−1)||

=
2

K

(L
ρ
||ω2m − ω2m−1||+ B

ρ
||∇f(ω2m−1)||

)2

By Jensen’s inequality,

ESm

[
||ω2m+1 − ω̃2m+1||

]
≤

√
ESm

[
||ω2m+1 − ω̃2m+1||2

]
=

√
2

K

(L
ρ
||ω2m − ω2m−1||+ B

ρ
||∇f(ω2m−1)||

)
By Eqn. equation 9,

||∇f(ω2m−1)||+ 2L||ω̃2m+1 − ω2m−1|| ≤ 2L
L+ ρ

ρ
||ω2m − ω2m−1||+ 2LB + ρ

ρ
||∇f(ω2m−1)||

16

Under review as a conference paper at ICLR 2023

Re-organize, we have

ESm
[f(ω2m+1)]

≤ f(ω̃2m+1) +
2

K

L2

ρ2
||ω2m − ω2m−1||2 + 2B2

Kρ2
||∇f(ω2m−1)||2

+
4LB

Kρ2
||ω2m − ω2m−1|| · ||∇f(ω2m−1)||

+
(
2L

L+ ρ

ρ
||ω2m − ω2m−1||+ 2LB + ρ

ρ
||∇f(ω2m−1)||

)√ 2

K

L

ρ
||ω2m − ω2m−1||

+
(
2L

L+ ρ

ρ
||ω2m − ω2m−1||+ 2LB + ρ

ρ
||∇f(ω2m−1)||

)√ 2

K

B

ρ
||∇f(ω2m−1)||

= f(ω̃2m+1) +
(2

K

L2

ρ2
+ 2L

L+ ρ

ρ

√
2

K

L

ρ

)
·
(µ

µ+ λm

)2

||ω2m−1 − ω2m−2||2

+
(4LB
Kρ2

+
2LB + ρ

ρ

√
2

K

L

ρ
+ 2L

L+ ρ

ρ

√
2

K

B

ρ

)
· µ

µ+ λm
||ω2m−1 − ω2m−2|| · ||∇f(ω2m−1)||

+
(2B2

Kρ2
+

2LB + ρ

ρ

√
2

K

B

ρ

)
||∇f(ω2m−1)||2

Lemma C.2 is proved.

Proof of Lemma 4.5

Proof. Lemma 4.5 can be proved by combing Lemmas C.1 and C.2, where

C1C1C1 := C1

(
L,B,

1

µ
,
1

ρ
,
1

K

)
= Ĉ1

(
L,B,

1

µ
,
1

ρ

)
− C̃1

(
L,B,

1

K
,
1

ρ

)
=

1

µ
− LB

µ2ρ
− LB2

2ρ2
− 2B2

Kρ2
− 2LB + ρ

ρ

√
2

K

B

ρ
(10)

C2C2C2 := C2

(
L,B,

1

µ
,
1

ρ
,
1

K
,

µ

µ+ λm

)
= Ĉ2

(
L,B,

1

µ
,
1

ρ
,

µ

µ+ λm

)
+ C̃2

(
L,B,

1

K
,
1

ρ
,

µ

µ+ λm

)
=

(L2

µ2ρ
+

L+ µ

µ2
+

L(L+ ρ)B

ρ2
+

4LB

Kρ2
+

(4L2B + ρL(1 + 2B)

ρ2

√
2

K

)
· µ

µ+ λm
(11)

C3C3C3 := C3

(
L,

1

µ
,
1

ρ
,
1

K
,

µ

µ+ λm

)
= Ĉ3

(
L,

1

µ
,
1

ρ
,

µ

µ+ λm

)
+ C̃3

(
L,

1

K
,
1

ρ
,

µ

µ+ λm

)
=

(L(L+ ρ)2

2ρ2
+

2

K

L2

ρ2
+ 2L

L+ ρ

ρ

√
2

K

L

ρ

)
·
(µ

µ+ λm

)2

(12)

E PROOF OF THEOREM 5.2

WLOG, consider the case when local device got updated in every iteration and the algorithm runs over
2M iterations in total. We will use the uppercase letters X and lowercase letters x to denote random
variables and the corresponding realizations, and use PX(·) to denote its probability distribution. To
simplify the notations, we will drop the index i as we are only concerned with one agent.

According to Abadi et al. (2016), for a mechanism M outputs o, with inputs d and d̂, let a random
variable c(o;M , d, d̂) = log Pr(M (d)=o)

Pr(M (d̂)=o)
denote the privacy loss at o, and

αM (λ) = max
d,d̂

logEo∼M (d){exp(λc(o;M , d, d̂))}

For two neighboring datasets D and D′ of agent i, by Lemma 5.1, the total privacy loss is only
contributed by odd iterations. Thus, for any sequence of private (clipped) models ω̂t generated by

17

Under review as a conference paper at ICLR 2023

mechanisms {Mm}Mm=1 over 2M iterations, there is:

c(ω̂0:2M ; {Mm}Mm=1,D,D′) = log
PΩ̂0:2M (ω̂0:2M |D)
PΩ̂0:2M (ω̂0:2M |D′)

=

M∑
m=0

log
PΩ̂2m+1(ω̂

2m+1|D, ω̂0:2m)

PΩ̂2m+1(ω̂2m+1|D′, ω̂0:2m)
+ log

PΩ̂0(ω̂
0|D)

PΩ̂0(ω̂0|D′)

=

M∑
m=0

c(ω̂2m+1;Mm, ω̂0:2m,D,D′)

where ω̂0:t = {ω̂τ}tτ=0 and Ω̂t is random variable whose realization is ω̂t. Since ω̂0 is randomly
generated, which is independent of dataset, we have PΩ̂0(ω̂

0|D) = PΩ̂0(ω̂
0|D′). Moreover, the

following holds for any λ:

logEω̂0:2M {exp(λc(ω̂0:2M ; {Mm}Mm=1,D,D′))}

= logEω̂0:2M {exp(λ
M∑

m=0

c(ω̂2m+1;Mm, ω̂0:2m,D,D′)}

=

M∑
m=0

logEω̂2m+1{exp(λc(ω̂2m+1;Mm, ω̂0:2m,D,D′)} (13)

Therefore, α{Mm}M
m=1

(λ) ≤
∑M

m=1 αMm(λ) also holds. First bound each individual αMm(λ).

Consider two neighboring datasets D and D′. Private (clipped) model ω̂2m+1 is generated by
mechanism Mm(D) = ξ(ω2m+1) + N = 1

|D|
∑

d∈D η(d) + N with function ||η(·)||2 ≤ τ and
Gaussian noise N ∼ N (0, σ2I). Without loss of generality, let D′ = D ∪ {dn}, f(dn) = ±τe1
and

∑
d∈D η(d) = 0. Then Mm(D) and Mm(D′) are distributed identically except for the first

coordinate and the problem can be reduced to one-dimensional problem.

c(ω̂2m+1;Mm, ω̂0:2m,D,D′) = log
PΩ̂2m+1(ω̂

2m+1|D, ω̂0:2m)

PΩ̂2m+1(ω̂2m+1|D′, ω̂0:2m)

= log
PN (n)

PN (n± τ)

≤ τ

2|D|σ2
(2|n|+ τ) .

where n+ 1
|D|

∑
d∈D η(d) = ω̂2m+1. Therefore,

αMm(λ) = logEN∼N (0,σ2){exp(λ
τ

2|D|σ2
(2N + τ))}

= log

∫ ∞

−∞

1√
2πσ

exp(− 1

2σ2
(n− λ

τ

|D|
)2) · exp(τ2

2|D|2σ2
(λ2 + λ))dn

=
τ2λ(λ+ 1)

2|D|2σ2
.

α{Mm}M
m=1

(λ) ≤
M∑

m=1

αMm(λ) =
Mτ2λ(λ+ 1)

2|D|2σ2

Use the tail bound [Theorem 2, Abadi et al. (2016)], for any ε ≥ Mτ2

2|D|2σ2 , the algorithm is (ε, δ)-
differentially private for

δ = min
λ:λ≥0

h(λ) = min
λ:λ≥0

exp
(Mτ2λ(λ+ 1)

2|D|2σ2
− λε

)
18

Under review as a conference paper at ICLR 2023

To find λ∗ = argmin
λ:λ≥0

h(λ), take derivative of h(λ) and assign 0 gives the solution λ̄ = ε|D|2σ2

Mτ2 − 1
2 ≥

0, and h′′(λ̄) > 0, implies λ∗ = λ̄. Plug into equation 14 gives:

δ = exp

((Mτ2

4|D|2σ2
− ε

2

)(ε|D|2σ2

Mτ2
− 1

2

))
(14)

Similarly, for any δ ∈ [0, 1], the algorithm is (ε, δ)-differentially private for

ε = min
λ:λ≥0

h1(λ) = min
λ:λ≥0

Mτ2(λ+ 1)

2|D|2σ2
+

1

λ
log

(
1

δ

)
= 2

√
Mτ2

2|D|2σ2
log(

1

δ
) +

Mτ2

2|D|2σ2

Proof of Theorem 5.3

Proof. WLOG, consider the case when local device got updated in every iteration and the algorithm
runs over 2M iteration in total.

We will use the uppercase letters X and lowercase letters x to denote random variables and the
corresponding realizations, and use PX(·) to denote its probability distribution. To simplify the
notations, we will drop the index i as we are only concerned with one agent, and use ωt to denote
private output ω̂t.

For two neighboring datasets D and D′ of agent i, by Lemma 5.1, the total privacy loss is only
contributed by odd iterations. Thus, the ratio of joint probabilities (privacy loss) is given by:

PΩ0:2M (ω0:2M |D)
PΩ0:2M (ω0:2M |D′)

=
PΩ0(ω0|D)
PΩ0(ω0|D′)

·
M∏

m=0

PΩ2m+1(ω2m+1|ω0:2m,D)
PΩ2m+1(ω2m+1|ω0:2m,D′)

(15)

where ω0:t := {ωs}ts=1 and Ωt denotes random variable of ωt. Since ω0 is randomly generated,
which is independent of dataset. We have PΩ0(ω0|D) = PΩ0(ω0|D′).

Consider the (2m+ 1)-th iteration, by first-order condition, we have:

nm = −∇Fi(ω
2m+1;D)− µ(ω2m+1 − ω2m) := g(ω2m+1;D)

Given ω0:2m, nm and ω2m+1 will be bijective and the relation is captured by a one-to-one mapping
g : Rd → Rd defined above. By Jacobian transformation, we have

PΩ2m+1(ω2m+1|ω0:2m,D) = PNm(g(ω2m+1;D)) · |det(J(g(ω2m+1;D)))|

Therefore,

PΩ2m+1(ω2m+1|ω0:2m,D)
PΩ2m+1(ω2m+1|ω0:2m,D′)

=
PNm(g(ω2m+1;D))
PNm(g(ω2m+1;D′))

· |det(J(g(ω2m+1;D)))|
|det(J(g(ω2m+1;D′)))|

Let nm := g(ω2m+1;D), nm′
:= g(ω2m+1;D′) be noise vectors that result in output ω2m+1 under

neighboring datasets D and D′ respectively. WLOG, let d1 ∈ D and d′1 ∈ D′ be the data pints in two
datasets that are different, and D \ d1 = D′ \ d′1. Because noise vector Nm ∼ exp(−αm||nm||), we
have,

PNm(g(ω2m+1;D))
PNm(g(ω2m+1;D′))

≤ exp(αm||nm − nm′
||) = exp(αm||∇Fi(ω

2m+1;D′)−∇Fi(ω
2m+1;D)||)

= exp
(αm

|D|
||∇Fi(ω

2m+1; d′1)−∇Fi(ω
2m+1; d1)||

)
≤ exp

(2αmu1

|D|

)
(16)

Jacobian matrix

J(g(ω2m+1;D))) = −∇2Fi(ω
2m+1;D)− µId := A (17)

19

Under review as a conference paper at ICLR 2023

Further define matrix

A∆ = J(g(ω2m+1;D′)))−A =
1

|D|

(
∇2Fi(ω

2m+1; d1)−∇2Fi(ω
2m+1; d′1)

)
Then

|det(J(g(ω2m+1;D)))|
|det(J(g(ω2m+1;D′)))|

=
|det(A)|

|det(A∆ +A)|
=

1

|det(I +A−1A∆)|
=

1

|
∏r

k=1(1 + λk(A−1A∆))|

where λk(A
−1A∆) denotes the k-th largest eigenvalue of matrix A−1A∆. Under generalized linear

models, A∆ has rank at most 2. Because − u2

|D|µ ≤ λk(A
−1A∆) ≤ u2

|D|µ and µ, u2, |D| satisfy
u2

|D|µ ≤ 0.5, we have,

|det(J(g(ω2m+1;D)))|
|det(J(g(ω2m+1;D′)))|

≤ 1

|1− u2

|D|µ |2
= exp(−2 ln(1− u2

|D|µ
)) ≤ exp

(2.8u2

|D|µ

)
(18)

where the last inequality holds because − ln(1− x) < 1.4x, ∀x ∈ [0, 0.5].

Combine Eqn. equation 15, equation 18 and equation 16, we have

PΩ0:2M (ω0:2M |D)
PΩ0:2M (ω0:2M |D′)

≤
M∏

m=0

exp
(2αmu1

|D|

)
· exp

(2.8u2

|D|µ

)
= exp

(M∑
m=0

2αmu1µ+ 2.8u2

|D|µ

)
Theorem 5.2 is proved.

F EXPERIMENTS

F.1 DETAILS OF DATASETS

Synthetic. The synthetic data is generated using the same method in Li et al. (2020). We briefly
describe the generating steps here. For each device k, yk is computed from a softmax function
yk = argmax(softmax(Wkxk + bk)). Wk and bk are drawn from the same Gaussian distribution
with mean uk and variance 1, where uk ∈ N(0;β). xk ∈ N(vk; Σ). vk is drawn from a Gaussian
distribution with mean Bk ∈ N (0, γ) and variance 1. Σ is diagonal with

∑
j, j = j−1.2. In such a

setting, β controls how many local models differ from each other and γ controls how much local data
at each device differs from that of other devices.

In our experiment, we take k = 30, x ∈ R20, W ∈ R10∗20, b ∈ R10. We generate 4
datasets in total. They’re Synthetic(iid) Synthetic(0,0) with β = 0 and γ = 0,
Synthetic(0.5,0.5) with β = 0.5 and γ = 0.5 and Synthetic(1,1) with β = 1 and
γ = 1.

Femnist: Similar with Li et al. (2020), we subsample 10 lower case characters (‘a’-‘j’) from
EMNIST Cohen et al. (2017) and distribute 5 classes to each device. There are 50 devices in total.
The input is 28*28 image.

Sent140: A text sentiment analysis task on tweets Go et al. (2009). The input is sequence of length
25 and output is the probabilities of 2 classes.

A brief summary of dataset can be found here.

F.2 DETAILS OF THE MODEL

Classifier and Loss function. In our experiment, we use logistic regression for Synthetic,
Multilayer perceptron and CNN for Femnist, Stacked LSTM for Sent140. Note that without
privacy concern, any classifier and loss function can be plugged in to Upcycled-FL. However, if we
adopt objective perturbation as privacy protection, the loss function should also satisfy assumptions

20

Under review as a conference paper at ICLR 2023

Table 2: Details of datasets. Numbers in parentheses represent the amount of test data. All of the
numbers round to integer.

Dataset Samples # of device Samples per device
mean stdev

Synthetic

iid 6726(683) 30 224 166
0,0 13791(1395) 30 460 841

0.5,0.5 8036(818) 30 268 410
1,1 10493(1063) 30 350 586

Femnist 16421(1924) 50 328 273
Sent140 32299(8484) 52 621 105

in Theorem 5.3. Thus log loss L (z) = log(1+exp(−z)) is used. It’s not hard to verify that this loss
function satisfies assumptions in Theorem 5.3 by taking first and second order derivatives(|L ′| ≤
u1 = 1 and L ′′ ≤ u2 = 1

4). For Multilayer perceptron, we use a two layer network with hidden
dimension 14*14. For CNN, a 3*3 convolutional layer with 3 channels is adopted, following by two
linear layers(followed by activation and dropout) with dimension 1000 and 100. For Stacked LTSM,
we use 2 layers with 128 dimension Sent140. The word embedding dimension of Sent140 is
300.

Implementation and Environment. Our code is implemented in Pytorch 1.11 Paszke et al. (2019).
We employ SGD as local optimizer, with momentum 0.5, and set number of epochs E to 20 at each
iteration m. Learning rate is tuned to 0.05. We run the model on a single GTX 1080 Ti.

F.3 CNN ON FEMNIST

(a) (b)

Figure 3: Loss and accuracy on Femnist using CNN. Trained with fraction=0.3, straggler=90%.
µ = 0.1, λ = 0.04. Training(testing) accuracy is Upcycled-FL 96.36%(96.21%), FedProx
95.63%(95.74%).

21

Under review as a conference paper at ICLR 2023

Table 3: Training(testing) accuracy of FedAvg, FedProx, Upcycled-FL with 90% straggler:
FedAvg/FedProx/Upcycled-FL are trained over synthetic data for 80/80/160 iterations, and are
trained over Femnist for 150/150/300 iterations. For Upcycled-FL, λ = 0.04, 0.12, 0.21, 0.43 is
set based on the value of µ = 0.1, 0.3, 0.5, 1, respectively. Upcycled-FL significantly outperforms
FedAvg and FedProx.

Dataset Proximal term
Accuracy(%)

FedAvg FedProx Upcycled-FL

Synthetic(iid)

µ = 0.1

97.80%(97.51%)

96.86%(96.34%) 97.88%(97.51%)
µ = 0.3 95.18%(94.88%) 96.31%(96.05%)
µ = 0.5 94.03%(93.70%) 95.40%(95.02%)
µ = 1 92.14%(91.80%) 93.76%(93.70%)

Synthetic(0,0)

µ = 0.1

78.41%(76.27%)

81.66%(79.50%) 84.41%(82.44%)
µ = 0.3 81.73%(79.35%) 83.83%(81.58%)
µ = 0.5 81.55%(79.35%) 82.84%(81.29%)
µ = 1 81.22%(78.85%) 82.41%(80.57%)

Synthetic(0.5,0.5)

µ = 0.1

79.53%(78.97%)

79.63%(79.58%) 81.19%(81.54%)
µ = 0.3 80.31%(80.56%) 82.14%(83.74%)
µ = 0.5 79.55%(79.46%) 82.61%(82.64%)
µ = 1 80.11%(80.20%) 82.74%(82.64%)

Synthetic(1,1)

µ = 0.1

69.70%(71.12%)

79.20%(78.83%) 77.38%(78.64%)
µ = 0.3 74.77%(75.91%) 80.43%(81.47%)
µ = 0.5 75.36%(76.67%) 82.78%(83.07%)
µ = 1 75.69%(76.58%) 82.88%(82.69%)

Femnist

µ = 0.1

20.43%(20.01%)

82.86%(83.73%) 86.37%(85.91%)
µ = 0.3 76.10%(76.66%) 81.94%(82.12%)
µ = 0.5 68.28%(68.87%) 77.77%(77.60%)
µ = 1 28.82%(29.05%) 54.81%(54.00%)

Sent140

µ = 0.1

73.41%(71.13%)

75.29%(72.57%) 78.12%(72.38%)
µ = 0.3 72.86%(71.38%) 74.27%(73.02%)
µ = 0.5 70.18%(69.07%) 72.92%(71.44%)
µ = 1 62.10%(62.13%) 63.91%(64.11%)

22

Under review as a conference paper at ICLR 2023

F.4 CONVERGENCE ON ALL DATASETS

F.4.1 90% STRAGGLER

(a) (b) (c) (d)

Figure 4: Loss and accuracy on synthetic datasets. Trained with fraction=0.3, strag-
gler=90%. (a) Synthetic(iid); (b) Synthetic(0,0); (c) Synthetic(0.5,0.5);
(d) Synthetic(1,1). µ = 0.1, λ = 0.04 for Synthetic(iid), Synthetic(0,0),
µ = 1, λ = 0.42 for Synthetic(0.5,0.5), Synthetic(1,1).

(a) µ = 0.1 (b) µ = 0.3 (c) µ = 0.5

Figure 5: Loss and accuracy on Femnist. Trained with fraction=0.3, straggler=90%. λ =
0.04, 0.12, 0.21 is set based on the value of µ = 0.1, 0.3, 0.5, respectively.

23

Under review as a conference paper at ICLR 2023

(a) µ = 0.1 (b) µ = 0.3

Figure 6: Loss and accuracy on Sent140. Trained with fraction=0.3, straggler=90%. µ = 0.1, λ =
0.04 for (a), µ = 0.3, λ = 0.12 for (b).

F.4.2 30% STRAGGLER

(a) (b) (c) (d)

Figure 7: Loss and accuracy on synthetic datasets. Trained with fraction=0.3, strag-
gler=30%. (a) Synthetic(iid); (b) Synthetic(0,0); (c) Synthetic(0.5,0.5);
(d) Synthetic(1,1). µ = 0.1, λ = 0.04 for Synthetic(iid), Synthetic(0,0),
µ = 1, λ = 0.42 for Synthetic(0.5,0.5), Synthetic(1,1).

F.5 PRIVACY ON ALL DATASETS

F.5.1 OBJECTIVE PERTURBATION

• Convergence

(a) (b) (c) (d)

Figure 8: Objective perturbation on synthetic datasets. Trained with fraction=1, straggler=0%. µ =
0.1, λ = 0.04. (a) Synthetic(iid); (b) Synthetic(0,0); (c) Synthetic(0.5,0.5);
(d) Synthetic(1,1).

• Impact of α

24

Under review as a conference paper at ICLR 2023

Figure 9: Impact of α on Femnist. Trained with fraction=1, straggler=0%. µ = 0.1, λ = 0.04.

F.5.2 OUTPUT PERTURBATION

(a) (b) (c) (d)

Figure 10: Output perturbation on synthetic datasets. Trained with fraction=1, straggler=0%. µ =
0.1, λ = 0.04. (a) Synthetic(iid); (b) Synthetic(0,0); (c) Synthetic(0.5,0.5);
(d) Synthetic(1,1).

(a) (b) (c) (d)

Figure 11: Objective and output perturbation on Femnist and Sent140. (a) shows the result
using objective perturbation on Femnist. The average accuracy of Private Upcycled-FL is
71.04%(70.71%), of Private FedProx is 19.72%(18.82%). (b) shows the result using output
perturbation on Femnist. The average accuracy of Private Upcycled-FL is 79.43%(79.63%),
of Private FedProx is 78.43%(78.36%). (c) shows the result using objective perturbation on
Sent140. The average accuracy of Private Upcycled-FL is 74.36%(72.38%), of Private
FedProx is 69.94%(68.02%). (d) shows the result using output perturbation on Sent140. The
average accuracy of Private Upcycled-FL is 74.42%(72.52%), of Private FedProx is
62.10%(62.13%).All trained with fraction=1, straggler=0%, µ = 0.1, λ = 0.04. For objective
perturbation, δ = 0.001.

25

Under review as a conference paper at ICLR 2023

Table 4: Comparison of Upcycled-FL and FedProx using different learning rates. Trained
with fraction=0.3, straggler=90%. For synthetic datasets, µ = 0.3, λ = 0.12. For Femnist,
µ = 0.1, λ = 0.04.

Setting Synthetic(iid) Synthetic(0,0) Synthetic(0.5,0.5) Synthetic(1,1) Femnist

Upcycled-FL, lr 0.025 95.86%(95.90%) 83.88%(81.51%) 82.04%(83.99%) 81.02%(81.47) 85.56%(85.45%)
FedProx, lr 0.05 95.18%(94.88%) 81.73%(79.35%) 80.31%(80.56%) 74.77%(75.91%) 82.86%(83.73%)

Upcycled-FL, lr 0.05 96.31%(96.05%) 83.82%(81.57%) 82.14%(83.74%) 80.43%(81.47) 86.37%(85.91%)
FedProx, lr 0.1 95.43%(95.17%) 81.92%(79.50%) 74.71%(75.82%) 74.77%(75.91%) 78.45%(78.79%)

F.6 DOUBLE LEARNING RATE OF FEDPROX

(a) learning rate 0.025 for Upcycled-FL and 0.05 for FedProx.

(b) learning rate 0.05 for Upcycled-FL and 0.1 for FedProx.

Figure 12: Comparison of Upcycled-FL and FedProx using different learning rates on synthetic
datasets. Trained with fraction=0.3, straggler=90%. µ = 0.1, λ = 0.04. (a) Synthetic(iid);
(b) Synthetic(0,0); (c) Synthetic(0.5,0.5); (d) Synthetic(1,1). See Table 4 for
accuracy reported.

(a) (b)

Figure 13: Comparison of Upcycled-FL and FedProx using different learning rates on
Femnist. Trained with fraction=0.3, straggler=90%. µ = 0.1, λ = 0.04. See Table 4 for ac-
curacy reported.

26

	Introduction
	Problem Formulation and Preliminaries
	Proposed Algorithm: Upcycled-FL
	Convergence Analysis
	Private Upcycled-FL
	Experiments
	Discussion
	Discussion
	Notation Table
	Lemmas
	Proofs
	Proof of Theorem 5.2
	Experiments
	Details of Datasets
	Details of the Model
	CNN on Femnist
	Convergence on all datasets
	90% Straggler
	30% Straggler

	Privacy on all datasets
	Objective perturbation
	Output perturbation

	Double learning rate of FedProx

