
A Bi-metric Framework for Efficient Nearest Neighbor Search

Haike Xu 1 Piotr Indyk 1 Sandeep Silwal 2

Abstract
We propose a new “bi-metric” framework for de-
signing nearest neighbor data structures. Our
framework assumes two dissimilarity functions: a
ground-truth metric that is accurate but expensive
to compute, and a proxy metric that is cheaper
but less accurate. In both theory and practice,
we show how to construct data structures using
only the proxy metric such that the query pro-
cedure achieves the accuracy of the expensive
metric, while only using a limited number of
calls to both metrics. Our theoretical results in-
stantiate this framework for two popular near-
est neighbor search algorithms: DiskANN and
Cover Tree. In both cases we show that, as long
as the proxy metric used to construct the data
structure approximates the ground-truth metric up
to a bounded factor, our data structure achieves
arbitrarily good approximation guarantees with re-
spect to the ground-truth metric. On the empirical
side, we apply the framework to the text retrieval
problem with two dissimilarity functions evalu-
ated by ML models with vastly different com-
putational costs. We observe that for almost all
the large data sets in the BEIR benchmark, our
approach achieves a considerably better accuracy-
efficiency tradeoff than the alternatives, such as
retrieve-then-rerank.

1. Introduction
Similarity search is a versatile and popular approach to data
retrieval. It assumes that the data items of interest (text
passages, images, etc.) are equipped with a distance func-
tion, which for any pair of items estimates their similarity
or dissimilarity 1. Then, given a “query” item, the goal is to

1MIT 2UW-Madison. Correspondence to: Haike Xu
<haikexu@mit.edu>, Piotr Indyk <indyk@mit.edu>, Sandeep
Silwal <silwal@cs.wisc.edu>.

Proceedings of the 1 st Workshop on Vector Databases at Interna-
tional Conference on Machine Learning, 2025. Copyright 2025 by
the author(s).

1To simplify the presentation, throughout this paper we assume
a dissimilarity function.

return the data item that is most similar to the query. From
the algorithmic perspective, this approach is formalized as
the nearest neighbor search (NN) problem: given a set of
n points P in a metric space (X,D), build a data structure
that, given any query point q ∈ X , returns p ∈ P that min-
imizes D(p, q) . In many cases, the items are represented
by high-dimensional feature vectors and D is induced by
the Euclidean distance between the vectors. In other cases,
D(p, q) is computed by a dedicated procedure given p and
q (e.g., by a cross-encoder).

Over the last decade, mapping data items to feature vectors,
or estimation of similarity between pairs of data items, is
often done using ML models. (In the context of text re-
trieval, the first task is achieved by constructing bi-encoders
(Karpukhin et al., 2020; Neelakantan et al., 2022; Gao et al.,
2021b; Wang et al., 2024), while the second task uses cross-
encoders (Gao et al., 2021a; Nogueira et al., 2020; Nogueira
& Cho, 2020)). This creates efficiency bottlenecks, as high-
accuracy models are often larger and slower, while cheaper
models do not achieve the state-of-the-art accuracy. Further-
more, high-accuracy models are often proprietary and ac-
cessible only through a limited interface at a monetary cost.
This motivates studying “the best of both worlds” solutions
which utilize many types of models to achieve favorable
tradeoffs between efficiency, accuracy and flexibility.

One popular method for combining multiple models is based
on retrieve-then-rerank (Liu et al., 2009). It assumes two
models: one model evaluating the metric D, which has high
accuracy but is less efficient; and another model computing
a “proxy” metric d, which is cheap but less accurate. The
algorithm uses the second model (d) to retrieve a large (say,
k = 1000) number of data items with the highest similarity
to the query, and then uses the first model (D) to select
the most similar items. The hyperparameter k controls the
tradeoff between the accuracy and efficiency. To improve
the efficiency further, the retrieval of the top-k items is
typically accomplished using approximate nearest neighbor
data structures. Such data structures are constructed for
the proxy metric d, so they remain stable even if the high-
accuracy metric D undergoes frequent updates.

Despite its popularity, the retrieve-then-rerank approach
suffers from several issues:

1

1. The overall accuracy is limited by the accuracy of the
cheaper model. To illustrate this phenomenon, suppose
that D defines the “true” distance, while d only pro-
vides a “C-approximate” distance, i.e., that the values
of d and D for the same pairs of items differ by at
most a factor of C > 1. Then the re-ranking approach
can only guarantee that the top reported item is a C-
approximation, namely that its distance to the query is
at most C times the distance from the query to its true
nearest neighbor according to D. This occurs because
the first stage of the process, using the proxy d, might
not retain the most relevant items.

2. Since the set of the top-k items with respect to the
more accurate model depends on the query, one needs
to perform at least a linear scan over all k data items
retrieved using the proxy metric d. This computational
cost can be reduced by decreasing k, but at the price of
reducing the accuracy.

Our results We show that, in both theory and practice, it is
possible to combine cheap and expensive models to achieve
approximate nearest neighbor data structures that inherit the
accuracy of expensive models while significantly reducing
the overall computational cost. Specifically, we propose a
bi-metric framework for designing nearest neighbor data
structures with the following properties:

• The algorithm for creating the data structure uses only
the proxy metric d, making it efficient to construct,

• The algorithm for answering the nearest neighbor query
leverages both models, but performs only a sub-linear
number of evaluations of d and D,

• The data structure achieves the accuracy of the expen-
sive model.

For a more formal description of the framework, see Prelim-
inaries (Section 2).

The simplest approach to constructing algorithms that con-
form to our framework is to construct the data structure
using the proxy metric d, but answer queries using the ac-
curate metric D; we also propose more complex solutions
with better performance. Our approach is quite general, and
is applicable to any approximate nearest neighbor data struc-
ture for general metrics. Our theoretical study analyzes the
simple approach when applied to two popular algorithms:
DiskANN (Jayaram Subramanya et al., 2019) and Cover
Tree (Beygelzimer et al., 2006), under natural assumptions
about the intrinsic dimensionality of the data, as in (Indyk
& Xu, 2023). Perhaps surprisingly, we show that despite the
fact that only the proxy d is used in the indexing stage, the
query answering procedure essentially retains the accuracy
of the ground truth metric D.

Formally, we show the following theorem statement. We use
λd to refer to the doubling dimension with respect to metric
d (a measure of intrinsic dimensionality, see Definition 2.2).

Theorem 1.1 (Summary, see Theorems 3.4 and B.3). Given
a dataset X of n points, Alg ∈ {DiskANN,Cover Tree},
and a fixed metric d, let SAlg(n, ε, λd) and QAlg(ε, λd) de-
note the space and query complexity respectively of the stan-
dard datastructure for Alg which reports a 1 + ε nearest
neighbor in X for any query (all for a fixed metric d).

Consider two metrics d and D satisfying Equation 1. Then
for any Alg ∈ {DiskANN,Cover Tree}, we can build a
corresponding datastructure DAlg on X with the following
properties:

1. When constructing DAlg, we only access metric d,

2. The space used by DAlg can be bounded by
Õ(SAlg(n, ε/C, λd))

2,

3. Given any query q, DAlg invokes D at most
Õ(QAlg(ε/C, λd)) times,

4. DAlg returns a 1 + ε approximate nearest neighbor of
q in X under metric D.

The proof of the theorem crucially uses the properties of
the underlying graph-based data structures. In Appendix F
we theoretically show that such a result is impossible to
achieve for another popular family of nearest neighbor algo-
rithms based on locality sensitive hashing (and other similar
methods). Thus our work further highlights the power of
graph-based methods, both theoretically and empirically.

To demonstrate the practical applicability of the bi-metric
framework, we apply it to the text retrieval problem. Here,
the data items are text passages, and the goal is to retrieve
a passage from a large collection that is most relevant to
a query passage. We instantiated our framework with the
DiskANN algorithm. We use a lower-quality “bge-micro-
v2” embedding model (AI, 2023) to define the metric d;
the value of d(p, q) is defined by the Euclidean distance
between the embeddings of p and q. The high-quality model
D is defined by one of the following two settings:

• The SFR-Embedding-Mistral embedding model (Meng
et al., 2024), where the metric is defined as the Eu-
clidean distance between embeddings, and

• The Gemini-2.0-Flash large language model. Here,
we use the fact that graph-based algorithms for near-
est neighbor search do not require the values D(p, q)
per se, but only use comparisons between D(q, p) and

2Õ hides logarithm dependencies in the aspect ratio.

2

D(q, s). We implement these comparisons by query-
ing the model with a query q and a list of points
{p1, p2, ...pn} to obtain their relative order via the
model API, where the list of points is generated by
our algorithm.

In all the cases, the complexities of the high-quality model
are much higher than that of the low-quality model. In the
first setting, embedding a single passage takes 0.00043 sec-
onds when using bge-micro-v2 compared to 0.13 seconds
when using SFR-Embedding-Mistral, making the second
model > 300 times slower. In the second setting, bge-micro-
v2 embeddings are computed locally, while the comparisons
involving the high-quality metric require calls to Gemini-
2.0-Flash API, at a cost of roughly 0.01 cents per distance
evaluation, amounting to a total of $1000 to reproduce the
experimental results in Figure 2.

We evaluated the retrieval quality of our approach on a
benchmark collection of 6 large (i.e., of size at least one
million) BEIR retrieval data sets (Thakur et al., 2021). In
each experiment we compared our algorithm to the standard
the re-ranking approach, which retrieves the closest data
items to the query with respect to d and re-ranks using D.
We observe that in almost all settings, our approach achieves
a considerably better accuracy-efficiency tradeoff than re-
ranking. For example, in Gemini-2.0-Flash experiments, on
average, our algorithm achieves the same retrieval accuracy
as re-ranking using only ≈ 200 calls to the Gemini API,
compared with ≈ 800 calls by re-ranking, yielding a 4x
reduction (see Figure 2).

1.1. Related Work

As described in the introduction, a popular method for uti-
lizing a cheap metric d and expensive metric D in similarity
search is based on ”filtering” or “re-ranking”. The idea is to
use d to construct a (long) list of candidate answers, which
is then filtered using D. It is a popular approach in many
applications, including recommendation systems (Liu et al.,
2022) and computer vision (Zhong et al., 2017). Due to
the popularity of this method, we use it as a baseline in our
experiments.

In addition to the re-ranking method, multiple other pa-
pers proposed different methods for combining accurate
and cheap metrics to improve similarity search and related
problems. We discuss those papers in more detail below.
We note that, with the exception of (Moseley et al., 2021;
Silwal et al., 2023; Bateni et al., 2024), those methods do
not appear to come with provable correctness or efficiency
guarantees, or generally applicable frameworks (in contrast
to the proposal in this paper). Furthermore, the three afore-
mentioned papers (Moseley et al., 2021; Silwal et al., 2023;
Bateni et al., 2024) focus on various forms of clustering, not

on similarity search. The paper (Moseley et al., 2021) is
closest to our work, as it uses approximate nearest neighbor
as a subroutine when computing the clustering. However,
their algorithm only achieves the (lower) accuracy of the
cheaper model, while our algorithms retains the (higher)
accuracy of the expensive one.

There are also several other empirical works on similarity
search that combine cheap and expensive metrics, none of
which fully capture our framework to the best of our knowl-
edge. The aforementioned paper (Jayaram Subramanya
et al., 2023) describes (in section 3.1) an optimization which
uses the ground truth metric D during the indexing phase,
and proxy metric d, obtained via product quantization (Je-
gou et al., 2010) during the search phase. In contrast, our
framework uses D during the search phase and d during
indexing. This difference seems crucial to our ability of
providing strong approximation guarantees for the reported
points. In another paper (Chen et al., 2023), the authors
use the proxy metric d obtained by “sketching” D during
the query answering phase, in order to prune some points
from the search queue without resorting to computing D.
However, the data structure index is still constructed using
the expensive metric D, as opposed the proxy metric d as in
our framework, which makes preprocessing more expensive
in terms of space and time. Finally, (Morozov & Babenko,
2019) present a method for constructing a similarity graph
with respect to an approximate distance function derived
from a complex one; during the query phase the graph is ex-
plored using a more complex relevance function. However,
their algorithm uses specific proxy metric derived from the
expensive one; in contrast, our framework allows arbitrary
distance functions d and D, as long as the distortion C be-
tween them is bounded. We discuss further related work
pertaining to graph-based algorithms for similarity search
in Appendix A.

2. Preliminaries
Nearest neighbor search We first consider the standard
formulation of exact nearest neighbor search. Here, we
are given a set of points P , which is a subset of the set of
all points X (e.g., X = Rd). In addition, we are given
access to a metric function D that, for any pair of points
p, q ∈ X returns the dissimilarity between p and q. The
goal of the problem is to build an index structure that, given
a query point q ∈ X , returns p∗ ∈ P such that p∗ =
arg minp∈PD(q, p). The formulation is naturally extended
to more general settings, such as:

• (1 + ε)-approximate nearest neighbor search, where
the goal is to find any p∗ ∈ P such that D(q, p∗) ≤
(1 + ε)minp∈P D(q, p).

• k-nearest neighbor search, where the goal is to find the

3

set of k nearest neighbors of q in P with respect to D.
If the algorithm returns a set S′ of k points different
than the set S of true k nearest neighbor, the quality of
the answer is measured via the Recall rate or NDCG
score (Järvelin & Kekäläinen, 2002).

Bi-metric framework

In our framework, we assume that we are given two
metrics over X:

• The ground truth metric D, which for any pair of
points p, q ∈ X returns the “true” dissimilarity
between p and q. The metric D plays the same
role as in the standard nearest neighbor search
problem.

• The proxy metric d, which provides a cheap ap-
proximation to the ground truth metric.

Objective: return nearest neighbors with respect to
the expensive metric D; the metric d is used as a
proxy, in order to minimize the number of calls to
the expensive metric D.

Cost model: We assume that the algorithm for con-
structing the data structure can use the proxy metric
d, but not the ground truth metric D. On the other
hand, the algorithm for answering a query q has ac-
cess to both metrics. However, the complexity of the
query-answering procedure is measured by count-
ing only the number of evaluations of the expensive
metric D.

As described in the introduction, the above formulation is
motivated by the following considerations:

• In many scenarios, evaluating the ground truth metric
D can be very expensive, due to factors such as model
size or monetary costs associated with querying propri-
etary models from industry. For example, a typical call
to Gemini-2.0-Flash costs roughly 0.01 cents per dis-
tance evaluation. For SFR-Embedding-Mistral (Meng
et al., 2024), it takes an A100 gpu around 196 hours to
compute the embeddings of 5 million passages from
the HotpotQA dataset and these embeddings occupy
83GB of disk storage; meanwhile, using the cheap
model bge-micro (AI, 2023), computing these embed-
dings only takes 0.62 hours and 7GB of disk storage.
(As a comparison, the graph index size of 5 million
points occupies roughly 1GB of disk storage.) There-
fore, our cost model for the query answering procedure
only accounts for the number of expensive evaluations.

• In other settings, a cheap proxy metric d can be ob-
tained by approximating the ground truth metric D,
i.e., by using product quantization (Jegou et al., 2010).

• In applications that use similarity search data structures
in model training, the metric D can change after each
model update, necessitating re-computing embeddings
and the search index over the entire database. Since
this is expensive, some works (e.g., (Borgeaud et al.,
2022)) freeze the parts of the model that compute em-
beddings to avoid the computational cost of updating
the data structure. Our framework offers an alterna-
tive approach, where one constructs a stable index for
a proxy d using frozen embeddings, but uses the up-
to-date model to compute the ground-truth metric D
when answering nearest neighbor queries.

Design approach: On a high-level, the algorithms studied
in this paper follow the same design pattern. Specifically,
we use a graph-based nearest neighbor search algorithm,
which uses calls to a metric as a black box, as a starting
point. During preprocessing, the algorithm uses the proxy
metric d. However, during the query phase, the algorithm
makes calls to the accurate metric D. We show that, de-
spite this “metric switch”, the resulting algorithm can report
provably accurate nearest neighbors with respect to the ac-
curate metric D. This basic approach is then modified to
achieve better performance, in theory and in practice. We
apply this design approach to two popular graph-based algo-
rithms: DiskANN and Cover Tree, but in principle any other
graph-based algorithm can also be used. (We choose these
two algorithms because both have provable correctness &
performance guarantees, making it possible for us to obtain
provable guarantees for our methods as well.)

Assumptions about metrics: Clearly, if the metrics d and
D are not related to each other, the data structure constructed
using d alone does not help with the query retrieval. There-
fore, we assume that the two metrics are related through the
following definition.

Definition 2.1. Distance function d is a C-approximation3

of D if for all x, y ∈ X , d(x, y) ≤ D(x, y) ≤ C ·
d(x, y). (1)

For a fixed metric d and any point p ∈ X , radius r > 0,
we use B(p, r) to denote the ball with radius r centered
at p, i.e. B(p, r) = {q ∈ X : d(p, q) ≤ r}. In our
paper, the notion of doubling-dimension is central. It is
a measure of intrinsic dimensionality of datasets which is
popular in analyzing high dimensional datasets, especially
in the context of nearest neighbor search algorithms (Gupta
et al., 2003; Krauthgamer & Lee, 2004; Beygelzimer et al.,
2006; Indyk & Naor, 2007; Har-Peled & Kumar, 2013;
Narayanan et al., 2021; Indyk & Xu, 2023).

3Please see Section 4 and Figure 5 for empirical estimates of
C = D/d. For all datasets, C = O(1) for most pairs, justifying
the use of this assumption.

4

Definition 2.2 (Doubling Dimension). X has doubling di-
mension λd with respect to metric d if for any p ∈ X , and
radius r > 0, X ∩B(p, 2r) can be covered by at most 2λd

balls with radius r.

For a metric d, ∆d is the aspect ratio of the input set: the
ratio between the diameter and closest pair.

Note that both Definition 2.1 and 2.2 are only for the sake
of theoretical analysis. Our experimental results verify the
advantage of our bi-metric framework without any assump-
tions. (Please see section 4)

3. Theoretical Analysis
We instantiate our bi-metric framework for two popular
nearest neighbor search algorithms: DiskANN and Cover
Tree. The goal of our bi-metric framework is to first create
a data structure using the proxy (cheap) metric d, but solve
nearest neighbor to 1+ ε accuracy for D (expensive metric).
The query step should invoke the metric D judiciously, as
the number of calls to D is the measure of efficiency. Our
theoretical query answering algorithms do not use any calls
to d.

We note that, if we treat the proxy data structure as a black
box, we can only guarantee that it returns a C-approximate
nearest neighbor with respect to D. Our theoretical analysis
overcomes this, and shows that calling D a sublinear number
of times in the query phase (for DiskANN and Cover Tree)
allows us to obtain arbitrarily accurate neighbors for D.

At a high level, the unifying theme of the algorithms that
we analyze (DiskANN and Cover Tree) is that they both
crucially use the concept of a net: given a parameter r,
a r-net is a small subset of the dataset guaranteeing that
every data point is within distance r to the subset in the net.
Both algorithms (implicitly or explicitly), construct nets of
various scales r which help route queries to their nearest
neighbors in the dataset. The key insight is that a net of
scale r for metric d is also a net under metric D, but with
the larger scale Cr. Thus, if we construct smaller nets for
metric d, they can also function as nets for the expensive
metric D (which we don’t access during our data structure
construction). Theoretically, this is where the advantage of
our method comes from, but care must be taken to formalize
the intuition, as done in Section 3.1.

We remark that the intuition we gave clearly does not gen-
eralize for nearest neighbor algorithms which are funda-
mentally different, such as locality sensitive hashing. In
fact, in Appendix F we theoretically show that such a result
is impossible to achieve for LSH. We present the analysis
of DiskANN below. The analysis of Cover Tree is more
complex, and hence deferred to Appendix B.

3.1. DiskANN

Preliminaries for DiskANN. First, some helpful back-
ground is given. First we only deal with a single metric
d. We first need the notion of an α-shortcut reachability
graph. Intuitively, it is an unweighted graph G where the
vertices correspond to points of a dataset X such that nearby
points (geometrically) are close in graph distance. The main
analysis of (Indyk & Xu, 2023) shows that (the ‘slow pre-
processing version’ of) DiskANN outputs an α-shortcut
reachability graph (Theorem 3.2).

Definition 3.1 (α-shortcut reachability (Indyk & Xu, 2023)).
Let α ≥ 1. We say a graph G = (X,E) is α-shortcut
reachable from a vertex p under a given metric d if for
any other vertex q, either (p, q) ∈ E, or there exists p′ s.t.
(p, p′) ∈ E and d(p′, q) · α ≤ d(p, q). We say a graph G
is α-shortcut reachable under metric d if G is α-shortcut
reachable from any vertex v ∈ X .

Theorem 3.2 ((Indyk & Xu, 2023)). Given a dataset X ,
α ≥ 1, and fixed metric d the slow preprocessing DiskANN
algorithm (Algorithm 4 in (Indyk & Xu, 2023)) outputs a α-
shortcut reachibility graph G on X as defined in Definition
3.1 (under metric d). The space complexity of G is n ·
αO(λd) log(∆d).

Given an α-reachability graph on a dataset X and a query
point q, (Indyk & Xu, 2023) additionally show that the
greedy search procedure of Algorithm 1 finds an accurate
nearest neighbor of q in X .

Theorem 3.3 (Theorem 3.4 in (Indyk & Xu, 2023)). For
ε ∈ (0, 1), there exists an Ω(1/ε)-shortcut reachable
graph index for a metric d with max degree Deg ≤
(1/ε)O(λd) log(∆d) (guranteed by Theorem 3.2). For any
query q, Algorithm 1 on this graph index finds a (1+ε) near-
est neighbor of q in X (under metric d) in S ≤ O(log(∆d))
steps and makes at most S · Deg ≤ (1/ε)O(λd) log(∆d)

2

calls to d.

We are now ready to state the main theorem of Section 3.1.

Theorem 3.4. Let QDiskAnn(ε,∆d, λd) =
(1/ε)O(λd) log(∆d)

2 denote the query complexity of
the DiskANN data structure4, where we build and search
using the same metric d. Consider two metrics d and D
satisfying Equation 1. Suppose we build an C/ε-shortcut
reachability graph G using Theorem 3.2 for metric d, but
search using metric D in Algorithm 1 for a query q with
L = 1. Then:

1. The space used by G is at most n · (C/ε)O(λd) log(∆d).
2. Running Algorithm 1 using D finds a 1+ε nearest neigh-

bor of q in the dataset X (under D).

4I.e., the upper bound on the number of calls made to d on any
query

5

Algorithm 1 DiskANN-GreedySearch(q, d, L)

1: Input: Graph index G = (X,E), distance function d,
starting point s, query point q, queue length limit L

2: Output: visited vertex list U
3: A← {s}
4: U ← ∅
5: while A \ U ̸= ∅ do
6: v ← argminv∈A\U d(xv, q)
7: A← A ∪Neighbors(v) ▷ Neighbors in G
8: U ← U ∪ v
9: if |A| > L then

10: A← top L closest vertex to q in A
11: end if
12: end while
13: sort U in increasing distance from q
14: return U

3. On any query q, Algorithm 1 invokes D at most
QDiskAnn(ε/C,C∆d, λd).

To prove the theorem, we first show that a shortcut reach-
ability graph of d is also a shortcut reachability graph of
D, albeit with slightly different parameters, with a proof in
Appendix C.

Lemma 3.5. Suppose metrics d and D satisfy relation (1).
Suppose G = (X,E) is α-shortcut reachable under d for
α > C. Then G = (X,E) is an α/C-shortcut reachable
under D.

Proof of Theorem 3.4. By Lemma 3.5, the graph G =
(X,E) constructed for metric d is also a O(1/ε) reach-
able for the other metric D. Then we simply invoke
Theorem 3.3 for a (1/ε)-reachable graph index for met-
ric D with degree limit Deg ≤ (C/ε)O(λd) log(∆d) and
the number of greedy search steps S ≤ O(log(C∆d)).
Thus the total number of D distance call bounded by
(C/ε)O(λd) log(C∆d)

2 ≤ QDiskAnn(ε/C,C∆d, λd). This
proves the accuracy bound as well as the number of calls
we make to metric D during the greedy search procedure of
Algorithm 1. The space bound follows from Theorem 3.2,
since G is a C/ε-reachability graph for metric d.

4. Experiments
The starting point of our implementation is the DiskANN
based algorithm from Theorem 3.4, which we engineer
to optimize performance5. We compare it to two other
methods on all large BEIR retrieval tasks (Thakur et al.,
2021), i.e., for datasets with corpus size > 106: Climate-

5Our experiments are run on 56 AMD EPYC-Rome processors
with 400GB of memory and 4 NVIDIA RTX 6000 GPUs. Our
experiment in Figure 1 takes roughly 3 days.

FEVER (Diggelmann et al., 2020), FEVER (Thorne et al.,
2018), HotpotQA (Yang et al., 2018), MSMARCO (Bajaj
et al., 2018), NQ (Kwiatkowski et al., 2019) and DBPe-
dia (Hasibi et al., 2017).

Methods We evaluate the following methods. Q denotes
the query budget, i.e., the maximum number of calls an
algorithm can make to D during a query. We vary Q in our
experiments.
• Bi-metric (our method): We build a graph index with the
cheap distance function d (we discuss our choice of graph
indices in the experiments shortly). Given a query q, we
first search for q’s top-Q/2 nearest neighbor under metric d.
Then, we start a second-stage search from the Q/2 returned
vertices using distance function D on the same graph index
until we reach the quota Q. We report the 10 closest neigh-
bors seen so far by distance function D.
• Bi-metric (baseline): This is the standard retrieve-then-
rerank method that is widely popular. We build a graph
index with the cheap distance function d. Given a query q,
we first search for q’s top-Q nearest neighbor under metric
d. As explained below, we can assume that empirically the
first step returns the true top-Q nearest neighbors under d.
Then, we calculate distance using D for all the Q returned
vertices and report the top-10.

• Single metric: This is the standard nearest neighbor search
with a single distance function D. We build the graph index
directly with the expensive distance function D. Given a
query q, we do a standard greedy search to get the top-10
closest vertices to q with respect to distance D until we reach
quota Q. We help this method and ignore the large number
of D distance calls in the indexing phase and only count
towards the quota in the search phase. Note that this method
doesn’t satisfy our “bi-metric” formulation as it uses an
extensive number of D distance calls (Ω(n) calls) in index
construction. However, we implement it for comparison
since it represents a natural baseline, if one does not care
about the prohibitively large number of calls made to D
during index building.

For both Bi-metric methods (ours and baseline), in the first-
stage search under distance d, we initialize the parameters
of the graph index so that empirically, it returns the true
nearest neighbors under distance d. This is done by setting
the ‘query length’ parameter L to be 30000 for datasets with
corpus size > 106 (Climate-FEVER (Diggelmann et al.,
2020), FEVER (Thorne et al., 2018), HotpotQA (Yang et al.,
2018), MSMARCO (Bajaj et al., 2018), NQ (Kwiatkowski
et al., 2019), DBPedia (Hasibi et al., 2017)). Our choice of L
is large enough to ensure that the returned vertices are almost
true nearest neighbors under distance d. For example, the
standard parameters used are a factor of 10 smaller. We also
empirically verified that the nearest neighbors returned for
d with such large values of L corroborated with published

6

BEIR benchmark values 6.

Datasets We experiment with all of the 6 BEIR retrieval
datasets of size > 106 (Climate-FEVER (Diggelmann et al.,
2020), FEVER (Thorne et al., 2018), HotpotQA (Yang et al.,
2018), MSMARCO (Bajaj et al., 2018), NQ (Kwiatkowski
et al., 2019), DBPedia (Hasibi et al., 2017)). We report the
results on these dataests’ test split, except for MSMARCO
where we report the results on its dev split.

Embedding Models We select a highly ranked model “SFR-
Embedding-Mistral” as our expensive model to provide
groundtruth metric D. Meanwhile, we select three models
on the pareto curve of the BEIR retrieval size-average score
plot to test how our method performs under different model
scale combinations. These three small models are “bge-
micro-v2”, “gte-small”, “bge-base-en-v1.5”. Please refer
to Table 1 for details. As described earlier, both metrics
d(p, q) and D(p, q) are induced by the Euclidean distance
between the embeddings of p and q using the respective
models. The embeddings defining the proxy metric d are
pre-computed and stored during the pre-processing, and
then used to construct the data structure. The embeddings
defining the accurate metric D are computed on the fly
during the query processing stage. Specifically, to answer a
query q, the algorithm first computes the embedding f(q)
of q. Then, whenever the value of D(q, p) is needed, the
algorithm computes f(p) and evaluates D(p, q) = ∥f(q)−
f(p)∥. Thus, the cost of evaluating D(p, q) is equal to the
cost of embedding p. (In other scenarios where D(p, q) is
evaluated using a proprietary system over the Internet, the
cost is determined by the vendor’s prices and/or the network
speed.) See Table 1 for details.

Nearest Neighbor Search Algorithms The search algo-
rithms we employ in our experiments are DiskANN (Ja-
yaram Subramanya et al., 2019) and NSG (Fu et al., 2019a).
We use standard parameter choices; see Appendix E.

Metric Given a fixed expensive distance function quota
Q, we report the accuracy of retrieved results for different
methods. We always insure that all algorithms never use
more than Q expensive distance computations. Following
the BEIR retrieval benchmark, we report the NDCG@10
score. Following the standard nearest neighbor search al-
gorithm benchmark metric, we also report the Recall@10
score compared to the true nearest neighbor according to
the expensive metric D.

4.1. Experiment Results and Analysis

Please refer to Figure 1 for our results with d distance func-
tion set to “bge-micro-v2” and D set to “SFR-Embedding-
Mistral”, with the underlying graph index being DiskANN.

6from https://huggingface.co/spaces/mteb/
leaderboard

To better focus on the convergence speed of different meth-
ods toward the “Single metric (limit)” (perfect nearest neigh-
bor retrieval with respect to D), we cut off the y-axis at a
relatively high accuracy, so some curves may not start from
x equals 0 if their accuracy doesn’t reach the threshold. We
observe that our method converges to the optimal accuracy
much faster than bi-metric (baseline) and single metric in
most cases. For example for HotpotQA, the NDCG@10
score achieved by the baselines for 8000 calls to D is compa-
rable to our method, using less than 2000 calls to D, leading
to > 4x fewer evaluations of the expensive model. This
leads to substantial time savings. For example, consider
our largest data set HotpotQA. The first stage of the query
answering procedure (using d) takes only 0.37s per query
q, while each evaluation of D(p, q) during the second stage
takes 0.13s; this translates into roughly 260s per query when
2000 evaluations of D are used. In contrast, the baseline
method requires 8000 calls to D, which translates into a
cost of roughly 1040s per query.

This means that utilizing the graph index built for the dis-
tance function proxy to perform a greedy search using D is
more efficient than naively iterating the returned vertex list
to re-rank using D (baseline). Also note that our method
converges faster than “Single metric” in all the datasets. This
phenomenon happens even if “Single metric” is allowed in-
finite expensive distance function calls in its indexing phase
to build the ground truth graph index. This suggests that the
quality of the underlying graph index is not as important,
and the early routing steps in the searching algorithm can
be guided with a cheap distance proxy functions to save
expensive distance function calls.

Similar conclusion holds for the recall plot (see Figure 6),
where our method has an even larger advantage over Bi-
metric (baseline) and is better than the Single metric in most
cases, except FEVER and HotpotQA. We report the results
of using different model pairs, using the NSG algorithm as
our graph index, and measuring Recall@10 in Appendix E.
Please see ablation studies in Appendix D.

Lastly, we measure the empirical value of C (the
relationship between d/D from (1)). For simplicity,
we assumed that d ≤ D ≤ C · d for C ≥ 1 in
(1) in our theoretical bounds. This is without loss
of generality by scaling, and we could have alterna-
tively written our theorem statements by substituting
(maxx,y D(x, y)/d(x, y))/(minx,y D(x, y)/d(x, y)) for
C. In practice, we observe that the ratio of distances
C := D/d is always clustered around one. For example, if
we use “SFR-Embedding-Mistral” to provide the distance
D, and “bge-micro-v2” to provide the distance d, then
for HotpotQA, we empirically found that 99.9% of 105

randomly sampled pairs satisfy 0.6 ≤ C ≤ 1.5. We
observed the same qualitative behavior for our other

7

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard

0 1000 2000 3000 4000 5000 6000 7000 8000

0.72

0.73

0.74

0.75

0.76

0.77

ND
CG

@
10

HotpotQA

0 250 500 750 1000 1250 1500 1750 2000
0.38

0.39

0.40

0.41

0.42

0.43

MSMARCO

0 500 1000 1500 2000 2500 3000

0.85

0.86

0.87

0.88

0.89

0.90

FEVER

0 200 400 600 800 1000
of D distance calls

0.32

0.33

0.34

0.35

0.36

0.37

ND
CG

@
10

ClimateFEVER

0 500 1000 1500 2000 2500 3000 3500 4000
of D distance calls

0.44

0.45

0.46

0.47

0.48

0.49

DBPedia

0 250 500 750 1000 1250 1500 1750 2000
of D distance calls

0.65

0.66

0.67

0.68

0.69

0.70

NQ

Bi-metric (our method) Bi-metric (baseline) Single metric Single metric (limit)

Figure 1. Results for 6 BEIR Retrieval datasets. The x-axis is the number of expensive distance function calls. The y-axis is the NDCG@10
score. The cheap model is “bge-micro-v2”, the expensive model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm
used is DiskANN.

datasets; see Figure 5 in Appendix E.

4.2. Application to a LLM-based Listwise Reranker

Following the method proposed by (Sun et al., 2023), re-
cently, there has been a trend to use LLMs to re-rank pas-
sages. Though the score output by a re-ranker does not
meet the definition of a metric, our algorithm still works
in this scenario. We prompt Gemini-2.0-Flash to re-rank
different passages based on their relevance to a search query.
We slightly modify the search algorithm (Algorithm 4 in
Appendix), as now the re-ranker only returns an order rather
than independent relevance scores. Since querying propri-
etary models like Gemini-2.0-Flash is expensive, we only
use 500 queries randomly sampled from the query sets. The
averaged results for all 6 data sets are in Figure 2. The
results on individual dataset and other experimental details
are in Appendix E. We can observe that our bi-metric frame-
work yields good results in this setting. Our method achieves
higher NDCG@10 scores while sending fewer passages to
the re-ranker. (The slight perturbation near the end of the
curves is because of the LLM’s occasional mistakes in judg-
ing the order of different passages.)

0 200 400 600 800 1000
of D distance calls

0.44

0.46

0.48

0.50

0.52

0.54

ND
CG

@
10

Avg

Bi-metric (our method)
Bi-metric (baseline)

Figure 2. Average results for 6 BEIR Retrieval datasets. The x-axis
is the number of passages sent to the reranker. The y-axis is the
NDCG@10 score. The cheap distance function is provided by
“bge-micro-v2”, the expensive distance comparator is “Gemini-
2.0-Flash”, and the nearest neighbor search algorithm used is
DiskANN.

8

References
AI, T. https://huggingface.co/taylorai/bge-micro-v2, 2023.

URL https://huggingface.co/TaylorAI/
bge-micro-v2.

Andoni, A., Indyk, P., and Razenshteyn, I. Approximate
nearest neighbor search in high dimensions. In Proceed-
ings of the International Congress of Mathematicians:
Rio de Janeiro 2018, pp. 3287–3318. World Scientific,
2018.

Aumüller, M., Bernhardsson, E., and Faithfull, A.
Ann-benchmarks: A benchmarking tool for ap-
proximate nearest neighbor algorithms. Infor-
mation Systems, 87:101374, 2020. ISSN 0306-
4379. doi: https://doi.org/10.1016/j.is.2019.02.006.
URL https://www.sciencedirect.com/
science/article/pii/S0306437918303685.

Bajaj, P., Campos, D., Craswell, N., Deng, L., Gao, J., Liu,
X., Majumder, R., McNamara, A., Mitra, B., Nguyen,
T., Rosenberg, M., Song, X., Stoica, A., Tiwary, S., and
Wang, T. Ms marco: A human generated machine reading
comprehension dataset, 2018.

Bateni, M., Dharangutte, P., Jayaram, R., and Wang,
C. Metric clustering and MST with strong and
weak distance oracles. Conference on Learning The-
ory, 2024. URL https://doi.org/10.48550/
arXiv.2310.15863.

Beygelzimer, A., Kakade, S., and Langford, J. Cover trees
for nearest neighbor. In Proceedings of the 23rd inter-
national conference on Machine learning, pp. 97–104,
2006.

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford,
E., Millican, K., Van Den Driessche, G. B., Lespiau, J.-B.,
Damoc, B., Clark, A., et al. Improving language models
by retrieving from trillions of tokens. In International
conference on machine learning, pp. 2206–2240. PMLR,
2022.

Chen, P., Chang, W.-C., Jiang, J.-Y., Yu, H.-F., Dhillon, I.,
and Hsieh, C.-J. Finger: Fast inference for graph-based
approximate nearest neighbor search. In Proceedings of
the ACM Web Conference 2023, pp. 3225–3235, 2023.

Clarkson, K. L. et al. Nearest-neighbor searching and metric
space dimensions. Nearest-neighbor methods for learning
and vision: theory and practice, pp. 15–59, 2006.

Diggelmann, T., Boyd-Graber, J., Bulian, J., Ciaramita, M.,
and Leippold, M. Climate-fever: A dataset for verification
of real-world climate claims, 2020.

Fu, C., Xiang, C., Wang, C., and Cai, D. Nsg : Navigat-
ing spread-out graph for approximate nearest neighbor
search. https://github.com/ZJULearning/
nsg, 2019a.

Fu, C., Xiang, C., Wang, C., and Cai, D. Fast approximate
nearest neighbor search with the navigating spreading-
out graph. Proceedings of the VLDB Endowment, 12(5):
461–474, 2019b.

Gao, L., Dai, Z., and Callan, J. Rethink training of bert
rerankers in multi-stage retrieval pipeline. In Advances
in Information Retrieval: 43rd European Conference on
IR Research, ECIR 2021, Virtual Event, March 28–April
1, 2021, Proceedings, Part II 43, pp. 280–286. Springer,
2021a.

Gao, T., Yao, X., and Chen, D. Simcse: Simple contrastive
learning of sentence embeddings. In 2021 Conference
on Empirical Methods in Natural Language Processing,
EMNLP 2021, pp. 6894–6910. Association for Computa-
tional Linguistics (ACL), 2021b.

Gupta, A., Krauthgamer, R., and Lee, J. R. Bounded ge-
ometries, fractals, and low-distortion embeddings. In
44th Symposium on Foundations of Computer Science
(FOCS 2003), 11-14 October 2003, Cambridge, MA,
USA, Proceedings, pp. 534–543. IEEE Computer Society,
2003. doi: 10.1109/SFCS.2003.1238226. URL https:
//doi.org/10.1109/SFCS.2003.1238226.

Har-Peled, S. and Kumar, N. Approximate nearest neighbor
search for low-dimensional queries. SIAM J. Comput.,
42(1):138–159, 2013. doi: 10.1137/110852711. URL
https://doi.org/10.1137/110852711.

Harwood, B. and Drummond, T. Fanng: Fast approximate
nearest neighbour graphs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 5713–5722, 2016.

Hasibi, F., Nikolaev, F., Xiong, C., Balog, K., Bratsberg,
S. E., Kotov, A., and Callan, J. Dbpedia-entity v2: A test
collection for entity search. In Proceedings of the 40th
International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’17, pp.
1265–1268, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450350228. doi: 10.
1145/3077136.3080751. URL https://doi.org/
10.1145/3077136.3080751.

Indyk, P. and Naor, A. Nearest-neighbor-preserving embed-
dings. ACM Trans. Algorithms, 3(3):31, 2007. doi: 10.
1145/1273340.1273347. URL https://doi.org/
10.1145/1273340.1273347.

9

https://huggingface.co/TaylorAI/bge-micro-v2
https://huggingface.co/TaylorAI/bge-micro-v2
https://www.sciencedirect.com/science/article/pii/S0306437918303685
https://www.sciencedirect.com/science/article/pii/S0306437918303685
https://doi.org/10.48550/arXiv.2310.15863
https://doi.org/10.48550/arXiv.2310.15863
https://github.com/ZJULearning/nsg
https://github.com/ZJULearning/nsg
https://doi.org/10.1109/SFCS.2003.1238226
https://doi.org/10.1109/SFCS.2003.1238226
https://doi.org/10.1137/110852711
https://doi.org/10.1145/3077136.3080751
https://doi.org/10.1145/3077136.3080751
https://doi.org/10.1145/1273340.1273347
https://doi.org/10.1145/1273340.1273347

Indyk, P. and Xu, H. Worst-case performance of
popular approximate nearest neighbor search im-
plementations: Guarantees and limitations. In
Oh, A., Neumann, T., Globerson, A., Saenko,
K., Hardt, M., and Levine, S. (eds.), Advances
in Neural Information Processing Systems, vol-
ume 36, pp. 66239–66256. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.
cc/paper_files/paper/2023/file/
d0ac28b79816b51124fcc804b2496a36-Paper-Conference.
pdf.

Järvelin, K. and Kekäläinen, J. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst., 20
(4):422–446, oct 2002. ISSN 1046-8188. doi: 10.
1145/582415.582418. URL https://doi.org/10.
1145/582415.582418.

Jayaram Subramanya, S., Devvrit, F., Simhadri, H. V., Kr-
ishnawamy, R., and Kadekodi, R. Diskann: Fast accurate
billion-point nearest neighbor search on a single node.
Advances in Neural Information Processing Systems, 32,
2019.

Jayaram Subramanya, S., Devvrit, F., Simhadri, H. V., Kr-
ishnawamy, R., and Kadekodi, R. Diskann. https:
//github.com/microsoft/DiskANN, 2023.

Jegou, H., Douze, M., and Schmid, C. Product quantization
for nearest neighbor search. IEEE transactions on pattern
analysis and machine intelligence, 33(1):117–128, 2010.

Jégou, H., Douze, M., and Schmid, C. Product quantization
for nearest neighbor search. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 33(1):117–128,
2011. doi: 10.1109/TPAMI.2010.57.

Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov,
S., Chen, D., and Yih, W.-t. Dense passage retrieval for
open-domain question answering. In Webber, B., Cohn,
T., He, Y., and Liu, Y. (eds.), Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 6769–6781, Online, November
2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.550. URL https://
aclanthology.org/2020.emnlp-main.550.

Krauthgamer, R. and Lee, J. R. Navigating nets: sim-
ple algorithms for proximity search. In Munro, J. I.
(ed.), Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2004, New
Orleans, Louisiana, USA, January 11-14, 2004, pp.
798–807. SIAM, 2004. URL http://dl.acm.org/
citation.cfm?id=982792.982913.

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M.,
Parikh, A., Alberti, C., Epstein, D., Polosukhin, I., De-
vlin, J., Lee, K., Toutanova, K., Jones, L., Kelcey, M.,

Chang, M.-W., Dai, A. M., Uszkoreit, J., Le, Q., and
Petrov, S. Natural questions: A benchmark for question
answering research. Transactions of the Association for
Computational Linguistics, 7:452–466, 2019. doi: 10.
1162/tacl a 00276. URL https://aclanthology.
org/Q19-1026.

Li, Z., Zhang, X., Zhang, Y., Long, D., Xie, P., and Zhang,
M. Towards general text embeddings with multi-stage
contrastive learning. arXiv preprint arXiv:2308.03281,
2023.

Liu, T.-Y. et al. Learning to rank for information retrieval.
Foundations and Trends® in Information Retrieval, 3(3):
225–331, 2009.

Liu, W., Xi, Y., Qin, J., Sun, F., Chen, B., Zhang, W.,
Zhang, R., and Tang, R. Neural re-ranking in multi-
stage recommender systems: A review. arXiv preprint
arXiv:2202.06602, 2022.

Malkov, Y. A. and Yashunin, D. A. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. IEEE transactions on
pattern analysis and machine intelligence, 42(4):824–
836, 2018.

Meng, R., Liu, Y., Joty, S. R., Xiong, C., Zhou, Y., and
Yavuz, S. Sfr-embedding-mistral:enhance text retrieval
with transfer learning. Salesforce AI Research Blog, 2024.
URL https://blog.salesforceairesearch.
com/sfr-embedded-mistral/.

Morozov, S. and Babenko, A. Relevance proximity
graphs for fast relevance retrieval. arXiv preprint
arXiv:1908.06887, 2019.

Moseley, B., Vassilvtiskii, S., and Wang, Y. Hierarchical
clustering in general metric spaces using approximate
nearest neighbors. In International Conference on Artifi-
cial Intelligence and Statistics, pp. 2440–2448. PMLR,
2021.

Narayanan, S., Silwal, S., Indyk, P., and Zamir, O. Ran-
domized dimensionality reduction for facility location
and single-linkage clustering. In Meila, M. and Zhang,
T. (eds.), Proceedings of the 38th International Con-
ference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Ma-
chine Learning Research, pp. 7948–7957. PMLR, 2021.
URL http://proceedings.mlr.press/v139/
narayanan21b.html.

Neelakantan, A., Xu, T., Puri, R., Radford, A., Han, J. M.,
Tworek, J., Yuan, Q., Tezak, N., Kim, J. W., Hallacy,
C., Heidecke, J., Shyam, P., Power, B., Nekoul, T. E.,
Sastry, G., Krueger, G., Schnurr, D., Such, F. P., Hsu,

10

https://proceedings.neurips.cc/paper_files/paper/2023/file/d0ac28b79816b51124fcc804b2496a36-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d0ac28b79816b51124fcc804b2496a36-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d0ac28b79816b51124fcc804b2496a36-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d0ac28b79816b51124fcc804b2496a36-Paper-Conference.pdf
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://github.com/microsoft/DiskANN
https://github.com/microsoft/DiskANN
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
http://dl.acm.org/citation.cfm?id=982792.982913
http://dl.acm.org/citation.cfm?id=982792.982913
https://aclanthology.org/Q19-1026
https://aclanthology.org/Q19-1026
https://blog.salesforceairesearch.com/sfr-embedded-mistral/
https://blog.salesforceairesearch.com/sfr-embedded-mistral/
http://proceedings.mlr.press/v139/narayanan21b.html
http://proceedings.mlr.press/v139/narayanan21b.html

K., Thompson, M., Khan, T., Sherbakov, T., Jang, J.,
Welinder, P., and Weng, L. Text and code embeddings by
contrastive pre-training, 2022.

Nogueira, R. and Cho, K. Passage re-ranking with bert,
2020.

Nogueira, R., Jiang, Z., Pradeep, R., and Lin, J. Document
ranking with a pretrained sequence-to-sequence model.
In Findings of the Association for Computational Linguis-
tics: EMNLP 2020, pp. 708–718, 2020.

Silwal, S., Ahmadian, S., Nystrom, A., McCallum, A., Ra-
machandran, D., and Kazemi, S. M. Kwikbucks: Corre-
lation clustering with cheap-weak and expensive-strong
signals. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/forum?id=p0JSSa1AuV.

Sun, W., Yan, L., Ma, X., Wang, S., Ren, P., Chen, Z., Yin,
D., and Ren, Z. Is chatgpt good at search? investigat-
ing large language models as re-ranking agents. arXiv
preprint arXiv:2304.09542, 2023.

Thakur, N., Reimers, N., Rücklé, A., Srivastava, A., and
Gurevych, I. BEIR: A heterogeneous benchmark for
zero-shot evaluation of information retrieval models. In
Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 2),
2021. URL https://openreview.net/forum?
id=wCu6T5xFjeJ.

Thorne, J., Vlachos, A., Christodoulopoulos, C., and Mit-
tal, A. FEVER: a large-scale dataset for fact extrac-
tion and VERification. In Walker, M., Ji, H., and
Stent, A. (eds.), Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pp. 809–819, New Or-
leans, Louisiana, June 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/N18-1074. URL
https://aclanthology.org/N18-1074.

Wang, L., Yang, N., Huang, X., Jiao, B., Yang, L., Jiang, D.,
Majumder, R., and Wei, F. Text embeddings by weakly-
supervised contrastive pre-training, 2024.

Wang, M., Xu, X., Yue, Q., and Wang, Y. A comprehen-
sive survey and experimental comparison of graph-based
approximate nearest neighbor search. arXiv preprint
arXiv:2101.12631, 2021.

Xiao, S., Liu, Z., Zhang, P., and Muennighoff, N. C-pack:
Packaged resources to advance general chinese embed-
ding, 2023.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W.,
Salakhutdinov, R., and Manning, C. D. HotpotQA: A
dataset for diverse, explainable multi-hop question an-
swering. In Riloff, E., Chiang, D., Hockenmaier, J.,
and Tsujii, J. (eds.), Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pp. 2369–2380, Brussels, Belgium, October-
November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/D18-1259. URL https:
//aclanthology.org/D18-1259.

Zhong, Z., Zheng, L., Cao, D., and Li, S. Re-ranking
person re-identification with k-reciprocal encoding. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1318–1327, 2017.

11

https://openreview.net/forum?id=p0JSSa1AuV
https://openreview.net/forum?id=p0JSSa1AuV
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://aclanthology.org/N18-1074
https://aclanthology.org/D18-1259
https://aclanthology.org/D18-1259

A. Futher Related Works
Graph-based algorithms for similarity search The algorithms studied in this paper rely on graph-based data structures
for (approximate) nearest neighbor search. Such data structures work for general metrics, which, during the pre-processing,
are approximated by carefully constructed graphs. Given the graph and the query point, the query answering procedure
greedily searches the graph to identify the nearest neighbors. Graph-based algorithms have been extensively studied both in
theory (Krauthgamer & Lee, 2004; Beygelzimer et al., 2006) and in practice (Fu et al., 2019b; Jayaram Subramanya et al.,
2019; Malkov & Yashunin, 2018; Harwood & Drummond, 2016). See (Clarkson et al., 2006; Wang et al., 2021) for an
overview of these lines of research.

B. Analysis of Cover Tree
We now analyze Cover Tree under the bi-metric framework. First, some helpful background is presented below.

B.0.1. PRELIMINARIES FOR COVER TREE

The notion of a cover is central. We specialize it to the greedy cover used in the Cover Tree datastructure.

Definition B.1 (Greedy Cover Construction). A r-cover C of a set X given a metric d is defined as follows. Initially C = ∅.
Run the following two steps until X is empty.

1. Pick an arbitrary point x ∈ X and remove B(x, r) ∩X from X .

2. Add x to C.

Note that a cover with radius r satisfies the following two properties: every point in X is within distance r to some point in
C (under the same metric d′), and all points in C are at least distance r apart from each other.

We now introduce the cover tree datastructure of (Beygelzimer et al., 2006). For the data structure, we create a sequence of
covers C−1, C0, Every Ci is a layer in the final Cover Tree T .

Algorithm 2 Cover Tree Data structure

1: Input: A set X of n points, metric d, real number T ≥ 1.
2: Output: A tree on X
3: procedure COVER-TREE(d, T)
4: WLOG, all distances between points in X under d are in (1,∆] by scaling.
5: C−1 = C0 = X
6: Define Ci as a 2i/T -cover of Ci−1 for any i > 0 under metric d
7: Ci ⊆ Ci−1 for all i > 0.
8: t = O(log(∆T)) ▷ t is the number of levels of T
9: for i = −1 to t do

10: Ci corresponds to tree nodes of T on level i
11: Each p ∈ Ci−1 \ Ci is connected to exactly one p ∈ Ci such that d(p, p′) ≤ 2i/T
12: end for
13: Return tree T
14: end procedure

The following result about the space bound of the datastructure is from (Beygelzimer et al., 2006) and we to (Beygelzimer
et al., 2006) for more details about the space bound.

Lemma B.2 (Theorem 1 in (Beygelzimer et al., 2006)). T takes O(n) space, regardless of the value of r.

Proof. We use the explicit representation of T (as done in (Beygelzimer et al., 2006)), where we coalesce all nodes in which
the only child is a self-child. The underlying idea is simple: the covers are nested (a smaller scale cover contains all larger
scale covers). Thus, a node in the tree has children that also correspond to the same net point. The explicit representation of
the tree simply collapses all long paths in the tree (since these correspond to the same net point). Thus, every node in this

12

compressed tree has a parent that represents a different net point and a child that represents a different net point. This can be
used to show that there are O(n) edges in total in the tree, independent of all other parameters.

We note that it is possible to construct the cover tree data structure of Algorithm 2 in time 2O(λd)n log n, but it is not
important to our discussion (Beygelzimer et al., 2006).

Now we describe the query procedure. Here, we can query with a metric D that is possibly different than the metric d used
to create T in Algorithm 2.

Algorithm 3 Cover Tree Search

1: Input: Cover tree T associated with point set X , query point q, metric D, accuracy ε ∈ (0, 1).
2: Output: A point p ∈ X
3: procedure COVER-TREE-SEARCH
4: t← number of levels of T
5: Qt ← Ct ▷ We use the covers that define T
6: i← t
7: while i ̸= −1 do
8: Q = {p ∈ Ci−1 : p has a parent in Qi}
9: Qi−1 = {p ∈ Q : D(q, p) ≤ D(q,Q) + 2i}

10: if D(q,Qi−1) ≥ 2i(1 + 1/ε) then
11: Exit the while loop.
12: end if
13: i← i− 1
14: end while
15: Return point p ∈ Qi−1 that is closest to q under D
16: end procedure

B.0.2. THE MAIN THEOREM

We construct a cover tree T using metric d and T from Equation 1 in Algorithm 2. Upon a query q, we search for an
approximate nearest neighbor in T in Algorithm 3, using metric D instead. Our main theorem is the following.
Theorem B.3. Let QCoverTree(ε,∆d, λd) = 2O(λd) log(∆d) + (1/ε)O(λd) denote the query complexity of the standard
cover tree datastructure, where we set T = 1 in Algorithm 2 and build and search using the same metric d. Now consider
two metrics d and D satisfying Equation 1. Suppose we build a cover tree T with metric d by setting T = C in Algorithm 2,
but search using metric D in Algorithm 3. Then the following holds:

1. The space used by T is O(n).

2. Running Algorithm 3 using D finds a 1 + ε approximate nearest neighbor of q in the dataset X (under metric D).

3. On any query, Algorithm 3 invokes D at most

CO(λd) log(∆d) + (C/ε)O(λd) = Õ(QCoverTree(Ω(ε/C),∆d, λd)).

times.

Two prove Theorem B.3, we need to: (a) argue correctness and (b) bound the number of times Algorithm 3 calls its input
metric D. While both follow from similar analysis as in (Beygelzimer et al., 2006), it is not in a black-box manner since the
metric we used to search T in Algorithm 3 is different than the metric used to build T in Algorithm 2.

We begin with a helpful lemma.
Lemma B.4. For any p ∈ Ci−1, the distance between p and any of its descendants in T is bounded by 2i under D.

Proof. The proof of the lemma follows from Theorem 2 in (Beygelzimer et al., 2006). There, it is shown that for any
p ∈ Ci−1 the distance between p and any descendant p′ is bounded by d(p, p′) ≤

∑i−1
j=−∞ 2j/T = 2i/T , implying the

lemma after we scale by C due to Equation 1 (note we set T = C in the construction of T in Theorem B.3).

13

We now argue accuracy.
Theorem B.5. Algorithm 3 returns a 1 + ε-approximate nearest neighbor to query q under D.

Proof. Let p∗ be the true nearest neighbor of query q. Consider the leaf to root path starting from p∗. We first claim that if
Qi contains an ancestor of p∗, then Qi−1 also contains an ancestor qi−1 of p∗. To show this, note that D(p∗, qi−1) ≤ 2i by
Lemma B.4, so we always have

D(q, qi−1) ≤ D(q, p∗) +D(p∗, qi−1) ≤ D(q,Q) + 2i,

meaning qi−1 is included in Qi−1.

When we terminate, either we end on a single node, in which case we return p∗ exactly (from the above argument), or when
D(q,Qi−1) ≥ 2i(1 + 1/ε). In this latter case, we additionally know that

D(q,Qi−1) ≤ D(q, p∗) +D(p∗, Qi−1) ≤ D(q, p∗) + 2i

since an ancestor of p∗ is contained in Qi−1 (namely qi−1 from above). But the exit condition implies

2i(1 + 1/ε) ≤ D(q, p∗) + 2i =⇒ 2i ≤ εD(q, p∗),

which means
D(q,Qi−1) ≤ D(q, p∗) + 2i ≤ D(q, p∗) + εD(q, p∗) = (1 + ε)D(q, p∗),

as desired.

Finally, we bound the query complexity. The following follows from the arguments in (Beygelzimer et al., 2006).
Theorem B.6. The number of calls to D in Algorithm 3 is bounded by CO(λd) · log(∆dC) + (C/ε)O(λd).

Proof Sketch. The bound follows from (Beygelzimer et al., 2006) but we briefly outline it here. The query complexity is
dominated by the size of the sets Qi−1 in Line 9 as the algorithm proceeds. We give two ways to bound Qi−1. Before that,
note that the points p that make up Qi−1 are in a cover (under d) by the construction of T , so they are all separated by
distance at least Ω(2i/C) (under d). Let p∗ be the closest point to q in X .

• Bound 1: In the iterations where D(q, p∗) ≤ O(2i), we have the diameter of Qi−1 under D is at most O(2i) as well.
This is because an ancestor qi−1 ∈ Ci−1 of p∗ is in Q of line 8 (see proof of Theorem B.5), meaning D(q,Q) ≤ O(2i)
due to Lemma B.4. Thus, any point p ∈ Qi−1 satisfies D(q, p) ≤ D(q,Q) + 2i = O(2i). From Equation 1, it follows
that the diameter of Qi−1 under d is also at most O(2i). We know the points in Qi−1 are separated by mutual distance at
least Ω(2i/C) under d, implying that |Qi−1| ≤ CO(λd) in this case by a standard packing argument. This case can occur
at most O(log(∆C)) times, since that is the number of different levels of T .

• Bound 2: Now consider the case where D(q, p∗) ≥ Ω(2i). In this case, we have that the points in Qi−1 have diameter at
most O(2i/ε) from q (under D), due to the condition of line 10. Thus, the diameter is also bounded by O(2i/ε) under
d. By a standard packing argument, this means that |Qi−1| ≤ (C/ε)O(λd), since again Qi−1 are mutually separated by
distance at least Ω(2i/C) under d. However, our goal is to show that the number of iterations where this bound is relevant
is at most O(log(1/ε)). Indeed, we have D(q,Qi−1) ≤ O(2i/ε), meaning 2i ≥ Ω(εD(q,Qi−1)) ≥ Ω(εD(q, p∗)) Since
we are decrementing the index i and are in the case where D(q, p∗) ≥ Ω(2i), this can only happen for O(log(1/ε))
different i’s.

Combining the two bounds proves the theorem.

The proof of Theorem B.3 follows from combining Lemmas B.2 and Theorems B.5 and B.6.

C. Omitted Proofs from the Main Body
We give the proof of Lemma 3.5

Proof. Let (p, q) be a pair of distinct vertices such that (p, q) ̸∈ E. Then we know that there exists a (p, p′) ∈ E such that
d(p′, q) · α ≤ d(p, q). From relation (1), we have 1

C ·D(p′, q) · α ≤ d(p′, q) · α ≤ d(p, q) ≤ D(p, q), as desired.

14

D. Ablation Studies
We investigate the impact of different components of our experiments in Section 4. All ablation studies are run on HotpotQA
dataset as it is one of the largest and most difficult retrieval dataset where the performance gaps between different methods
are substantial.

Different model pairs Fixing the expensive model as “SFR-Embedding-mistral” (Meng et al., 2024), we experiment with
2 other cheap models from the BEIR retrieval benchmark: “gte-small” (Li et al., 2023) and “bge-base” (Xiao et al., 2023).
These models have different sizes/capabilities, summarized in Table 1. For complete results on all 6 BEIR Retrieval datasets
for different cheap models, we refer to Figures 7, 8, 9, and 10 in Appendix E. Here, we only focus on HotpotQA.

From Figure 3, we can observe that the improvement of our method is most substantial when there is a large gap between
the qualities of the cheap and expensive models. This is not surprising: If the cheap model has already provided enough
accurate distances, simple re-ranking can easily get to the optimal retrieval results with only a few expensive distance calls.
Note that even in the latter case, our second-stage search method still performs at least as good as re-ranking. Therefore, we
believe that the ideal scenario for our method is a small and efficient model deployed locally, paired with a remote large
model accessed online through API calls to maximize the advantages of our method.

Varying neighbor search algorithms We implement our method with another popular empirical nearest neighbor search
algorithm called NSG (Fu et al., 2019b). We obtain the same qualitative behavior as DiskANN, with details given in Section
E.

0 2000 4000 6000 8000 10000 12000 14000
of D distance calls

0.73

0.74

0.75

0.76

0.77

0.78

ND
CG

@
10

HotpotQA

Single metric
Bi-metric bge-micro (baseline)
Bi-metric bge-micro (our method)
Bi-metric gte-small (baseline)
Bi-metric gte-small (our method)
Bi-metric bge-base (baseline)
Bi-metric bge-base (our method)
Single metric (limit)

Figure 3. HotpotQA test results for different models as the distance
proxy. Blue / skyblue / cyan curves represent Bi-metric (our method)
with bge-micro / gte-small / bge-base models. Red / rose / magenta
curves represent Bi-metric (baseline) with bge-micro / gte-small /
bge-base models

0 5000 10000 15000 20000 25000
of D distance calls

0.68

0.70

0.72

0.74

0.76

ND
CG

@
10

HotpotQA

Single metric
Bi-metric (baseline)
Initialize with default starting point
Initialize with top-1
Initialize with top-100
Initialize with top-Q/2
Single metric (limit)

Figure 4. HotpotQA test results for different search initializations
for the second-stage search of Bi-metric (our method). Blue / purple
/ brown / green curves represent initializing our second-stage search
with top-Q/2, top-100, top-1, or the default vertex.

Impact of the first stage search In the second-stage search of our method, we start from multiple points returned by the
first-stage search via the cheap distance metric. We investigate how varying the starting points for the second-stage search
impact the final results. We try four different setups:

• Default: We start a standard nearest neighbor search using metric D from the default entry point of the graph index, which
means that we don’t use the first stage search.

• Top-K points retrieved by the first stage search: Suppose our expensive distance calls quota is Q. We start our second
search from the top K points retrieved by the first stage search. We experiment with the following different choices of K:
K1 = 1, K100 = 100, KQ/2 = max(100,Q/2) (note KQ/2 is the choice we use in Figure 1).

15

From Figure 4, we observe that utilizing results from the first-stage search helps the second-stage search to find the nearest
neighbor quicker. For comparison, we experiment with initializing the second-stage search from the default starting point
(green), which means that we don’t need the first-stage search and only use the graph index built from d (cheap distance
function). The DiskANN algorithm still manages to improve as the allowed number of D distance calls increases, but it
converges the slowest compared to all the other methods.

Using multiple starting points further speeds up the second stage search. If we only start with the top-1 point from the first
stage search (brown), its NDCG curve is still worse than Bi-metric (baseline, red) and Single metric (orange). As we switch
to top-100 (purple) or top-Q/2 (blue) starting points, the NDCG curves increase evidently.

We provide two intuitive explanations for these phenomena. First, the approximation error of the cheap distance function
doesn’t matter that much in the earlier stage of the search, so the first stage search with the cheap distance function can
quickly get to the true ‘local’ neighborhood without any expensive distance calls, thus saving resources for the second stage
search. Second, the ranking provided by the cheap distance function is not accurate because of its approximation error,
so starting from multiple points should give better results than solely starting from the top few, which also justifies the
advantage of our second-stage search over re-ranking.

E. Complete Experimental Results

Model Name Embedding Dimension Model Size BEIR Retrieval Score

SFR-Embedding-Mistral (Meng et al., 2024) 4096 7111M 59
bge-base-en-v1.5 (Xiao et al., 2023) 768 109M 53.25

gte-small (Li et al., 2023) 384 33M 49.46
bge-micro-v2 (AI, 2023) 384 17M 42.56

Table 1. Different models used in our experiments

Parameter choices for Nearest Neighbor Search algorithms The parameter choices for DiskANN are α = 1.2,
l build = 125, max outdegree = 64 (the standard choices used in ANN benchmarks (Aumüller et al., 2020)). The
parameter choices for NSG are the same as the authors’ choices for GIST1M dataset (Jégou et al., 2011): K = 400,
L = 400, iter = 12, S = 15, R = 100. NSG also requires building a knn-graph with efanna, where we use the standard
parameters: L = 60, R = 70, C = 500.

Empirical Results We report the empirical results of using different embedding models as distance proxy, using the NSG
algorithm, and measuring Recall@10.

1. We report the results of using “bge-micro-v2” as the distance proxy d and using DiskANN for building the graph index.
See Figure 6 for Recall@10 metric plots.

2. We report the results of using “gte-small” as the distance proxy d and using DiskANN for building the graph index.
See Figure 7 for NDCG@10 metric plots and Figure 8 for Recall@10 metric plots.

3. We report the results of using “bge-base-en-v1,5” as the distance proxy d and using DiskANN for building the graph
index. See Figure 9 for NDCG@10 metric plots and Figure 10 for Recall@10 metric plots.

4. We report the results of using “bge-micro-v2” as the distance proxy d and using NSG for building the graph index. See
Figures 11 for NDCG@10 metric plots and 12 for Recall@10 metric plots.

We can see that for all the different cheap distance proxies (“bge-micro-v2” (Xiao et al., 2023), “gte-small” (Li et al., 2023),
“bge-base-en-v1.5” (Xiao et al., 2023)) and both nearest neighbor search algorithms (DiskANN (Jayaram Subramanya et al.,
2019) and NSG (Fu et al., 2019b)), our method has better NDCG and Recall results on most datasets. Moreover, naturally
the advantage of our method over Bi-metric (baseline) is larger when there is a large gap between the qualities of the cheap
distance proxy d and the ground truth distance metric D. This makes sense because as their qualities converge, the cheap
proxy alone is enough to retrieve the closest points to a query for the expensive metric D.

We also report the histograms of empirical C = d/D values using “bge-micro-v2’ as the distance proxy d in Figure 5. For
all 6 datasets, the distance ratio C = d/D concentrates well around 1

16

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
0

100

200

300

400

500

600
Fr

eq
ue

nc
y

HotpotQA

0.8 1.0 1.2 1.4 1.6
0

200

400

600

800

1000

MSMARCO

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
0

100

200

300

400

500

FEVER

0.7 0.8 0.9 1.0 1.1 1.2 1.3
Empirical C

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

ClimateFever

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Empirical C

0

100

200

300

400

500

600
DBpedia

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Empirical C

0

200

400

600

800
NQ

Figure 5. Results for 6 BEIR Retrieval datasets. Histograms of C = D/d values, where we use “bge-micro-v2” as the distance proxy d
and “SFR-Embedding-Mistral” as the expensive distance D.

System
Instruction

You are RankGPT, an intelligent assistant that can rank answers based on their
relevancy to the query. I will provide you with 10 passages, each indicated
by number identifier []. Rank the answers based on their relevance to query:
{query}.

Messages

[1] {Passage 1}
[2] {Passage 2}
...
[10] {Passage 10}
Query: {query}. Rank the 10 passages above based on their relevance to the
query. The passages should be listed in descending order using identifiers. The
most relevant passages should be listed first. The output format should be like
[1] >[2] ... >[10]. Only response the ranking results, do not say any word or
explain.

Table 2. Prompt for “Gemini-2.0-Flash” to rerank passages

Different nearest neighbor search algorithms We implement our method with another popular empirical nearest neighbor
search algorithm called NSG (Fu et al., 2019b). We obtain the same qualitative behavior as DiskANN. Because the authors’
implementation of NSG only supports ℓ2 distances, we first normalize all the embeddings and search via ℓ2. This may cause
some performance drops. Therefore, we are not comparing the results between the DiskANN and NSG algorithms, but only
results from different methods, fixing the graph index. In Figure 11 and 12 in the appendix, we observe that our method
still performs the best compared to Bi-metric (baseline) and single metric in most cases, demonstrating that our bi-metric
framework can be applied to other graph-based nearest neighbor search algorithms as well.

Details of the LLM-based listwise reranking experiment Here we provide the details for our experiments in Section 4.2.
Due to the fact that LLMs are better at comparing the relevancy of different passages than providing independent relevance
scores, we need to modify our algorithm to maintain a list of Ls current best answers. Please see our Algorithm 4. Its
difference from Algorithm 1 is that instead of maintaining a priority queue A, in Algorithm 4, A is an ordered list. At each
step, we first append all the unseen neighbors of v to the end of A, and then perform a sequential reranking in a sliding
window way to update the current top passages, similar to the application of listwise rerank in (Sun et al., 2023). In the
experiment, we set Ls = 50, w = 10. We start our second stage search from max(50, Q/2) points retrieved by the first
stage search where Q is quota set to be the maximal number of passages seen by the reranker. Please See Table 2 for our
prompt.

17

0 2500 5000 7500 10000 12500 15000 17500 20000
0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

HotpotQA

0 500 1000 1500 2000 2500 3000
0.5

0.6

0.7

0.8

0.9

1.0
MSMARCO

0 2000 4000 6000 8000 10000 12000 14000
0.5

0.6

0.7

0.8

0.9

1.0
FEVER

0 1000 2000 3000 4000 5000
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

ClimateFEVER

0 1000 2000 3000 4000 5000 6000 7000 8000
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0
DBPedia

0 1000 2000 3000 4000 5000 6000
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0
NQ

Bi-metric (our method) Bi-metric (baseline) Single metric Single metric (limit)

Figure 6. Results for 6 BEIR Retrieval datasets. The x-axis is the number of expensive distance function calls. The y-axis is the Recall@10
score. The cheap model is “bge-micro-v2”, the expensive model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm
used is DiskANN.

F. Discussion on LSH
We give a very simple example, showing that the standard locality sensitive hashing (LSH) algorithm can be easily ‘tricked’
in our two distance functions setting, even if the distances approximate each other very well. Thus, locality sensitive
hashing cannot be instantiated in the bi-metric framework, demonstrating the power of graph-based approaches. In fact, our
construction extends to a broad class of algorithms which ‘overfit’ to the coordinates of the vectors. The intuitive idea is that
any algorithm which ‘only looks’ at the coordinates of the query vector during the query phase can be fooled by fixing the
coordinates of the query across the two metrics, but changing the coordinates of the input dataset slightly. At the core, LSH,
as well as many partition based algorithms, can be abstracted into the following canonical form:

1. Given an input dataset X ⊂ Rd, |X| = n and an input metric, output a function f : Rd → 2[n].

2. Given a query point q ∈ Rd, query f(q) to return a subset of [n].

3. Find the nearest neighbor of q using the input metric among the points in X whose indices are in f(q). We define the
running time of f to be O(|f(q)| · T), where T is the cost to evaluate the metric. For simplicity, we ignore this factor of
T in the subsequent discussion.

The main conceptual difference between the above canonical form and our graph based approach is that the query is used in
‘one shot’ to return the set f(q) at once. This is problematic when using two distances in our bi-metric framework since f(q)
only depends on d above (the cheap metric), but we want to find the nearest neighbor with respect to D (the ground truth
metric). In contrast, graph based approaches iteratively and adaptively build such a query set, based on the edges of the
index graph and the corresponding search procedure on the graph. The fact that the query set is a function of both metrics in
graph based search is crucial in avoiding the undesired behavior shown below.

18

0 1000 2000 3000 4000 5000 6000 7000 8000

0.72

0.73

0.74

0.75

0.76

0.77

ND
CG

@
10

HotpotQA

0 250 500 750 1000 1250 1500 1750 2000
0.38

0.39

0.40

0.41

0.42

0.43

MSMARCO

0 500 1000 1500 2000 2500 3000

0.85

0.86

0.87

0.88

0.89

0.90

FEVER

0 200 400 600 800 1000
of D distance calls

0.32

0.33

0.34

0.35

0.36

0.37

ND
CG

@
10

ClimateFEVER

0 500 1000 1500 2000 2500 3000 3500 4000
of D distance calls

0.44

0.45

0.46

0.47

0.48

0.49

DBPedia

0 250 500 750 1000 1250 1500 1750 2000
of D distance calls

0.65

0.66

0.67

0.68

0.69

0.70

NQ

Bi-metric (our method) Bi-metric (baseline) Single metric Single metric (limit)

Figure 7. Results for 6 BEIR Retrieval datasets. The x-axis is the number of expensive distance function calls. The y-axis is the NDCG@10
score. The cheap model is “gte-small”, the expensive model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used
is DiskANN.

We first note the following trivial observation.

Observation: Let X,X ′ ⊂ Rd, |X| = |X ′| be two datasets with corresponding metrics d and d′. Suppose we instantiate
the above canonical algorithm on X ′ using metric d′ and let f ′ be the corresponding query function. Let q be a query point
for the dataset X and let i∗ be the index of its nearest neighbor in X with respect to d. If i∗ ̸∈ f ′(q) then we cannot find the
nearest neighbor of q in X by only comparing the distances from q to the points in f ′(q) (even if we evaluate using metric d
on the points in f ′(q)).

Now lets discuss how the standard LSH algorithms fall in the above canonical description. We need to first specify a
family of hash functions H. Then for some suitably chosen parameters k, L ≥ 1, we repeat the following procedure for
i = 1, · · · , L iterations : Independently sample k functions hi

1, · · ·hi
k ∼ H and group the points by putting all x with the

same tuple (hi
1(x), · · · , hi

k(x)) together. For a query q, retrieve all the points in X with the same tuples (hi
1(q), · · · , hi

k(q))
across all i. This forms the set f(q). Usually, |f(q)| is determined by the choice of H, k, L and for different metrics,
researchers carefully choose these parameters to optimize for correctness and running time (Andoni et al., 2018). We do
not need these details in constructing the bad example and they can be abstracted away in our description of the canonical
algorithm.

Our simple bad example for LSH is as follows. The dataset is X = {x1, · · · , xn} ⊂ Rd (for d sufficiently large).
It consists of one copy of the first basis vector x1 = e1 and n − 1 copies of the sum of the first two basis vectors:
x2 = · · · = xn = e1 + e2. The ground truth metric D will be the hamming distance on the vectors in X . The noisy
metric d will be the hamming distance on the corresponding points of a modified version of X . The modified dataset
X ′ = {x′

1, · · · , x′
n} is such that x′

1 is just x1 but we set the last 10 coordinates to all 1’s. For the other x′
i vectors, i ≥ 2, we

keep the same xi, but modify the last 5 coordinates to be all 1’s. We have:

19

0 2000 4000 6000 8000 10000 12000 14000
0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

HotpotQA

0 250 500 750 1000 1250 1500 1750 2000
0.5

0.6

0.7

0.8

0.9

1.0
MSMARCO

0 2000 4000 6000 8000 10000 12000
0.5

0.6

0.7

0.8

0.9

1.0
FEVER

0 500 1000 1500 2000 2500
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

ClimateFEVER

0 500 1000 1500 2000 2500 3000 3500 4000
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0
DBPedia

0 200 400 600 800 1000 1200 1400
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0
NQ

Bi-metric (our method) Bi-metric (baseline) Single metric Single metric (limit)

Figure 8. Results for 6 BEIR Retrieval datasets. The x-axis is the number of expensive distance function calls. The y-axis is the Recall@10
score. The cheap model is “gte-small”, the expensive model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used
is DiskANN.

• d approximates D up to a factor of O(1).

• The doubling dimensions of both X ′ and X (under d and D respectively) are O(1).

We let the query vector q be the all 0’s vector (q will be all 0’s with respect to D and d). In X , x1 is the c-approximate
nearest neighbor to q for any c < 2. Note this is a setting where our theorems guarantee the performance of graph based
algorithms (Theorems 3.4 and B.3), giving meaningful sublinear running time. For the rest of the section, we fix the query
q = 0.

Now consider what happens when we use the standard hamming LSH function (H is the set of coordinate projection
functions) and build a datastructure f ′ using the noisy metric. Intuitively, unless k and L are sufficiently large, we cannot
even guarantee with good probability that 1 ∈ f ′(0) (note this means that the index of the first point is in the set f ′(0)).
However if we can guarantee that the ‘correct’ answer is in f ′(0), many irrelevant data points are also very likely to be in
f ′(0), implying |f ′(0)| = Ω(n), i.e. the query time is linear and hence not efficient. This is shown below.

Lemma F.1. Suppose (k, L) such that
Pr(1 ∈ f ′(0)) ≥ 0.01,

i.e. the query is successful with probability at least 1%. With these same parameters, we have E[|f ′(0)|] = Ω(n).

Proof. A simple calculation shows the following (since our hash functions are sampled from coordinate projections):

Pr
h∼H

(h(x′
1) = h(0)) =

d− 11

d
:= p1 ≤ Pr

h∼H
(h(x′

i) = h(0)) =
d− 7

d
:= p2

20

0 1000 2000 3000 4000 5000 6000 7000 8000

0.73

0.74

0.75

0.76

0.77

0.78

ND
CG

@
10

HotpotQA

0 250 500 750 1000 1250 1500 1750 2000
0.38

0.39

0.40

0.41

0.42

0.43

MSMARCO

0 500 1000 1500 2000 2500 3000

0.85

0.86

0.87

0.88

0.89

0.90

FEVER

0 200 400 600 800 1000
of D distance calls

0.32

0.33

0.34

0.35

0.36

0.37

ND
CG

@
10

ClimateFEVER

0 500 1000 1500 2000 2500 3000 3500 4000
of D distance calls

0.44

0.45

0.46

0.47

0.48

0.49

DBPedia

0 250 500 750 1000 1250 1500 1750 2000
of D distance calls

0.65

0.66

0.67

0.68

0.69

0.70

NQ

Bi-metric (our method) Bi-metric (baseline) Single metric Single metric (limit)

Figure 9. Results for 6 BEIR Retrieval datasets. The x-axis is the number of expensive distance function calls. The y-axis is the NDCG@10
score. The cheap model is “bge-base-en-v1.5”, the expensive model is “SFR-Embedding-Mistral”, and the nearest neighbor search
algorithm used is DiskANN.

for any other i ≥ 2. If we repeat the hashing k times, it is clear that the probability that (h1(x
′
1), · · · , hk(x

′
1)) =

(h1(0), · · · , hk(0)) = pk1 ≤ pk2 . Thus, for any choice of k and L, we have that for all i ≥ 2,

Pr(1 ∈ f ′(0)) ≤ Pr(i ∈ f ′(0)).

Hence, if k, L is picked such that Pr(1 ∈ f ′(0)) ≥ 0.01, it follows that

E[|f ′(0)|] =
n∑

i=1

Pr(i ∈ f ′(0)) ≥ nPr(1 ∈ f ′(0)) ≥ Ω(n),

as desired.

In conclusion, the above lemma shows that unless the set f ′(q) is very large, which leads to a large running time for using
LSH, it cannot be successfully used for nearest neighbor search with two metrics, in contrast to our graph based approach.
The underlying idea of our bad example clearly generalizes across any reasonable choice ofH. The proof of the following
corollary is identical to that of Lemma F.1.

Corollary F.2. SupposeH is a family of functions with domain Rd such that Prh∼H(h(x) = h(y)) is a decreasing function
of ∥x− y∥2. Consider X and X ′ as defined above. Then if (k, L) are picked such that

Pr(1 ∈ f ′(0)) ≥ 0.01,

i.e. the query is successful with probability at least 1%. With these same parameters, we have E[|f ′(0)|] = Ω(n).

21

0 2000 4000 6000 8000 10000 12000
0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

HotpotQA

0 250 500 750 1000 1250 1500 1750 2000
0.5

0.6

0.7

0.8

0.9

1.0
MSMARCO

0 2000 4000 6000 8000 10000
0.5

0.6

0.7

0.8

0.9

1.0
FEVER

0 250 500 750 1000 1250 1500 1750 2000
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

ClimateFEVER

0 500 1000 1500 2000 2500 3000 3500
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0
DBPedia

0 200 400 600 800 1000 1200 1400
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0
NQ

Bi-metric (our method) Bi-metric (baseline) Single metric Single metric (limit)

Figure 10. Results for 6 BEIR Retrieval datasets. The x-axis is the number of expensive distance function calls. The y-axis is the
Recall@10 score. The cheap model is “bge-base-en-v1.5”, the expensive model is “SFR-Embedding-Mistral”, and the nearest neighbor
search algorithm used is DiskANN.

The hypothesis onH in Corollary F.2 is quite natural and is satisfied by many natural choices. For example, the standard
Euclidean LSH function class H consists of functions of the form hv(x) = ⌊⟨x, v⟩/a⌋ where v ∼ N (0, 1). A simple
calculation shows that Prh∼H(h(x) = h(y)) ∝ ∥x− y∥2 and Corollary F.2 applies.

Upon a closer look, we can even abstract away all the details of LSH and return to the canonical form described in the
beginning of the section. All we require for the bad example to hold is that Pr(i ∈ f ′(0)) is a decreasing function of
∥x′

i − q∥2 = ∥x′
i∥2.

Corollary F.3. Suppose in our cannonical algorithm description that f ′ is a function such that for all indices 1 ≤ i ≤ n,
Pr(i ∈ f ′(0)) is an decreasing function of ∥x′

i∥2. If

Pr(1 ∈ f ′(0)) ≥ 0.01,

i.e. the query is successful with probability at least 1%, then we also have E[|f ′(0)|] = Ω(n).

22

0 1000 2000 3000 4000 5000 6000 7000 8000

0.72

0.73

0.74

0.75

0.76

0.77

ND
CG

@
10

HotpotQA

0 250 500 750 1000 1250 1500 1750 2000
0.38

0.39

0.40

0.41

0.42

0.43

MSMARCO

0 500 1000 1500 2000 2500 3000

0.85

0.86

0.87

0.88

0.89

0.90

FEVER

0 200 400 600 800 1000
of D distance calls

0.32

0.33

0.34

0.35

0.36

0.37

ND
CG

@
10

ClimateFEVER

0 500 1000 1500 2000 2500 3000 3500 4000
of D distance calls

0.44

0.45

0.46

0.47

0.48

0.49

DBPedia

0 250 500 750 1000 1250 1500 1750 2000
of D distance calls

0.65

0.66

0.67

0.68

0.69

0.70

NQ

Bi-metric (our method) Bi-metric (baseline) Single metric Single metric (limit)

Figure 11. Results for 6 BEIR Retrieval datasets. The x-axis is the number of expensive distance function calls. The y-axis is the
NDCG@10 score. The cheap model is “bge-micro-v2”, the expensive model is “SFR-Embedding-Mistral”, and the nearest neighbor
search algorithm used is NSG.

Algorithm 4 DiskANN-Order-GreedySearch(q, d)

1: Input: Graph index G = (X,E), listwise-reranker D, starting point s, query point q, search list size Ls, sliding window
size w.

2: Output: a sorted vertex list A
3: A← {s} ▷ An ordered list of vertices
4: U ← ∅
5: while A \ U ̸= ∅ do
6: v ← the first vertex in A \ U
7: U ← U ∪ v
8: Append Neighbors(v) \A to the end of A ▷ Neighbors in G
9: for i = |A| to 0 step size −w/2 do

10: Use D to rerank (A[i− w],· · · ,A[i])
11: end for
12: if |A| > Ls then
13: A← the first Ls vertices in A
14: end if
15: end while
16: return A

23

0 2500 5000 7500 10000 12500 15000 17500 20000
0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

HotpotQA

0 500 1000 1500 2000 2500 3000
0.5

0.6

0.7

0.8

0.9

1.0
MSMARCO

0 2000 4000 6000 8000 10000 12000 14000
0.5

0.6

0.7

0.8

0.9

1.0
FEVER

0 1000 2000 3000 4000 5000
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll@
10

ClimateFEVER

0 1000 2000 3000 4000 5000 6000 7000 8000
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0
DBPedia

0 1000 2000 3000 4000 5000 6000
of D distance calls

0.5

0.6

0.7

0.8

0.9

1.0
NQ

Bi-metric (our method) Bi-metric (baseline) Single metric Single metric (limit)

Figure 12. Results for 6 BEIR Retrieval datasets. The x-axis is the number of expensive distance function calls. The y-axis is the
Recall@10 score. The cheap model is “bge-micro-v2”, the expensive model is “SFR-Embedding-Mistral”, and the nearest neighbor
search algorithm used is NSG.

24

0 200 400 600 800 1000
0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

ND
CG

@
10

HotpotQA

0 200 400 600 800 1000

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

MSMARCO

0 200 400 600 800 1000

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86
FEVER

0 200 400 600 800 1000
of D distance calls

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

ND
CG

@
10

ClimateFEVER

0 200 400 600 800 1000
of D distance calls

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

DBPedia

0 200 400 600 800 1000
of D distance calls

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

NQ

Bi-metric (our method) Bi-metric (baseline)

Figure 13. Results for 6 BEIR Retrieval datasets. The x-axis is the number of passages sent to the reranker. The y-axis is the NDCG@10
score. The cheap distance function is provided by “bge-micro-v2”, the expensive model distance comparator is “Gemini-2.0-Flash”, and
the nearest neighbor search algorithm used is DiskANN.

25

