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Abstract001

A common assumption in Computational Lin-002
guistics is that text representations learnt by003
multimodal models are richer and more human-004
like than those by language-only models, as005
they are grounded in images or audio—similar006
to how human language is grounded in real-007
world experiences. However, empirical studies008
checking whether this is true are largely lack-009
ing. We address this gap by comparing word010
representations from contrastive multimodal011
models vs. language only ones in the extent to012
which they capture experiential information—013
as defined by an existing norm-based ‘expe-014
riential model’—and align with human fMRI015
responses. Our results indicate that, surpris-016
ingly, language-only models are superior to017
multimodal ones in both respects. Additionally,018
they learn more unique brain-relevant semantic019
information beyond that shared with the experi-020
ential model. Overall, our study highlights the021
need to develop computational models that bet-022
ter integrate the complementary semantic infor-023
mation provided by multimodal data sources.024

1 Introduction025

The relationship between abstract linguistic rep-026

resentations and the real-world entities they re-027

fer to is central to the academic discourse around028

semantics—the ‘symbol-grounding problem’ (Har-029

nad, 1990; Bender and Koller, 2020). While some030

researchers think that word meanings should be in-031

tended as purely symbolic (Fodor, 1983), others be-032

lieve that words have meanings precisely because033

they are linked to specific entities, experiences or034

notions (Barsalou, 2008). Supporters of the latter035

view stress that human language acquisition is situ-036

ated in a rich multimodal environment, where new037

words are learnt through interactions with objects038

and people (Vigliocco et al., 2014). Theories of em-039

bodied cognition further highlight the importance040

of linking words to concrete experience not only for041

their acquisition but also for their comprehension.042

Indeed, according to these theories, understand- 043

ing sentences involves engaging perceptual, motor 044

or emotional simulations of their content (for an 045

overview, see Kaschak et al., 2024). 046

The idea of obtaining richer semantic representa- 047

tions by learning them from sources other than text, 048

such as images or audio, has inspired a great deal 049

of computational work, from early attempts at con- 050

catenating image and text embeddings (e.g., Bruni 051

et al., 2014; Kiela and Bottou, 2014; Derby et al., 052

2018; Davis et al., 2019) to the most recent large 053

vision-language models (LVLMs, e.g., Li et al., 054

2023; Wang et al., 2024; Liu et al., 2024; Deitke 055

et al., 2024; Laurençon et al., 2024). Some of these 056

works aimed to obtain language representations 057

aligning more closely with human responses, such 058

as similarity judgments, while others were more 059

oriented towards improving performance on bench- 060

marks or downstream applications. Regardless of 061

the end goal, all these works present multimodality 062

as a desideratum, assuming that images provide ad- 063

ditional semantic information that cannot be learnt 064

from text alone; however, there is little to no work 065

investigating which these semantic aspects are. In 066

this paper, we aim to fill this gap by addressing the 067

following question: Do multimodal models learn 068

some facets of meaning related to perceptual expe- 069

riences that language-only models cannot capture? 070

Operationalising the ‘extra-linguistic’ informa- 071

tion that multimodal models are allegedly learning 072

is a prerequisite for approaching this issue. We 073

did this by relying on a semantic model introduced 074

by Fernandino et al. (2022) to capture ‘experien- 075

tial information’. This cognitive model represents 076

words as n-dimensional arrays where each entry 077

corresponds to aggregated human ratings on a pre- 078

defined experiential attribute (e.g., Vision, Motion, 079

Harm). We focused on a set of nouns and evalu- 080

ated the alignment between their representations 081

provided by the experiential model and those by 082

comparable unimodal (language-only) and multi- 083
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modal (vision-language and audio-language) com-084

putational models. This analysis allowed us to085

uncover if multimodal models indeed reflect more086

semantic information than language-only models.087

Next, we checked whether capturing experiential088

information translates into higher alignment with089

fMRI brain responses to the same set of noun090

words.091

Our findings indicate several interesting trends.092

First, both vision-language and language-only mod-093

els exhibit significant alignment with the experien-094

tial model and brain responses, while the audio-095

language model displays weak or non-significant096

correlations. Second, this alignment is more pro-097

nounced for language-only models, which appear098

to capture a great deal of brain-relevant information099

beyond experiential. Lastly, language-only models100

remain more brain-aligned than vision-language101

models even when focusing on a set of more con-102

crete words, although the gap is reduced. Overall,103

our study shows that current multimodal models104

learn less brain-relevant information—both expe-105

riential and beyond—than comparable language-106

only models, highlighting the need to explore dif-107

ferent approaches to construct multimodal word108

representations. The code to reproduce our experi-109

ments will be released upon publication.110

2 Background111

2.1 Embodied cognition112

Embodied cognition identifies a suite of theoretical113

frameworks holding that language is understood114

by perceptual, emotional, or motor simulations115

of its content (e.g., Barsalou, 1999; Glenberg and116

Gallese, 2012; Zwaan, 2014; Pulvermüller, 2018).117

This general principle has received empirical sup-118

port from multiple studies, both behavioural and119

neuroscientific.120

For example, a series of works on the Action-121

sentence Compatibility Effect (ACE, Glenberg and122

Kaschak, 2002) and its subsequent variants (Bor-123

reggine and Kaschak, 2006; Zwaan and Taylor,124

2006; Bub and Masson, 2012) revealed a significant125

difference in reaction times—attributed to motor126

simulations—when participants had to respond to127

a sentence (e.g., You passed the note to Art) with a128

movement (extending their arm) matching vs. non-129

matching (retreating their arm) that mentioned in130

the sentence. Similarly, the sentence-picture verifi-131

cation task (Stanfield and Zwaan, 2001), where par-132

ticipants have to respond to a picture that is either133

compatible (an eagle with its wings outstretched) 134

or incompatible (an eagle with its wings folded) 135

with a sentence (The eagle is in the sky), and its 136

variations (Connell, 2007; Hoeben Mannaert et al., 137

2017) have also been widely used to demonstrate 138

the occurrence of perceptual simulation during lan- 139

guage comprehension. In parallel, a line of neuro- 140

scientific studies have found evidence that seman- 141

tic processing may activate motor (among others, 142

Hauk et al., 2004; Tettamanti et al., 2005; Aziz- 143

Zadeh et al., 2006) and perceptual brain regions 144

(Kiefer et al., 2008; Van Dam et al., 2012). 145

2.2 Multimodal models of semantics 146

Embodied cognition and related ideas, such as vi- 147

sual grounding, have percolated from Cognitive 148

Science to Computational Linguistics, motivating 149

attempts to build semantic models that learn repre- 150

sentations from data sources beyond text. Early ef- 151

forts in this direction (e.g., Bruni et al., 2014; Kiela 152

and Bottou, 2014; Lazaridou et al., 2015; Silberer 153

and Lapata, 2012, 2014) were characterised by 1) a 154

focus on developing human-aligned computational 155

models of meaning and 2) limited computational 156

modelling resources available (large datasets of 157

paired image-text inputs did not exist at the time, 158

nor did large transformer-based architectures). 159

Recently, multimodal models have become more 160

powerful and found application on a variety of 161

downstream tasks (e.g., image captioning, image 162

retrieval, or visual question answering). Some sem- 163

inal works used a contrastive objective to learn 164

aligned image and text representations (Radford 165

et al., 2021; Jia et al., 2021), while others—often 166

inspired by BERT’s (Devlin et al., 2019) successes 167

in language modelling—tried to apply its underly- 168

ing intuitions to the vision-language domain (Tan 169

and Bansal, 2019; Li et al., 2019; Lu et al., 2019; 170

Chen et al., 2020). Finally, state-of-the-art large 171

vision-language models (Li et al., 2023; Wang et al., 172

2024; Liu et al., 2024; Deitke et al., 2024; Lau- 173

rençon et al., 2024, LVLMs, e.g.,), which usually 174

bridge together a large language model (LLM) and 175

an image encoder, can engage in strikingly human- 176

like conversations about images. In contrast to 177

the early attempts at multimodal modelling, these 178

works share 1) a focus on solving, or improving 179

performance on, downstream tasks, and 2) the avail- 180

ability of massive datasets and large models with 181

billions of parameters. 182

For our experiments, we aimed to leverage mod- 183

els that are powerful while, at the same time, suit- 184
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able for drawing cognitively-meaningful compar-185

isons. The need to satisfy both constraints pre-186

vented us from evaluating state-of-the-art LVLMs;187

we elaborate more on our model choices in Sec-188

tion 3.2.189

2.3 Experiential models of semantics190

Recently, a few approaches motivated by embod-191

ied cognition have introduced models of semantics192

aimed at capturing ‘experiential information’, i.e.,193

aspects of meaning related to how humans ground194

language in experiences. These experiential mod-195

els were constructed by asking human annotators to196

rank words on a set of pre-defined dimensions. For197

example, Fernandino et al. (2022) introduced an198

experiential model based on 48 dimensions span-199

ning perceptual, emotional, and action-related con-200

structs. In two fMRI studies, they found that the ex-201

periential model yielded more brain-aligned word202

representations than taxonomic and distributional203

models; additionally, it contributed unique seman-204

tic information not represented by the other models.205

Similarly, Carota et al. (2024) experimented with206

a different experiential model based on 11 dimen-207

sions and compared its brain alignment against that208

of a distributional model. Their study revealed sig-209

nificant correlations with brain responses in more210

ROIs (regions of interest) for the experiential model211

than for the distributional model. However, an inte-212

grative model combining both displayed significant213

correlations in an even larger number of ROIs, sug-214

gesting that experiential and distributional are com-215

plementary aspects of human semantic processing.216

Despite their merits, experiential models are217

bounded in their accuracy by an a priori selection218

of dimensions and, relying on human annotations,219

remain expensive to construct. These limitations220

open the intriguing question of whether experien-221

tial information can be captured by computational222

models learning semantic representations in a data-223

driven fashion.224

3 Methods225

3.1 Data and experiential model226

For our experiments, we used word stimuli, fMRI227

responses and experiential model from Study 2 by228

Fernandino et al. (2022).1 We describe each below.229

1These materials have been made publicly available by
Fernandino et al. The full list of words and the experiential
features can be found at https://www.pnas.org/doi/
10.1073/pnas.2108091119#supplementary-materials;
fMRI data are available at https://osf.io/87chb/.

Word stimuli Word stimuli comprise 320 nouns, 230

half of which refer to objects and the other half 231

to events. The 160 object nouns include an equal 232

number of words (40) from four categories (food, 233

vehicles, animals, tools); likewise, the event nouns 234

span four semantic subcategories (social event, neg- 235

ative event, sound, communication). 236

fMRI responses fMRI responses were collected 237

from 36 participants while they viewed the above- 238

mentioned word stimuli one at a time and rated 239

the frequency with which they experienced their 240

corresponding entities in daily life. We focused on 241

voxels from a ‘semantic network ROI’ defined by 242

Binder et al. (2009) based on a meta-analysis and 243

averaged responses across participants. 244

Experiential model The experiential model, 245

hereafter abbreviated as EXP48, represents each 246

word as a set of ratings on 48 pre-defined dimen- 247

sions capturing different aspects of people’s experi- 248

ence with objects/events, e.g., Vision, Hand action 249

or Unpleasant. The ratings were introduced by 250

Binder et al. (2016) as part of a wider set of experi- 251

ential salience norms; they range from 0 to 6 and 252

were provided by 1743 unique crowdworkers. 253

3.2 Computational models 254

Our model choices were motivated by the goal to 255

maximise comparability across architectures. More 256

concretely, we selected three models (language- 257

only, vision-language, and audio-language) com- 258

parable in terms of fine-tuning objective—the con- 259

trastive one—and architecture—they all have a pre- 260

trained BERT (Devlin et al., 2019) as language 261

encoder.2 One aspect in which these architectures 262

differ is the amount of training data; however, we 263

believe this issue does not invalidate our results and 264

further discuss it in Limitations (Appendix A). 265

SimCSE (Simple Contrastive Learning of 266

Sentence Embeddings, Gao et al., 2021) is 267

a language-only sentence encoder fine-tuned 268

contrastively on 1M sentences randomly sampled 269

from English Wikipedia. Matching pairs for the 270

contrastive objective were created by applying 271

different dropout masks to the same sentence. 272

MCSE (Multimodal Contrastive Learning of 273

Sentence Embeddings, Zhang et al., 2022) is a 274

vision-language sentence encoder fine-tuned by 275

2All three models were released with both BERT-based
(Devlin et al., 2019) and RoBERTa-based (Liu et al., 2019)
implementations. We used the former in all our experiments.
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jointly optimising a SimCSE objective and a CLIP-276

like (Radford et al., 2021) objective. The fine-277

tuning data for the first objective was the same278

as SimCSE’s; as for the CLIP-like objective, where279

a matching pair was defined by an image and its280

caption, the fine-tuning data consisted of 83K im-281

ages from MS-COCO (Lin et al., 2014) annotated282

with multiple captions.283

CLAP (Contrastive Language Audio Pretraining,284

Wu et al., 2023) is an audio-language model whose285

language encoder was initialised with pre-trained286

BERT weights and fine-tuned on audio-caption287

pairs with a CLIP-like objective. The fine-tuning288

data included 633, 526 audio-text pairs, with audio289

clips representing human activities, natural sounds,290

and audio effects.291

292

For reference, we also tested BERT and Visual-293

BERT (Li et al., 2019) as its visual counterpart.294

BERT (Devlin et al., 2019) is a transformer-295

based language-only model pretrained with two ob-296

jectives: masked language modelling and next sen-297

tence prediction. Its pretraining data included the298

BooksCorpus (800M words, Zhu et al., 2015) and299

English Wikipedia (2500 words). As mentioned300

above, SimCSE, MCSE and CLAP fine-tuned pre-301

trained BERT architectures.302

VisualBERT (Li et al., 2019) is a vision-303

language model consisting of a BERT-based lan-304

guage encoder (initialised with parameters from305

pretrained BERT) and a pretrained visual feature306

extractor based on Faster RCNN (Ren et al., 2015).307

Its training objectives, which mirror BERT’s, were308

masked language modelling with image input and309

sentence-image prediction. The vision-language310

pretraining data comprised MS-COCO and VQA311

2.0 (Goyal et al., 2017). Note that this is not a312

contrastive model; we included it for reference as313

it can be considered as a vision-language extension314

of BERT, but it is not directly comparable with315

MCSE, SimCSE and CLAP.316

3.3 Extracting representations317

Given that all the models we considered were318

trained to learn contextualised representations319

from sentences, single words may be an out-of-320

distribution input. Therefore, following an ap-321

proach similar to May et al. (2019), we embedded322

the noun stimuli in a set of generic template sen-323

tences (e.g., Someone mentioned the [word],324

see Appendix B for the complete list) when pass- 325

ing them to the models.3 For all templates, we de- 326

rived word representations from the hidden states 327

of each layer; more specifically, we selected the 328

hidden states corresponding to the tokens of the 329

target word and averaged them across templates. 330

3.4 Alignment evaluation 331

To compare model representations against EXP48 332

and brain responses, we used representational sim- 333

ilarity analysis (RSA, Kriegeskorte et al., 2008), 334

which quantifies the alignment between two rep- 335

resentational spaces (either by two models or 336

by a model and brain responses) as the correla- 337

tion between representational dissimilarity matri- 338

ces (RDMs). In our experiments, RDMs were 339

populated with pairwise cosine distances between 340

model representations or fMRI responses for all the 341

unique word-pairs. The alignment between RDMs 342

was calculated as a Spearman correlation. 343

RSA allows comparing models’ alignment with 344

EXP48 or brain responses, but it does not reveal 345

whether models explain shared variance or pro- 346

vide independent contributions. Fernandino et al. 347

(2022) computed partial correlations to check how 348

much brain-relevant information EXP48 shared 349

with the other models they considered, i.e., two dis- 350

tributional models (Word2vec and GloVe; Mikolov 351

et al., 2013; Pennington et al., 2014) and two tax- 352

onomic models (a WordNet-based model and a 353

categorical one). We used the same approach to 354

determine how much brain-relevant information 355

our tested models share with EXP48 and with each 356

other. Partial correlations were obtained by regress- 357

ing the RDM from one model out of the RDM from 358

another model and then computing a Spearman cor- 359

relation between the residuals and the RDM from 360

brain responses. 361

4 Results 362

4.1 EXP48 and brain alignment across models 363

We performed RSA to obtain a first measure of 364

model representations’ alignment with EXP48 and 365

fMRI responses. This analysis was conducted on 366

model representations averaged across the three 367

layers yielding the highest alignment individually; 368

note that these layers may differ when consider- 369

ing alignment to brain responses vs. EXP48 (see 370

3We empirically verified that passing words within tem-
plates rather than in isolation yields higher alignment with
both the experiential model and brain responses (see Appendix
C.1).
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Figure 1: Results from representational similarity analysis. On the left, Spearman correlations quantifying the
alignment between word representations from EXP48 and by computational models. On the right, Spearman
correlations indicating the alignment between fMRI responses from human participants and word representations by
computational models.

Appendix C.2 for a visualisation of layer-wise371

alignment). The results from RSA against brain372

responses and EXP48 are displayed in Figure 1.373

All Spearman correlations are statistically signif-374

icant (p < 0.05), except for CLAP’s correlation375

with brain responses (p = 0.70); we additionally376

verified that all the pairwise differences between377

correlations are statistically significant.4378

An inspection of correlations against EXP48 in-379

dicates BERT as the most aligned model (ρ = 0.53);380

SimCSE and MCSE also display moderate correla-381

tions with EXP48 (ρ = 0.52 and ρ = 0.45, respec-382

tively). In contrast, CLAP’s representations are383

poorly aligned with EXP48, exhibiting a correla-384

tion of just 0.03. A comparison between vision-385

language models (MCSE and VisualBERT) and386

their unimodal counterparts (SimCSE and BERT)387

reveals that the former, surprisingly, reflect less388

experiential information than the latter.389

Regarding alignment with brain responses in the390

semantic ROI, BERT is again the best model (ρ =391

0.23), although it remains less brain-aligned than392

EXP48 (ρ = 0.27). All the other models display393

positive correlations, with the exception of CLAP,394

whose correlation is not statistically significant (ρ =395

0.00, p = 0.70). Similarly to the EXP48-alignment396

results, here we found that the language-only mod-397

els BERT and SimCSE are more brain-aligned than398

their vision-language extensions VisualBERT and399

MCSE. We delve deeper into the robustness of this400

4Statistical significance was determined by applying a
Fisher transformation to the correlation coefficients from each
pair of models and calculating the p-value associated with
the difference between the two z-scores. All p-values were
Bonferroni-corrected with α = 0.05. The same approach for
verifying statistical significance was applied to all correlation
comparisons throughout the paper.

finding in Section 5. 401

An interesting trend common across results from 402

both RSAs (against EXP48 and fMRI responses) 403

is that representations by SimCSE and MCSE— 404

which have been shown to outperform BERT on 405

semantic text similarity tasks (Gao et al., 2021; 406

Zhang et al., 2022)—are less aligned than those by 407

BERT. A potential explanation for this may be that 408

we considered single-word representations. Since 409

contrastive fine-tuning, as applied to SimCSE and 410

MCSE, optimises sentence-level representations as 411

opposed to token-level ones, it could be that some 412

token-level semantic properties initially learnt by 413

BERT got somehow diluted through this process. 414

4.2 Experiential information vs. unique 415

contribution in models’ brain alignment 416

Results from the partial correlation analysis are dis- 417

played in Figure 2, whose left-hand panel shows 418

how much EXP48 representations align with brain 419

responses without the information they share with 420

each of the other models. An interesting observa- 421

tion is that the lowest correlations were obtained 422

when regressing out BERT and SimCSE. This pro- 423

vides an interesting complement to the findings 424

from RSA against EXP48 representations: RSA 425

shows that BERT and SimCSE share substantial 426

representational information with EXP48, and par- 427

tial correlations suggest that this information is also 428

brain-relevant. Regarding models’ brain alignment 429

without EXP48, displayed in Figure 2’s right-hand 430

panel, a noteworthy finding is that BERT’s and Sim- 431

CSE’s representations are the most brain-aligned 432

even after regressing out EXP48. This suggests that 433

these models learnt some semantic information that 434

is not captured by EXP48 but is still reflected in 435
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Figure 2: Results from partial correlation analyses. On the left, Spearman correlations between brain responses and
the residuals obtained regressing model RDMs out of the EXP48 RDM. The dotted line indicates EXP48’s initial
brain alignment without removing any information. On the right, Spearman correlations between brain responses
and the residuals obtained regressing the EXP48 RDM out of model RDMs. The bars in lighter shades indicate
models’ initial brain alignment.

brain responses.436

Additionally, for each model we checked which437

proportion of its initial brain alignment is at-438

tributable to unique contribution as opposed to in-439

formation shared with EXP48. This can be visu-440

alised by comparing the dark-shade bars against441

the light-shade ones in the right-hand panel of Fig-442

ure 2. An interesting result revealed by this compar-443

ison is that, although MCSE is more brain-aligned444

than VisualBERT, their unique contribution without445

EXP48 is the same in absolute value (ρ = 0.06); in446

other terms, 50% of VisualBERT’s brain alignment447

is due to unique information, while in MCSE it is448

32%. Regarding BERT and SimCSE, the majority449

of their initial brain alignment is eroded when re-450

gressing out EXP48; however, the asymmetry is not451

substantial, and the unique contribution accounts452

for more than 40% of the initial brain alignment in453

both models. As for CLAP, it exhibits a weak neg-454

ative correlation that is not statistically significant,455

confirming that the model does not contribute any456

brain-relevant information.457

Finally, we used partial correlations to com-458

pare vision-language models (VLMs) against their459

language-only counterparts (LMs). We found that460

neither MCSE (ρ = 0.00; p = 0.60) nor VisualBERT461

(ρ = 0.00; p = 0.66) exhibit statistically significant462

correlations with brain responses once SimCSE463

and BERT, respectively, are regressed out. Cru-464

cially, this indicates that VLMs did not learn any465

additional brain-relevant information besides that466

already captured by their LM counterparts.467

5 Assessing Results’ Robustness 468

RSA results revealed a consistent advantage of 469

language-only models over the multimodal ones. 470

This finding contrasts with the expectation—shared 471

across a great deal of work on multimodality and 472

language modelling—that training models on di- 473

verse data modalities, as opposed to text alone, 474

should yield more human-like language represen- 475

tations. In the following, we present two analyses 476

aimed at assessing the robustness of these findings. 477

Given that the audio-language model CLAP did not 478

achieve a statistically significant brain alignment, 479

we excluded it from further analyses and focused 480

on the remaining vision-language and language- 481

only architectures. 482

5.1 Do caption-like templates result in 483

improved brain alignment? 484

As pointed out by Tan and Bansal (2020), im- 485

age captions are examples of grounded language, 486

which differs from other types of natural language 487

along many dimensions. Since the VLMs we eval- 488

uated were trained on image-caption pairs, they 489

may have over-fitted to the language present in cap- 490

tions. Therefore, it is possible that the sentence 491

templates we used to obtain contextualised word 492

representations from the models are somehow out- 493

of-distribution for VLMs. 494

To control for this potential confound, we re- 495

extracted word representations employing different 496

templates whose structure was modelled around 497

captions (e.g., There is an [object] in a 498

[place], or A [person] is [verb in -ing] 499

in a [place]). These structures were identified 500

based on a manual inspection of captions from MS- 501
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Figure 3: Spearman correlations indicating alignment
between model representations extracted using caption-
like templates and fMRI responses. Dotted lines indi-
cate the initial correlations obtained with the templates
from the main experiment.

COCO, which was part of both MCSE’s and Visual-502

BERT’s training. Given the challenges of creating503

caption-like templates providing a fitting context504

for all the word stimuli, we used different sets of505

templates for each sub-category of words described506

in Section 3.1 (e.g., There is a [food-word] on507

a table in a restaurant or A few people508

gathered for a [social event-word]). We509

provide the complete list of templates in Appendix510

B.511

The procedure for calculating brain alignment512

was the same as that employed in the main ex-513

periment. Spearman correlations between model-514

derived RDMs and the fMRI-derived RDM are515

displayed in Figure 3. All correlations are sta-516

tistically significant, as well as correlation differ-517

ences between models. A comparison across mod-518

els confirms the trend from the main experiment:519

Language-only models are more brain-aligned than520

their vision-language counterparts. This suggests521

that the finding is robust and not a by-product of522

the templates where word stimuli were embedded.523

The dotted lines in Figure 3 allow comparing524

the brain alignment model representations achieve525

when using caption-like templates vs. when using526

the templates from the main experiment. This com-527

parison reveals that all models—not only VLMs—528

exhibit higher brain alignment when using caption-529

like templates. We interpret this as indicating that530

caption-like templates are not more in-distribution531

for VLMs, but rather provide a better-specified con-532

text that is beneficial to all models.533

5.2 Do VLMs yield more brain-aligned 534

representations for objects vs. events? 535

Provided that VLMs learn additional semantic in- 536

formation, it could be that not all word representa- 537

tions benefit from multimodal training to the same 538

extent; instead, a potential advantage may be more 539

prominent for words referring to visual contents. 540

The words used in our main experiments include 541

nouns from multiple semantic categories (see Sec- 542

tion 3.1 for more details), which may largely vary 543

in their degree of ‘visual-ness’. Therefore, it is 544

possible that we did not detect additional brain- 545

relevant information learnt by VLMs because we 546

focused on the ‘wrong’ words. 547

To check whether this is the case, we further 548

analysed two word subsets with different levels of 549

concreteness. The subsets were identified by lever- 550

aging the semantic labels already present in our 551

word set, i.e., objects and events.5 We repeated 552

RSA separately for these two word subsets fol- 553

lowing the same procedure employed in the main 554

experiment. 555

The results of this analysis are displayed in Fig- 556

ure 4. A first observation is that—for all mod- 557

els except VisualBERT—correlations are statisti- 558

cally significantly stronger for events than objects. 559

This pattern was also reported by Fernandino et al. 560

(2022), who attributed it to “higher variability of 561

pairwise similarities for the neural representations 562

of event concepts”. 563

A second interesting result is that the model 564

ranking we observed analysing the entire word set 565

(BERT > SimCSE > MCSE > VisualBERT) is repli- 566

cated for events but not for objects, where none of 567

the differences between model correlations is statis- 568

tically significant. While there is a negative effect 569

overall, further training BERT on image-text pairs 570

(as in VisualBERT) or fine-tuning it with a con- 571

trastive objective (as in SimCSE and MCSE) does 572

not significantly alter the initial brain alignment 573

of its object-word representations. Interestingly, 574

EXP48, which we included for reference, is outper- 575

formed by BERT on events; however, it remains 576

statistically significantly more brain-aligned than 577

the other models on objects. 578

Finally, comparing vision-language models 579

against their language-only counterparts shows that 580

BERT and VisualBERT do not significantly dif- 581

5In their supplementary materials, Fernandino et al. (2022)
report that the average concreteness score for objects is 4.9,
while for events it is 3.6.

7



Figure 4: Spearman correlations indicating alignment
between model representations and fMRI responses.
Correlations are displayed separately for object-words
and event-related words.

fer regarding the brain alignment of their object-582

word representations, while SimCSE and MCSE583

do (with SimCSE remaining more aligned).6 As584

for event-word representations, SimCSE and BERT585

are, respectively, significantly more brain-aligned586

than MCSE and VisualBERT. These results further587

support the robustness of our initial finding, i.e.,588

that LMs models are more aligned than their VL589

counterparts. However, the reduced gap between590

the two model types when considering object-word591

representations vs. event-word ones suggests that592

VLMs do, comparatively, learn more brain-aligned593

representations for objects than events.594

6 Discussion and Conclusions595

Our study provides an in-depth comparison be-596

tween multimodal and language-only architectures597

in terms of their ability to capture experiential se-598

mantic information and their alignment with brain599

responses. While multimodal models are often600

expected to learn additional semantic aspects that601

language-only models cannot learn, our results re-602

veal that their word representations are less aligned603

with EXP48 and fMRI responses than those by604

LMs. Moreover, within multimodal models, the605

vision-language ones show moderate positive cor-606

relations with EXP48 and fMRI responses, while607

the audio-language one correlates weakly with608

EXP48 and does not yield a significant correla-609

tion with brain responses. A potential explanation610

for these counterintuitive findings is that the di-611

mensions used to create EXP48 are moderately612

6Note that, since we used Bonferroni corrections, this dif-
ference is statistically significant here—but not when compar-
ing all five models—due to a change in the number of relevant
comparisons (2 vs. 5).

abstract, whereas the extra information learnt by 613

multimodal models may concern lower-level fea- 614

tures or patterns of co-occurrence. Alternatively, it 615

could be that multimodal training is not as effective 616

during fine-tuning as it would be in the pre-training 617

stage. However, we verified that not even the lan- 618

guage encoder from the powerful CLIP (Radford 619

et al., 2021)—pretrained contrastively on 400M 620

image-text pairs and excluded from the main exper- 621

iment as it is not directly comparable with the other 622

architectures—yields more brain-aligned word rep- 623

resentations than BERT and SimCSE (we report 624

these results in Appendix C.3). 625

Another noteworthy result is that the correla- 626

tions with fMRI responses we found for SimCSE, 627

MCSE and BERT are higher than those achieved by 628

the computational models (GloVe and Word2vec) 629

tested in Fernandino et al. (2022) (see Appendix 630

C.3). This finding aligns with previous work show- 631

ing that transformer-based architectures are more 632

predictive of brain responses during language pro- 633

cessing than word-level embedding models and 634

recurrent neural networks (Schrimpf et al., 2021). 635

Finally, one last interesting finding was that the 636

LMs and, to a larger extent, the VLMs we tested 637

learn brain-relevant semantic information beyond 638

that captured by EXP48. This partially echoes 639

the results by Carota et al. (2024), with the dif- 640

ference that the computational model included in 641

their study was strictly distributional. 642

Our study has several implications for future 643

work. First, it invites caution against assuming 644

that technical innovations allowing models to solve 645

additional downstream tasks should necessarily 646

make them more ‘human-like’. Second, it indicates 647

that there is significant room for improving cur- 648

rent computational language models so that they 649

learn the brain-relevant experiential information 650

they currently lack—how to concretely achieve this 651

remains an open question. 652
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