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Abstract

A common assumption in Computational Lin-
guistics is that text representations learnt by
multimodal models are richer and more human-
like than those by language-only models, as
they are grounded in images or audio—similar
to how human language is grounded in real-
world experiences. However, empirical studies
checking whether this is true are largely lack-
ing. We address this gap by comparing word
representations from contrastive multimodal
models vs. language-only ones in the extent to
which they capture experiential information—
as defined by an existing norm-based ‘expe-
riential model’—and align with human fMRI
responses. Our results indicate that, surpris-
ingly, language-only models are superior to
multimodal ones in both respects. Additionally,
they learn more unique brain-relevant semantic
information beyond that shared with the experi-
ential model. Overall, our study highlights the
need to develop computational models that bet-
ter integrate the complementary semantic infor-
mation provided by multimodal data sources.

https://github.com/dmg-illc/
exp-info-models-brain

1 Introduction

How to link language representations to the real-
world entities they refer to is a long-standing issue
within semantics—the ‘symbol-grounding prob-
lem’ (Harnad, 1990; Bender and Koller, 2020).
With the advent of large language models (LLMs)
learning astounding linguistic abilities purely from
text, this question has been reframed as the ‘vector-
grounding problem’ (Mollo and Millière, 2023),
gaining new relevance. While some researchers
think that word meanings should be intended as
purely symbolic (Fodor, 1983), others believe that
words have meanings precisely because they are
linked to specific entities, experiences or notions
(Barsalou, 2008). Supporters of the latter view
stress that human language acquisition is situated in

a rich multimodal environment, where new words
are learnt through interactions with objects and
people (Vigliocco et al., 2014). Theories of embod-
ied cognition further highlight the importance of
linking words to concrete experience not only for
their acquisition but also for their comprehension.
Indeed, according to these theories, understand-
ing sentences involves engaging perceptual, motor
or emotional simulations of their content (for an
overview, see Kaschak et al., 2024).

The idea of obtaining richer semantic representa-
tions by learning them from sources other than text,
such as images or audio, has inspired a great deal
of computational work, from early attempts at con-
catenating image and text embeddings (e.g., Bruni
et al., 2014; Kiela and Bottou, 2014; Derby et al.,
2018; Davis et al., 2019) to the most recent large
vision-language models (LVLMs, e.g., Li et al.,
2023; Wang et al., 2024; Liu et al., 2024; Deitke
et al., 2024; Laurençon et al., 2024). Some of these
works aimed to obtain language representations
aligning more closely with human responses, such
as similarity judgments, while others were more
oriented towards improving performance on bench-
marks or downstream applications. Regardless of
the end goal, all these works present multimodality
as a desideratum, assuming that images provide ad-
ditional semantic information that cannot be learnt
from text alone; however, there is little to no work
investigating which these semantic aspects are. In
this paper, we aim to fill this gap by addressing the
following question: Do multimodal models learn
some facets of meaning related to perceptual expe-
riences that language-only models cannot capture?

Operationalising the ‘extra-linguistic’ informa-
tion that multimodal models are allegedly learning
is a prerequisite for approaching this issue. We
did this by relying on a semantic model introduced
by Fernandino et al. (2022) to capture ‘experien-
tial information’. This cognitive model represents
words as n-dimensional arrays where each entry

https://github.com/dmg-illc/exp-info-models-brain
https://github.com/dmg-illc/exp-info-models-brain


corresponds to aggregated human ratings on a pre-
defined experiential attribute (e.g., Vision, Motion,
Harm). We focused on a set of nouns and evalu-
ated the alignment between their representations
provided by the experiential model and those by
comparable unimodal (language-only) and multi-
modal (vision-language and audio-language) com-
putational models. This analysis allowed us to
uncover if multimodal models indeed reflect more
semantic information than language-only models.
Next, we checked whether capturing experiential
information translates into higher alignment with
brain responses recorded with functional magnetic
resonance imaging (fMRI) to the same set of nouns.

Our findings indicate several interesting trends.
First, both vision-language and language-only mod-
els exhibit significant alignment with the experien-
tial model and brain responses, while the audio-
language model displays weak or non-significant
correlations. Second, this alignment is more pro-
nounced for language-only models, which appear
to capture a great deal of brain-relevant information
beyond experiential. Lastly, language-only models
remain more brain-aligned than vision-language
models even when focusing on a set of more con-
crete words, although the gap is reduced. Overall,
our study shows that current multimodal models
learn less brain-relevant information—both expe-
riential and beyond—than comparable language-
only models, highlighting the need to explore dif-
ferent approaches to construct multimodal word
representations.

2 Background

2.1 Embodied cognition

Embodied cognition identifies a suite of theoretical
frameworks holding that language is understood
by perceptual, emotional, or motor simulations
of its content (e.g., Barsalou, 1999; Glenberg and
Gallese, 2012; Zwaan, 2014; Pulvermüller, 2018).
This general principle has received empirical sup-
port from multiple studies, both behavioural and
neuroscientific.

For example, a series of works on the Action-
sentence Compatibility Effect (ACE, Glenberg and
Kaschak, 2002) and its subsequent variants (Bor-
reggine and Kaschak, 2006; Zwaan and Taylor,
2006; Bub and Masson, 2012) revealed a significant
difference in reaction times—attributed to motor
simulations—when participants had to respond to
a sentence (e.g., You passed the note to Art) with a

movement matching (extending their arm) vs. non-
matching (retreating their arm) that mentioned in
the sentence. Similarly, the sentence-picture verifi-
cation task (Stanfield and Zwaan, 2001), where par-
ticipants have to respond to a picture that is either
compatible (an eagle with its wings outstretched)
or incompatible (an eagle with its wings folded)
with a sentence (The eagle is in the sky), and its
variations (Connell, 2007; Hoeben Mannaert et al.,
2017) have also been widely used to demonstrate
the occurrence of perceptual simulation during lan-
guage comprehension. In parallel, a line of neuro-
scientific studies have found evidence that seman-
tic processing may activate motor (among others,
Hauk et al., 2004; Tettamanti et al., 2005; Aziz-
Zadeh et al., 2006) and perceptual brain regions
(Kiefer et al., 2008; Van Dam et al., 2012).

2.2 Multimodal models of semantics
Embodied cognition and related ideas, such as vi-
sual grounding, have percolated from Cognitive
Science to Computational Linguistics, motivating
attempts to build semantic models that learn rep-
resentations from data sources beyond text. Early
efforts in this direction (e.g., Bruni et al., 2014;
Kiela and Bottou, 2014; Lazaridou et al., 2015; Sil-
berer and Lapata, 2012, 2014) were characterised
by 1) a focus on developing human-aligned com-
putational models of meaning and 2) limited com-
putational modelling resources (large datasets of
paired image-text inputs did not exist at the time,
nor did large transformer-based architectures).

Recently, multimodal models have become more
powerful and found application on a variety of
downstream tasks (e.g., image captioning, image
retrieval, or visual question answering). Some sem-
inal works used a contrastive objective to learn
aligned image and text representations (Radford
et al., 2021; Jia et al., 2021), while others—often
inspired by BERT’s (Devlin et al., 2019) successes
in language modelling—applied its underlying in-
tuitions to the vision-language domain (Tan and
Bansal, 2019; Li et al., 2019; Lu et al., 2019; Chen
et al., 2020). Finally, state-of-the-art large vision-
language models (LVLMs, e.g., Li et al., 2023;
Wang et al., 2024; Liu et al., 2024; Deitke et al.,
2024; Laurençon et al., 2024), usually combining
a large language model (LLM) with an image en-
coder, can engage in strikingly human-like conver-
sations about images. In contrast to the early at-
tempts at multimodal modelling, these works share
1) a focus on solving, or improving performance
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Figure 1: Overview of our experimental setup. Representations for the word stimuli are derived from three different
sources: 1) fMRI responses; 2) multimodal and language-only contrastive models; 3) human ratings along the
experiential dimensions of the EXP48 model. Next, pairwise distances between these word representations are used
to populate representational dissimilarity matrices (RDMs). Finally, alignment between representational spaces is
computed by correlating the off-diagonal elements of the RDMs.

on, downstream tasks, and 2) the availability of
massive datasets and large models with billions of
parameters.

For our experiments, we aimed to leverage
models that are powerful while, at the same
time, suitable for drawing cognitively-meaningful
comparisons. The need to satisfy both constraints
prevented us from evaluating state-of-the-art
LVLMs; we elaborate more on our model choices
in Section 3.2.

2.3 Experiential models of semantics

Recently, a few approaches motivated by embod-
ied cognition have introduced models of semantics
aimed at capturing ‘experiential information’, i.e.,
aspects of meaning related to how humans ground
language in experiences. These experiential mod-
els were constructed by asking human annotators to
rank words on a set of pre-defined dimensions. For
example, Fernandino et al. (2022) introduced an
experiential model based on 48 dimensions span-
ning perceptual, emotional, and action-related con-
structs. In two fMRI studies, they found that the
experiential model yields more brain-aligned word
representations than taxonomic and distributional
models; additionally, it contributes unique semantic
information not represented by the other models.

Similarly, Carota et al. (2024) experimented with
a different experiential model based on 11 dimen-
sions and compared its brain alignment against that
of a distributional model. Their study revealed sig-
nificant correlations with brain responses in more

ROIs (regions of interest) for the experiential model
than for the distributional model. However, an inte-
grative model combining both displayed significant
correlations in an even larger number of ROIs, sug-
gesting that experiential and distributional are com-
plementary aspects of human semantic processing.

Despite their merits, experiential models are
bounded in their accuracy by an a priori selection
of dimensions and, relying on human annotations,
remain expensive to construct. These limitations
open the intriguing question of whether experien-
tial information can be captured by computational
models learning semantic representations in a data-
driven fashion.

3 Methods

A schematic of our experimental pipeline is pro-
vided in Figure 1. In the following, we describe in
detail the word stimuli, brain responses, computa-
tional models and evaluation procedures.

3.1 Data and experiential model
For our experiments, we used word stimuli, fMRI
responses and experiential model from Study 2 by
Fernandino et al. (2022).1 We describe each below.

Word stimuli Word stimuli comprise 320 nouns,
half of which refer to objects and the other half

1These materials have been made publicly available by
Fernandino et al. The full list of words and the experiential
features can be found at https://www.pnas.org/doi/
10.1073/pnas.2108091119#supplementary-materials;
fMRI data are available at https://osf.io/87chb/.

https://www.pnas.org/doi/10.1073/pnas.2108091119#supplementary-materials
https://www.pnas.org/doi/10.1073/pnas.2108091119#supplementary-materials
https://osf.io/87chb/


to events. The 160 object nouns include an equal
number of words (40) from four categories (food,
vehicles, animals, tools); likewise, the event nouns
span four semantic subcategories (social event, neg-
ative event, sound, communication).

fMRI responses fMRI responses were collected
from 36 participants. While viewing the above-
mentioned word stimuli one at a time, they were
instructed to rate the frequency with which they ex-
perienced their corresponding entities in daily life.
Voxel-wise activations (beta maps) for each noun
relative to the mean signal across other nouns were
estimated using linear regressions (for additional
details, see Fernandino et al., 2022). Here, we fo-
cus on the betas from voxels within a ‘semantic
network ROI’ defined by Binder et al. (2009) based
on a meta-analysis. Voxel-wise beta coefficients
can be arranged in vectors representing the brain
response elicited by each noun.

Experiential model The experiential model,
hereafter abbreviated as EXP48, represents each
word as a set of ratings on 48 pre-defined dimen-
sions capturing different aspects of people’s experi-
ence with objects/events, e.g., Vision, Hand action
or Unpleasant. The ratings were introduced by
Binder et al. (2016) as part of a wider set of experi-
ential salience norms; they range from 0 to 6 and
were provided by 1743 unique crowdworkers.

3.2 Computational models

Our model choices were motivated by the goal to
maximise comparability across architectures. More
concretely, we selected three models (language-
only, vision-language, and audio-language) com-
parable in terms of fine-tuning objective—the con-
trastive one—and architecture—they all have a pre-
trained BERT (Devlin et al., 2019) as language
encoder.2 One aspect in which these architectures
differ is the amount of training data; however, we
believe this issue does not invalidate our results and
further discuss it in Section 6.

SimCSE (Simple Contrastive Learning of
Sentence Embeddings, Gao et al., 2021) is
a language-only sentence encoder fine-tuned
contrastively on 1M sentences randomly sampled
from English Wikipedia. Matching pairs for the

2All three models were released with both BERT-based
(Devlin et al., 2019) and RoBERTa-based (Liu et al., 2019)
implementations. We used the former in all our experiments.

contrastive objective were created by applying
different dropout masks to the same sentence.

MCSE (Multimodal Contrastive Learning of
Sentence Embeddings, Zhang et al., 2022) is a
vision-language sentence encoder fine-tuned by
jointly optimising a SimCSE objective and a CLIP-
like (Radford et al., 2021) objective. The fine-
tuning data for the first objective is the same as
SimCSE’s; as for the CLIP-like objective, where a
matching pair was defined by an image and its cap-
tion, the fine-tuning data consists of 83K images
from MS-COCO (Lin et al., 2014) annotated with
multiple captions.

CLAP (Contrastive Language Audio Pretraining,
Wu et al., 2023) is an audio-language model whose
language encoder was initialised with pre-trained
BERT weights and fine-tuned on audio-caption
pairs with a CLIP-like objective. The fine-tuning
data includes 633, 526 audio-text pairs, with audio
clips representing human activities, natural sounds,
and audio effects.

For reference, we also tested BERT and Visual-
BERT (Li et al., 2019) as its visual counterpart.

BERT (Devlin et al., 2019) is a transformer-
based language-only model pretrained with two ob-
jectives: masked language modelling and next sen-
tence prediction. Its pretraining data includes the
BooksCorpus (800M words, Zhu et al., 2015) and
English Wikipedia (2500 words). As mentioned
above, SimCSE, MCSE and CLAP fine-tuned pre-
trained BERT architectures.

VisualBERT (Li et al., 2019) is a vision-
language model consisting of a BERT-based lan-
guage encoder (initialised with parameters from
pretrained BERT) and a pretrained visual feature
extractor based on Faster RCNN (Ren et al., 2015).
Its training objectives, which mirror BERT’s, were
masked language modelling with image input and
sentence-image prediction. The vision-language
pretraining data comprises MS-COCO and VQA
2.0 (Goyal et al., 2017). Note that this is not a
contrastive model; we included it for reference as
it can be considered as a vision-language extension
of BERT, but it is not directly comparable with
MCSE, SimCSE and CLAP.

3.3 Extracting representations
Given that all the models we considered were
trained to learn contextualised representations



Figure 2: Results from representational similarity analysis. On the left, Spearman correlations quantifying the
alignment between word representations from EXP48 and by computational models. On the right, Spearman
correlations indicating the alignment between fMRI responses from human participants and word representations by
computational models.

from sentences, single words may be an out-of-
distribution input. Therefore, following an ap-
proach similar to May et al. (2019), we embedded
the noun stimuli in a set of generic template sen-
tences (e.g., Someone mentioned the <word>,
see Appendix A for the complete list) when pass-
ing them to the models.3 For all templates, we de-
rived word representations from the hidden states
of each layer; more specifically, we selected the
hidden states corresponding to the tokens of the
target word and averaged them across templates.

3.4 Alignment evaluation

RSA To compare model representations against
EXP48 and brain responses, we used representa-
tional similarity analysis (RSA, Kriegeskorte et al.,
2008), which quantifies the alignment between two
representational spaces (either by two models or
by a model and brain responses) as the correla-
tion between representational dissimilarity matri-
ces (RDMs). In our experiments, RDMs were
populated with pairwise cosine distances between
model representations or fMRI responses for all
the unique word-pairs. fMRI RDMs for individ-
ual participants were averaged into one aggregated
RDM. The alignment between this fMRI RDM and
morel-derived RDMs was calculated as a Spearman
correlation.

Partial correlations While RSA allows compar-
ing models’ alignment with EXP48 or brain re-
sponses, it does not reveal whether models explain

3We empirically verified that passing words within tem-
plates rather than in isolation yields higher alignment with
both the experiential model and brain responses (see Ap-
pendix B.1).

shared variance or provide independent contribu-
tions. Fernandino et al. (2022) computed partial
correlations to check how much brain-relevant in-
formation EXP48 shared with the other models
they considered, i.e., two distributional models
(Word2vec and GloVe; Mikolov et al., 2013; Pen-
nington et al., 2014) and two taxonomic models (a
WordNet-based model and a categorical one). We
used the same approach to determine how much
brain-relevant information our tested models share
with EXP48 and with each other. Formally, partial
correlations can be defined as follows: Consider
the RDM from Model A y, the RDM from Model
B x, and the RDM of the brain responses z. The
partial correlation of Model A without Model B is
ρ(ri, zi), where ri = yi − ŷi are the residuals from
the linear regression with equation ŷi = a+ bxi.

4 Results

4.1 EXP48 and brain alignment across models

We performed RSA to obtain a first measure of
model representations’ alignment with EXP48 and
fMRI responses. This analysis was conducted on
model representations averaged across the three
layers yielding the highest alignment individually;
note that these layers may differ when consider-
ing alignment to brain responses vs. EXP48 (see
Appendix B.2 for a visualisation of layer-wise
alignment). The results from RSA against brain
responses and EXP48 are displayed in Figure 2.
All Spearman correlations are statistically signif-
icant (p < 0.05), except for CLAP’s correlation
with brain responses (p = 0.70); we additionally
verified that all the pairwise differences between



correlations are statistically significant.4

An inspection of correlations against EXP48 in-
dicates BERT as the most aligned model (ρ = 0.53);
SimCSE and MCSE also display moderate correla-
tions with EXP48 (ρ = 0.52 and ρ = 0.45, respec-
tively). In contrast, CLAP’s representations are
poorly aligned with EXP48, exhibiting a correla-
tion of just 0.03. A comparison between vision-
language models (MCSE and VisualBERT) and
their unimodal counterparts (SimCSE and BERT)
reveals that the former, surprisingly, reflect less
experiential information than the latter.

Regarding alignment with brain responses in the
semantic ROI, BERT is again the best model (ρ =
0.23), although it remains less brain-aligned than
EXP48 (ρ = 0.27). All the other models display
positive correlations, with the exception of CLAP,
whose correlation is not statistically significant (ρ =
0.00, p = 0.70). Similarly to the EXP48-alignment
results, here we found that the language-only mod-
els BERT and SimCSE are more brain-aligned than
their vision-language extensions VisualBERT and
MCSE. We delve deeper into the robustness of this
finding in Section 5.

An interesting trend common across results from
both RSAs (against EXP48 and fMRI responses)
is that representations by SimCSE and MCSE—
which have been shown to outperform BERT on
semantic text similarity tasks (Gao et al., 2021;
Zhang et al., 2022)—are less aligned than those by
BERT. A potential explanation for this may be that
we considered single-word representations. Since
contrastive fine-tuning, as applied to SimCSE and
MCSE, optimises sentence-level representations as
opposed to token-level ones, it could be that some
token-level semantic properties initially learnt by
BERT got somehow diluted through this process.

4.2 Experiential information vs. unique
contribution in models’ brain alignment

Results from the partial correlation analysis are dis-
played in Figure 3, whose left-hand panel shows
how much EXP48 representations align with brain
responses without the information they share with
each of the other models. An interesting observa-
tion is that the lowest correlations were obtained

4Statistical significance was determined by applying a
Fisher transformation to the correlation coefficients from each
pair of models and calculating the p-value associated with
the difference between the two z-scores. All p-values were
Bonferroni-corrected with α = 0.05. The same approach for
verifying statistical significance was applied to all correlation
comparisons throughout the paper.

when regressing out BERT and SimCSE. This pro-
vides an interesting complement to the findings
from RSA against EXP48 representations: RSA
shows that BERT and SimCSE share substantial
representational information with EXP48, and par-
tial correlations suggest that this information is also
brain-relevant. Regarding models’ brain alignment
without EXP48, displayed in Figure 3’s right-hand
panel, a noteworthy finding is that BERT’s and Sim-
CSE’s representations are the most brain-aligned
even after regressing out EXP48. This suggests that
these models learnt some semantic information that
is not captured by EXP48 but is still reflected in
brain responses.

Additionally, for each model we checked which
proportion of its initial brain alignment is at-
tributable to unique contribution as opposed to in-
formation shared with EXP48. This can be visu-
alised by comparing the dark-shade bars against
the light-shade ones in the right-hand panel of Fig-
ure 3. An interesting result revealed by this compar-
ison is that, although MCSE is more brain-aligned
than VisualBERT, their unique contribution without
EXP48 is the same in absolute value (ρ = 0.06); in
other terms, 50% of VisualBERT’s brain alignment
is due to unique information, while in MCSE it is
32%. Regarding BERT and SimCSE, the majority
of their initial brain alignment is eroded when re-
gressing out EXP48; however, the asymmetry is not
substantial, and the unique contribution accounts
for more than 40% of the initial brain alignment in
both models. As for CLAP, it exhibits a weak neg-
ative correlation that is not statistically significant,
confirming that the model does not contribute any
brain-relevant information.

Finally, we used partial correlations to com-
pare vision-language models (VLMs) against their
language-only counterparts (LMs). We found that
neither MCSE (ρ = 0.00; p = 0.60) nor VisualBERT
(ρ = 0.00; p = 0.66) exhibit statistically significant
correlations with brain responses once SimCSE
and BERT, respectively, are regressed out. Cru-
cially, this indicates that VLMs did not learn any
additional brain-relevant information besides that
already captured by their LM counterparts.

5 Assessing Results’ Robustness

RSA results revealed a consistent advantage of
language-only models over the multimodal ones.
This finding contrasts with the expectation—shared
across a great deal of work on multimodality and



Figure 3: Results from partial correlation analyses. On the left, Spearman correlations between brain responses and
the residuals obtained regressing model RDMs out of the EXP48 RDM. The dotted line indicates EXP48’s initial
brain alignment without removing any information. On the right, Spearman correlations between brain responses
and the residuals obtained regressing the EXP48 RDM out of model RDMs. The bars in lighter shades indicate
models’ initial brain alignment.

language modelling—that training models on di-
verse data modalities, as opposed to text alone,
should yield more human-like language represen-
tations. In the following, we present two analyses
aimed at assessing the robustness of these findings.
Given that the audio-language model CLAP did not
achieve a statistically significant brain alignment,
we excluded it from further analyses and focused
on the remaining vision-language and language-
only architectures.

5.1 Do caption-like templates result in
improved brain alignment?

As pointed out by Tan and Bansal (2020), im-
age captions are examples of grounded language,
which differs from other types of natural language
along many dimensions. Since the VLMs we eval-
uated were trained on image-caption pairs, they
may have over-fitted to the language present in cap-
tions. Therefore, it is possible that the sentence
templates we used to obtain contextualised word
representations from the models are somehow out-
of-distribution for VLMs.

To control for this potential confound, we re-
extracted word representations employing different
templates, whose structure was modelled around
captions (e.g., There is an <object> in a
<place>, or A <person> is <verb in -ing>
in a <place>). These structures were iden-
tified based on a manual inspection of captions
from MS-COCO, which was part of both MCSE’s
and VisualBERT’s training. Given the challenges
of creating caption-like templates providing a fit-
ting context for all the word stimuli, we used dif-
ferent sets of templates for each sub-category of

words described in Section 3.1 (e.g., There is a
<food-word> on a table in a restaurant
or A few people gathered for a <social
event-word>). We provide the complete list of
templates in Appendix A.

The procedure for calculating brain alignment
was the same as that employed in the main ex-
periment. Spearman correlations between model-
derived RDMs and the fMRI-derived RDM are
displayed in Figure 4. All correlations are sta-
tistically significant, as well as correlation differ-
ences between models. A comparison across mod-
els confirms the trend from the main experiment:
Language-only models are more brain-aligned than
their vision-language counterparts. This suggests
that the finding is robust and not a by-product of
the templates where word stimuli were embedded.

The dotted lines in Figure 4 allow comparing
the brain alignment model representations achieve
when using caption-like templates vs. when using
the templates from the main experiment. This com-
parison reveals that all models—not only VLMs—
exhibit higher brain alignment when using caption-
like templates. We interpret this as indicating that
caption-like templates are not more in-distribution
for VLMs, but rather provide a better-specified con-
text that is beneficial to all models.

5.2 Do VLMs yield more brain-aligned
representations for objects vs. events?

Provided that VLMs learn additional semantic in-
formation, it could be that not all word representa-
tions benefit from multimodal training to the same
extent; instead, a potential advantage may be more
prominent for words referring to visual contents.



Figure 4: Spearman correlations indicating alignment
between model representations extracted using caption-
like templates and fMRI responses. Dotted lines indi-
cate the initial correlations obtained with the templates
from the main experiment.

The words used in our main experiments include
nouns from multiple semantic categories (see Sec-
tion 3.1 for more details), which may largely vary
in their degree of ‘visual-ness’. Therefore, it is
possible that we did not detect additional brain-
relevant information learnt by VLMs because we
focused on the ‘wrong’ words.

To check whether this is the case, we further
analysed two word subsets with different levels of
concreteness. The subsets were identified by lever-
aging the semantic labels already present in our
word set, i.e., objects and events.5 We repeated
RSA separately for these two word subsets fol-
lowing the same procedure employed in the main
experiment.

The results of this analysis are displayed in Fig-
ure 5. A first observation is that—for all mod-
els except VisualBERT—correlations are statisti-
cally significantly stronger for events than objects.
This pattern was also reported by Fernandino et al.
(2022), who attributed it to “higher variability of
pairwise similarities for the neural representations
of event concepts”.

A second interesting result is that the model
ranking we observed analysing the entire word set
(BERT > SimCSE > MCSE > VisualBERT) is repli-
cated for events but not for objects, where none of
the differences between model correlations is statis-
tically significant. While there is a negative effect
overall, further training BERT on image-text pairs
(as in VisualBERT) or fine-tuning it with a con-
trastive objective (as in SimCSE and MCSE) does

5In their supplementary materials, Fernandino et al. (2022)
report that the average concreteness score for objects is 4.9,
while for events it is 3.6.

Figure 5: Spearman correlations indicating alignment
between model representations and fMRI responses.
Correlations are displayed separately for object-words
and event-related words.

not significantly alter the initial brain alignment
of its object-word representations. Interestingly,
EXP48, which we included for reference, is outper-
formed by BERT on events; however, it remains
statistically significantly more brain-aligned than
the other models on objects.

Finally, comparing vision-language models
against their language-only counterparts shows that
BERT and VisualBERT do not significantly dif-
fer regarding the brain alignment of their object-
word representations, while SimCSE and MCSE
do (with SimCSE remaining more aligned).6 As
for event-word representations, SimCSE and BERT
are, respectively, significantly more brain-aligned
than MCSE and VisualBERT. These results further
support the robustness of our initial finding, i.e.,
that LMs models are more aligned than their VL
counterparts. However, the reduced gap between
the two model types when considering object-word
representations vs. event-word ones suggests that
VLMs do, comparatively, learn more brain-aligned
representations for objects than events.

6 Discussion

While multimodal models are often expected
to incorporate additional semantic aspects that
language-only models cannot learn, our results re-
veal that their word representations are less aligned
with EXP48 and fMRI responses than those by
LMs. Moreover, within multimodal models, the
vision-language ones show moderate positive corre-
lations with EXP48 and fMRI responses, while the

6Note that, since we used Bonferroni corrections, this dif-
ference is statistically significant here—but not when compar-
ing all five models—due to a change in the number of relevant
comparisons (2 vs. 5).



audio-language one correlates weakly with EXP48
and does not yield a significant correlation with
brain responses. Below, we discuss factors that
may have played a role in these partially unex-
pected results.

Amount of training data While being compara-
ble in terms of learning objectives and architec-
ture, SimCSE, MCSE and CLAP still differ in
the amount of fine-tuning data. For the SimCSE–
MCSE comparison, this does not appear to be a
confound: Despite being fine-tuned on less sen-
tences than MCSE, SimCSE still proves to be more
EXP48- and brain-aligned. A potential reason for
this may be that the grounded language employed
in image captions causes a shift of semantic rep-
resentations towards more concrete meanings. As
for CLAP, the smaller amount of fine-tuning audio-
caption pairs, together with its optimising only a
CLIP-like objective (without a SimCSE-like one),
may have played a role in its poor alignment.

Multimodal pretraining vs. fine-tuning A po-
tential explanation for the inferior performance of
multimodal models could be that training on mul-
timodal pairs is not as effective during fine-tuning
as it is during pre-training. However, we verified
that not even the language encoder from the power-
ful CLIP (Radford et al., 2021)7—pretrained con-
trastively on 400M image-text pairs—yields more
brain-aligned word representations than BERT and
SimCSE (see Appendix B.3).

Models from present vs. past studies An inter-
esting result was that the correlations with fMRI
responses we observed for SimCSE, MCSE and
BERT are higher than those achieved by the com-
putational models (GloVe and Word2vec) tested by
Fernandino et al. 2022 (see Appendix B.3). This
finding aligns with previous work showing that
transformer-based architectures are more predic-
tive of brain responses during language processing
than word-level embedding models and recurrent
neural networks (Schrimpf et al., 2021). In addi-
tion, we found that the LMs and, to a larger extent,
the VLMs we tested learn brain-relevant semantic
information beyond that captured by EXP48. This
partially echoes the results by Carota et al. (2024),
with the difference that the computational model
included in their study was strictly distributional.

7This model was excluded from the main experiment as it
is not directly comparable with the other architectures.

Information captured by EXP48 While the abil-
ity of EXP48 to model brain responses has been
validated by previous research, it may still be a
suboptimal model of perceptual experience for two
main reasons. First, all dimensions in EXP48, in-
cluding the more perceptual ones like Colour or
Sound, are somewhat abstract; in this sense, they
may fail to capture low-level perceptual informa-
tion relevant for modelling human word represen-
tations and, perhaps, learnt by multimodal models.
Second, EXP48 encodes experiential dimensions,
e.g., Pleasant or Time, which are not strictly per-
ceptual and may be hard, if not impossible, to learn
for vision-language and audio-language models.

Type of stimuli Our study focuses on single
words that are not included in longer text passages.
To some extent, our results suggest that this may
affect machine language processing; indeed, we
found that embedding words in sentences, as op-
posed to passing them to the models as is, yields
more brain-aligned representations (see also Ap-
pendix B.1). In a similar vein, the amount of con-
text may influence human language processing: As
observed by Zwaan (2014), context determines the
perceptual detail of the mental simulations people
engage during language comprehension. There-
fore, it may be that the nouns used in the fMRI
experiment did not prompt multimodal semantic
knowledge enough for it to be detected in our study.

7 Conclusions

Our study provides an in-depth comparison be-
tween multimodal and language-only architectures
in their ability to capture experiential semantic
information and alignment with brain responses.
Contrary to common assumptions, we found mul-
timodal models to produce word representations
less brain-aligned and experience-informed than
language-only models.

These results have several implications for fu-
ture work. First, they invite caution against assum-
ing that technical innovations allowing models to
solve additional downstream tasks should necessar-
ily make them more ‘human-like’. Second, they
indicate that there is significant room for improv-
ing current computational language models so that
they learn the brain-relevant experiential informa-
tion they currently lack—how to concretely achieve
this remains an open question.



Limitations

Our experimental setup focuses exclusively on
contrastive models which are not state-of-the-
art for both linguistic and multimodal down-
stream tasks. More recent architectures pretrained
autoregressively—e.g., models from the LLaVA
family (Liu et al., 2024), Molmo (Deitke et al.,
2024), or Qwen2.5-VL(Bai et al., 2025)—may ex-
hibit different patterns. However, the complexity
of their pre-training and fine-tuning steps makes
it hard to set up a controlled comparison ruling
out factors such as the amount of training data or
training objectives. We therefore explicitly decided
to not include this type of model in our investiga-
tion. This decision was further informed by pre-
liminary evidence that generative vision-language
models achieving stronger performance on down-
stream tasks are less brain-aligned than previous
architectures (Bavaresco et al., 2024).

Acknowledgments

We thank the members of the Dialogue Modelling
Group (DMG) from the University of Amsterdam
and Lorenzo Proietti for the helpful feedback pro-
vided at different stages of this project.

This project was funded by the European Re-
search Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme
(grant agreement No. 819455).

References

Lisa Aziz-Zadeh, Stephen M Wilson, Giacomo Rizzo-
latti, and Marco Iacoboni. 2006. Congruent embod-
ied representations for visually presented actions and
linguistic phrases describing actions. Current biol-
ogy, 16(18):1818–1823.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
Wang, Jun Tang, et al. 2025. Qwen2.5-VL technical
report. arXiv preprint arXiv:2502.13923.

Lawrence W Barsalou. 1999. Perceptual symbol sys-
tems. Behavioral and brain sciences, 22(4):577–660.

Lawrence W Barsalou. 2008. Grounded cognition.
Annu. Rev. Psychol., 59(1):617–645.

Anna Bavaresco, Marianne de Heer Kloots, Sandro
Pezzelle, and Raquel Fernández. 2024. Modelling
multimodal integration in human concept process-
ing with vision-and-language models. arXiv preprint
arXiv:2407.17914.

Emily M Bender and Alexander Koller. 2020. Climbing
towards NLU: On meaning, form, and understand-
ing in the age of data. In Proceedings of the 58th
annual meeting of the association for computational
linguistics, pages 5185–5198.

Jeffrey R Binder, Lisa L Conant, Colin J Humphries,
Leonardo Fernandino, Stephen B Simons, Mario
Aguilar, and Rutvik H Desai. 2016. Toward a brain-
based componential semantic representation. Cogni-
tive neuropsychology, 33(3-4):130–174.

Jeffrey R Binder, Rutvik H Desai, William W Graves,
and Lisa L Conant. 2009. Where is the semantic
system? A critical review and meta-analysis of 120
functional neuroimaging studies. Cerebral cortex,
19(12):2767–2796.

Kristin L Borreggine and Michael P Kaschak. 2006.
The action–sentence compatibility effect: It’s all in
the timing. Cognitive Science, 30(6):1097–1112.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal Distributional Semantics. Journal of
artificial intelligence research, 49:1–47.

Daniel N Bub and Michael EJ Masson. 2012. On the
dynamics of action representations evoked by names
of manipulable objects. Journal of Experimental
Psychology: General, 141(3):502.

Francesca Carota, Hamed Nili, Nikolaus Kriegeskorte,
and Friedemann Pulvermüller. 2024. Experientially-
grounded and distributional semantic vectors uncover
dissociable representations of conceptual categories.
Language, Cognition and Neuroscience, 39(8):1020–
1044.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed
El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020. UNITER: UNiversal Image-TExt
Representation Learning. In European Conference
on Computer Vision, pages 104–120.

Louise Connell. 2007. Representing object colour in
language comprehension. Cognition, 102(3):476–
485.

Christopher Davis, Luana Bulat, Anita Lilla Vero, and
Ekaterina Shutova. 2019. Deconstructing multi-
modality: visual properties and visual context in
human semantic processing. In Proceedings of the
Eighth Joint Conference on Lexical and Computa-
tional Semantics (*SEM 2019), pages 118–124, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun
Tripathi, Yue Yang, Jae Sung Park, Mohammadreza
Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini,
et al. 2024. Molmo and PixMo: Open Weights and
Open Data for State-of-the-Art Multimodal Models.
CoRR.

https://doi.org/10.18653/v1/S19-1013
https://doi.org/10.18653/v1/S19-1013
https://doi.org/10.18653/v1/S19-1013


Steven Derby, Paul Miller, Brian Murphy, and Barry De-
vereux. 2018. Using Sparse Semantic Embeddings
Learned from Multimodal Text and Image Data to
Model Human Conceptual Knowledge. In Proceed-
ings of the 22nd Conference on Computational Nat-
ural Language Learning, pages 260–270, Brussels,
Belgium. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Leonardo Fernandino, Jia-Qing Tong, Lisa L Conant,
Colin J Humphries, and Jeffrey R Binder. 2022. De-
coding the information structure underlying the neu-
ral representation of concepts. Proceedings of the
National Academy of Sciences, 119(6):e2108091119.

Jerry A Fodor. 1983. The modularity of mind. MIT
press.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple Contrastive Learning of Sentence
Embeddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Arthur M Glenberg and Vittorio Gallese. 2012. Action-
based language: A theory of language acquisition,
comprehension, and production. cortex, 48(7):905–
922.

Arthur M Glenberg and Michael P Kaschak. 2002.
Grounding language in action. Psychonomic bulletin
& review, 9(3):558–565.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the v in VQA
Matter: Elevating the Role of Image Understanding
in Visual Question Answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Stevan Harnad. 1990. The symbol grounding problem.
Physica D: Nonlinear Phenomena, 42(1-3):335–346.

Olaf Hauk, Ingrid Johnsrude, and Friedemann Pulver-
müller. 2004. Somatotopic representation of action
words in human motor and premotor cortex. Neuron,
41(2):301–307.

Lara N Hoeben Mannaert, Katinka Dijkstra, and Rolf A
Zwaan. 2017. Is color an integral part of a rich mental
simulation? Memory & cognition, 45:974–982.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen
Li, and Tom Duerig. 2021. Scaling up visual and

vision-language representation learning with noisy
text supervision. In International conference on ma-
chine learning, pages 4904–4916. PMLR.

Michael P Kaschak, Michael Long, and Julie Madden.
2024. Embodied Approaches to Language Compre-
hension. In The Routledge Handbook of Embodied
Cognition, pages 191–199. Routledge.

Markus Kiefer, Eun-Jin Sim, Bärbel Herrnberger,
Jo Grothe, and Klaus Hoenig. 2008. The sound of
concepts: Four markers for a link between auditory
and conceptual brain systems. Journal of Neuro-
science, 28(47):12224–12230.

Douwe Kiela and Léon Bottou. 2014. Learning Image
Embeddings using Convolutional Neural Networks
for Improved Multi-Modal Semantics. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Association
for Computational Linguistics.

Nikolaus Kriegeskorte, Marieke Mur, and Peter A Ban-
dettini. 2008. Representational similarity analysis-
connecting the branches of systems neuroscience.
Frontiers in systems neuroscience, 2:249.

Hugo Laurençon, Léo Tronchon, Matthieu Cord, and
Victor Sanh. 2024. What matters when building
vision-language models? In Advances in Neural
Information Processing Systems, volume 37, pages
87874–87907. Curran Associates, Inc.

Angeliki Lazaridou, Marco Baroni, et al. 2015. Com-
bining Language and Vision with a Multimodal Skip-
gram Model. In Proceedings of the 2015 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 153–163.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023. BLIP-2: Bootstrapping Language-Image Pre-
training with Frozen Image Encoders and Large Lan-
guage Models. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pages
19730–19742. PMLR.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. VisualBERT: A
Simple and Performant Baseline for Vision and Lan-
guage. arXiv preprint arXiv:1908.03557.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft COCO:
Common Objects in Context. In Computer vision–
ECCV 2014: 13th European conference, zurich,
Switzerland, September 6-12, 2014, proceedings,
part v 13, pages 740–755. Springer.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2024. Improved Baselines with Visual Instruc-
tion Tuning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 26296–26306.

https://doi.org/10.18653/v1/K18-1026
https://doi.org/10.18653/v1/K18-1026
https://doi.org/10.18653/v1/K18-1026
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://proceedings.neurips.cc/paper_files/paper/2024/file/a03037317560b8c5f2fb4b6466d4c439-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/a03037317560b8c5f2fb4b6466d4c439-Paper-Conference.pdf
https://proceedings.mlr.press/v202/li23q.html
https://proceedings.mlr.press/v202/li23q.html
https://proceedings.mlr.press/v202/li23q.html


Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. ViLBERT: Pretraining Task-Agnostic Visi-
olinguistic Representations for Vision-and-Language
Tasks. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Chandler May, Alex Wang, Shikha Bordia, Samuel Bow-
man, and Rachel Rudinger. 2019. On Measuring So-
cial Biases in Sentence Encoders. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 622–628.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. In 1st International Con-
ference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings.

Dimitri Coelho Mollo and Raphaël Millière. 2023.
The vector grounding problem. arXiv preprint
arXiv:2304.01481.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Friedemann Pulvermüller. 2018. Neural reuse of action
perception circuits for language, concepts and com-
munication. Progress in neurobiology, 160:1–44.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing Transferable Visual Models From Natural Lan-
guage Supervision. In Proceedings of the 38th Inter-
national Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research,
pages 8748–8763. PMLR.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster R-CNN: Towards Real-Time Ob-
ject Detection with Region Proposal Networks. In
Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc.

Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Ca-
rina Kauf, Eghbal A Hosseini, Nancy Kanwisher,
Joshua B Tenenbaum, and Evelina Fedorenko. 2021.
The neural architecture of language: Integrative
modeling converges on predictive processing. Pro-
ceedings of the National Academy of Sciences,
118(45):e2105646118.

Carina Silberer and Mirella Lapata. 2012. Grounded
models of semantic representation. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 1423–1433. As-
sociation for Computational Linguistics.

Carina Silberer and Mirella Lapata. 2014. Learning
grounded meaning representations with autoencoders.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 721–732. Association for
Computational Linguistics.

Robert A Stanfield and Rolf A Zwaan. 2001. The ef-
fect of implied orientation derived from verbal con-
text on picture recognition. Psychological science,
12(2):153–156.

Hao Tan and Mohit Bansal. 2019. LXMERT: Learning
Cross-Modality Encoder Representations from Trans-
formers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5100–5111.

Hao Tan and Mohit Bansal. 2020. Vokenization: Im-
proving Language Understanding with Contextual-
ized, Visual-Grounded Supervision. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 2066–
2080.

Marco Tettamanti, Giovanni Buccino, Maria Cristina
Saccuman, Vittorio Gallese, Massimo Danna, Paola
Scifo, Ferruccio Fazio, Giacomo Rizzolatti, Stefano F
Cappa, and Daniela Perani. 2005. Listening to action-
related sentences activates fronto-parietal motor cir-
cuits. Journal of cognitive neuroscience, 17(2):273–
281.

Wessel O Van Dam, Margriet Van Dijk, Harold Bekker-
ing, and Shirley-Ann Rueschemeyer. 2012. Flexi-
bility in embodied lexical-semantic representations.
Human brain mapping, 33(10):2322–2333.

Gabriella Vigliocco, Pamela Perniss, and David Vin-
son. 2014. Language as a multimodal phenomenon:
implications for language learning, processing and
evolution.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. 2024. Qwen2-
VL: Enhancing Vision-Language Model’s Percep-
tion of the World at Any Resolution. arXiv preprint
arXiv:2409.12191.

Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Tay-
lor Berg-Kirkpatrick, and Shlomo Dubnov. 2023.
Large-Scale Contrastive Language-Audio Pretrain-
ing with Feature Fusion and Keyword-to-Caption
Augmentation. In ICASSP 2023 - 2023 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1–5.

https://proceedings.neurips.cc/paper_files/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://doi.org/10.1109/ICASSP49357.2023.10095969
https://doi.org/10.1109/ICASSP49357.2023.10095969
https://doi.org/10.1109/ICASSP49357.2023.10095969


Miaoran Zhang, Marius Mosbach, David Adelani,
Michael Hedderich, and Dietrich Klakow. 2022.
MCSE: Multimodal Contrastive Learning of Sen-
tence Embeddings. In Proceedings of the 2022 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 5959–5969, Seattle,
United States. Association for Computational Lin-
guistics.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE in-
ternational conference on computer vision, pages
19–27.

Rolf A Zwaan. 2014. Embodiment and language com-
prehension: Reframing the discussion. Trends in
cognitive sciences, 18(5):229–234.

Rolf A Zwaan and Lawrence J Taylor. 2006. Seeing,
acting, understanding: Motor resonance in language
comprehension. Journal of Experimental Psychol-
ogy: General, 135(1):1.

Appendix

A Sentence Templates

The neutral sentence templates where the word
stimuli were embedded in order to obtain contex-
tualised representations from the computational
models were the following:

Someone mentioned the <word>.

The post was about the <word>.

Everyone was talking about the <word>.

They were all interested in the <word>.

People know about the <word>.

In one of our additional experiments (see
Section 5.1), we used caption-like sentences to
check whether they were more in-distribution for
vision-language models and, therefore, yielded
more EXP48- and brain-aligned representations.
Below, we report the caption-like templates used
for each word sub-category.

Templates used for the sub-category food:

There is a <word> on a table in a restaurant.

A <word> is on a kitchen table.

A woman is eating a <word>.

A <word> with a few glasses around.

A close-up of a <word>.

Templates used for the sub-category vehicle:

There is one man in a <word>.

A <word> is surrounded by a few people.

A woman is posing next to a <word>.

A <word> with a young man next to it.

A close-up of a <word>.

Templates used for the sub-category tool:

There is a man holding a <word>.

A <word> is lying on the ground.

A woman is using a <word>.

A <word> with some people in the background.

A close-up of a <word>.

Templates used for the sub-category animal:

There is a <word> eating voraciously.

A man is feeding a <word>.

A woman next to a <word>.

A <word> with a little girl staring at it.

A close-up of a <word>.

Templates used for the sub-category negative event:

There is a crowd looking scared because of a

<word>.

Many people are trying to shelter from a <word>.

A <word> happening in a big city.

A <word> with many people involved.

A picture of a <word>.

Templates used for the sub-category social event:

There is a small crowd attending a <word>.

A few people are gathered for a <word>.

A <word> attended by a large group of people.

A <word> with many people involved.

A picture of a <word>.

Templates used for the sub-category communica-
tion:

There is a small crowd at a <word>.

A few people are participating in a <word>.

A <word> in a crowded room.

A <word> with many people involved.

A picture of a <word>.

Templates used for the sub-category sound:
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There is a man hearing a <word>.

A few people seem to hear a <word>.

A <word> is heard by a few people.

A <word> with a few people listening to it.

A picture of a <word>.

B Additional RSA Results

B.1 Single-word vs. contextualised
representations

Our choice to derive word representations by in-
cluding them in sentences was guided by the intu-
ition that single words could have been an out-of-
distribution input for computational models trained
to output contextualised word representations. We
empirically verified that representations obtained
by embedding words within templates yield higher
alignment than those obtained by passing single
words to the models. We show the EXP48 and
brain alignment obtained with both embedding-
extraction procedures in Figure 6.

B.2 Layer-wise RSA results
In the main paper, we reported RSA results calcu-
lated from model representations averaged across
the three layers yielding the highest alignment in-
dividually. Here, we provide a layer-wise visualisa-
tion of RSA results, which allows observing how
EXP48 vs. brain alignment changes throughout
model layers. Specifically, layer-wise Spearman
correlations against EXP48 are displayed in Fig-
ure 7, while those against fMRI responses are in
Figure 8.

B.3 RSA with additional baselines
For completeness, in Table 1 we report RSA results
including three additional models: CLIP (Radford
et al., 2021), a vision-language model pretrained
contrastively on 400M image-caption pairs, and
the distributional models GloVE (Pennington et al.,
2014) and Word2vec (Mikolov et al., 2013). The
distributional models were originally included in
Fernandino et al. (2022); note that the brain cor-
relations we report differ from the ones from Fer-
nandino et al. (2022), as they computed an average
across participant-wise brain correlations, while
we averaged brain RDMs across participants be-
fore computing correlations.

Model ρ EXP48 ρ Brain

SimCSE 0.52 0.22
MCSE 0.45 0.19
CLAP 0.03 0.00
BERT 0.53 0.23
VisualBERT 0.27 0.12
CLIP 0.41 0.14
GloVe 0.45 0.14
Word2vec 0.42 0.125

Table 1: Spearman correlations quantifying the align-
ment of models’ representational spaces with EXP48
and brain responses.



Figure 6: Spearman correlations observed from model representations obtained by passing single words vs. words
embedded in templates. The left-hand panel shows the alignment with EXP48 and the right-hand one with brain
responses.

Figure 7: Spearman correlations indicating how rep-
resentational similarity between model representations
and EXP48 representations changes along model layers.

Figure 8: Spearman correlations indicating how rep-
resentational similarity between model representations
and brain responses changes along model layers.
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