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Abstract

Frictionless Hamiltonian Descent is a recently proposed optimization method that lever-
ages a fundamental principle from classical mechanics. The algorithm is based on energy
conservation of the Hamiltonian Flow, with resetting the kinetic energy at each iteration,
and is shown to be a descent method. However, the idealized frictionless Hamiltonian De-
scent requires access to the oracle of the Hamiltonian Flow, while exactly implementing the
Hamiltonian Flow becomes elusive when the underlying function is not quadratic. Moti-
vated from considerable popularity of Hamiltonian dynamics in sampling, where a geometric
numerical integrator is used to simulate the idealized Hamiltonian Monte Carlo, we consider
Hamiltonian Descent with two kinds of integrator, which results in some new optimization
dynamics. Moreover, we extend the original framework by introducing various forms of ki-
netic energy. This expansion yields a broad class of optimization algorithms and provides a
fresh perspective of algorithm design. We further propose a novel parallelization technique
for parallelizing the inherently sequential updates of the proposed optimization algorithms,
where gradients at different points are computed simultaneously. The parallelization tech-
nique improves the actual running time by 2-3x in practice for multinomial logistic regression
across a range of datasets when 4 GPUs is used, compared to approximating the Hamiltonian
Flow in the standard sequential fashion by a single GPU.

1 Introduction

Hamiltonian mechanics is a fundamental subject in classical mechanics that provides a mechanism to predict
the behaviors of many physical systems by unfolding the dynamics over time. Specifically, the Hamiltonian
dynamic offers a powerful mathematical framework for describing the dynamic of a particle in phase space
that follows the physical laws in Nature. The nice and elegant Hamiltonian perspective exposes important
features of the systems such as energy conservation, and it also allows for a deeper study because of its
rich mathematical structure. In machine learning and computational statistics, the applications of the
Hamiltonian dynamics principle lead to the classical Hamiltonian Monte Carlo algorithm (HMC) (Duane
et al., 1987; Neal, 2011; Durmus et al., 2017; Wang & Wibisono, 2023) and its numerous variants (Kook
et al., 2022; Lee et al., 2021; Noble et al., 2024; Mangoubi & Vishnoi, 2018; Ver Steeg & Galstyan, 2021;
Hoffman & Gelman, 2014; Chaari et al., 2016), which are for the task of sampling and have been found useful
in many other fields such as systems biology (Kook et al., 2022).

Recently the principle of Hamiltonian mechanics has inspired designing optimization algorithms for solving
an optimization problem, i.e., solving minx∈Rd f(x) (see e.g., Wang (2024); Diakonikolas & Jordan (2021);
Teel et al. (2019)). Specifically, Wang (2024) proposes a new optimization algorithm called frictionless
Hamiltonian Descent. They define a Hamiltonian H(x,v) as H(x,v) := f(x) + 1

2∥v∥
2
2, where x is the

position of the update, and v is its velocity. The function f(·) in their definition of the Hamiltonian is the
underlying function being optimized. From the perspective of Hamiltonian mechanics, the function value
f(x) is the potential energy of one particle with its position x ∈ Rd, while the term 1

2∥v∥
2
2 in the Hamiltonian

is the kinetic energy. In other words, the total energy H(x,v) of a particle consists of its potential energy
and its kinetic energy. With a specified Hamiltonian, the corresponding Hamiltonian Flow is described by a
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Algorithm 1 Idealized Frictionless Hamiltonian Descent (Idealized-HD) (Wang, 2024)
1: Input: an initial point x1 ∈ Rd, number of iterations K, and a scheme of integration time (ηk)K

k=1.
2: for k = 1 to K do
3: // Execute Hamiltonian Flow (1) for integration time ηk from the initial position xk ∈ Rd with the initial

velocity 0 ∈ Rd to obtain xk+1, i.e., the position of the particle at time t = ηk.
4: (xk+1, vk+1) = HFηk (xk, 0).
5: end for
6: Output: xK+1.

system of differential equations:

(Hamiltonian Flow) dx
dt

= ∂H

∂v and dv
dt

= −∂H
∂x . (1)

(Wang, 2024) observes that by energy conservation of the Hamiltonian flow, i.e., H(xt,vt) = H(x0,v0) at
any time t, which is a well-known principle in classical mechanics (Arnold, 1989; Greiner, 2003), it follows

f(xt) + 1
2∥vt∥2

2 = H(xt,vt) = H(x0,v0) = f(x0), (2)

when the initial velocity of the flow is zero, i.e., v0 = 0 ∈ Rd. Hence, the mechanism can be used to design a
descent method, which is Idealized Frictionless Hamiltonian Descent (Idealized-HD) (Algorithm 1). Idealized
HD is a direct counterpart of Idealized-HMC in optimization, as the only difference between them is that
the initial velocity for executing a Hamiltonian Flow is set to be a random vector from the normal distri-
bution in HMCs. Wang (2024) analyzes Idealized-HD for the class of strongly convex quadratic problems,
where exactly simulating the Hamiltonian Flow is feasible, as the Hamiltonian system (1) has a closed-form
solution for this specific class of functions. It also proposes Idealized Frictionless Coordinate Hamiltonian
Descent (CHD), which updates a coordinate in each iteration, and shows that classical algorithms such as
Gauss-Seidel methods, Successive Over-relaxation, Jacobi method, and weighted Jacobi method for solving
linear systems of equations are all instances of CHD. Precisely, they are CHD with different schemes of the
integration time for executing the Hamiltonian Flow. The optimization mechanism of running a frictionless
Hamiltonian Flow with resets by Wang (2024) is novel in the sense that it challenges the conventional wisdom
in optimization, which believes that incorporating a friction term into designing the optimization dynamics
can facilitate the optimization progress. Specifically, a common approach in the optimization literature is
to include a friction term γv into the update, e.g., dv

dt = −∂H
∂x − γv, where γ > 0 serves as a damping

factor to dissipate energy during the flow. This dissipation underpins various momentum-based methods,
e.g., Nesterov (1983); Polyak (1964); O’Donoghue & Maddison (2019); Wang & Abernethy (2018); Su et al.
(2016); Maddison et al. (2018). However, Wang (2024) demonstrates that even without the friction term, the
Idealized Hamiltonian Descent (Idealized-HD) achieves an accelerated convergence rate as those of friction-
based accelerated methods (Nesterov, 1983; Polyak, 1964; Wang & Abernethy, 2018; Su et al., 2016) for
strongly convex quadratic functions. We further note that recently, the work Fu & Wibisono (2025) studied
frictionless Hamiltonian Descent with randomized integration time and demonstrated that their proposed
scheme enables Hamiltonian Descent to achieve the provable accelerated rate in general strongly convex
optimization.

While the results presented in Wang (2024) are neat, the Idealized-HD requires the exact Hamiltonian Flow,
and hence whether it is realizable for minimizing general non-quadratic functions is not clear, since the
differential equation system (1) does not have a closed-form solution in general. Motivated from the area
of sampling (Mangoubi & Smith, 2017; Chen & Gatmiry, 2023; Chen et al., 2020; Durmus et al., 2017;
Mangoubi & Vishnoi, 2018; Monmarché, 2022; Camrud et al., 2023; Bou-Rabee & Sanz-Serna, 2018), we
consider two geometric integrators to numerically approximate the Hamiltonian Flow; one is the Störmer-
Verlet integrator (Hairer et al., 2003; Ernst Hairer, 2006) (a.k.a. the Leapfrog integrator) and the other is
a recently proposed stratified Monte Carlo integrator (Bou-Rabee & Marsden, 2022). When applying these
integrators to approximate the Hamiltonian Flow in Hamiltonian Descent, the resulting updates exhibit
novel momentum-like dynamics, where the velocity v of the update x is an accumulation of gradients along
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the discretized Hamiltonian Flow, with a reset after each flow. Interestingly, the use of the Leapfrog leads
to an optimization dynamic that computes the gradients at the points along the flow, while the stratified
Monte Carlo integrator generates a dynamic where the gradient is computed at a point located a certain
distance from the update, determined by a random step in the direction of the current velocity.

We also extend the framework of optimization via Hamiltonian mechanics in Wang (2024) to a more general
case. More precisely, we consider a more general form of the Hamiltonian in our work:

H(x,v) := f(x) + ϕ(v), (3)

where the kinetic energy ϕ(·) (to be specified) satisfies ϕ(v) ≥ 0,∀v ∈ Rd and ϕ(v) = 0 if and only if the
velocity v = 0. We found that under different forms of the kinetic energy ϕ(v), the resulting dynamics
of Hamiltonian Descent with the Leapfrog integrator lead to different known and new updates, including
Gradient Descent (GD), Normalized Gradient Descent (Normalized GD), Sign Gradient Descent (Sign GD),
Coordinate Descent (CD) as well as their counterparts that incorporate certain novel momentum-like dynam-
ics. Specifically, while the use of a single integrator step to simulate the Hamiltonian Flow at each iteration
of Hamiltonian Descent produces these known algorithms, executing multiple steps of the integrator induces
some new dynamics that update the current position of the iterate via the gradients collected since the last
reset of the velocity.

We further propose a method to speed up simulating the Hamiltonian Flow via simultaneously computing the
gradients at some points along the discretized flow. Specifically, given access to a computational environment
with multiple GPUs, we aim to accelerate the process of numerically simulating a Hamiltonian Flow by having
each GPU compute a gradient at different steps of the flow in parallel and in an iterative fashion. Although
the Hamiltonian Flow is sequential by nature, i.e., a gradient at the current position is used to update the
iterate before computing the gradient at the next step, we found that via the underlying mechanism of Picard
Iteration (Teschl, 2012; Khalil, 2002; Andrade et al., 2023), computing gradients at different steps in parallel
becomes feasible, which in turn leads to a faster optimization process in practice. We conduct experiments
on the proposed Hamiltonian Descent via Parallel Picard Iteration for solving multinomial logistic regression
across multiple datasets. We found that the improvement of the speedup in running time is strikingly
consistent across all the datasets. For example, compared to the case of using a single GPU, the parallel
optimization with 4 GPUs reduces the actual running time of simulating a Hamiltonian Flow by 2.13x on
a8a dataset and by 3.23x on MNIST dataset.

2 Frictionless Hamiltonian Descent with Geometric Numerical Integrators

We begin by observing that the idea of optimization via Hamiltonian mechanics in Wang (2024) can be more
applicable when considering the Hamiltonian in its general form (3). Indeed, the energy conservation along
the Hamiltonian Flow (1) still holds.
Lemma 1. (See e.g., Arnold (1989); Greiner (2003)) The time derivative of a time-independent Hamiltonian
is 0 along the Hamiltonian Flow (1), i.e., dH

dt = 0.

Proof. dH
dt =

〈
∂H
∂x ,

∂x
∂t

〉
+

〈
∂H
∂v ,

∂v
∂t

〉
=

〈
∂H
∂x ,

∂H
∂v

〉
+

〈
∂H
∂v ,−

∂H
∂x

〉
= 0.

Using Lemma 1 and that the kinetic energy is zero when the velocity is zero, i.e., ϕ(0) = 0, it becomes
evident that Idealized-HD (Algorithm 1) with the general notion of the Hamiltonian (3) satisfies:

f(xk+1) + ϕ(vk+1) =H(xk+1,vk+1)
=H(xk, 0) = f(xk), ∀k, (4)

where the kinetic energy is nonnegative, i.e., ϕ(vk+1) ≥ 0. Equation (4) reduces to (2) when ϕ(·) = 1
2∥ · ∥

2
2.

On the other hand, it also encapsulates the cases when the kinetic energy ϕ(·) is in a different form. For
example, in the following, we will also consider ϕ(v) = ∥v∥2, ∥v∥1, and ∥v∥∞.
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Algorithm 2 Frictionless Hamiltonian Descent with a geometric numerical integrator.
1: Input: an initial point x0 ∈ Rd, number of iterations K, a scheme of integration time (ηk)K

k=1, and the step size
used in a geometric numerical integrator θ.

2: Specify the Hamiltonian H(x, v).
3: for k = 1 to K do
4: Obtain (xk+1, vk+1) = IntegratorSk,θ(xk, 0), where Sk := ⌊ η

(K)
k
θ
⌋.

// Numerically simulate the Hamiltonian Flow, where Integrator can be, for example, LeapFrog (Algo-
rithm 3) or Stratified (Algorithm 4).

5: end for
6: Output: xk+1.

As described in the introduction, the differential equation system (1) does not have a closed-form solution
in general, and one may need to use a geometric numerical integrator to simulate Hamiltonian flow. We
hence propose Algorithm 2, which utilizes an integrator to simulate the continuous-time dynamic in discrete
time. We note that approximating the flow via a geometric numerical integrator is standard in sampling
(Mangoubi & Smith, 2017; Chen & Gatmiry, 2023; Chen et al., 2020; Durmus et al., 2017; Mangoubi &
Vishnoi, 2018; Monmarché, 2022; Camrud et al., 2023; Bou-Rabee & Sanz-Serna, 2018), and perhaps one of
the most popular integrators is the Leapfrog integrator (Hairer et al., 2003; Ernst Hairer, 2006). We thus
consider Hamiltonian Descent (HD) (Algorithm 2) with the Leapfrog integrator first, i.e., let Integrator
on Line 4 in Algorithm 2 be LeapFrog (Algorithm 3). We note that since Leapfrog integrator is a symplectic
integrator, thus not exactly conserving the Hamiltonian or total energy. However, it is still widely used in
sampling area due to its bounded energy error. The energy oscillates near the true Hamiltonian at the order
O(θ2), where θ is the time step size (Neal, 2011; Ernst Hairer, 2006). Unlike other non-symplectic integrators
which brings systematic energy drift, the energy error of Leapfrog integrator grows slowly with time, making
it a good choice to approximate the continuous Hamiltonian dynamic.

In this paper we use x̄ and v̄ to denote the variables inside one iteration. It turns out that when a single
Leapfrog step (i.e., S = 1) is used to simulate the Hamiltonian Flow at each iteration of HD, the resulting
dynamics recover Gradient Descent, Normalized Gradient Descent, Sign Gradient Descent, and Coordinate
Descent, under different forms of the kinetic energy. We summarize the results in Lemma 2.

Algorithm 3 The Leapfrog Integrator
LeapFrogS,θ(x̄0, v̄0).

1: Input: an initial point (x̄0, v̄0), # of Leapfrog
steps S, and the step size θ > 0.

2: for s = 0 to S − 1 do
3: v̄s+ 1

2
= v̄s − θ

2∇xH(x̄s, v̄s).

4: x̄s+1 = x̄s + θ ∂vH
(

x̄s, v̄s+ 1
2

)
.

5: v̄s+1 = v̄s+ 1
2
− θ

2∇xH(x̄s+1, v̄s+ 1
2
).

6: end for
7: Output: LeapFrogS,θ(x̄0, v̄0) := (x̄S , v̄S).

Algorithm 4 The Stratified Integrator
StratifiedS,θ(x̄0, v̄0). (same input as Alg. 3)

1: for s = 0 to S − 1 do
2: x̄s+ 1

2
= x̄s + ζs ∂vH (x̄s, v̄s), where ζs ∼

Uniform(0, θ).
3: v̄s+ 1

2
= v̄s − θ

2∇xH(x̄s+ 1
2
, v̄s).

4: x̄s+1 = x̄s + θ ∂vH
(

x̄s, v̄s+ 1
2

)
.

5: v̄s+1 = v̄s+ 1
2
− θ

2∇xH(x̄s+ 1
2
, v̄s).

6: end for
7: Output: StratifiedS,θ(x̄0, v̄0) := (x̄S , v̄S).

Lemma 2. Consider Frictionless Hamiltonian Descent with the Leapfrog integrator (HD-LF), i.e., Algo-
rithm 2 with Integrator = LeapFrog. Set a single Leapfrog step Sk = 1 at each iteration k. Then, we
have

1. Setting ϕ(v) = 1
2∥v∥

2
2 recovers Gradient Descent (GD):

xk+1 = xk −
θ2

2 ∇f(xk).
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2. Setting ϕ(v) = ∥v∥2 recovers Normalized GD:

xk+1 = xk − θ
∇f(xk)
∥∇f(xk)∥ .

3. Setting ϕ(v) = ∥v∥1 recovers Sign GD:

xk+1 = xk − θ sign(∇f(xk)).

4. Setting ϕ(v) = ∥v∥∞ recovers Coordinate Descent (CD):

xk+1 = xk − θ sign (∇f(xk)[imax]) eimax ,

where imax ∈ arg maxi∈[d] |∇f(xk)[i]|.

Proof. We provide the proof of the first item here and defer the proof of the rest of the items to Appendix
A.

When ϕ(v) = 1
2∥v∥

2
2, we have ∇xH(x,v) = ∇f(x) and ∇vH(x,v) = v. From Algorithm 3, with the initial

condition x̄0 ← xk and v̄0 ← 0, one can see that the dynamic with a single Leapfrog step is:

v̄ 1
2

= v̄0 −
θ

2∇f(x̄0) = −θ2∇f(xk)

x̄1 = x̄0 + θ v̄ 1
2

= xk −
θ2

2 ∇f(xk). (5)

With only a single step, Leapfrog outputs x̄1, which is the position of the update xk+1 at the next iteration
k + 1. We hence obtain the update of GD, i.e., xk+1 = xk − θ2

2 ∇f(xk).

On the other hand, when more than a single iteration is executed in Leapfrog, the dynamics differ from the
known ones. For example, under the form of the kinetic energy ϕ(v) = 1

2∥v∥
2
2, the resulting dynamic with

S Leapfrog steps is

x̄S =x̄0 −
Sθ2

2 ∇f(x̄0)− θ2
S−1∑
i=1

(S − i)∇f(x̄i). (6)

In addition, when the form of the kinetic energy ϕ(v) = ∥v∥2, the resulting dynamic with S Leapfrog steps
is

x̄S = x̄0 − θ
∇f(x̄0)
∥∇f(x̄0)∥ − θ

S−1∑
i=1

1
2∇f(x̄0) +

∑i
j=1∇f(x̄j)

∥ 1
2∇f(x̄0) +

∑i
j=1∇f(x̄j)∥

. (7)

Furthermore, when the form of the kinetic energy ϕ(v) = ∥v∥1, the resulting dynamic with S Leapfrog steps
is

x̄S =x̄0 − θsign(∇f(x̄0))

− θ
S−1∑
i=1

sign

1
2∇f(x̄0) +

i∑
j=1
∇f(x̄j)

 . (8)

Under the form of the kinetic energy ϕ(v) = ∥v∥∞, the resulting dynamic with S Leapfrog steps is

x̄S =x̄0 − θsign
(
∇f(x̄0)[i0max]

)
ei0

max

− θ
S−1∑
i=1

sign

1
2∇f(x̄0) +

i∑
j=1
∇f(x̄j)

 [iαi
max]

 eαi
imax

. (9)
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where i0max is the index corresponding to the largest absolute value of ∇f(x̄0), and iαi
max is the index corre-

sponding to the largest absolute value of vector
(

1
2∇f(x̄0) +

∑i
j=1∇f(x̄j)

)
.

In optimization literature, Heavy Ball (Polyak, 1964) is one of the popular momentum methods. After
unfolding its dynamic over S steps, one finds

ȳS = ȳ0 − η
S−1∑
i=0

i∑
j=0

βi−j∇f(ȳj), (10)

where η is the step size and β is the momentum parameter. By comparing the dynamics, (6) and (10), we
see that simulating a single Hamiltonian Flow in HD via Leapfrog yields a certain momentum-like dynamic
with the momentum parameter β = 1 (i.e., without reducing the weights of the accumulated gradients). On
the other hand, at the end of the flow in HD, the velocity v and hence the kinetic energy are reset to 0. The
reset of the kinetic energy in HD is necessary to make the dynamical system to be dissipative in order to
converge. Without the reset, by energy conservation of the Hamiltonian Flow, the update might continue
moving past a desired point and hence fail to converge. This mechanism of HD differs from existing friction-
based momentum methods (Maddison et al., 2018; O’Donoghue & Maddison, 2019; De Luca & Silverstein,
2022; França et al., 2020; Mai & Johansson, 2020; Wibisono et al., 2016; Wilson et al., 2021), which typically
involve a movement with friction to dissipate kinetic energy, e.g., via specifying the value of the momentum
parameter β to be β < 1.

We further consider Hamiltonian Descent (HD) (Algorithm 2) with the recently proposed Stratified Monte
Carlo integrator (Bou-Rabee & Marsden, 2022) (HD-ST), i.e., instantiate Integrator on Line 4 in Algo-
rithm 2 as Stratified (Algorithm 4). The Stratified Monte Carlo integrator was shown to outperform the
Leapfrog integrator for HMC in sampling (Bou-Rabee & Marsden, 2022). When the kinetic energy is in the
form ϕ(v) = 1

2∥v∥
2
2, the dynamic of HD-ST becomes:

x̄s+ 1
2

= x̄s + ζsv̄s, v̄s+ 1
2

= v̄s −
θ

2∇f(x̄s+ 1
2
),

x̄s+1 = x̄s + θv̄s+ 1
2

v̄s+1 = v̄s+ 1
2
− θ

2∇f(x̄s+ 1
2
). (11)

Therefore, different from HD-LF, the gradient at each integrator step is computed at a different point than
x̄s in HD-ST. More precisely, the point where the gradient is computed is determined by a random step ζs in
the direction of the current velocity v̄s from x̄s. Interestingly, when only a single integrator step is executed
in each iteration k, the resulting dynamics recover the known ones as Lemma 2, albeit with a random step
size ζs.

3 Speeding Up Hamiltonian Descent via Parallel Optimization

One challenge in simulating a continuous-time Hamiltonian Flow via discretization is that while reducing
the step size θ brings the approximated flow closer to the exact Hamiltonian flow, it comes at the expense of
requiring more steps in each iteration, as the number of steps is Sk = ⌊ηk/θ⌋ at k given a fixed integration
time ηk, thereby might increase the time needed to complete an iteration of HD. To tackle this issue, we aim
to answer the following question: can we run the steps in an approximated Hamiltonian Flow in parallel,
given access to multiple GPUs that allow computing gradients at different points simultaneously? The
answer is affirmative, and our method to achieve the goal is based on a parallel implementation of Picard
Iteration.
Picard Iteration is a classical algorithm that oftentimes serves as a technique to prove the existence of the
unique solution of a differential equation, dx

dt = Q(x, t), where the underlying function Q(·, ·) is continuous
and L0-Lipschitz, i.e., |Q(x, t) − Q(y, t)| ≤ L0∥x − y∥ (see e.g., Khalil (2002); Teschl (2012)). Specifically,
at each iteration m of Picard Iteration, the update is

(Picard Iteration) x(m+1)
t = x0 +

∫ t

0
Q(x(m)

r , r)dr. (12)
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Figure 1: Hamiltonian Flow via Parallel Picard Iteration. The update x̄(m)
s receives gradients from the

preceding ones x̄(m−1)
i , ∀i < s, which can be done in parallel.

However, evaluating the integral might not be possible in general, and one may need to resort to numerical
computations. Specifically, a way to numerically approximate the update (12) is by computing x(m+1)

s =
x0 + θ

∑s−1
j=0 Q(x(m)

j , jθ), where θ > 0 is the step size. The update x(m+1)
s can be viewed as a discrete-time

approximation to x(m+1)
t of (12) in continuous time, with t = sθ.

We now consider Picard Iteration for simulating Hamiltonian flow (1) and present here the case when the
kinetic energy is ϕ(·) = 1

2∥ · ∥
2
2. From (1) and (12), the update can be shown to be:

v(m+1)
t = v0 −

∫ t

0
∇f(x(m)

r )dr

x(m+1)
t = x0 + tv0 −

∫ t

0
(t− r)∇f(x(m)

r )dr. (13)

Then, by discretizing the update scheme (13), we obtain

v̄(m+1)
s = v̄0 − θ

s−1∑
i=0
∇f(x̄(m)

i ), ∀s ∈ [S],

x̄(m+1)
s = x̄0 + (sθ)v̄0 − θ

s−1∑
i=0

(s− i)θ∇f(x̄(m)
i ), (14)

where θ is the step size, η is the integration time of the Hamiltonian flow, and S = ⌊η/θ⌋ is number of steps to
simulate the flow. We further note that the initial velocity in HD is zero (i.e., v̄0 = 0). The update scheme in
(14) implies that one can execute the steps in the flow in parallel. More precisely, if one would like to simulate
the flow for S steps, then all x̄(0)

s ’s can be initialized randomly at the beginning (i.e., m = 0). Furthermore,
at each iteration m, gradients at different steps s in the flow, i.e., ∇f

(
x̄(m)

s

)
, can be computed in parallel,

and obtaining x̄(m+1)
s from x̄(m)

s can also be done in a parallel fashion, which involves the gradients at those
x̄(m)

i ’s, where i < s. We refer the reader to Figure 1 for the illustration of this parallel update scheme. It is
known that when m = S, then x̄(S)

S is guaranteed to be exactly that of sequentially computing the update
for S steps, i.e., x̄(S)

S = x̄S . We formalize this argument with the following lemma. Empirically, we found
that the number of iterations m does not need to be as large as S to achieve competitive performance as
that of S steps.
Lemma 3. When the number of Picard iteration is m = S, then the update of Picard iteration x̄(S)

S is
exactly the output of sequentially computing the discretized Hamiltonian flow after S steps, i.e., x̄(S)

S = x̄S.

Proof. We prove this argument by induction. The strategy is to show that at step s, we have x̄(j)
s = x̄s for

all j ≥ s.

7
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For the base case s = 1, the condition is true since for all j ≥ 1, we have

x̄(j)
1 = x̄0 − θ2∇f(x̄(j)

0 ) = x̄0 − θ2∇f(x̄0) = x̄1.

Now assume that at a particular step s > 1, we have x̄(j)
s = x̄s for all j ≥ s. Then, at next step s + 1, for

all j′ ≥ s+ 1, we have

x̄(j′)
s+1 =x̄0 − θ2

s∑
i=0

(s+ 1− i)∇f(x̄(j′−1)
i ) = x̄0 − θ2

s∑
i=0

(s+ 1− i)∇f(x̄i) = x̄s,

since j′ ≥ s + 1 > s. Therefore, the condition holds at step s + 1, which completes the induction. That is,
for all j ≥ S, we have x̄(j)

S = x̄S , which also implies that x̄(S)
S = x̄S .

Algorithm 5 Frictionless Hamiltonian Descent via Parallel Picard Iteration
1: Input: an initial point x1 ∈ Rd, number of iterations K, a scheme of integration time (ηk)K

k=1, a scheme of step
sizes (θk)K

k=1, a window size W , and a threshold parameter τ .
2: for k = 1 to K do
3: // Numerically simulate the Hamiltonian Flow (xk+1, ·) = HFηk (xk, 0).
4: Set s = 0, m = 0.
5: Init x̄(m)

s+w−1 ← xk,∀w ∈ [W ].
6: Set Sk = ⌊ ηk

θk
⌋.

7: while s < Sk do
8: for w = 1 to W do //can be executed in parallel
9: Compute gradients ∇f(x̄(m)

s+w−1).
10: end for
11: for w = 1 to W do //can be executed in parallel
12: x̄(m+1)

s+w = x̄(m)
s − θ2

k

∑s+w−1
j=s

(s + w − j)∇f(x̄(m)
j ).

13: end for
14: for w = 1 to W do //can be executed in parallel
15: Calculate relative error

es+w = ∥x̄(m+1)
s+w − x̄(m)

s+w∥/∥x̄
(m)
s+w∥.

16: end for
17: Update the stride R of the window:

R← min(W, minj∈[W ]:es+j >τ j).
18: for r = 1 to R do
19: Init points that the window will cover at the next

inner iteration: x̄(m+1)
s+W +r ← x̄(m+1)

s+W .
20: end for
21: Update s← s + R and m← m + 1.
22: Update W ← min(W, Sk − s).
23: Set xk+1 ← x̄(m+1)

Sk
to initialize the update at the next outer iteration k + 1.

24: end for
25: Output: xK+1.

The idea of parallelizing the steps in Picard iteration was recently applied to the task of quickly generating
images by diffusion models (Shih et al., 2024), where obtaining an image from a diffusion model involves
solving an ordinary differential equation. Motivated from their results, we consider parallelizing the steps
in Hamiltonian Flow for optimization. However, when the number of steps S is large, maintaining multiple
x̄(m)

s at different steps s becomes memory consuming. Hence, we adapt a sliding-window approach in (Shih
et al., 2024), where only the steps of the flow in a current window are updated, and the window moves
forward along the flow at each m. After the updates of the the steps in the current window, the relative
error, i.e., ∥x̄(m+1)

s − x̄(m)
s ∥/∥x̄(m)

s ∥, for all steps s in the window is calculated, which determines the stride
of the window for the next iteration. Algorithm 5 details the proposed method.
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4 Numerical results

We experiment with the proposed methods of frictionless Hamiltonian Descent via discretization and par-
allel optimization and report their performance. Specifically, Subsection 4.1.1 reports the empirical results
of HD-LF (Algorithm 2 with Leapfrog) and HD-ST (Algorithm 2 with Stratified Integrator) under four dif-
ferent forms of kinetic energy ϕ(·) as well as their counterparts such as GD, Normalized GD, Sign GD, and
Coordinate Descent, with and without Heavy Ball (HB) momentum for multinomial logistic regression, while
Subsection 4.2 provides results of neural network training. Appendix B.1 and B.2 include more experimental
results of minimizing a non-convex function and matrix sensing.

In subsection 4.3, we evaluate the performance of the proposed HD via Parallel Picard Iteration (Algo-
rithm 5). We primarily display results of multinomial logistic regression on different classification datasets.
Our results clearly shows consistent speedup across the datasets. Appendix B.3 also displays the speedup
across different cases of the kinetic energy (i.e., ψ(v) = 1

2∥v∥
2
2, ∥v∥2, ∥v∥1, and ∥v∥∞).

Table 1: Detailed information of the datasets.

Dataset All Samples Training Set Test Set # of Features
a8a 32561 22696 9865 123
a9a 48842 32561 16281 123

MNIST 60000 50000 10000 784
usps 9298 7291 2007 256

The details of the datasets used for the experiments are described in Table 11. The experiments are conducted
on an Amazon EC2 P3 instance with 4 Tesla V100 GPUs. The code for reproducing the experiments can
be accessed via the link in the supplementary material.

4.1 Hamiltonian Descent with a Geometric Numerical Integrator

4.1.1 MNIST dataset

Figure 2 and Figure 3 compare HD-LF, HD-ST, and their counterparts with different forms of the kinetic
energy for the task of multinomial logistic regression. When the kinetic energy ϕ(v) is the squared l2 norm,
the counterparts of HDs are GD and HB (Polyak, 1964), where the former is without momentum and the
latter is a momentum method. Similarly, when ϕ(v) = ∥v∥2, the baselines of HDs are Normalized GD and
Normalized GD with HB dynamics (Normalized GD-HB); when ϕ(v) = ∥v∥1, the comparators are Sign
GD and Sign GD with HB momentum (Sign GD-HB); and for the other form of ϕ(v) = ∥v∥∞, Coordinate
Descent and Coordinate Descent with HB momentum (CD-HB) serve as the counterparts of HDs. For
HD-LF and HF-ST with four forms of kinetic energy, we report their performance under the specification
where the step size θ2 is set to θ2 = 0.01 and the number of integrator steps S is S = 10 for all the
iterations in Algorithm 2. For the counterparts of HDs, the step size is η = 0.01, which is the best from
the set [0.001, 0.01, 0.1], and the value of the momentum parameter is β = 0.9. The parameter θ2 is set to
0.01, since Lemma 2 shows that HD is equivalent to GD with a step size of order O(θ2). Note that in all
experiments we use the same initialization for compared algorithms but we plot the results after one round
of iteration, not from the initialization.

As HD has inner steps for simulating the Hamiltonian Flow at each iteration k, we report the testing accuracy
and training loss vs. the total number of gradient computations in Figure 2 and Figure 3 to have a fair
comparison. Specifically, we plot the progress of the algorithms up to 300 number of gradient computations; in
the case of HDs, this corresponds to K = 30 iterations with S = 10 steps to simulate the flow at each iteration
k. From both figures, HD-LF and HD-ST consistently outperform their counterparts without momentum
under different cases of the kinetic energy except when ϕ(v) = ∥v∥∞ (i.e., Sign GD). Furthermore, both
HD-LF and HD-ST have competitive performance with their counterparts that incorporate the momentum
dynamics. We note that in the literature, Sign GD does not necessarily converge to a global optimal point in

1All the datasets are available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 2: Test accuracy on MNIST dataset. Each line corresponds to HD-LF, HD-ST, or their counterparts
with and without HB momentum, under four different forms of the kinetic energy ϕ(·).

convex optimization, see e.g., Karimireddy et al. (2019) for an example of a provable failure of Sign GD. This
is aligned with our observation in Subfigure (c) of both figures, where the algorithms seemingly converge to
different points. Interestingly, HD-LF and HD-ST (and Sign GD with HB momentum) converge faster and
achieve higher test accuracy than Sign GD, while having higher training loss compared to Sign GD.

4.2 Training ResNet on CIFAR10 Dataset

We further conducted experiments on training a ResNet18 model on CIFAR10 dataset with Hamiltonian
Descent. We still use Euler discretization and kinetic function ϕ(v) = 1

2∥v∥
2 in HD and compare it with

GD and HB.

In the experiments we use stochastic gradient rather than the full gradient. We actually implement a
stochastic version of Hamiltonian Descent and compare it with SGD and SGD with Momentum. To simplify,
we still use HD, GD and HB to represent these algorithms. The learning rate of these algorithms is 0.01
and the batch size is 64. The momentum of HB is 0.9 and the integration time is 0.2. Fig. 4(a) and (b)
show the testing accuracy and training loss of the HD, GD and HB algorithms. The HD can get similar final
performance as GD and HB, meaning it can be effectively applied to neural network training. Fig. 4(c) and
(d) display the testing accuracy and training loss of HD with different integration time. It is seen for HD
with stochastic gradient, the impact of integration time is not obvious. We can easily choose an integration
time to get an acceptable performance.

4.3 Hamiltonian Descent via Parallel Picard Iteration

Figure 5 and 6 compare the proposed frictionless Hamiltonian Descent with Parallel Picard Iteration (Algo-
rithm 5) when using 1 GPU, 2 GPUs, and 4 GPUs, where the kinetic energy ϕ(v) = 1

2∥v∥
2
2. The step size

10
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Figure 3: Training loss on MNIST dataset. Each line corresponds to HD-LF, HD-ST, or their counterparts
with and without HB momentum, under four different forms of the kinetic energy ϕ(·).

Table 2: Execution time of frictionless HD via Parallel Picard Iteration with 4 GPUs (ϕ(v) = 1
2∥v∥

2
2).

Running time a8a a9a MNIST usps
1 GPU 93.2s 99.6s 403.1s 83.1s
4 GPUs 47.7s 50.3s 128.9s 42.7s
Speedup 1.95x 1.98x 3.13x 1.95x

θ is 0.1, the number of integrator steps S is 20, and the threshold for relative error τ is 0.001. The sliding
window size corresponds to the number of GPUs used in our experiments. Choosing the threshold τ can be
a delicate process: a larger error threshold reduces the accuracy of the Picard iteration approximation, as
convergence is not fully achieved within each window, whereas a smaller threshold enforces more iterations
within a single window, significantly increasing the computational cost. In our experiment, we choose the
threshold that is the best among the set [0.0001, 0.001, 0.01, 0.1].

Both figures show consistent speedup across all datasets when multiple GPUs are used to execute the
proposed algorithm. A significant speedup is observed when using 2 GPUs compared to 1 GPU, and similarly,
even greater speedup is observed with the use of 4 GPUs. In addition, we conduct the experiments for
different forms of the kinetic energy and report the results in the supplementary, where we also observe that
with the use of multiple GPUs, Hamiltonian Descent via Parallel Picard Iteration reduces the actual running
time, compared to the case of a single GPU. We note that due to the criteria for updating the stride of the
sliding window in each inner iteration of Algorithm 5, the actual number of steps when approximating the
Hamiltonian flow in the inner loop of Algorithm 5 can vary across different datasets, resulting in varying
speedup via multiple GPUs across different datasets. Though the speedup can vary, we found that the
proposed HD via Parallel Picard Iteration is effective in accelerating the process of simulating a flow in the
experiments.

11
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Figure 4: Testing Accuracy and Training Loss of neural network training with different algorithms and
parameters.
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Figure 5: Testing accuracy vs. running time (seconds) on the four datasets of HD via Parallel Picard Iteration
(Algorithm 5) with ϕ(v) = 1
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Figure 6: Training loss vs. running time (seconds) on the four datasets of HD via Parallel Picard Itera-
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5 Conclusions

In this paper, we make the idea of frictionless HD more applicable by presenting different forms of kinetic
energy and considering frictionless HD with the Leapfrog integrator and the Stratified Monte Carlo integrator.
We found some interesting connections of the resulting dynamics to the existing ones and also some novel
update schemes. We further propose speeding up approximately simulating the flow via parallel optimization
and show exciting empirical results of the acceleration via multiple GPUs. Nevertheless, a couple of directions
remain open in this work. First, Frictionless HD with Parallel Picard Iteration (Algorithm 5) requires W
copies of the model to be loaded into memory in order to perform parallel-in-time updates, where W is
the window-size parameter. This results in a significant memory footprint, especially for large models,
which in turn may limit the potential applications of the proposed algorithm. How to elegantly reduce
this seemingly inherent and substantial memory cost is therefore a worthwhile direction for future research.
Any concrete and effective approach to reducing the memory footprint could substantially improve the
applicability of the algorithm to large-scale model training, such as large language models, which typically
rely on large transformer architectures. Second, while we show that discretizing the Hamiltonian flow with
multiple integration steps induces different momentum-like dynamics under different choices of kinetic energy,
potentially highlighting the modularity of the frictionless Hamiltonian Descent framework. When and how
these new optimization dynamics yield tangible performance benefits remain underexplored, especially in
the context of non-convex optimization.
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A Proof of Lemma 2

Proof. When ϕ(v) = ∥v∥2, we have ∇xH(x,v) = ∇f(x) and ∇vH(x,v) = v
∥v∥2

. Similarly, From Algo-
rithm 3, with the initial condition x̄0 ← xk and v̄0 ← 0, one can see that the dynamic with a single Leapfrog
step is:

v̄ 1
2

= v̄0 −
θ

2∇f(x̄0) = −θ2∇f(xk)

x̄1 = x̄0 + θ
v̄ 1

2

∥v̄ 1
2 ∥

= xk − θ
∇f(xk)
∥∇f(xk)∥ . (15)

With only a single step, Leapfrog outputs x̄1, which is the position of the update xk+1 at the next iteration
k + 1. We hence obtain the update of Normalized GD, i.e., xk+1 = xk − θ ∇f(x̄k)

∥∇f(x̄k)∥ .

When ϕ(v) = ∥v∥1, we have ∇xH(x,v) = ∇f(x) and one subgradient is ∂vH(x,v) = sign(v). Similarly, we
can see that the dynamic with a single Leapfrog step is:

v̄ 1
2

= v̄0 −
θ

2∇f(x̄0) = −θ2∇f(xk)

x̄1 = x̄0 + θ sign(v̄ 1
2
) = xk − θsign(∇f(xk)). (16)

With only a single step, Leapfrog outputs x̄1, which is the position of the update xk+1 at the next iteration
k + 1. We hence obtain the update of Sign GD, i.e., xk+1 = xk − θsign(∇f(xk)).

When ϕ(v) = ∥v∥∞, we have ∇xH(x,v) = ∇f(x) and one subgradient is ∂vH(x,v) = sign (v[imax]) eimax ,
where imax ∈ arg maxi∈[d] |v[i]|, since ∥v∥∞ is the absolute value of the element in v with largest absolute

15
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value. And eimax is the one-hot vector with index imax being non-zero. Similarly, we can see that the dynamic
with a single Leapfrog step is:

v̄ 1
2

= v̄0 −
θ

2∇f(x̄0) = −θ2∇f(xk)

x̄1 = x̄0 + θ sign(v̄ 1
2
) = xk − θ sign (∇f(xk)[imax]) eimax . (17)

With only a single step, Leapfrog outputs x̄1, which is the position of the update xk+1 at the next iteration
k + 1. We hence obtain the update of Coordinate Descent, i.e., xk+1 = xk − θ sign (∇f(xk)[imax]) eimax ,
where imax ∈ arg maxi∈[d] |∇f(xk)[i]|.

B Additional Experiments

B.1 Ackley function

We also conduct an experiment for minimizing the Ackley function, which is known to be a highly non-convex
function with two variables:

F (x) =− 20 exp
[
−0.2

√
0.5(x2

1 + x2
2)

]
− exp [0.5(cos 2πx1 + cos 2πx2)] + e+ 20. (18)

In this experiment, we consider HD with the kinetic energy being ϕ(v) = 1
2∥v∥

2
2.
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Figure 7: Minimizing the Ackley function.

Figure 7.1(a) compare the proposed HDs with the baselines, GD and HB, starting from the same point. For
HD-LF and HD-ST, the integration time is fixed as η = 0.01 and step size is chosen as θ = 0.001. For GD
and HB, the step size η is tuned on the grid [10−1, 10−2, . . . , 10−6] for the best one. From the figure, we
can see that HB outperforms GD, and our proposed HD-LF and HD-ST can further outperforms HB. We
also observe that HD-LF behaves more stably than HB during the optimization process, while the update
of HD-ST is less stable due to the randomness of the step size ζs.

We then investigate the impact of parameter choices in HD-LF. Figure 7.1(b) shows the performance of
HD-LF with different step size θ with a fixed integration time. The integration time η is fixed as η = 0.01.
Then, the number of integrator steps S varies with θ. With a smaller step size, the discretized flow tracks
the exact Hamiltonian flow better and can converge to a lower value. However, the computational burden
increases with more integrator steps within one execution of the Hamiltonian flow, suggesting the need to
accelerate the process of simulating a Hamiltonian flow (and we propose HD via Parallel Optimization in
Section 3 to address this issue). Figure 7.1(c) displays the performance of HD-LF with different value of
the integration time η, while the step size is fixed as θ = 0.001. When η = 0.01 or 0.05, the performance of
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HD-LF is better than HD-LF with a smaller value than 0.01 or a larger value than 0.05, showing that there
is a range of η to obtain the best performance of HD-LF.

B.2 Matrix Sensing

Low rank matrix sensing problem is a typical non-convex problem widely applied to image processing,
multi-task regression, and metric embeddings Davis et al. (2025). It aims to recover a symmetric positive
semidifinite matrix X ∈ Rd×d with low rank r ≪ d from a set of linear measurements yi = ⟨Ai, X⟩, where
Ai ∈ Rd×d are known measurement matrices. Using low rank factorization of the matrix X = BBT , where
B ∈ Rd×k, we can formulate the optimization problem as:

min
B∈Rd×k

1
4m

m∑
i=1

(
yi −

〈
Ai, BB

T
〉)2

, (19)

where m is the number of measurements. The rank k of matrix B is usually larger than r since we do not
know the exact value of r in practice and we choose an overestimated value k. In the experiments Ai is
generated from Ai = aia

T
i − ãiã

T
i , where ai and ãT

i are standard Gaussian vectors.

In this matrix sensing problem, we test our proposed Hamiltonian Descent (HD) algorithm and compare it
with Gradient Descent (GD) and Heavy Ball (HB) methods. To simplify, we use Euler discretization and
kinetic function ϕ(v) = 1

2∥v∥
2 in HD.
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(a) Comparison to GD and HB.
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(b) HDs with different values of integration time η.

Figure 8: Distance to the optimal solution in matrix sensing experiments.

In the experiments, the exact rank r is 2 and the overparameterized rank k is 4. The dimension of matrix d
is 100, and number of measurements m is 1000. Fig. 8 (a) shows the performance of HD and the comparison
to GD and HB. The learning rate of these algorithms are 0.05. For HD, the integration time is 2, with 40
inner steps per iteration. For HB, the momentum is 0.9. We can see the HD can outperform GD and HB
with lower distance to the optimal solution. Fig. 8 (b) shows HD performance with different integration
time values η as 0.5, 2.0, 5.0, 8.0. When the integration time is larger, the final distance to the optimal
solution can be smaller, while the convergence is slower.

B.3 Parallel Optimization with Different Kinetic Energy

We also provide experimental results of Algorithm 5 with different forms of the kinetic energy in Figure 9,
where we also observe that with the use of multiple GPUs, Hamiltonian Descent via Parallel Picard Iteration
reduces the actual running time, compared to the case of a single GPU.
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(a) ϕ(v) = ∥v∥2.
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(b) ϕ(v) = ∥v∥1.
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(c) ϕ(v) = ∥v∥∞.
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(d) ϕ(v) = ∥v∥2.
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(e) ϕ(v) = ∥v∥1.
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(f) ϕ(v) = ∥v∥∞.

Figure 9: Testing Accuracy vs. running time (seconds) on MNIST of HD via Parallel Picard Iteration
(Algorithm 5) under the cases of different forms of kinetic energy ϕ(·).
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