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Abstract
Large Language Models (LLMs) excel in data001
synthesis but can be inaccurate in domain-002
specific tasks, which retrieval-augmented gen-003
eration (RAG) systems address by leveraging004
user-provided data. However, RAGs require005
optimization in both retrieval and generation006
stages, which can affect output quality. In this007
paper, we present LLM-Ref, a writing assis-008
tant tool that aids researchers in writing articles009
from multiple source documents with enhanced010
reference synthesis and handling capabilities.011
Unlike traditional RAG systems that use chunk-012
ing and indexing, our tool retrieves and gener-013
ates content directly from text paragraphs. This014
method facilitates direct reference extraction015
from the generated outputs, a feature unique to016
our tool. Additionally, our tool employs itera-017
tive response generation, effectively managing018
lengthy contexts within the language model’s019
constraints. Compared to baseline RAG-based020
systems, our approach achieves a 3.25× to021
6.26× increase in Ragas score, a comprehen-022
sive metric that provides a holistic view of a023
RAG system’s ability to produce accurate, rel-024
evant, and contextually appropriate responses.025
This improvement shows our method enhances026
the accuracy and contextual relevance of writ-027
ing assistance tools.028

1 Introduction029

Scientific research is fundamental in enriching our030

knowledge base, tackling real-life challenges, and031

contributing to the betterment of human lives. Writ-032

ing clear and precise research articles is crucial033

for disseminating new findings and innovations034

to a broad audience, avoiding misunderstandings035

that could impede progress. Writing research pa-036

pers clearly is challenging due to the need to bal-037

ance complex content with readability, adhere to038

strict formatting, and synthesize coherently. Writ-039

ing tools aid researchers by providing advanced040

grammar and style checks, simplifying data organi-041

zation, and enhancing argument coherence, making042

them essential for crafting impactful, high-quality 043

scientific papers with real-world applications. 044

Large Language Models (LLMs) have signifi- 045

cantly advanced natural language processing (NLP) 046

by improving language understanding, generation, 047

and interaction. While they excel in many NLP 048

tasks, they require substantial computational re- 049

sources and may struggle with specialized tasks 050

without domain-specific knowledge. LLMs often 051

produce inaccurate responses or ‘hallucinations’ 052

when handling tasks beyond their training data. De- 053

veloping an effective writing assistant using LLMs 054

requires fine-tuning with domain-specific data from 055

various fields, a process that demands extensive 056

computational resources and a diverse dataset, mak- 057

ing it costly to create a versatile and effective tool 058

for diverse writing challenges. 059

To mitigate the challenges associated with using 060

LLMs for downstream tasks, Retrieval-Augmented 061

Generation (RAG) (Lewis et al., 2021) systems 062

have gained popularity for their capability to inte- 063

grate external user-specific data. By actively sourc- 064

ing information from knowledge databases during 065

the generation phase, RAG efficiently tackles the 066

challenge of creating content that may be factu- 067

ally inaccurate (Gao et al., 2024). When working 068

with user source data, RAG-based systems usu- 069

ally read the documents in text format which they 070

segment into small chunks. However, determin- 071

ing the appropriate size for chunking presents a 072

challenging problem, as it significantly impacts the 073

quality of the final output generated. To manage 074

the model’s context limitations, RAG systems often 075

only consider the top-k context segments, poten- 076

tially overlooking crucial contextual details. Fur- 077

thermore, due to their data-processing and retrieval 078

approaches, RAG-based systems fall short of pro- 079

viding comprehensive source references needed for 080

composing research articles. 081

In this paper, we present LLM-Ref, a writing 082

assistant tool that helps researchers with enhanced 083
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reference extraction while writing articles based on084

multiple source documents. To address the chal-085

lenges of existing RAG-based tools, our writing086

assistant tool preserves the hierarchical section-087

subsection structure of source documents. Rather088

than dividing texts into chunks and transforming089

them into embeddings, our approach directly uti-090

lizes the paragraphs from research articles to iden-091

tify information relevant to specific queries. To092

efficiently retrieve all the relevant information from093

the source documents, an LLM is utilized due to094

their superior performance in finding semantic rel-095

evance. Efficient utilization of contexts in para-096

graphs allows LLM-Ref extract references within097

the contexts. Furthermore, iterative generation of098

output response allows handling long context and099

finer responses. Efficient retrieval and preserva-100

tion of hierarchical source information enable the101

listing of comprehensive references, ensuring that102

users have access to detailed citation details. The103

proposed LLM-Ref can provide both primary ref-104

erences—the source documents—and secondary105

references, which are listed in the context para-106

graphs of the source documents. To the best of107

our knowledge, no other similar work focuses on108

providing both primary and secondary references.109

Evaluation results show the superior perfor-110

mance of our tool over existing RAG-based sys-111

tems. The proposed LLM-Ref demonstrates signif-112

icant performance improvements over other RAG113

systems, achieving a 5.5× higher Context Rele-114

vancy compared to Basic RAG. Additionally, it115

delivers an impressive increase in the Ragas Score,116

outperforming the best alternative by 3.25×. These117

results highlight that the proposed tool provides118

more accurate, relevant, and contextually precise119

outputs, enhancing the overall utility and reliability120

of the writing assistance it offers.121

2 Background and Related Works122

Large Language Models (LLMs) have propelled123

the landscape of natural language processing124

(NLP), leveraging vast amounts of data to under-125

stand, generate, and interact with human language126

in a deeply nuanced and contextually aware man-127

ner. Models like ChatGPT (OpenAI, 2023; Brown128

et al., 2020) and LLaMa (Touvron et al., 2023)129

have demonstrated exceptional performance across130

a wide range of NLP benchmarks (Bubeck et al.,131

2023; Hendrycks et al., 2021; Srivastava et al.,132

2023), solidifying their role as indispensable tools133

in both everyday applications and cutting-edge re- 134

search. However, the remarkable performance of 135

LLMs incurs huge computational costs to train the 136

several billions of parameters of the model on enor- 137

mous amounts of data (Kaddour et al., 2023). More- 138

over, unless fine-tuned for domain-specific down- 139

stream tasks, the performance of LLMs degrades 140

notably (Kandpal et al., 2023; Gao et al., 2024). 141

Being transformer-based models (Vaswani et al., 142

2023), LLMs have restrictions on how much in- 143

put context they can utilize for response generation 144

which affects the quality of the output. Conversely, 145

LLMs with long context lengths fail to relate the 146

content in the middle. Compounding the chal- 147

lenges, LLMs exhibit ‘hallucinations’ when tasks 148

require up-to-date information that extends beyond 149

their training data (Zhang et al., 2023; Kandpal 150

et al., 2023; Gao et al., 2024). These drawbacks 151

often complicate developing custom downstream 152

applications with LLMs. 153

Retrieval-Augmented Generation (RAG) (Lewis 154

et al., 2021) systems address the challenge of gen- 155

erating potentially factually inaccurate content by 156

actively sourcing information from external knowl- 157

edge databases during the generation phase. The 158

basic workflow of Retrieval-Augmented Genera- 159

tion (RAG) involves several key stages: indexing, 160

retrieval, and generation (Lewis et al., 2021; Ma 161

et al., 2023a). Initially, RAG creates an index from 162

external sources, preparing data through text nor- 163

malization processes like tokenization and stem- 164

ming, enhancing searchability. This index is crucial 165

for the subsequent retrieval stage, where models 166

like BERT (Devlin et al., 2019) enhance accuracy 167

by understanding the semantic nuances of queries. 168

During the final generation phase, the system uses 169

the retrieved information and the initial query to 170

produce relevant and reflective text. This process 171

involves synthesizing the content to ensure it not 172

only aligns with the retrieved data and query in- 173

tent but also introduces potentially new insights, 174

balancing accuracy with creativity. 175

Building on the foundational workflow of RAG, 176

recent advancements in large language models 177

(LLMs) have introduced more sophisticated tech- 178

niques for managing extensive data and enhanc- 179

ing the relevance and accuracy of generated con- 180

tent. MemWalker (Chen et al., 2023) tackles the 181

limitations of context window size by creating a 182

memory tree from segmented text, which improves 183

indexing and data management for long-context 184

querying. This method is complemented by other 185
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innovative approaches like KnowledGPT (Wang186

et al., 2023) and Rewrite-Retrieve-Read (Ma et al.,187

2023b), which refine query manipulation through188

programming and rewriting techniques to better189

capture user intent. Such approaches suffer from190

the complexity of multi-hop queries where error191

propagation affects the response significantly.192

In parallel, PRCA (Yang et al., 2023) employs193

domain-specific abstractive summarization to ex-194

tract crucial, context-rich information, enhancing195

the quality of query responses. FiD-light (Hof-196

stätter et al., 2022) introduces a listwise autore-197

gressive re-ranking method that links generated198

text to source passages, organizing the retrieval199

and generation process to improve coherence and200

relevance. Similarly, RECOMP (Xu et al., 2023)201

compresses information into concise summaries,202

focusing on the most pertinent content for genera-203

tion, thus streamlining the workflow and improv-204

ing output quality. These diverse approaches col-205

lectively advance LLMs’ capabilities in handling206

extensive, complex data, refining the interaction207

between retrieval and generation for more accurate,208

contextually relevant outputs. However, none of209

the approaches address reference handling.210

GPT-based models are highly effective at para-211

phrasing, and grammar correction, and also excel212

in crafting informative paragraphs suitable for re-213

search papers. The latest ChatGPT, GPT-4 can con-214

duct question-answering tasks using user-provided215

data, marking a significant advancement in its216

functionality. Despite supporting multiple user217

files as inputs, ChatGPT does not return the spe-218

cific context utilized in the generation process nor219

does it offer comprehensive references. Tools like,220

txyz.ai1also facilitate academic researchers in un-221

derstanding complex research papers by providing222

summaries and answering questions about a partic-223

ular academic research article. However, this tool224

is designed to interact with only a single file at a225

time compared to a list of research articles that a re-226

searcher typically works with when writing a paper.227

Moreover, it does not generate a comprehensive228

list of references cited within the article’s context.229

Its incapability to handle multiple files restricts its230

use in research writing assistance. On the other231

hand, tools like wisio.app2and jenni.ai3leverage232

generative features akin to ChatGPT for article writ-233

ing. The most comparable to our tool is ChatDoc4,234

which facilitates interaction with multiple source235

documents, providing the source context and ref-236

erences of primary files. However, it falls short in237

offering a comprehensive list of secondary refer- 238

ences found within the context. 239

3 Architecture of Proposed LLM-Ref 240

In this section, we propose LLM-Ref, a writing 241

tool designed to assist researchers by providing 242

enhanced reference synthesis and handling capa- 243

bilities, while synthesizing responses based on the 244

information found within the context of provided 245

research articles. Most RAG-based systems face 246

challenges in the retrieval of adequate and correct 247

input contexts and do not provide source or sec- 248

ondary references when synthesizing results from 249

multiple source documents. In contrast, the pro- 250

posed LLM-Ref extracts a hierarchical flow of con- 251

tents in the source documents and provides proper 252

references with the synthesized output. The overall 253

architecture of the system is depicted in Figure 1. 254

A research article is typically structured into sec- 255

tions and subsections to present and elucidate a 256

particular problem, background information, and 257

analysis. Inside a section or subsection, each para- 258

graph conveys a specific context. As to develop a 259

writing assistant for research articles it is crucial 260

to extract source contents efficiently with proper 261

hierarchy. Given this, the proposed LLM-Ref be- 262

gins with ① Content Extractor by extracting text 263

and references from documents, ensuring the orig- 264

inal organization into paragraphs is kept intact. It 265

stores information about each document, including 266

summaries of paragraphs generated by an LLM, 267

in an offline repository. For any particular query, 268

② Context Retrieval finds and compiles relevant 269

sections of text, augmenting these with guiding 270

questions to assist in synthesizing responses. A 271

specialized component, ③ Iterative Output Syn- 272

thesizer then processes this compiled information, 273

using a language model to generate text based on 274

the given input and predefined context length. In 275

the final step, accurate citations are extracted from 276

the context for the synthesized output by ④ Ref- 277

erence Extractor. All the prompts utilized in our 278

work are given in the Appendix A.5. 279

3.1 Source Content Extraction 280

RAG systems often process source documents as 281

plain text, overlooking section and sub-section- 282

level abstraction. Capturing this abstraction ne- 283

1https://txyz.ai/
2https://wisio.app/
3https://jenni.ai/
4https://chatdoc.doc/
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Figure 1: Architecture of the proposed LLM-Ref. ① Content Extractor extracts texts and references, preserving the
paragraph hierarchy of each article. Each article metadata along with respective paragraph summaries extracted from
LLM is stored offline. For a given query, in ② Context Retrieval, relevant paragraphs are extracted and combined
with prompts to generate answers. The ③ Iterative Output Synthesizer feeds the combined prompt and context to
LLM for output text generation based on context length limit. Finally, the ④ Reference Extractor extracts respective
references for output text from relevant paragraphs.

cessitates machine learning-based text classifica-284

tion and segmentation, relying on domain-specific285

research article datasets. Although identifying sec-286

tions or sub-sections is challenging, the consistent287

styles and formats of research articles reveal docu-288

ment hierarchy. Thus, we leverage text formatting289

to understand a source document’s abstraction.290

Our text extractor, Content Extractor, reads each291

PDF file and extracts its contents while maintain-292

ing the abstraction of the content flow, utilizing the293

Python library pdfminer. This library offers fine-294

grained access to most content objects, allowing295

the Content Extractor to understand the research296

writing template. First, Content Extractor extracts297

the page layout and font-related statistics from all298

the pages in a document to identify article format-299

ting details, such as the number of columns and300

font attributes (name, size, and style). Section and301

subsection labels are identified by searching for302

common keywords like ‘Introduction’, ‘Abstract’,303

‘References’, ‘2.1’, ‘3.1’, ‘4.1’, ‘a.’, ‘(a)’, etc. How-304

ever, keyword searching alone is not sufficient to305

accurately position and extract sections or subsec-306

tions due to multiple possible instances of same307

section or subsection name. For precise position-308

ing and extraction, we verify the position and text309

details of each search item against the formatting310

details initially acquired. Once the sections and311

subsections labels are accurately extracted, the text312

organized in paragraphs is extracted. To identify313

paragraph separation, we leverage indentation, line314

spacing, and column information. Thus, we store315

paragraphs within each section and subsection, pre-316

serving the correct abstraction. 317

In general, RAGs process and store documents 318

by dividing them into chunks and applying em- 319

beddings. These embeddings are indexed and later 320

used to retrieve relevant chunks through a similarity 321

operation that compares the input chunks with the 322

query. On the contrary, in our approach, we store 323

source information offline in existing paragraphs. 324

To retrieve relevant context, we additionally store 325

concise and informative summaries of each para- 326

graph which are used in the retrieval stage. How- 327

ever, we utilize corresponding original paragraphs 328

for output generation and reference extraction. 329

3.2 Context Retrieval 330

In conventional RAG systems, optimal text chunk- 331

ing is crucial for converting text chunks into vec- 332

tor embeddings for similarity operations and re- 333

trieval, ensuring accuracy and relevance despite lan- 334

guage model context limitations. Optimal chunk- 335

ing, which depends on content type, embedding 336

model specs, query complexity, and application 337

use, is important as overly large or small chunks 338

can lead to sub-optimal results. Fine-tuning embed- 339

ding models for specific tasks is essential to align 340

with user queries and content relevance, as generic 341

models may not meet domain-specific needs. 342

To mitigate the existing challenges in the re- 343

trieval stage, we perform contextual similarity be- 344

tween the query and the summarized paragraphs of 345

the source documents using an LLM. The prompt 346

consists of the user query and a paragraph from a 347

source document. Once the relevant paragraphs are 348
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identified using the corresponding summaries, the349

original paragraphs are selected and fed as context350

for the output generation step. In our experiments,351

LLM-based contextual similarity performs better352

than embedding-based approaches due to their su-353

perior performance in understanding underlying354

context. Although overlapping or sliding window-355

based large chunking positively affects retrieving356

contexts, LLM-based contextual similarity on para-357

graphs has a better outcome on output generation358

and reference extraction. Using paragraphs as con-359

text can be challenging due to the LLM’s context360

length limitations, a problem we mitigate with our361

iterative output generation step should it arise.362

3.3 Output Generation363

In the output generation step, the user query and the364

relevant context paragraphs are combined and fed365

to the LLM. Usually, it is observed that research366

paper-related queries tend to have many context367

paragraphs which often do not fit within the context368

limit of the LLM. Moreover, LLM suffers from the369

‘Lost in the Middle’ phenomenon when the context370

is too long. To address these issues, the Iterative371

Output Synthesizer is capable of synthesizing re-372

sponses iteratively by processing input paragraphs373

and ensuring they fit within the context limit of374

the language model. Initially, the unit feeds the375

first paragraph (as context) along with the query376

to an LLM to generate output. The response from377

the LLM is then continuously updated with the378

rest of the relevant paragraphs. While the system379

generates output through continuous updates, it en-380

forces the context limit by monitoring the size of381

the query, the paragraphs, and the response.382

3.4 Reference Extraction383

Despite their popularity, RAG-based systems fall384

short in offering citations. While ChatGPT-4 now385

has the capability to process user data, it does386

not provide definite necessary contexts or refer-387

ences that are essential for academic research. In388

our tool, we extract the references from input con-389

text paragraphs. Our system adeptly identifies the390

source documents, referred to as ‘primary refer-391

ences’, along with the citations found within the392

source context paragraphs, which we term ‘sec-393

ondary references’. During the generation phase,394

LLMs omit citation notations, posing challenges in395

reference extraction. So our system adopts two pre-396

sentations of references: Coarse-grain references397

for broader citation identification and Fine-grain398

references for more detailed citation tracking. Most 399

research papers use either ‘enumerated’ (e.g., ‘[1]’, 400

‘[2-5]’, ‘[3,9]’) or ‘named’ (e.g., ‘(Author name et 401

al., 2024)’) reference notations and our reference 402

extractor is adept at recognizing both types within 403

the contexts. Our reference extraction method can 404

integrate with existing RAGs but requires optimiza- 405

tion during the chunking phase. 406

3.4.1 Coarse-grain References 407

In coarse-grain reference extraction, the Refer- 408

ence Extractor catalogs all the references identi- 409

fied within the contexts. As contexts are extracted 410

as paragraphs containing information relevant to 411

the queries, this approach offers a comprehensive 412

overview of a specific issue. The tool enumer- 413

ates all the source papers and secondary references 414

found within these context paragraphs, thereby fur- 415

nishing users with extensive details for their assess- 416

ment and comprehension. 417

3.4.2 Fine-grain References 418

In fine-grain reference extraction, the Reference 419

Extractor meticulously identifies the context lines 420

most relevant to each line in the output text with 421

the help of a LLM. This method of pinpointing the 422

most pertinent context lines enables us to discover 423

more specific references, thus achieving greater 424

precision in our reference extraction process. We 425

determine the highest relevance between response 426

lines and source context lines using an LLM. By 427

identifying the most relevant source contexts, we 428

can extract primary and secondary references with 429

high precision. This process facilitates the rapid 430

compilation of synthesized outputs from a multi- 431

tude of source documents. 432

4 Experimental Setup 433

4.1 Evaluating RAG Approaches 434

Our evaluation compares LLM-Ref with three 435

other RAG implementations: Basic RAG (Lewis 436

et al., 2021), Parent-Document Retriever (PDR) 437

RAG (LangChain, 2023c), and Ensemble 438

RAG (LangChain, 2023a), highlighting their 439

methodologies and applications. In all of our 440

experiments, the GPT-3.5 16k model was utilized 441

at all stages of RAG systems. 442

The Basic RAG approach integrates a retriever 443

and a language model to answer questions based 444

on retrieved documents. It involves splitting docu- 445

ments into chunks, embedding them with models, 446

and storing them in a vector database. The retriever 447
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fetches relevant chunks based on the query, which448

the language model uses to generate accurate re-449

sponses.450

The PDR RAG enhances retrieval precision451

by structuring documents into parent-child re-452

lationships. Larger parent chunks and smaller453

child chunks are embedded and stored in a vec-454

tor database and in-memory store. A ParentDocu-455

mentRetriever fetches relevant chunks, providing456

refined context to the language model, ensuring457

more precise context and accurate responses.458

The Ensemble RAG combines multiple retriev-459

ers to leverage their strengths, resulting in a more460

robust retrieval system. It uses different retrievers,461

such as BM25 for keyword matching and vector-462

based retrievers for semantic similarity. An En-463

sembleRetriever balances their contributions, using464

the aggregated context for the language model to465

generate responses, enhancing retrieval robustness466

and accuracy for complex queries.467

4.2 Dataset468

The evaluation of systems similar to RAG neces-469

sitates human-annotated ground truth answers for470

a variety of questions, a requirement that proves471

difficult to fulfill across multiple domains. To ad-472

dress this challenge, Ragas (Es et al., 2023) and473

ARES (Saad-Falcon et al., 2023) employ datasets474

generated by ChatGPT as ground truth from spe-475

cific documents. We follow this approach by lever-476

aging GPT-4, simulating an advanced researcher,477

to create research question-answer-context pairs478

based on the provided source documents. These479

generated question-answer-context pairs serve as a480

benchmark to assess the relevance and accuracy of481

contexts retrieved and outputs generated by RAG,482

facilitating a comprehensive analysis of evaluation483

metrics in conjunction with Ragas.484

To evaluate our system on domain-specific tasks,485

we curated a diverse arXiv dataset with question-486

answer-context pairs from Physics, Mathematics,487

Computer Science, Quantitative Finance, Electrical488

Engineering and Systems Science, and Economics.489

The dataset contains 955 question-answer-context490

pairs derived from multiple documents within the491

same subject area. By combining information from492

various sources, we aim to capture a broader and493

more comprehensive understanding of each sub-494

ject. During the evaluation, source documents cor-495

responding to the question-answer-context pairs496

are provided to the RAG systems.497

4.3 Evaluation Metrics 498

We employ the Ragas (Es et al., 2023) frame- 499

work to evaluate the performance of the RAG sys- 500

tems. Faithfulness ensures the generated response 501

is based on the provided input context, avoiding 502

false or misleading information (‘hallucinations’). 503

It is crucial for transparency and accuracy, ensuring 504

the context serves as solid evidence for the answer. 505

Answer Relevance measures how well the gener- 506

ated response directly addresses the question, ensur- 507

ing responses are on-topic and accurately meet the 508

query’s requirements. Answer Similarity measures 509

how closely the generated answer aligns with the 510

ground truth in both content and intent, reflecting 511

the RAG system’s understanding of the concepts 512

and context (Es et al., 2023). 513

Context Relevance ensures the retrieved context 514

is precise and minimizes irrelevant content, which 515

is crucial due to the costs and inefficiencies asso- 516

ciated with processing lengthy passages through 517

LLMs, especially when key information is buried 518

in the middle (Liu et al., 2023). Context Precision 519

gauges the system’s ability to prioritize relevant 520

items, ensuring that the most pertinent information 521

is presented first and distinguishing it from irrel- 522

evant data. Context Recall measures the model’s 523

ability to retrieve all relevant information, balanc- 524

ing true positives against false negatives, to ensure 525

no key details are missed. (Es et al., 2023). 526

The Ragas score combines key metrics: faith- 527

fulness, answer relevancy, context relevancy, and 528

context recall (LangChain, 2023b). By integrating 529

these metrics, the Ragas score provides a holistic 530

view of a RAG system’s ability to produce accurate, 531

relevant, and contextually appropriate responses, 532

guiding improvements for enhanced performance. 533

A comprehensive explanation of the calculations is 534

provided in the Appendix A.6. 535

5 Results and Analysis 536

5.1 Metric Analysis 537

We first present the performance metrics of LLM- 538

Ref compared to Basic RAG, PDR RAG, and Ens. 539

RAG using GPT-3.5 as the LLM in Table 1. LLM- 540

Ref significantly outperforms six of the seven met- 541

rics, performs similarly in the remaining one, and 542

achieves an overall superior performance in the 543

Ragas Score. 544

During evaluation with the Ragas framework, 545

LLM-Ref consistently outperforms the other meth- 546

ods across most metrics, demonstrating its superior 547
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Name Answer
Relevancy

Answer
Correctness

Answer
Similarity

Context
Relevancy

Context
Precision

Context
Recall

Faith
fulness

Ragas
Score

Basic RAG 0.598 0.448 0.892 0.049 0.857 0.697 0.547 0.158
PDR RAG 0.575 0.458 0.896 0.023 0.852 0.716 0.622 0.082
Ens. RAG 0.613 0.459 0.905 0.043 0.851 0.717 0.600 0.143
LLM-Ref 0.948 0.568 0.942 0.268 0.976 0.705 0.629 0.513

Table 1: Metric evaluation result comparison of LLM-Ref with Basic RAG, Parent Document Retriever RAG, and
Ensemble Retrieval RAG, using GPT-3.5 as the LLM. Higher values indicate better performance. The highest scores
are highlighted in bold.

performance in terms of accuracy and relevance.548

It achieves an Answer Relevancy score of 0.948,549

substantially higher than Basic RAG (0.598), PDR550

RAG (0.575), and Ens. RAG (0.613), indicating551

its effectiveness in providing pertinent and aligned552

answers to the questions. Its Answer Correctness553

is 0.568, surpassing others ranging from 0.448 to554

0.459, demonstrating superior accuracy. LLM-Ref555

also attains the highest Answer Similarity score556

of 0.942 compared to others between 0.892 and557

0.905. These metrics based on the final responses558

demonstrate the superior efficacy of LLM-Ref in559

generating answers that are well-aligned with the560

queries and underlying intent. For Context Rele-561

vancy and Precision, LLM-Ref scores 0.268 and562

0.976 respectively, are significantly higher than563

the other methods, which indicates its exceptional564

ability to retrieve and utilize relevant information.565

While Context Recall scores are similar across all566

methods, LLM-Ref achieves the highest Faithful-567

ness score at 0.629, showing that its answers are568

well-grounded in the provided context. The com-569

posite Ragas Score for LLM-Ref is 0.513, notably570

higher than Basic RAG (0.158), PDR RAG (0.082),571

and Ens. RAG (0.143), highlighting its overall ef-572

fectiveness in synthesizing responses for research573

articles. LLM-Ref outperforms other RAG systems574

by retrieving more relevant information, providing575

precise context, and delivering accurate, consistent,576

and high-quality responses.577

5.2 Performance across LLMs578

The proposed LLM-Ref method significantly out-579

performs traditional RAG approaches in terms of580

accuracy, as demonstrated by the Ragas scores in581

Table 2. Across various large language models582

(LLMs)—GPT-3.5, GPT-4o-mini, Llama 3.1-405b,583

and Claude 3.5 Sonnet—LLM-Ref consistently584

achieves the highest scores. For instance, with585

GPT-4o-mini, LLM-Ref records a Ragas score of586

0.413, substantially higher than Basic RAG (0.138),587

PDR RAG (0.112), and Ens. RAG (0.096). Similar 588

trends are observed across all LLMs, with LLM- 589

Ref maintaining a lead of over 2.5× compared to 590

baseline methods. 591

These results underscore LLM-Ref’s ability to 592

generate accurate, contextually relevant outputs 593

essential for research article writing. By integrat- 594

ing paragraph summarization, context extraction, 595

and reference alignment, it addresses the limita- 596

tions of standard RAG systems reliant solely on 597

embeddings. The improved accuracy justifies its 598

higher computational cost, proving its superiority 599

for precision-critical applications. 600

Method GPT
3.5

GPT
4o-mini

Llama
3.1-405b

Claude
3.5 Sonnet

Basic RAG 0.143 0.138 0.114 0.142
PDR RAG 0.052 0.112 0.079 0.055
Ens. RAG 0.097 0.096 0.105 0.096
LLM-Ref 0.389 0.413 0.300 0.422

Table 2: Ragas score comparison for different RAG
approaches across various LLMs.

5.3 Computational Cost 601

LLM-Ref prioritizes accuracy in research article 602

writing, resulting in higher computational costs 603

compared to traditional Retrieval-Augmented Gen- 604

eration (RAG) systems. These costs are primarily 605

attributed to four stages: content extraction, context 606

retrieval, response generation, and reference vali- 607

dation. Each step involves calls to large language 608

models (LLMs), with overhead during content sum- 609

marization and reference extraction, both of which 610

are unique to our approach. While this increases 611

input and output tokens due to summarization and 612

similarity search, it ensures enhanced precision and 613

relevance in the generated outputs. 614

Table 3 highlights the comparative computa- 615

tional expenses and token usage for LLM-Ref and 616

three RAG systems (Basic, PDR, and Ens. RAG). 617

LLM-Ref requires more input and output tokens, 618

7



Query: Pros and Cons of Discrete vs Cascaded Systems

Answer: Discrete units in direct speech-to-speech translation (S2ST) systems offer several advantages over cascaded systems
[1-8]. Firstly, they have lower computational costs and inference latency because they require fewer decoding steps [1, 8,
10-12]. This makes them more efficient and faster in translating speech [1-3, 7, 8, 10-12]. Additionally, direct S2ST is a
natural approach for languages that do not have a writing system, as it eliminates the need for intermediate text representation.
Another benefit of direct S2ST systems with discrete units is their flexibility in training. They can be trained with or without
text transcripts, making them suitable for both written and unwritten languages [1, 6, 7, 9, 13]. . . .

References:
[1] A. Lee et al., “Direct speech-to-speech translation with discrete units,” arXiv, 2021.
[2] A. Lee et al., “Textless speech-to-speech translation on real data,” arXiv, 2021.
[3] S. Popuri et al., “Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmen-

tation,” arXiv, 2022.
[4] Ye Jia et al., Direct speech-to-speech translation with a sequence-to-sequence model. Proc. Interspeech 2019.

. . .
[13] A. Tjandra et al., “Speech-to-speech translation between untranscribed unknown languages.” In 2019 IEEE Automatic

Speech Recognition and Understanding Workshop (ASRU), 2019.

Figure 2: Fine-grained reference samples generated by LLM-Ref when GPT-3.5 is used as the LLM.

Expense
($)

Input
Tokens

Output
Tokens

LLM-Ref 10.07 62,798,321 1,178,650
Basic RAG 0.3 2,050,930 80,451
PDR RAG 0.24 1,973,782 66,592
Ens. RAG 0.47 3,014,645 89,835

Table 3: Comparison of Expense, Input Tokens, and
Output Tokens for Multiple and Single Source Docu-
ments when GPT-4o-mini is used as the LLM.

resulting in a higher cost ($10.07 for 62.8 million619

input tokens and 1.18 million output tokens). In620

contrast, Basic RAG incurs $0.3 for 2.05 million621

input tokens and 80,451 output tokens. Despite622

the increased computational demands, LLM-Ref623

retrieves fewer contexts and processes tokens more624

effectively, contributing to its superior performance625

in tasks requiring high precision. The computa-626

tional cost of each LLM-Ref stage is detailed in627

Appendix A.3.2.628

Although more expensive than other RAG sys-629

tems, this cost remains minimal relative to the value630

of enhanced accuracy in research workflows. The631

additional expenses are justified by the system’s632

ability to produce precise and contextually relevant633

responses, a critical advantage in academic writ-634

ing. Additional analyses using different LLMs are635

detailed in Appendices A.3 and A.4.636

5.4 Reference Extraction637

To demonstrate the effective functionality of LLM-638

Ref, we present a sample of the fine-grained ref-639

erences in Figure 2. For a specific query, LLM-640

Ref successfully generates fine-grained references,641

which include both enumerated references such as642

‘[11, 12]’ and named references such as ‘(Jia et 643

al., 2021)’. This capability highlights the system’s 644

ability to seamlessly integrate both numerical and 645

textual citation styles, ensuring compatibility with 646

diverse referencing standards used across academic 647

disciplines. For improved clarity and presentation, 648

we organize all references in an enumerated format 649

in the figure. 650

In this example, we utilize three primary source 651

documents to generate the response. References 652

‘[1]’, ‘[2]’, and ‘[3]’ correspond to the primary 653

sources directly informing the response. Addition- 654

ally, the secondary references, ranging from ‘[4]’ 655

to ‘[13]’, are citations found within the primary 656

sources themselves. By integrating primary and 657

secondary references, LLM-Ref ensures a trace- 658

able foundation for responses and emphasizes its 659

use-case for in-depth source synthesis. 660

More examples are presented in Appendix A.7 661

that showcase LLM-Ref’s ability to consistently 662

identify and organize fine-grained references across 663

LLM architectures and its model-agnostic nature. 664

6 Conclusion 665

We present a novel writing assistant that can assist 666

researchers in the extraction of relevant references 667

while synthesizing information from source doc- 668

uments. The proposed system can alleviate the 669

challenging optimization required in RAGs and 670

generate output responses effectively. Moreover, 671

our system can list primary and secondary refer- 672

ences to assist researchers where in paying more 673

attention to literature investigation. We intend to 674

explore the opportunities of offline open-source 675

LLMs to build a more flexible system in the future. 676
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7 Limitations and Ethical Considerations677

Our contribution to this work begins with the678

PDF file reading component, the Content Extrac-679

tor, which is designed to handle the most common680

template styles of research articles. The extraction681

process is based on various heuristics; however, our682

Content Extractor may not efficiently handle all683

template styles. Extracting references, particularly684

reference lists, presents challenges that limit the685

support capabilities of LLM-Ref. We extract ref-686

erence lists and store them with their identifiers in687

the texts. Our system has been tested with various688

research paper templates, including IEEE, ACL,689

and many arXiv formats. It has demonstrated pro-690

ficiency in successfully extracting context, espe-691

cially when reference styles are enumerated (e.g.,692

[1], [2], [4, 28]) or named (author et al., year).693

We developed this writing assistant tool primarily694

to guide researchers in exploring different aspects695

of research, rather than to enable the writing of696

a research article overnight without in-depth in-697

vestigation. Both our coarse-grain and fine-grain698

reference extraction methods can guide researchers699

on where to focus their efforts more intensively.700

In this paper, we present the evaluation of our701

system using GPT models. Additionally, we apply702

our writing assistant tool to the Llama and Claude703

models, demonstrating similar results, which un-704

derscores the efficacy of our approach across a705

broad range of LLMs. We plan to extend our com-706

prehensive evaluation of the tool across diverse707

domain-specific research articles, utilizing open-708

source Large Language Models (LLMs). Given709

that LLM-Ref leverages the LLM API, mitigat-710

ing model bias poses a significant challenge. To711

minimize potential bias in responses, several mea-712

sures have been implemented. Specifically, when713

generating responses to a query, only the contexts714

identified within the relevant uploaded PDF files715

are used. Furthermore, the ‘temperature’ parameter716

is set to zero, thereby eliminating randomness in717

the generation process. This approach ensures that718

the generated responses are closely aligned with719

the input contexts and maintain a high degree of720

specificity.721
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A.1 Retrieval-Augmented Generation (RAG) 866

Basic Retrieval-Augmented Generation (RAG) is 867

an advanced technique that combines information 868

retrieval with text generation, making it particularly 869

effective when generating responses that require 870

specific contextual information from an external 871

knowledge base. The process is typically divided 872

into three main stages: Ingestion, retrieval, and 873

response generation. 874

Ingestion: Once an input file is read, the first 875

stage in RAG involves chunking and embedding, 876

where source texts are segmented into smaller, man- 877

ageable units, which are then converted into embed- 878

ding vectors for retrieval. Smaller chunks gener- 879

ally enhance query precision and relevance, while 880

larger chunks may introduce noise, reducing ac- 881

curacy. Effective chunk size management is cru- 882

cial for balancing comprehensiveness and precision. 883

Embedding transforms both the user’s query and 884

knowledge base documents into comparable for- 885

mats, enabling the retrieval of the most relevant 886

information. 887
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Retrieval: In the next stage, the relevant informa-888

tion is retrieved from a vector knowledge base such889

as FAISS. The retriever searches this vector store to890

find the most relevant chunks of information based891

on the user’s query. This stage is crucial for en-892

suring that the model has access to the necessary893

context for generating accurate and contextually894

relevant responses.895

Response Generation: In the final stage, the re-896

trieved context is combined with the user’s query897

and fed into the LLM, such as GPT-4, to generate898

a coherent and relevant response. The model uses899

the context provided by the retrieved documents to900

produce answers that are informed by the most per-901

tinent information available. This step highlights902

the synergy between retrieval and generation, en-903

suring that the output is not only accurate but also904

contextually grounded.905

Each stage of the RAG process is designed to906

leverage the strengths of both retrieval and genera-907

tion, enabling the creation of responses that are in-908

formed by specific and relevant external knowledge.909

By combining these components, RAG systems can910

significantly enhance the quality and relevance of911

generated content, making them a powerful tool912

for applications requiring precise and contextually913

aware responses.914

A.2 Our System: LLM-Ref915

In contrast to traditional RAG-based systems, our916

approach emphasizes preserving the hierarchical917

structure of source data in research writing, en-918

abling the sequential retrieval of relevant contexts919

and references. During the ingestion stage, our920

method eliminates the need for a vector store, al-921

lowing extracted source information to be stored922

either online or offline, thereby enhancing flexibil-923

ity. In the retrieval stage, we leverage large lan-924

guage models (LLMs) to identify the most rele-925

vant context paragraphs corresponding to the user926

query. This approach is particularly well-suited for927

research article writing, where our findings indicate928

that each paragraph typically presents a coherent929

argument, sufficient for establishing contextual sim-930

ilarity. Embedding-based approaches like FAISS931

rely on pre-computed vector similarities for simi-932

larity search and retrieval, which can lead to a loss933

of subtle contextual nuances present in the data. In934

contrast, large language models (LLMs) dynami-935

cally process and interpret text to capture complex,936

nuanced relationships within the text. Finally, in937

the generation stage, our system iteratively pro-938

duces and refines the response, ensuring accuracy 939

and relevance. While our approach invokes the 940

LLM multiple times across various stages, the as- 941

sociated financial costs are minimal in the context 942

of overall research expenditures. 943

Extracting both primary and secondary refer- 944

ences from source documents requires the LLM 945

to be deterministic. In research articles, the ability 946

to extract contexts from exact paragraphs is crucial. 947

Our experiments with ChatGPT models, including 948

GPT-3.5 and GPT-4, indicate that while these mod- 949

els can refer to uploaded source documents, their 950

generative nature prevents them from providing ex- 951

act reproductions of contexts or references from 952

the original sources. As a result, it is challenging 953

to precisely identify specific references or corre- 954

sponding contexts in the original documents based 955

on ChatGPT’s responses. 956

A.3 Result and Analysis of GPT-4o mini 957

A.3.1 Metric Analysis 958

Table 4 presents a comparison of performance met- 959

rics for LLM-Ref, Basic RAG, PDR RAG, and 960

Ens. RAG using GPT-4o-mini as the LLM, in tasks 961

involving both multiple and single-source docu- 962

ments. 963

In tasks involving multiple source documents, 964

LLM-Ref consistently outperforms the other meth- 965

ods across several key metrics. It achieves the 966

highest Answer Relevancy score of 0.966, sig- 967

nificantly higher than Basic RAG (0.675), PDR 968

RAG (0.557), and Ens. RAG (0.709), indicating 969

its superior capability to provide relevant answers. 970

Additionally, LLM-Ref’s Answer Correctness is 971

0.546, demonstrating improved accuracy over Ba- 972

sic RAG (0.517) and PDR RAG (0.465). With 973

the highest Answer Similarity of 0.947, LLM-Ref 974

also demonstrates its ability to generate answers 975

closely aligned with the ground truth, outperform- 976

ing others in the range of 0.861 to 0.899. In terms 977

of Context Relevancy, LLM-Ref shows significant 978

improvement with a score of 0.246, outperform- 979

ing all other methods, highlighting its ability to 980

retrieve pertinent information. Although Context 981

Recall is slightly lower than Ens. RAG and Ba- 982

sic RAG, the high Context Precision of 0.980 and 983

Faithfulness score of 0.569 emphasize LLM-Ref’s 984

overall reliability in multi-document tasks. Its Ra- 985

gas score of 0.486 further reinforces its robust per- 986

formance, well beyond Basic RAG (0.159), PDR 987

RAG (0.116), and Ens. RAG (0.129). 988
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Name Answer
Relevancy

Answer
Correctness

Answer
Similarity

Context
Relevancy

Context
Precision

Context
Recall

Faith
fulness

Ragas
Score

Basic RAG 0.675 0.517 0.890 0.049 0.846 0.698 0.582 0.159
PDR RAG 0.557 0.465 0.861 0.034 0.828 0.587 0.590 0.116
Ens. RAG 0.709 0.531 0.899 0.037 0.851 0.726 0.615 0.129
LLM-Ref 0.966 0.546 0.947 0.246 0.980 0.732 0.569 0.486

Table 4: Metric Evaluation result comparison of LLM-Ref with Basic RAG, Parent Document Retriever RAG, and
Ensemble Retrieval RAG, using GPT 4o-mini as the LLM. A higher value of a metric indicates better performance.

In single-source document tasks, LLM-Ref main-989

tains strong results, particularly in Answer Rele-990

vancy, where it scores 0.952, outpacing other meth-991

ods such as Basic RAG (0.742) and Ens. RAG992

(0.816). Its Answer Correctness also stands out at993

0.636, higher than Ens. RAG (0.591) and Basic994

RAG (0.556). LLM-Ref’s Answer Similarity re-995

mains competitive at 0.932, slightly lower than Ens.996

RAG (0.920), but still higher than others. While its997

Context Precision is lower than Ens. RAG (0.961998

vs. 0.998), it continues to demonstrate a strong999

Context Relevancy score of 0.267, significantly1000

surpassing other methods. However, LLM-Ref’s1001

Context Recall decreases to 0.734, lower than Ba-1002

sic RAG (0.768) and Ens. RAG (0.843), which1003

suggests that the model retrieves less relevant con-1004

text in single-document settings. The Faithfulness1005

score for LLM-Ref is 0.530, lower than Basic RAG1006

(0.625) and Ens. RAG (0.738), indicating room for1007

improvement in grounding answers in the provided1008

context. Nonetheless, LLM-Ref achieves a strong1009

Ragas score of 0.497, significantly outperforming1010

Basic RAG (0.158) and Ens. RAG (0.157), show-1011

casing its consistent ability to generate accurate and1012

relevant answers in both single and multi-document1013

tasks.1014

The performance variation in single-source tasks1015

may be attributed to LLM-Ref’s optimization for1016

multi-document retrieval, where it excels in ag-1017

gregating and leveraging context across multiple1018

sources. In single-source scenarios, it appears that1019

the model may not fully optimize its context re-1020

trieval strategies, leading to slightly lower metrics1021

for Context Recall and Faithfulness.1022

A.3.2 Computation Costs1023

The proposed method is meticulously designed1024

to support the writing of research articles, a task1025

that requires a high degree of precision. Com-1026

pared to traditional Retrieval-Augmented Gener-1027

ation (RAG) systems, our approach incurs higher1028

computational costs due to its focus on achieving1029

enhanced accuracy. However, leveraging open- 1030

source large language models (LLMs) fine-tuned 1031

for specific tasks can help mitigate these expenses. 1032

The computational overhead of our system, in 1033

contrast to traditional RAG systems, can be articu- 1034

lated as follows: 1035

1. Content Extraction: The system generates 1036

summaries for each paragraph extracted from 1037

the documents, storing these summaries for 1038

subsequent context extraction. The number of 1039

LLM calls made during this step is equal to 1040

the number of paragraphs, denoted as N . Tra- 1041

ditional RAG systems typically do not invoke 1042

LLMs at this stage, instead generating embed- 1043

dings and storing them in a vector index. 1044

2. Context Extraction: During this phase, the 1045

LLM is invoked N times to find relevant 1046

paragraphs to the query, utilizing the para- 1047

graph summaries to minimize the token count, 1048

thereby reducing the computational load. 1049

3. Generation: The generation of responses is 1050

conducted iteratively based on the retrieved 1051

contexts. The number of LLM calls in this 1052

phase depends on the number of contexts re- 1053

trieved, denoted as c. Our experiments in- 1054

dicate that LLM-Ref retrieves approximately 1055

half the number of contexts compared to tra- 1056

ditional RAG systems when all the relevant 1057

contexts are chosen, leading to reduced com- 1058

putational demands. 1059

4. Reference Extraction: This step is unique 1060

to our system and involves additional LLM 1061

calls, denoted as p × q, where p represents 1062

the number of lines in the generated response 1063

and q corresponds to the lines present in the 1064

context. This process ensures the precision 1065

and relevance of the extracted references. 1066

LLM calls in content extraction are executed 1067

only once during the initial reading of the docu- 1068

ment and storage of summaries. However, each 1069
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query necessitates LLM calls in context extraction,1070

answer generation, and reference extraction.1071

Therefore, each query requires (N + c + p × q)1072

LLM calls. Assuming we have N = 50 paragraphs,1073

c = 8 contexts, p = 7 generated lines, and q = 81074

lines per context, the total is 56 lines. Additionally,1075

each paragraph contains 220 tokens on average,1076

each line approximately 25 tokens, and prompts1077

contain 60 tokens.1078

N = 50× (220 + 60)1079

= 14, 000 tokens1080

c = 8× (7× 25 + 60) + 10001081

= 2, 880 tokens1082

p× q = 7× 8× 71083

= 392LLM calls1084

Total tokens = 14, 000 + 2, 8801085

+ 392× (25 + 25 + 15)1086

= 42, 360 tokens1087

Thus, the total input tokens amount to 42,360 to-1088

kens.1089

During both content extraction and reference ex-1090

traction, the LLM returns only ‘True’ or ‘False’ for1091

comparison, producing just one token. However,1092

during generation, as it iteratively generates and1093

refines the response, we estimate approximately1094

1,500 tokens are generated.1095

Output tokens = 50 + 1500 + 392 = 1942 tokens.1096

If we use GPT-4o-mini, which costs $0.150 per 1M1097

input tokens and $0.600 per 1M output tokens as1098

of October 2024, the cost per query (CpQ) in USD1099

is calculated as:1100

CpQ =
0.150

106
×42360+

0.600

106
×1942 ≈ 0.00751101

Considering the funds typically allocated to re-1102

search, the cost of using our proposed LLM-Ref1103

for article writing is minimal. Table 3 provides1104

a detailed account of the actual expenses associ-1105

ated with conducting the experiments outlined in1106

Table 4.1107

In conclusion, while our system incurs higher com-1108

putational costs, such costs are common in similar1109

applications. Evaluation frameworks like Ragas1110

and ARES, which rely on LLMs to assess similar-1111

ities, incur similar expenses. In return, LLM-Ref1112

offers enhanced accuracy and precision in content1113

generation, crucial for research article writing.1114

A.4 Ablation Study 1115

A.4.1 Performance Analysis on Different 1116

LLMs 1117

Table 5 compares the performance metrics of LLM- 1118

Ref against Basic RAG, PDR RAG, and Ens. RAG 1119

across various language models, including GPT- 1120

3.5, GPT-4o-mini, Llama 3.1-405b, and Claude 1121

3.5 Sonnet. In this experiment, we focus exclu- 1122

sively on the computer science subset of the dataset. 1123

As before, a higher value across the metrics signi- 1124

fies superior performance. The results demonstrate 1125

LLM-Ref’s consistent advantage over other meth- 1126

ods, particularly in providing more relevant, cor- 1127

rect, and similar answers. 1128

In the GPT-3.5 evaluation, LLM-Ref achieves 1129

the highest Answer Relevancy score of 0.960, 1130

markedly higher than Basic RAG (0.545), PDR 1131

RAG (0.619), and Ens. RAG (0.629). It also 1132

leads in Answer Correctness with 0.555, surpass- 1133

ing the others’ range of 0.412 to 0.471. With an 1134

Answer Similarity of 0.950, LLM-Ref maintains 1135

a strong advantage over its peers, which hover be- 1136

tween 0.899 and 0.936. These metrics confirm 1137

LLM-Ref’s superior capability to generate answers 1138

that are relevant and aligned with the provided con- 1139

text. Notably, while its Context Relevancy (0.157) 1140

is significantly higher than the others, it still lags be- 1141

hind in Context Recall, with scores slightly below 1142

those of Basic RAG (0.676 vs 0.665), but it com- 1143

pensates with a strong Faithfulness score of 0.721. 1144

The composite Ragas Score of 0.389 further high- 1145

lights LLM-Ref’s overall effectiveness compared 1146

to the other methods, which range from 0.052 to 1147

0.143. 1148

For GPT-4o-mini, LLM-Ref retains its domi- 1149

nance with an Answer Relevancy score of 0.953, 1150

considerably higher than Basic RAG (0.765), PDR 1151

RAG (0.606), and Ens. RAG (0.857). Its Answer 1152

Correctness of 0.575 is on par with Ens. RAG 1153

(0.572) and significantly higher than other systems, 1154

reinforcing LLM-Ref’s consistent accuracy. With 1155

the highest Answer Similarity (0.951) and a Ragas 1156

Score of 0.413, LLM-Ref continues to outperform 1157

other methods. However, its Context Recall (0.683) 1158

remains lower than PDR RAG (0.757) and Ens. 1159

RAG (0.689), suggesting room for improvement in 1160

extracting complete information from the context. 1161

In the Llama 3.1-405b evaluation, LLM-Ref 1162

again exhibits superior performance with an An- 1163

swer Relevancy score of 0.958 and an Answer Cor- 1164

rectness score of 0.556, well above Basic RAG 1165
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Name Answer
Relevancy

Answer
Correctness

Answer
Similarity

Context
Relevancy

Context
Precision

Context
Recall

Faith
fulness

Ragas
Score

GPT 3.5
Basic RAG 0.545 0.412 0.899 0.044 0.999 0.665 0.588 0.143
PDR RAG 0.619 0.460 0.926 0.014 0.999 0.783 0.607 0.052
Ens. RAG 0.629 0.471 0.936 0.027 0.999 0.775 0.624 0.097
LLM-Ref 0.960 0.555 0.950 0.157 0.993 0.676 0.721 0.389

GPT 4o-mini
Basic RAG 0.765 0.540 0.916 0.041 0.999 0.689 0.564 0.138
PDR RAG 0.606 0.482 0.875 0.033 0.993 0.569 0.524 0.112
Ens. RAG 0.857 0.572 0.939 0.027 0.993 0.757 0.668 0.096
LLM-Ref 0.953 0.575 0.951 0.179 0.999 0.683 0.640 0.413

Llama 3.1-405b
Basic RAG 0.571 0.443 0.875 0.035 0.987 0.538 0.390 0.114
PDR RAG 0.642 0.439 0.887 0.022 0.999 0.682 0.570 0.079
Ens. RAG 0.744 0.491 0.915 0.030 0.999 0.725 0.641 0.105
LLM-Ref 0.958 0.556 0.950 0.112 0.987 0.650 0.564 0.300

Claude 3.5 Sonnet
Basic RAG 0.634 0.544 0.941 0.042 0.999 0.694 0.691 0.142
PDR RAG 0.702 0.550 0.942 0.015 0.999 0.762 0.723 0.055
Ens. RAG 0.799 0.601 0.945 0.027 0.993 0.741 0.741 0.096
LLM-Ref 0.964 0.637 0.954 0.195 0.999 0.654 0.561 0.422

Table 5: Metric Evaluation result comparison of LLM-Ref with Basic RAG, Parent Document Retriever RAG, and
Ensemble Retrieval RAG for different LLMs. A higher value of a metric indicates better performance.

and PDR RAG, whose scores remain below 0.650.1166

Its Answer Similarity of 0.950 and Faithfulness of1167

0.564 confirm that LLM-Ref provides high-quality,1168

accurate responses while grounding its answers in1169

relevant context. Although its Context Precision1170

(0.987) is competitive, LLM-Ref still falls behind1171

in Context Recall, with a score of 0.650 compared1172

to Ens. RAG’s 0.725. The Ragas Score for LLM-1173

Ref is 0.300, much higher than Basic RAG (0.114)1174

and PDR RAG (0.079).1175

Finally, with Claude 3.5 Sonnet, LLM-Ref main-1176

tains its strong performance across multiple metrics.1177

It achieves the highest Answer Relevancy of 0.964,1178

Answer Correctness of 0.637, and Answer Sim-1179

ilarity of 0.954, outperforming other systems by1180

substantial margins. While it continues to deliver1181

accurate and relevant answers, its Context Recall1182

score of 0.654 and Faithfulness score of 0.561 re-1183

main slightly lower compared to Ens. RAG (0.7411184

for both). Despite this, LLM-Ref achieves the high-1185

est overall Ragas Score of 0.422, highlighting its1186

superior performance in generating accurate and1187

consistent answers across varied language models.1188

Across all LLM evaluations, LLM-Ref excels in1189

delivering answers that are relevant, correct, and1190

well-aligned with the input context. Its higher Ra-1191

gas Scores across all models demonstrate its effec-1192

tiveness in handling complex retrieval tasks, partic- 1193

ularly in multi-document scenarios. However, the 1194

observed reductions in Context Recall and Faith- 1195

fulness indicate potential areas where LLM-Ref 1196

could further improve, particularly in maximizing 1197

the utility of retrieved-context for single-document 1198

tasks. 1199

A.4.2 Stability Study 1200

As presented in Table 1 and Table 4, we provide 1201

comprehensive sets of evaluation metrics that un- 1202

derscore the effectiveness of our system. To assess 1203

our system’s performance, it is essential to consider 1204

it holistically. Specifically, the context precision 1205

and context recall metrics are crucial for evaluating 1206

the retrieval stage, while faithfulness and answer 1207

relevancy are key indicators of the system’s per- 1208

formance during the generation stage. Our met- 1209

rics demonstrate superior performance across these 1210

stages. 1211

In the content extraction stage, the process is 1212

deterministic; the system can either successfully 1213

extract text from a document or not. However, the 1214

summarization process introduces variability, as 1215

different summaries may be generated in each run, 1216

potentially impacting context extraction and the 1217

final response. To evaluate the stability of our sys- 1218

tem, we conducted multiple runs in a single-file 1219
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scenario, with results indicating consistent perfor-1220

mance with respect to Table 1 given in the paper.1221

In the retrieval stage, unlike traditional RAG1222

systems that typically select the top-k contexts, our1223

approach involves retrieving all available contexts.1224

This comprehensive retrieval method enhances the1225

system’s ability to generate accurate responses.1226

During the generation stage, we used a tempera-1227

ture setting of zero, ensuring that the model relies1228

solely on the input context to generate responses,1229

thereby minimizing randomness. We also experi-1230

mented with varying the temperature parameter to1231

observe its impact on response quality, as detailed1232

in Table 6. We observed that as the temperature set-1233

ting increases, the model tends to incorporate more1234

of its pre-existing knowledge, which may include1235

biases from its training data, potentially impacting1236

the final Ragas score. The temperature parameter’s1237

influence on the model’s output highlights the del-1238

icate balance between utilizing retrieved context1239

and minimizing reliance on potentially biased or1240

extraneous information stored within the model.1241

Consequently, adjusting the temperature parameter1242

is crucial for maintaining the accuracy and integrity1243

of the generated responses.1244

These ablation studies highlight the robustness and1245

adaptability of our system in generating precise and1246

contextually relevant responses.1247

A.5 Prompt Designs1248

In our tool, we employ a large language model1249

(LLM) to determine contextual similarity. To1250

find the relevant contexts, we utilize the follow-1251

ing prompt (given in Figure 3) which returns ‘True’1252

when a paragraph is relevant to the query. This1253

prompt instructs the LLM to evaluate a given para-1254

graph in the context of a specific query, determining1255

if it provides direct answers or significant contri-1256

butions. Since we utilize entire paragraphs that1257

convey specific concepts, the LLM can discern rele-1258

vance to the query by understanding subtle nuances.1259

By responding with ‘True’ or ‘False’, the model1260

identifies relevant information without additional1261

explanation, thereby enhancing the accuracy and1262

efficiency of our tool.1263

To address challenges associated with long con-1264

texts, we employ an iterative approach to output1265

generation. Initially, a response is generated us-1266

ing the first context and query, utilizing the LLM1267

prompt provided in Figure 4.1268

This prompt (given in Figure 4) directs the LLM1269

to summarize and synthesize the paragraph to ad-1270

You are an experienced researcher tasked
with identifying relevant

information.
Paragraph: {paragraph}
Query: {query}
Instructions: Determine whether the

paragraph provides information that
directly answers or significantly
contributes to the query.

If the paragraph is relevant to the
query , respond with 'True '. If it is
not relevant , respond with 'False '.
Provide no additional explanation.

Figure 3: Prompt to find relevant contexts to a query.

You are a researcher writing a research
paper.

** Paragraph **: {paragraph}
**Query **: {query}
** Instructions **: Summarize and

synthesize the provided paragraph to
create a cohesive and informative

paragraph that addresses the query.
Ensure the synthesis uses the vocabulary

and writing style of the original
paragraph to maintain a natural and
consistent tone.

Figure 4: Prompt used to generate the response based
on the context for query.

dress the query coherently. By preserving the orig- 1271

inal vocabulary and style, the LLM ensures a nat- 1272

ural and consistent tone. This iterative approach 1273

manages long contexts and enhances the relevance 1274

and cohesiveness of the responses, improving our 1275

tool’s efficiency and accuracy. After the initial 1276

response is generated, subsequent responses are re- 1277

fined by incorporating later contexts using the fol- 1278

lowing prompt (shown in Figure 5). This iterative 1279

approach not only enhances the comprehensiveness 1280

of the synthesized output but also helps in mitigat- 1281

ing any errors present in the earlier responses. 1282

This prompt (given in Figure 5) guides the LLM 1283

to integrate new paragraph information into the ex- 1284

isting synthesis, maintaining coherence, relevance, 1285

and a consistent tone, while iteratively refining re- 1286

sponses to address long context complexities and 1287

improve the tool’s accuracy and cohesiveness. 1288

Figure 6 shows a prompt directing the LLM to 1289

match each line of a synthesized result with the 1290

most relevant source lines from the provided para- 1291

graphs. The output lists only the precisely relevant 1292

source lines, enhancing the traceability and trans- 1293

parency of the synthesis process by clarifying the 1294

origins of each part of the synthesized result. 1295
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Impact of temperature change

Temperature Answer
Relevancy

Answer
Correctness

Context
Relevancy

Context
Precision

Context
Recall

Faith
fulness

Ragas
Score

0.0 0.94 0.72 0.44 0.29 0.71 0.44 0.57
0.05 0.94 0.71 0.40 0.27 0.74 0.40 0.54
0.1 0.95 0.71 0.44 0.28 0.70 0.44 0.56

0.15 0.93 0.67 0.35 0.24 0.65 0.37 0.49
Performance variation across different runs for the same queries

Runs Answer
Relevancy

Answer
Correctness

Context
Relevancy

Context
Precision

Context
Recall

Faith
fulness

Ragas
Score

Run 1 0.95 0.70 0.35 0.24 0.71 0.41 0.52
Run 2 0.94 0.72 0.44 0.29 0.71 0.44 0.57
Run 3 0.94 0.70 0.38 0.25 0.68 0.45 0.54

Table 6: Stability study of our proposed approach.

You are a researcher writing a research
paper.

** Existing Synthesis **: {response}
**New Paragraph **: {paragraph}
**Query **: {query}
** Instructions **: Integrate the

information from the new paragraph
into the existing synthesis to
create a cohesive and informative
paragraph that addresses the query.

Ensure the synthesis uses the vocabulary
and writing style of the original

paragraphs to maintain a natural and
consistent tone.

Figure 5: Prompt used to integrate new context into
existing responses.

For a given synthesized result based on
some source paragraphs , find the
relevant source lines that are most
relevant to each line of the
synthesized result.

Synthesized result: {synthesized_result
}.

Source Paragraphs: {context }.
Just provide the source lines for each

line of synthesized result , for
example: Synthesized Line: ...
Corresponding Source Line: ... Do
not add explanation and source lines
if they are not exactly relevant.

Figure 6: Prompt for identifying the most relevant
source lines for each line in a synthesized result.

Figure 7 presents a prompt to generate questions1296

by synthesizing information from at least two of1297

three provided documents. The prompt requires for-1298

mulating questions, including exact original con-1299

text texts, and providing answers, all in a speci-1300

fied Python format. This ensures the integrity of 1301

the original contexts for evaluation. Questions are 1302

generated until a certain number of unique ques- 1303

tions are produced, enhancing the tool’s ability to 1304

synthesize information accurately across multiple 1305

documents. 1306

A.6 Ragas Evaluation Metrics 1307

The Ragas score is computed by calculating the 1308

harmonic mean of Faithfulness (FF), Answer Rele- 1309

vancy (AR), Context Precision (CP), and Context 1310

Recall (CR). 1311

Ragas Score =
4

1
FF + 1

AR + 1
CP + 1

CR
(1) 1312

In this equation, FF stands for Faithfulness, AR 1313

represents Answer Relevancy, CP is Context Preci- 1314

sion, and CR denotes Context Recall. In the RAGs 1315

framework, Faithfulness and Answer Relevancy 1316

assess the accuracy of content generation, while 1317

Context Precision and Context Recall evaluate the 1318

effectiveness of information retrieval. Therefore, 1319

the Ragas score ensures a robust assessment of both 1320

generation and retrieval processes in RAGs. 1321

Faithfulness (FF): The Faithfulness score mea- 1322

sures how relevant the statements in an answer 1323

are to the provided context. Scores for this metric 1324

range from 0 to 1, with higher scores indicating 1325

better alignment and performance. The calculation 1326

process, as defined by the Ragas framework, in- 1327

volves three key steps: first, extracting statements 1328

from the generated answers; second, determining 1329

the contextual relevance of these statements using 1330

the LLM; and third, calculating the Faithfulness 1331

16



You are an expert research scientist.
Instructions: Create a list of 150

questions (max 5 at a time) that
require using information from all
three provided input documents (or
at least two of the input documents)
. For each question , please include
the following details:

Question: Formulate a question that
integrates information from multiple
documents.

Original Context Texts: Provide the
exact contexts from the documents
that were used to create the
question , without any alterations.

Answer: Provide an answer for a research
article derived from the original

context texts.
Ensure that each question requires the

synthesis of information from
multiple documents. Maintain the
integrity of the original context
texts as they will be used later for
evaluation purposes.

Return the response in the following
python format:

data = [
{

"question ": "Question 1",
"context ": [" Context 11",

Context 12 ],
"ground_truth ": "Answer 1"

},
{

"question ": "Question 2",
"context ": [" Context 21",

Context 22 ],
"ground_truth ": "Answer 2"

},]

Please keep generating only if it is
possible to generate unique
questions that you did not generate
them before. Generate 5 questions at
a time. I want a total 150

questions.

Figure 7: Prompts for generating Question-Context-
Answer pair from source documents.

score by dividing the number of context-relevant1332

statements by the total number of statements. This1333

score provides a quantifiable measure of how faith-1334

fully the model’s answers reflect the original con-1335

text. It is calculated as:1336

FF =
NCS
TS

(2)1337

Here, NCS refers to the Number of Context-1338

Relevant Statements, and TS represents the Total1339

Statements in the Answer.1340

Answer Relevancy (AR): The Answer Relevance1341

metric evaluates how closely the answers generated 1342

by a Language Learning Model (LLM) align with 1343

the original questions posed. Answers that are in- 1344

complete or redundant receive lower scores, with 1345

scores ranging from 0 to 1, where higher scores 1346

indicate better performance. The Ragas framework 1347

calculates this metric through a three-step process: 1348

first, generating pseudo-questions from both the 1349

context and the generated answer; second, calcu- 1350

lating the cosine similarity between the original 1351

question and each pseudo-question; and third, com- 1352

puting the average of these cosine similarities. This 1353

average provides a quantitative measure of how 1354

relevant the generated answers are to the original 1355

questions. 1356

AR =

∑
CS

NPQ
(3) 1357

In this context, CS denotes Cosine Similarities 1358

between pseudo-questions and the original ques- 1359

tion, and NPQ stands for the Number of Pseudo- 1360

Questions. 1361

Context Precision (CP): The Context Precision 1362

metric measures how effectively a Language Learn- 1363

ing Model (LLM) retrieves the necessary contex- 1364

tual information required to accurately answer a 1365

question. Scores for this metric range from 0 to 1, 1366

with higher scores indicating better retrieval perfor- 1367

mance. According to the Ragas framework, Con- 1368

text Precision is calculated through a two-step pro- 1369

cess: first, determining the relationship between 1370

each retrieved-context and the original question us- 1371

ing the LLM, where the context is marked as either 1372

relevant (Yes) or not (No); and second, comput- 1373

ing the Mean Average Precision (mAP) across all 1374

retrieved contexts. This score indicates how accu- 1375

rately the model retrieves relevant information to 1376

support its answers. 1377

CP = mAP (4) 1378

Context Recall (CR): The Context Recall metric 1379

evaluates how well the context retrieved by a Lan- 1380

guage Learning Model (LLM) matches the Ground 1381

Truth, indicating the completeness of the informa- 1382

tion retrieval. Scores range from 0 to 1, with higher 1383

scores reflecting better performance. The Ragas 1384

framework computes this metric through a three- 1385

step process: first, splitting the Ground Truth into 1386

individual sentences; second, determining the rela- 1387

tionship between each sub-Ground Truth sentence 1388
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and the retrieved context using the LLM, marking1389

each as either relevant (Yes) or not (No); and third,1390

calculating the Context Recall score by dividing the1391

number of context-relevant Ground Truth sentences1392

by the total number of Ground Truth sentences.1393

This score helps in quantifying how thoroughly the1394

model’s retrieved-context covers the Ground Truth.1395

CR =
NGTS
TGS

(5)1396

Here, NGTS stands for the Number of Ground1397

Truth Sentences inferred from the given contexts,1398

and TGS represents the Total Ground Truth Sen-1399

tences.1400

A.7 Examples of Query-Answer Pairs1401

We present additional query-answer pairs with fine-1402

grained references extracted from LLM-Ref when1403

different LLMs are utilized. This demonstrates the1404

compatibility of our tool across different LLMs.1405
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Query: Pros and Cons of Discrete vs Cascaded Systems

Answer: Discrete units in direct speech-to-speech translation (S2ST) systems offer several advantages over cascaded systems
[1-8]. Firstly, they have lower computational costs and inference latency because they require fewer decoding steps [1, 8,
10-12]. This makes them more efficient and faster in translating speech [1-3, 7, 8, 10-12]. Additionally, direct S2ST is a
natural approach for languages that do not have a writing system, as it eliminates the need for intermediate text representation.
Another benefit of direct S2ST systems with discrete units is their flexibility in training. They can be trained with or without
text transcripts, making them suitable for both written and unwritten languages [1, 6, 7, 9, 13]. This versatility allows for a
wider range of applications and language support. However, it is important to note that there is a performance gap between
direct S2ST systems with discrete units and cascaded systems. Cascaded systems, which combine speech-to-text translation
(S2T) and text-to-speech (TTS), may have an edge in terms of translation accuracy [1-3, 6, 7, 9, 13]. The paragraph does not
provide specific details about the extent of this performance gap, but it suggests that cascaded systems may outperform direct
S2ST systems in terms of translation quality. In summary, discrete units in direct S2ST systems offer advantages such as
lower computational costs, support for languages without a writing system, and flexibility in training. However, there is a
performance gap compared to cascaded systems, which may have better translation accuracy [1-3].

References:
[1] A. Lee et al., “Direct speech-to-speech translation with discrete units,” arXiv, 2021.
[2] A. Lee et al., “Textless speech-to-speech translation on real data,” arXiv, 2021.
[3] S. Popuri et al., “Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmen-

tation,” arXiv, 2022.
[4] Ye Jia et al., Direct speech-to-speech translation with a sequence-to-sequence model. Proc. Interspeech 2019.
[5] Ye Jia et al., Translatotron 2: Robust direct speech-to-speech translation. arXiv 2021.
[6] Lavie et al., “JANUS-III: Speech-to-speech translation in multiple languages.” In 1997 IEEE International Conference

on Acoustics, Speech, and Signal Processing.
[7] S. Nakamura, The ATR multilingual speech-to-speech translation system. IEEE Transactions on Audio, Speech, and

Language Processing, 2006.
[8] W. Hsu, HuBERT: Self-supervised speech representation learning by masked prediction of hidden units. arXiv preprint

arXiv:2106.07447.
[9] C. Zhang, X. Tan et al., “UWSpeech: Speech to speech translation for unwritten languages,” arXiv:2006.07926, 2020.

[10] Q. T. Do, et al., “Toward expressive speech translation: A unified sequence-to-sequence LSTMs approach for translating
words and emphasis.” In INTERSPEECH, 2017.

[11] P. D. Aguero, et al., “Prosody generation for speech-to-speech translation.” In 2006 IEEE International Conference on
Acoustics Speech and Signal Processing Proceedings, volume 1, pages I–I, 2006.

[12] G. K. Anumanchipalli et al., “Intent transfer in speech-to-speech machine translation.” In 2012 IEEE Spoken Language
Technology Workshop (SLT), 2012.

[13] A. Tjandra et al., “Speech-to-speech translation between untranscribed unknown languages.” In 2019 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), 2019.

Figure 8: Fine-grained reference samples generated by LLM-Ref when GPT-3.5 is used as the LLM.
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Query: How does data augmentation improve speech-to-speech translation?

Answer: Data augmentation plays a crucial role in enhancing speech-to-speech translation (S2ST) systems by addressing
the challenges posed by data scarcity [1-8]. In the context of end-to-end S2T models, effective training strategies such as
multitask learning and model pre-training are complemented by data augmentation techniques, which help to enrich the
training dataset[1-4, 9-13]. This enrichment allows the models to better generalize and improve their performance, particularly
in mitigating the error propagation issues commonly encountered in traditional ASR+MT systems[1-3, 14-16]. By diversifying
the training data, data augmentation facilitates the synthesis of para-linguistic information, such as prosody and word-level
emphasis, which are essential for producing more natural and contextually appropriate translations[1-3, 17-19]. Recent
empirical findings further demonstrate that augmenting supervised S2ST data with directly mined S2ST data, particularly when
combined with speech normalization techniques, can significantly enhance the performance of textless S2ST systems[2-3].
For instance, the integration of mined data has shown to yield substantial improvements in BLEU scores across various
language pairs, indicating that the additional data not only enriches the training set but also aids in capturing variations
in speech that are difficult to model without such information.Moreover, the application of data augmentation techniques,
such as utilizing ASR, MT, and TTS models to create weakly supervised data, has been shown to effectively tackle the data
scarcity issue in S2ST. By leveraging the S2UT framework, researchers have demonstrated that large-scale self-supervised
pre-training with monolingual speech and text data, combined with data augmentation, can significantly enhance S2ST model
training [3,12]. Specifically, the use of a wav2vec 2.0 speech encoder and an mBART text decoder trained with discrete units
extracted from unlabeled speech data has proven effective [2-3, 14-16]. The incorporation of weakly supervised data from
ASR speech further increases the size of the parallel S2ST training data, leading to improved model performance[2,3]. For
example, experiments have shown that with a pre-trained wav2vec 2.0 encoder and a randomly initialized decoder, substantial
BLEU gains can be achieved, indicating that data augmentation not only enriches the training dataset but also enhances the
model’s ability to generalize across different setups, including low-resource scenarios[2-3]. Thus, through these enhancements,
data augmentation significantly contributes to the robustness and efficacy of S2ST systems, enabling them to leverage both
supervised and mined data for improved translation quality[1-2].
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Figure 9: Fine-grained reference samples generated by LLM-Ref when GPT-4o-mini is used as the LLM.

20



Query: Literature review on Direct speech-to-speech translation?

Answer: Direct speech-to-speech translation (S2ST) aims at translating speech from one language into speech in another
language without relying on text generation as an intermediate step. Compared to conventional cascaded approaches, which
take advantage of automatic speech recognition (ASR), machine translation (MT) or end-to-end speech-to-text translation
(S2T) followed by text-to-speech synthesis (TTS), direct S2ST has the advantage of faster inference and can support translation
between languages without text writing systems [1-12]. Recent studies have proposed various approaches to direct S2ST,
including self-supervised speech encoder pre-training with unlabeled speech data, and data augmentation techniques that
benefit S2T model training [1-3, 13-20,.]. For instance, [4] proposes to apply a self-supervised speech encoder pre-trained on
unlabeled speech to convert target speech into discrete units and build a speech-to-unit translation (S2UT) model for direct
S2ST [1-3, 5, 9-11, 15, 17, 20,.]. Self-supervised discrete targets can disentangle linguistic content from speaker identity and
prosodic information in speech, and enable opportunities for applying techniques from speech-to-text model training, such as
ASR and S2T, to direct S2ST[1-5, 10, 13 20-23]. Moreover, [6] shows that incorporating weakly supervised training data
from ASR speech can bring significant improvements to direct S2ST models[1-5, 13, 15, 20-22]. Our work builds upon these
advances and explores the effectiveness of self-supervised pre-training and data augmentation for direct S2ST models.
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Figure 10: Fine-grained reference samples generated by LLM-Ref when Llama is used as the LLM.
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