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ABSTRACT

Sparse Autoencoder (SAE) features have become essential tools for mechanistic
interpretability research. SAE features are typically characterized by examining
their activating examples, which are often “monosemantic” and align with human
interpretable concepts. However, these examples don’t reveal feature sensitivity:
how reliably a feature activates on texts similar to its activating examples. In this
work, we develop a scalable method to evaluate feature sensitivity. Our approach
avoids the need to generate natural language descriptions for features; instead
we use language models to generate text with the same semantic properties as a
feature’s activating examples. We then test whether the feature activates on these
generated texts. We demonstrate that sensitivity measures a new facet of feature
quality and find that many interpretable features have poor sensitivity. Human
evaluation confirms that when features fail to activate on our generated text, that
text genuinely resembles the original activating examples. Lastly, we study feature
sensitivity at the SAE level and observe that average feature sensitivity declines
with increasing SAE width across 7 SAE variants. Our work establishes feature
sensitivity as a new dimension for evaluating both individual features and SAE
architectures.

1 INTRODUCTION

Sparse Autoencoders (SAEs) have emerged as a powerful technique to identify meaningful direc-
tions in language model activation spaces (Cunningham et al., 2023 Templeton et al., 2024). These
learned directions, or SAE features, have proven to be valuable for mechanistic interpretability.
Use cases include: surfacing surprising information present in model activations (Templeton et al.,
2024 Ferrando et al.,2025), controlling model behavior via activation steering (Durmus et al., 2024;
Nanda et al}|2025)), identifying computational circuits within models (Ameisen et al., [2025; Marks
et al.| 2025a} [Lindsey et al.,[2025)), and more open-ended exploration of training data (Marks et al.,
2025b) or other datasets (Movva et al., 2025; Jiang et al., 2025).

A key step in almost all SAE applications is to first characterize each SAE feature. This is com-
monly done by examining example inputs that activate each feature. These activating examples are
often cohesive and correspond to human-interpretable concepts (Cunningham et al., 2023} [Temple-
ton et al., 2024), e.g., "harmful requests”. However, only examining a feature’s activating examples
tells us what a feature does but not what it fails to do. We might hope that a harmful request feature
activates on all harmful requests, but we cannot determine this by just examining activating text.
Additionally, we need to evaluate feature sensitivity: the probability that a feature activates on texts
similar to its activating examples.

Ideally, features would have high sensitivity—consistently activating on all relevant inputs rather
than arbitrary subsets. Understanding a feature’s sensitivity is crucial for scoping what we can
learn from the feature. If a harmful request feature has high sensitivity and activates on all harmful
requests, understanding its role can reveal how the model generally processes any harmful input. If,
instead, the harmful request feature has poor sensitivity, we are mainly gaining narrower insights
into how the model handles the specific input that activates the feature.

In this work, we use a generation-based approach to evaluate feature sensitivity at scale. As illus-
trated in Figure [T} we use language models to generate text with the same semantic properties as a
feature’s activating examples. We then test whether the feature activates on these generated texts.
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Figure 1: Sensitivity evaluation methodology. We extract top activating texts for each SAE feature,
use GPT-4.1 to generate similar texts based on these examples, and measure how often the feature
activates on the generated texts. Features with high sensitivity reliably activate on semantically
similar inputs.

Our generation-based approach is more scalable and efficient than previous dataset filtering meth-
ods (Templeton et al., 2024; Turner et al., 2024). Additionally, our method avoids the need to first
generate a description of the feature’s activating text, removing a potential source of error compared
to common automated interpretability evaluations (Paulo et al.| 2024} Karvonen et al.| 2025).

Our main contributions are:

* We develop an explanation-free, scalable automated evaluation for SAE feature sen-
sitivity, allowing efficient evaluation of thousands of SAE features.

* We demonstrate that sensitivity measures a new facet of feature quality by examining
its relationship to standard SAE feature metrics. Notably, we find that many interpretable
features have poor sensitivity.

* We validate our method through automated and human evaluations, finding that when
a feature fails to activate on generated text, that text genuinely resembles activating text
examples according to human assessment.

* We identify declining feature sensitivity as an additional challenge for SAE scaling.
We find that wider SAEs have lower average feature sensitivity in large-scale SAEs (up to
1M features) and across 7 different SAE variants.

2 RELATED WORK

2.1 PRIOR INVESTIGATIONS OF FEATURE SENSITIVITY

Investigating feature sensitivity requires obtaining candidate input text and checking for feature
activation. Most prior work approaches this by first generating natural language explanations for
features, then using those explanations to identify candidate inputs. This includes using explanations
to generate new text (Huang et al.l 2023} Juang et al.| 2024) or to filter through existing datasets for
relevant passages (Templeton et al., 2024} |Turner et al.| 2024).

Alternative approaches avoid natural language explanations entirely. (Gao et al.| (2024) fit n-grams
with wildcards to activating text examples to filter datasets for test inputs. Other work evaluates
whether features or groups of features can serve as high-sensitivity classifiers for a set of predefined
concepts (Karvonen et al., [2024; |Makelov et al., 2024; (Chanin et al., 2024). (Chanin et al.| (2024)
study feature absorption, a special instance of poor feature sensitivity with a clear cause: when
features form hierarchies, sparsity incentivizes parent features (e.g., “math”) to fail to activate on
inputs when a more specific child feature (e.g., “algebra”) activates instead.

All these approaches evaluate sensitivity with respect to some intermediate description—whether
explanations, n-grams, or concept lists. Our approach evaluates sensitivity without needing to first
generate such descriptions.
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2.2 SAE EVALUATION

Earlier work primarily evaluated SAEs by their reconstruction error and the interpretability of indi-
vidual features (Bricken et al.| 2023 [Templeton et al., 2024).

Although increasing SAE width improves both reconstruction quality and feature interpretability
(Karvonen et al., 2025), a growing body of research investigates problems that arise when scaling
SAEs, including feature splitting (Bricken et al.|[2023)), feature absorption (Chanin et al., 2024), and
feature composition (Leask et al.| [2025). These results highlight that only optimizing for sparsity
and reconstruction may not yield natural features.

Another line of work evaluates SAE latents by their utility for downstream tasks: sparse probing
(Gao et al.,|2024), spurious correlation removal (Marks et al.,2025a)), disentangling model represen-
tations (Huang et al.,|2024), and unlearning (Farrell et al., 2024). [Karvonen et al.| (2025)) introduce
SAEBench, a benchmark that aggregates many of these evaluation approaches, along with standard
automated interpretability and reconstruction metrics.

2.3 AUTOMATED INTERPRETABILITY

The standard auto-interpretability pipeline involves collecting activating text examples for a feature,
prompting an LLM to generate natural language descriptions from these examples, and validating
these descriptions by testing whether they enable another LLLM to predict activations on new text.
Bills et al.| (2023)) first proposed this approach for neurons, and it has since become standard for both
neuron explanations (Choi et al.| 2024)) and SAE explanations (Paulo et al.,[2024; [Templeton et al.,
2024 Karvonen et al., [2025).

A complementary approach evaluates explanation quality by testing whether explanations can gen-
erate new activating inputs. This approach has been used to evaluate both neuron explanations
(Huang et al., [2023) and SAE feature explanations (Juang et al., 2024). Other work uses input gen-
eration to help interpretability agents test hypotheses about component activation (Shaham et al.,
2025)). Similar generation-based evaluation approaches have been applied beyond language models
to explanations of vision neurons and other components (Singh et al., 2023} Kopf et al., 2024).

3 EVALUATING FEATURE SENSITIVITY

3.1 EVALUATING FEATURE SENSITIVITY INDEPENDENT OF EXPLANATION

Previous work on sensitivity typically relies on some (typically natural language) description to
identify test inputs (Turner et al., [2024; Juang et al., 2024). Such methods evaluate sensitivity as a
function of both the model component and the corresponding explanation. When studying neurons,
which are a part of the model itself, such approaches cleanly evaluate how well an explanation
describes a neuron’s activating inputs. However, SAE features present a more complex challenge.

Unlike neurons, SAE features are learned approximations of a model rather than intrinsic model
components. Much prior work has identified and addressed limitations in feature quality arising
from SAE training (Chanin et al.| 2024} [Leask et al., [2025; Marks et al.| [2024; Bussmann et al.,
20235). Because SAE features and generated feature descriptions are imperfect, evaluating feature
sensitivity with explanations may struggle to distinguish between an inaccurate description of a
feature and a feature failing to activate on relevant inputs.

We avoid this ambiguity by evaluating feature sensitivity without generating an explanation. As
shown in Figure[I] we prompt language models with a feature’s activating text examples to generate
similar text samples, then measure how often the feature activates on these new texts. For a feature
to achieve high sensitivity, it must consistently activate on novel inputs that human judges find indis-
tinguishable from the original activating examples. This approach effectively measures sensitivity
as if we had a perfect explanation—one precise enough to generate indistinguishable examples but
nothing broader.
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Figure 2: Interpretable features with moderate and low sensitivity. Feature activations are shown
on top activating texts (left) and on LLM-generated texts from our evaluation (right). Generated text
is formatted to indicate tokens expected to activate the feature. These are highlighted when the
feature remains inactive.

3.2 METHOD DETAILS

Our sensitivity evaluation approach consists of four steps: (1) collect activating text examples for
each feature, (2) generate new texts similar to these examples using an LLM, (3) evaluate if the
feature is active on these new texts, and (4) compute sensitivity score as the fraction of new generated
texts which successfully cause the feature to activate. In the paragraphs below, we provide additional
details for the first two steps. shows examples of text generated by our evaluation.

Collecting Activating Text: We sample 2 million tokens of candidate texts from large text cor-
pora. The corpus is OpenWebText (Gokaslan et al.,|2019) for SAEBench evaluations and the Pile-
uncopyrighted subset (Gao et al.,2020) for GemmaScope evaluations. We evaluate feature activation
on sequences of 128 tokens, following the example collection methodology used in (Karvonen et al.}
2025). When a feature activates, we extract the activating example by including 10 tokens preced-
ing and 10 tokens following the activating token. For each feature, we collect 15 activating text
examples: 10 top activating examples and 5 importance-weighted samples by activation magnitude.

Generating New Texts: We provide activating text examples when prompting an LLM. We do
not use any natural language descriptions of the feature in the prompt. In preliminary experiments,
adding automated feature descriptions reduced the probability that generated text would activate
the feature. From inspecting samples, we believe this is due to automated descriptions that are
sometimes overly general and imprecise. For each feature, we use a single query to generate 10 new
text samples. We found that a single query produced more diverse outputs than multiple independent
queries. The full prompts are included in Appendix [A] We use GPT-4.1-mini (OpenAl et al., 2024)
for the generation step. We found that it produced text comparable to GPT-4.1, while GPT-4.1-nano
struggled to complete the generation task.

Method Assumptions: Our method relies on several key assumptions. First, we require that our
collected examples adequately capture each feature’s behavior, which we ensure by following stan-
dard approaches for collecting activating examples and filtering out features that fail to activate on
truncated text. Details of filtering are described in Section[3.3] Second, we assume that generated
texts share whatever semantic property triggers feature activation, which we validate through human
evaluation in Section[5.1] Third, we assume generated samples are sufficiently novel and diverse to
serve as valid tests of sensitivity, which we verify in Section[5.2]

3.3 FILTERING SAE FEATURES

We limit our study to SAE features that meet two criteria. First, we only evaluate features for
which we can collect at least 15 activating text samples from 2 million tokens, which filters out rare
features. Second, we found that many features fail to activate on their own truncated examples, so
we filter for features where at least 90% of the shortened text snippets still activate the feature. This
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filtering may bias our analysis toward simpler features, but it ensures that features failing to activate
on generated text genuinely reflect poor sensitivity, rather than an artifact of sample text truncation.
The fraction of filtered features increases substantially with SAE width. For smaller SAEBench
SAEs (width 4k to 65k), we exclude 35% of features on average. For GemmaScope SAEs, this
ranges from 51% for 65K width SAEs to 79% for 1M width SAEs. Detailed filtering statistics and
results with different cutoffs are shown in Appendix [B]

4 FEATURE SENSITIVITY CAPTURES NOVEL ASPECTS OF FEATURE BEHAVIOR

We begin by examining the relationship between our feature sensitivity metric and standard SAE
feature evaluation metrics. For this, we study the canonical (width 1M, sparsity 107) GemmaScope
(Lieberum et al., 2024) SAE for the layer 12 residual stream of Gemma 2 2B (Team et al., |2024)).
We sampled 10,000 SAE features. After filtering per Section[3.3] 2,061 remained for analysis.

We show the distribution of sensitivities across all features in Figure 3h. Most features score well
on sensitivity, but the features span all sensitivity scores, showing meaningful variation in feature
quality when measured via sensitivity.

Next, we examine three key feature properties for comparison. First, we look at feature interpretabil-
ity, which we measure using the automated interpretability evaluation of (Karvonen et al.| [2025).
Second, we examine feature frequency, which is how often features have nonzero activation. Third,
we compute the maximum decoder cosine similarity between a feature’s decoder vector and all other
feature decoder vectors. High similarity may reflect undesirable feature composition or entangle-
ment (Bussmann et al.,|2025)).

The three scatter plots of feature sensitivity and each property (Figures [3p, [Bc, and [3d) confirm that
feature sensitivity is distinct from existing other metrics. We find weak correlations of sensitivity
with frequency (p = —0.06) and decoder cosine similarity (p = 0.06), and a stronger correlation
between sensitivity and interpretability score (p = 0.24). The overall weak correlations with ex-
isting metrics are encouraging—they suggest that sensitivity captures a novel and complementary
dimension of feature quality rather than simply replicating existing evaluations.

Although feature interpretability and feature sensitivity are correlated, they often disagree. When
examining features with high sensitivity but low auto-interpretability scores, we find this mainly
reflects noise in the automated evaluation—these features appear qualitatively interpretable upon
inspection. More importantly, we find many interpretable features exhibit poor sensitivity. Among
1347 features with auto-interpretability scores > 0.9, 82 have sensitivity < 0.5, and 23 have sensi-
tivity < 0.2. Figure [2] shows examples of interpretable features with moderate and low sensitivity,
with additional examples in Appendix |G} Spot checking these features shows that our evaluation-
generated text resembles activating text but fails to activate the feature, suggesting that our method
has indeed found interpretable features that have poor sensitivity. In the next section, we validate
this rigorously via human evaluation.
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Figure 3: GemmaScope SAE feature sensitivity distributions. The distribution of feature sensi-
tivity and scatter plots showing joint distributions of sensitivity with auto-interpretability, frequency,
and maximum decoder cosine similarity. Sensitivity scores in scatter plots are plotted with y-jitter
for visualization. Correlation coefficients and p-values are shown at the top of each scatter plot.
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5 VERIFYING THE AUTOMATED SENSITIVITY EVALUATION

We validate that our automated sensitivity evaluation is reliable through two analyses: (1) human
evaluation of sample similarity and (2) automated evaluations of sample novelty and diversity.

5.1 BLINDED HUMAN EVALUATION

The goal of the human evaluation is to check if human annotators agree that the LLM generations are
indeed consistent with the feature concept, and therefore appropriate for scoring feature sensitivity.

Human annotators judged 102 examples in total. Each example consists of several activating text
examples for a feature along with one new text sample. The new text can be one of three categories:
another activating text example for the feature (20%, positive control), a generated text for a random
other feature (20%, negative control), or a text generated by our method that failed to activate the
feature (60%). The category is not revealed to the human annotator. The human annotator is then
asked to classify whether the new text is “indistinguishable”, “closely related”, “weakly related”, or
“unrelated” to the provided activating text examples. A sample dashboard for the human evaluation
is shown in Figure @p. We only include features with high auto-interpretability (> 0.9). This allows
the study to focus on verifying cases where we might be most skeptical of low sensitivity results a
priori. Additionally, interpretable features are easier for human annotators to assess.

Results are shown in Figure [@p. Generated text achieves relevance ratings nearly matching ground
truth, confirming that low sensitivity evaluations reflect poor sensitivity rather than poor generation.
Human annotators rate our method’s generated texts (n = 62) nearly as relevant to the feature as
the ground truth texts: 79% of generated texts are rated “indistinguishable”, compared to 83% of
ground truth activating texts. Only one out of 62 generated texts is rated “unrelated”. Additionally,
annotators correctly scored controls: positive control texts (n = 24) are rated “indistinguishable” or
“closely related” 96% of the time, while all negative control texts (n = 16) are rated “unrelated” or
“weakly related”.
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Figure 4: Human evaluation validates our method. (a) Human evaluation of 102 text samples
across three conditions: true activating text examples (positive control), text generated for random
features (negative control), and text generated by our evaluation that failed to activate features.
(b) The interface shows feature activating examples alongside generated text for evaluation, with
annotators rating similarity.

5.2 SAMPLE NOVELTY AND DIVERSITY

The goal of this analysis is to check that (1) our generated texts were not copying the activating
examples, i.e., the diversity between each generated text and the top-activating texts is sufficiently
high, and (2) our generated texts covered a wide range of feature expression, proxied by checking
that the diversity between generated texts is sufficiently high.
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Figure 5: Text diversity validation. Probability that the longest common substring length is > N
tokens. We compare: two activating text examples for the same feature (gray), one generated text
and one activating text example for the same feature (orange), and two generated text samples for
the same feature (blue).

We assess text diversity by measuring the longest common substring length across three compar-
isons: (1) between generated text with activating examples to evaluate copying, (2) between pairs of
activating examples to establish baseline overlap levels, and (3) between pairs of generated texts to
assess diversity within our generations. Also note that we checked for longest substring match end-
ing on the activating tokens, since only tokens before the activating part contribute to the activation.

Figure [5] shows the complementary cumulative distribution function (CCDF) for longest common
substring lengths. Each bar shows the fraction of text pairs with overlap > N tokens: gray bars show
overlap between activating examples (baseline), orange bars show overlap between generated and
activating texts (testing for copying), and blue bars show overlap between generated texts (testing
for diversity).

The first reassuring observation is that a generated text and an activating text example are less likely
to have a long overlap than two activating examples (3.1% v.s. 3.7% at > 5 tokens). On the other
hand, a generated text and an activating text example are more likely to contain a short overlap than
two activating examples (20.8% v.s. 18.0% at > 2 tokens). This indicates that our generated texts
occasionally use short verbatim sequences from the examples but avoid copying long passages.

Two generated texts are slightly more likely to have overlap than the baseline between activating
examples, with 27.9% probability of > 2 token overlap and 4.3% at > 5 tokens. This reveals that
pairs of generations show somewhat lower diversity, though the difference is modest. This overlap
pattern likely reflects LLM preferences for common word choices and short phrases rather than
wholesale copying. While generation diversity can be improved, there are no pathological issues
with extended substring duplication.

6 EVALUATING FEATURE SENSITIVITY ACROSS SAES

Having explored the sensitivity of features within a single SAE and having confirmed that our eval-
uation method is reliable, we now turn to evaluating the average feature sensitivity across different
SAE sizes and architectures.

6.1 RESULTS ON LARGE GEMMASCOPE SAES

The GemmaScope suite of twenty nine JumpReLU SAEs range in size from 65K to 1M features
and range in sparsity from 20 to 200 (Lieberum et al.| 2024). These SAEs are trained to reconstruct
the layer 12 residual stream of Gemma 2-2B (Team et al., 2024). For each SAE in GemmaScope,
we collect activating texts for 2500 features, then apply the filtering criteria described in Section 3.2]
and Appendix [B]before computing sensitivity.

Figure[6]shows the effect of dictionary width and sparsity on feature sensitivity. At a fixed dictionary
size, sensitivity increases as sparsity increases. Strikingly, as SAE width increases, average feature
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Figure 6: Average Feature Sensitivity of GemmaScope SAEs. For each dictionary size, we plot
the feature sensitivity of SAEs trained at that size at different sparsities. Wider SAEs have worse
average feature sensitivity. We also see that feature sensitivity is slightly increasing with sparsity.

sensitivity decreases. Concretely, 65K width SAEs have average feature sensitivities ranging from
0.92 to 0.94, while 1M width SAEs have feature sensitivities ranging from 0.85 to 0.87. Additionally
we find that at a fixed width, SAEs with high LO - more active features - have higher average feature
sensitivity. In Appendix[E]we show that these two trends hold after controlling for feature frequency.

6.2 RESULTS ON DIVERSE SAE ARCHITECTURES

Having found these scaling trends on GemmaScope JumpReLU models, we next test whether they
generalize across different model families and SAE architectures. We evaluate SAEs from the
SAEBench collection (Karvonen et al.| [2025)), which includes 7 different SAE architectures trained
on both Pythia-160M (Biderman et al., 2023) and Gemma-2-2B (Team et al., 2024) models. While
these SAEs are much smaller in scale than GemmaScope, they allow us to validate our findings
across SAE variants and model architectures. For each SAE studied here, we collect activating text
for 1000 features, then filter as before.

We show the relationship between sparsity and sensitivity on the largest SAEs in this suite (65k
width) in Figure[7] While the results are noisier due to smaller sample sizes, we see a general trend
of sensitivity increasing with sparsity across model and SAE variants. While noise prevents us from
making strong claims about sensitivity differences between each of the SAE architectures, vanilla
ReLU SAEs consistently show low sensitivity, performing worst on Gemma-2-2B and among the
worst variants on Pythia-160M.

Next, we examine how dictionary size affects sensitivity across architectures. To control for sparsity,
we select SAEs with LO closest to 80 (exactly 80 for top-K SAEs, closest available for other vari-
ants). The results in Figure [ confirm that wider SAEs consistently show worse sensitivity across
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Figure 7: Average Sensitivity vs. Sparsity for Gemma-2-2b and Pythia-160m SAEs This plot
shows the average sensitivity of different Sparse Autoencoder (SAE) types plotted against their
sparsity. We use the widest 65k width SAEs for all architectures. Each line represents a different
SAE architecture.
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Figure 8: Average Sensitivity vs. Dictionary Size for Gemma-2-2b and Pythia-160m SAEs This
plot shows the average sensitivity of different Sparse Autoencoder (SAE) types plotted against their
dictionary size. We select SAEs with LO closest to 80 (exactly 80 for top-K SAEs, closest available
for other variants). Each line represents a different SAE architecture.

all tested architectures. Notably, Matryoshka SAEs also exhibit negative scaling with sensitivity,
despite being specifically designed to address scaling challenges in SAEs (Bussmann et al., 2025)).

7 DISCUSSION AND CONCLUSION

We developed a scalable pipeline that generates texts similar to SAE feature activating examples. We
validate through human evaluation that these generated texts are genuinely similar—humans judge
them as indistinguishable from actual activating examples. We use this pipeline to evaluate individ-
ual features and average sensitivity of features in an SAE. At the feature level, we found that many
interpretable features have poor sensitivity, broadening our notion of what makes a high-quality
SAE feature. At the SAE level, we found that average feature sensitivity consistently decreases as
SAE width increases, identifying a new challenge for scaling SAEs. Taken together, our work helps
develop feature sensitivity as a new axis to evaluate both individual features and SAE variants.

7.1 LIMITATIONS AND FUTURE WORK

Beyond evaluation, our pipeline opens new directions for exploratory analysis. Studying feature
activations on text generated by our pipeline could enable more fine-grained studies of the bound-
aries separating activating from non-activating inputs for a given feature. This approach could also
enable the study of groups of features that may collectively represent specific concepts with high
sensitivity. Additionally, our pipeline and sensitivity evaluation can be applied to any model compo-
nent that activates on input text. Future research could examine sensitivity in thresholded neurons,
transcoders (Dunefsky et al.,2024)), and cross-layer transcoders (Ameisen et al.| [2025).

Our evaluation was limited to frequently occurring features (15+ times in 2M tokens), which biases
our analysis toward common features and misses potentially important rare features. We filter for
features that remain active when truncated activating text is used, potentially biasing toward simpler
features that don’t depend on longer contexts. Future work can directly scale up this evaluation by
studying less frequent features and using longer text snippets. Additionally, we don’t meaningfully
incorporate information about the magnitude of feature activation in each passage. We would be
excited by future work that incorporates activation strength into studies of SAE features, either in
the context of sensitivity or broader evaluation.
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REFERENCES AND REPRODUCIBILITY

We have uploaded our code anonymously as supplementary material for the review process at
https://anonymous.4open.science/r/sae-sensitivity-8247, For the camera-ready version,
we will release it publicly on GitHub. We use publicly available SAEs from SAEBench (Karvonen
et al., [2025) and GemmaScope (Lieberum et al., 2024), and publicly available data from OpenWeb-
Text (Gokaslan et al., [2019) and the Pile (Gao et al., [2020). Implementation details are provided in
Section [3.2] with evaluation prompts in Appendix [A}

ETHICS STATEMENT

Our work evaluates interpretability methods and does not directly enable new capabilities or appli-
cations. We recognize that improved understanding of neural networks could have dual-use impli-
cations, potentially aiding both safety research and capabilities development. Our human evaluation
was conducted by the authors themselves, avoiding concerns regarding external participants. All
experiments used publicly available models and datasets.

USE OF LARGE LANGUAGE MODELS

We used Claude Code and ChatGPT as general-purpose tools to assist with implementing experi-
ment code, generating plots, formatting the paper, and revising text. All LLM outputs were carefully
verified and checked by the authors. The research idea, experimental design, and conclusions were
developed by the authors without LLM assistance. The authors take full responsibility for all content
in this work.
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A EVALUATION PROMPTS

System

You are a meticulous AI researcher conducting an important investigation into a
specific feature inside a language model that activates in response to text
inputs. Your overall task is to generate additional text samples that cause the
feature to strongly activate.

You will receive a list of text examples on which the feature activates. Specific

tokens causing activation will appear between delimiters like {{this}}.
Consecutive activating tokens will also be accordingly delimited {{just like this
}}. If no tokens are highlighted with {3}, then the feature does not activate on
any tokens in the input.

Note: features activate on a word-by-word basis. Also, feature activations can
only depend on words before the word it activates on.

User

Consider the feature that activates when the given examples below are present.

Your task is to generate text samples that strongly activate this feature. Study
the examples carefully to identify both their shared and varying traits. Your

generated samples should:

- Preserve any consistent traits, patterns, or constraints present across all
examples

- Match the diversity level shown in the examples---neither more diverse nor more
uniform

- Vary along the same dimensions that the examples vary (e.g., if examples differ
in tone but share a topic, maintain that pattern)

- Avoid introducing new types of variation not present in the example set

- Avoid collapsing into repetitive or overly similar outputs

Generate exactly 11 new samples separated by <SAMPLE_SEPARATOR/>. Note that the
feature may involve semantic content, grammatical structures, abstract concepts,
specific named entities (e.g., people, organizations, locations), or formatting
elements like newlines, punctuation, citations, or special characters, for
example, {{\n}}, or {{«<}} represent newlines, {{,}} represents commas, {{-}}
represents hyphens, etc that are activating the feature. Present each sample
without numbering or bullets.

Important: place <SAMPLE_SEPARATOR/> between generated samples.

See the following 15 examples that activate the feature, separated by
<SAMPLE_SEPARATOR/>:

<SAMPLE_SEPARATOR/>
count();

static const charx{{ resource}}{{_}}to_cstring(const charx{{ resource}}
<SAMPLE_SEPARATOR/>

What is the Java equivalent of JavaScript’s{{ resource}} folder?<—<—My Wicket web
application contains

<SAMPLE_SEPARATOR/>

side-effect: since the check isn’t so{{ resource}}<«—intensive, you can set the
time between checks
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Assistant

"void free{{ resource}}Memory(void* ptr);
static const char* load_{{ resource}}Path(const charx{{ resource}});"

<SAMPLE_SEPARATOR/>

"How to configure the {{ resource}} directory in a Python Flask application?
I’m trying to serve static files from the”

<SAMPLE_SEPARATOR/>

warning: avoid heavy computation in the{{ resource}} allocation phase, it may
slow down startup.

<SAMPLE_SEPARATOR/>

B FEATURE FILTERING DETAILS

We evaluated 112 SAEs from the SAEBench dataset and 29 from the GemmaScope dataset.
The SAEBench set spans seven SAE families—BatchTopK, MatriyoshkaTopK, TopK, JumpReLU,
ReLU, Gated, and PAnneal—whereas all GemmaScope SAEs are JumpReLU.

During the study, we observed that some activation texts distributed with SAEBench do not consis-
tently activate their associated SAE features, likely due to truncation. To address this, we computed
the activation rate in truncated example text for each feature, defined as the proportion of published
activation texts that reliably elicit the feature. Features with an activation rate below 90% were
excluded from our analysis. Table[I]and [Table 2| reports the impact of this filtering on our study.

In we show our main Gemmascope results with different filtering thresholds. We see that
for all choices of threshold, our main results hold.

Cutoff = 0 Cutoff = 0.5 Cutoff = 0.8 Cutoff = 0.9 Cutoff = 1
0.75 y/&o/' 0.85 /‘\,__. 0.90 ’/./.\'-—a 0.94 //‘\,/' 0.96 //o\'_‘
L 070 0.88 0.92 X
o065 0.80 086
=1 0.90
g0 ’/,//“’___‘ 0.84 0.92
$ 0.75
@ of 0.88

0.50 J 0.70 0.80 0.86

10* 10° 10! 10° 10t 102 10! 102 10! 10°
LO (Sparsity) LO (Sparsity) LO (Sparsity) LO (Sparsity) LO (Sparsity)

SAE Width
—e— 65k 131k  —4— 262k —@— 524k —e— 1Im

Figure 9: Robustness to Feature Selection Cutoffs. GemmaScope scaling results shown with
different shortened text activation filter cutoffs. Our main results are robust to the choice of cutoff
threshold, demonstrating that the observed scaling trends are not artifacts of our feature selection
criteria.
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E; SAE Type SIX(ES Axlr?géalzlo. é?fs 90% Activation Rate Threshold
= ’ * Avg.No. Avg. % Feat. % Sens.
Remain. Sens. Excluded Change
All, 16k 7 998  0.875 704 0.982 29.4% 12.2%
All, 4k 7 999 0918 801 0.984 19.8% 7.2%
@ BatchTopK, 65k 6 969 0.814 562 0.980 42.1% 20.6%
& Gated, 65k 6 981 0.826 562 0.978 42.7% 18.4%
g JumpReLu, 65k 6 981 0.834 597  0.979 39.2% 17.4%
£  MatryoshkaBatchTopK, 65k 6 964  0.776 485 0979 49.7% 26.3%
o PAnneal, 65k 6 997  0.893 749  0.986 24.9% 10.7%
Relu, 65k 6 994 0.848 646  0.983 35.0% 16.0%
TopK, 65k 6 972  0.820 574 0.979 41.0% 19.7%
All, 16k 7 995  0.569 417  0.981 58.1% 137.8%
All, 4k 7 1299  0.908 1029  0.986 21.0% 8.6%
s BatchTopK, 65k 6 978  0.850 674 0.987 30.9% 16.1%
@ Gated, 65k 6 994 0.786 522 0.978 47.5% 24.6%
E JumpReLu, 65k 6 995  0.869 727 0.985 26.9% 13.4%
4'; MatryoshkaBatchTopK, 65k 6 968 0.817 624 0.986 35.1% 20.8%
% PAnneal, 65k 6 998  0.838 627  0.985 37.2% 17.6%
Relu, 65k 6 997 0.834 633  0.984 36.5% 18.1%
TopK, 65k 6 978 0.845 667 0.987 31.7% 17.3%
ALL 112 1006 0.830 648 0.983 35.6% 18.4%

Table 1: SAE filtering statistics showing the impact of excluding features with activation rate below
90% in truncated example text. Columns show the model, SAE type, number of SAEs, average fea-
tures per SAE before filtering, average sensitivity before filtering, and the effects after applying the
90% threshold: remaining features, new sensitivity, percentage excluded, and percentage sensitivity
change.

Width No. SAEs

Features Evaluated

Features Remaining

% Excluded

65k
131k
262k
524k
IM

AN N W

2336
2438
2381
2339
2278

1144

990
798
629
485

51.0%
59.4%
66.6%
73.2%
78.8%

Table 2: GemmaScope filtering statistics with 90% activation rate cutoff. All SAEs are JumpReLU
trained on Gemma-2-2B layer 12 residual stream. Wider SAEs show increased feature exclusion
rates.
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C NORMALIZED SENSITIVITY METRICS

Our main analysis filters features based on their activation rate in truncated example text, excluding
35-79% of features with exclusion rates increasing for wider SAEs (Table 2). To further verify that
filtering does not explain our scaling results, we introduce two normalized metrics that account for
varying truncated activation rates without hard filtering.

Let p denote a feature’s activation rate on truncated example text and g denote its activation rate on
generated text. We define the sensitivity ratio as min(q/p, 1) (1 if p = 0), measuring what fraction
of a feature’s truncated-text activation rate is achieved on generated text. We define the sensitivity
gap as min(p — ¢, 0), measuring the drop in activation rate between truncated activating examples
and generated evaluation text.

0| shows both metrics averaged across GemmaScope SAE features. These metrics are com-
puted without any feature filtering. Wider SAEs show lower sensitivity ratios and larger sensitivity
gaps, reproducing our main finding that sensitivity declines with SAE width.

0.88 ] ~0.0400 4
0.861 —0.0425 1
o | o —0.0450
5 084 © SAE Width
o O —0.0475 —o— 65k
>, 0.82 = /
2 £ 131k
2 00 E —0.0500 1 —— 262k
@ 2 ~0.0525 1 - 524k
$ 078 o] —— 1m
) [%]
~0.0550 1
0.76 1
—0.0575 1
0.74
10t 102 10t 102
LO (Sparsity) LO (Sparsity)

Figure 10: Normalized sensitivity metrics across SAE widths. Left: Sensitivity Ratio
(min(q/p, 1)) measures the fraction of a feature’s truncated activation ceiling achieved by generated
text. Right: Sensitivity Gap (min(p — ¢, 0)) measures the absolute difference between truncated and
generated activation rates. Both metrics show that wider SAEs have lower sensitivity, confirming
that our main finding is not an artifact of feature filtering.
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D SENSITIVITY AND DOWNSTREAM TASK PERFORMANCE

We conducted a preliminary analysis examining the relationship between sensitivity and downstream
task performance across 42 SAEs trained on Gemma-2-2B from SAEBench (Karvonen et al.,[2025).
These SAEs span multiple architectures and sparsity levels.

shows scatter plots of average SAE sensitivity against performance on five downstream
tasks. Sensitivity shows significant positive correlations with SCR (r = 0.43, p = 0.005), TPP
(r = 0.33, p = 0.036), and RAVEL (r = 0.43, p = 0.005), and a significant negative correlation
with Unlearning (r = —0.37, p = 0.017). The correlation with Sparse Probing was not significant
(r=0.23,p =0.14).

We wish to emphasize that these results are exploratory and should be interpreted with caution. The
SAEs vary in architecture and sparsity, and we do not control for other SAE attributes (e.g., LO,
reconstruction quality) or correct for multiple comparisons. Future work could examine whether
sensitivity provides unique predictive value beyond existing metrics.

Sparse Probing SCR TPP
(r=0.23, p=0.141) (r=0.43, p=0.005) (r=0.33, p=0.036)
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Figure 11: Sensitivity correlates with downstream task performance. Scatter plots of average
SAE sensitivity against performance on five SAEBench tasks across 42 SAEs trained on Gemma-2-
2B. Sensitivity shows significant correlations with SCR, TPP, RAVEL, and Unlearning. Results are
exploratory; see text for caveats.
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E CONTROLLING FOR FEATURE FREQUENCY

To ensure that our sensitivity results are not confounded by differences in feature frequency across
SAE widths, we repeated our GemmaScope analysis with frequency-weighted sampling. Different
width SAEs may have systematically different feature frequency distributions, which could poten-
tially influence average sensitivity measurements.

E.1 WEIGHTING METHODOLOGY

We re-weighted features so that each SAE has the same effective frequency distribution. Specifically,
for each SAE, we:

1. Computed the frequency distribution of features across all SAEs in our study
2. Determined a target frequency distribution (the average distribution across all SAE widths)

3. Assigned weights to each feature inversely proportional to its frequency’s representation in
the SAE relative to the target distribution

4. Re-computed average sensitivity using these weights

Figure [I2] illustrates this re-weighting process, showing how features at different frequencies are
weighted to achieve a uniform distribution across SAEs.

E.2 RESULTS WITH FREQUENCY CONTROL

Figure [I3] shows the results after applying frequency weighting. Explicitly controlling for feature
frequency via reweighting does not change our main results. Wider SAEs show lower average
feature sensitivity. At a given width, SAEs with more active latents have higher sensitivity. This
confirms that our main results are not an artifact of frequency distribution differences across SAE
widths or sparsities.

The similarity between these frequency-controlled results and our main findings (Figure [6)) demon-
strates that the sensitivity-width tradeoff is a robust phenomenon independent of feature frequency
distributions.

10- 104 10-3 e
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0200 Feature Distribution Reweighting Scheme
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golm s —width 262k 10_121
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6
‘G 0.100 %
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£ 0.075 ® 4
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Figure 12: Frequency re-weighting methodology. Visualization of how features are re-weighted
to control for frequency differences across SAE widths.
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Figure 13: Feature sensitivity with frequency weighting. Average sensitivity across GemmaS-

cope SAEs after re-weighting to control for feature frequency. The declining sensitivity with width
persists, confirming our main findings.
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F PRECEDING TOKEN LENGTH ANALYSIS

When we look through generated text that fails to activate the feature, we occasionally see cases
where the text that intends to activate the feature appears very early in the sequence. We wanted to
check if this early positioning of feature-related text was the cause of the feature failing to activate.
To investigate this, we collected all generated texts and, for each one, looked for the first token that
the model annotated with curly braces—this annotation indicates where the model was intending for
the feature to activate, which we call target tokens. In Figure[I4] we show the distribution of where
the target token appears in the generated text.

We found that generated texts indeed often have relatively short prefixes leading up to the target
token. For example, in 1.5% of generations, the target token is actually the first token of the genera-
tion, and in around 30% of generations, the target token is preceded by 5 or fewer tokens. However,
we see that even in generated text samples where the target token occurs early in the sample, most
of these samples successfully activate the feature. We do note that the proportion of generated text
which fails to activate the feature is higher in generations with shorter prefixes. This represents a
slight limitation of our evaluation that could be improved with better prompting and instructions,
though the high success rate of feature activation even with short or no prefixes suggests that the
bias does not significantly compromise our evaluation.

10% 4 0.4% 9.7%  96% 9.6%
I Inactive

e Active

82% 8:4%

8% -

6% -

4% A

2% A

Generated Text Fraction

0% -
5 6 7

8 9 10
Number of Preceding Tokens

Figure 14: Target Token Position and Feature Activation Success. For each generated text sam-
ple, we identify the target token expected to activate the feature. The chart shows the number of
tokens which occur in the generated text before the target token. Bars are colored based on whether
the generated text successfully activated the feature (green) or failed to activate (red).

G ADDITIONAL FEATURE EXAMPLES

We present additional feature dashboards showing interpretable features with zero sensitivity (Figure
[T3), interpretable features with moderate sensitivity (Figure [I6), and features with high sensitivity
but low automated interpretability scores that appear qualitatively interpretable (Figure [T7). Each
dashboard displays 4 out of 15 activating text examples and 4 out of 10 generated text examples.
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FeatID: 92700  Desc: numerical values and monetary amounts in the text  Freq: 4.34e-05

Activating Text Examples

1a.9a  «+0r, maybe at around 200JBUEKS, a lot of people end up with both. 0.00
16.88  aconventional Google tablet. At 200JBUGKS, | couldn't resist. But, the 0.00
15.06  is also WIC, which at 4/8IBiliGRIA FY 2012 gets us to 0.00
8.62 , which at an annual total. 540 billion, would amount to funding close to half the 0.00

FeatID: 361399  Desc: the substring "super" and variations of "base" in programming contexts

Activating Text Examples

8.12 Flush();+ M+ baselOnTearDown(];*‘ e [Test 0.00
13.75 Ji~  [buffer ing: (SUBEI ipti \ [buffer i } 0.00
531  Head(IHeaderResponse response) {~'  BUPel.renderHead(response);  response. 0.00
356  true_type)! {< Baseficonstruct(expr);~! }~+ template 0.00

Feat ID: 388626 Desc: numeric identifiers or placeholders represented with angle brackets

Activating Text Examples

1281  ASSUME_NONNULL_END+ <eos>477 F.2d 598+ 0.00
1750 < ) ])-1B376 157484 0.00
1206 1< )}~ <eos><387 F.Supp. 150 ( 0.00
10.81 " "partial link text" <} 184749992302 0.00

FeatID: 781627  Dese: the word 'export' in programming contexts, particularly related to functions and types

Activating Text Examples

3225  "data” or "err"+ */-/BXBOIt default function request(url, options) {<* 0.00
3525  );+ return newContainer; '} ~BXBOH const FadeTransition = {< start(container 0.00
28.50 1 et} ) BB class Cli < (name, 0.00
3325 )+« return Authorized;«);~ ~BXBOR { CURRENT };+'export default Authorized => 0.00

Feat ID: 121516 Desc: the substring '}>' in various coding and programming contexts Freq: 2.52e-05

Activating Text Examples

2062 width: 100%; '+ ] body.is-loading & 0.00
1700  {~<  Retun(HPSD)~'~' JH< Retun(spsp)<< B 0.00
1788 }~< Return(sPSD)~'+' B« }//End of Scope(\_SB 0.00
1812 ->first, stp->second);« J < void synchronize() <+ { 0.00

Feat ID: 593453 Desc: the substring 'math’ in mathematical notation and equations Freq: 2.22e-05

Activating Text Examples

131 (bt kN <Jfirm tanh}(\betar2) \ 0.00
13.06  -1)H(N\bar{gh)~2ffimathbb{E}}_{x_{0:t- 0.00
9.44 and set $\di . 1) . 0.00
169 8mul{2)), \frac(1fffimkern-6mu\mathopg\oldsart 0.00

FeatID: 1023262 Desc: code syntax and function callbacks in programming contexts  Freq: 7.21e-05

Activating Text Examples

2200 }~+ returntrue;e };+ </ Setup callback first, so we don't 0.00
21.00 Y return true;+ );#'—‘Ithis.resume:funciiunl) {~ try 0.00
1381+ headerValue = ;! };[Jparser.onHeadersEnd = function() {+ 0.00
2125 .onPart(part);+ }; < flparser.onEnd = function() {~ 0.00

FeatID: 770421 Desc: phrases indicating prominent locations or regions within a larger context

Activating Text Examples

1725 routes take you past some of the most spectacular sceneryfi the state, while friends old 0.00
12.25  Pedro Bay has one of the most attractive settingsfifi southwest Alaska. Pedro Bay is 0.00
775  Heath and Lake District the largest economically utilized pond region|iil Europe.«+!Part of 0.00
550  the Unesco-listed cathedral - the largest Gothic cathedral[filthe world - to the beautiful 0.00

Sensitivity: 0.00%

Freq: 2.12¢-05

Freq: 3.97e-04

Sensitivity: 0.00%

Sensitivity: 0.00%

Sensitivity: 0.00%

Freq: 575e-05

Interp Score: 92.86%

Generated Text

Prices of electric bikes have jumped to roughly $1500 dollars this year, making commuting
The marathon registration fee this year peaked at $85 dollars, drawing thousands of
Ticket prices for the concert rose to approximately $500 dollars, reflecting the artist's

The annual subsidy for

energy projects $700 million,

Sensitivity: 0.00%  Interp Score: 100.00%

Generated Text

UperiinitializeC: );+thi DidMount();

super.performAction(); ~logState();
super.Onstart(); ~!logger.info("Service started");

super.updateSettings(newSettings); <! notifyObservers();

Sensitivity: 0.00%  Interp Score: 92.86%

Generated Text

1729some random text854
Reference number: 504732 logged successfully
<script>var key = "18974";</script>

Timestamp 8430 registered without error

Freq: 1.16e-05 Sensitivity: 0.00% Interp Score: 100.00%

Generated Text

export class ApiService {+  constructor(baseUrl) {~'  this.baseUr| = baseUrl;d }+1}
export const constants = {«' appName: "MyApp',+ version: '1.0.0',<};
EBxport function validatelnput(input) {~' _if (linput) throw new Error(‘Input required); <

Eexport function calculateSum(a, b) {~ return a + b; <}

Interp Score: 92.86%

Generated Text

¥

“:process_queue; queue_set_ready {};

margin-bottom: 12pt; '+ jee JEC <style>
{#Major).{#Minor}.{#Revision}.{#Patchj < InfoLabelText=(#Label}el

if (tis_loading) {+/« Jede! start_process();~+! }

Interp Score: 92.86%

Generated Text

{\bf ki \tH\t=\frac{T{{irm i}\nu \!-\! \epsilon_\tilde\omega
Jn'{ibf k¥ Nt Hilirm coshleftl\frac{\beta}2} (€ - \mu)\right]
1\Idots,n_s}}} = \deltaffitextstyle\binom{q_1\ldots,q_s}} \cdot \mathcal{P}\bar{f}

-nitilde{\omega}) = \frac{1H{{irm i\nu \!-\! \theta}{\phi - \chi}

Interp Score: 100.00%

Generated Text

} [ self emit('close’);
Y+ /| If request error, destroy.
}+2 " body = Buffer.from(chunk);

Y fileStream.pipe writer);

Sensitivity: 0.00% Interp Score: 100.00%

Generated Text

the historic piazzalin the heart of Florence bustles with tourists and locals alike, offering
the ancient library/in the old city houses manuscripts dating back to the medieval period)
the extensive cave systemin the Carpathian Mountains is famous for its unique rock

the bustling harborfin the Mediterranean city offers stunning views of yachts and fishing

Figure 15: All 8 SAE features studied in that have sensitivity score 0 and auto-interp score
over 0.9. For 3 of these features, low sensitivity may be due to generated passages immediately

starting with the text intended to activate the feature.

24



Under review as a conference paper at ICLR 2026

Feat ID: 563047

Activating Text Examples

Desc: the concept of relationships or comparisons between different entities or conditions

Freq: 2.74e-03 Sensitivity: 60.00% Interp Score: 92.86%

Generated Text

719 between a somatic mode of presentation on the one handf&iid a psychological mode on the 731 Data Handling**]{}: Source files are segregated ffom the processing|fGULINES they drive. This
10.06 . This finding suggests an interdependence of heavy alcohol consumptionfad psychological 000  amixturelof phospholipids blended to achieve a molar ratio of[100/:20 cholesterol stabilized
1075 Data Separation**]{}: Algorithmic code is separatec|ffomthe data on which it operates. 000  examination highlights the synergistic effect/of dopamine/and glutamate receptor activity,
1094 not found when comparing a mixed level of parental education to ajiighIeVel of parental 744 survival rate differences often show inverse correlationsfiithi tumor progression markers

FeatID: 297504  Desc: the word 'problems’ and related concepts indicating issues or challenges  ~ Freq: 3.33e-05  Sensitivity: 60.00% Interp Score: 100.00%

Activating Text Examples

of a trendy Melbourne art gallery, has her own|BROBIBNS - chasing down a delinquent

Generated Text

875 697  facing constant delays, she explained her]BIOBIBNS quietly but with visible frustration at the

738 toattempts at calibration. < +Of course, our|BIOBIEHS are not likely to clear up so one may 000 discussing legislative issues, where the|problems oftenfare complex and intertwined with

1262 him, that's only the start of theirBIGBIEMS. ' +In this third Alex Caine book, sequel 812 Nina realized that understanding his|BrOBIENS required stepping into his perspective; that

678 mnir becomes queen of a land with as many|BROBIEMS as the one she fled. Her long-lived 000  explaining the malfunction during the software demo, he hoped the technicallproblem would
FeatID: 2870  Desc: words related to teaching and education  Freq: 2.57e-05  Sen : 60.00%  Interp Score: 92.86%

Activating Text Examples

Generated Text

1412 C.FE.is an internationally respected|i8GRel, trainer and clinician with an expertise in the 1175 lalways felt passionate about/{EaGRING because it allows me to inspire others. “Tolteach is to
11.00 you love about teaching?+ ‘| love to-," Johnston said, “and the some of the 0.00 Kids bring so much energy and curiosity to the classroom. When I'm teaching, | get to see
1062 dots and monkeys."+ < What do you love about teaching?++"l love toff€aeh, Johnston 1288 Hisworkasa |ediicator and advocate has i many in the arts
162  century. Architect, artist, furniture designer, and8dUGAIBY, Ralph Rapson has played a 0.00 Initially nervous about/teaching, she grew into her role and now finds great joy in it. Her first

Feat ID: 662898

Activating Text Examples

Desc: theorems and corollaries referenced by their numbers in mathematical or academic contexts

Freq: 6.25e-05 Sensitivity: 70.00% Interp Score: 92.86%

Generated Text

2125 othe (2017). < Theorem § includes existing DR moment functions as special cases where $ 206 Consider Lemma f§ from Smith (2003) which establishes conditions for convergence in
23.00  on this section can be applied.++~Corollary 8.2 from [@H] states that any Or 000  Based on Proposition § in the appendix, the asymptotic variance can be expressed as
2700 (\beta)$ and possibly additional functions. Proposition & of Newey (1994a) 0.00  From the proof of Lemma i, we derive bounds on the estimator variance using

144 font-variant:small-caps;">Theorem B:</span> *If the marginal distribution of* 2.44  The result of Corollary  follows immediately by applying the dominated convergence

Feat ID: 267258

Desc: the variable placeholder 'i' in programming contexts  ~ Freq: 1.27e-04

Activating Text Examples

Sensitivity: 50.00% Interp Score: 92.86%

Generated Text

850  CDATA CTL);+ msg->bufff] = (u8)((rxd 338 ist(f].execute(); ~status = ist(i] )
1550  rows <- createRow(sheet, rowindex=f) for (jin 1: 000  <td *ngFor="let item of items; let {=index">+! |item.name < </td>
1888  (‘model{0}.hs'format() < end = time.time() 456 dataset['column_i'] = values(f] - dataset[‘column_il.mean()

175  12CDATA_CTL);< msgs[|+ 11.buf[0] = ( 0.00 (i'update’)">+ <span class="icon"></span>+</button>

Feat ID: 898197

Activating Text Examples

three main purposes. The first was to facilitate the SUIVIVEI of the sponges/across the

Desc: terms related to the concept of survival and its implications in various contexts

Freq: 4.54e-05  Sensitivity: 70.00% Interp Score: 100.00%

Generated Text

cellular/SURVIVEI, we used markers for

10.00 9.50 the role of inpi

10.00  main purposes. The first was to facilitate thelSURVIVaI of the sponges|aeross the battery of 0,00  Analysis of cohort data revealed a strong correlation between dietary intake and/survival
1242 and size and the size of the grain affects itsSUNIVABIIY in the archaeological 0.00  The clinical trial results showed higher median/survival time among patients receiving
15.50  Oxygen is a vital substrate to the continual function ancSUNIVA of cerebral tissue. Rapid 1538 Genetic diversity contributes significantly to thelSUVIVAl advantage seen in populations

Feat ID: 362816

Desc: various expressions of the word "by" followed by different methods or approaches

Freq: 2.67e-04 Sensitivity: 40.00% Interp Score: 92.86%

Activating Text Examples Generated Text
1388 states, chose to~ ~'achieve the same balance by|@Itefatg means. We have judges who 5.84  this result was obtained by[fiiOVative techniques involving machine learning and deep
13.50 i=1\cdots, rs.'—“—‘Byl straightforward argument one may notice that the condition 0.00 the report was compiled by an experienced team of analysts specializing in market trends
12.25 vertices.+ «!For each face choose a triangulation by--imersecting diagonals. Let $d$ 0.00 the final decision was reached by mutual agreement among the stakeholders following
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Figure 16: 8 randomly sampled features from those studied in that have sensitivity score
between 0.4 and 0.7 and high (> 0.9) auto-interp score.
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Figure 17: 8 randomly sampled features from those studied in Eléure 3:that have high (>0.8) sensi-
tivity score and low auto-interp score (< 0.6). These features tend to be interpretable despite their
low automated interpretability score.
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