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ABSTRACT

Imitation Learning (IL) merely concentrates on reproducing expert behaviors and
could take dangerous actions, which is unbearable in safety-critical scenarios. In
this work, we first formalize a practical task of safe imitation learning (Safe IL),
which has been long neglected. Taking safety into consideration, we augment
Generative Adversarial Imitation Learning (GAIL) with safety constraints and
then relax it as an unconstrained saddle point problem by utilizing a Lagrange
multiplier, dubbed LGAIL. Then, we apply a two-stage optimization framework
to solve LGAIL. Specifically, a discriminator is firstly optimized to measure the
similarity between the agent-generated state-action pairs and the expert ones, and
then forward reinforcement learning is employed to improve the similarity while
considering safety concerns via a Lagrange multiplier. Besides, we provide a the-
oretical interpretation of LGAIL, which indicates that the proposed LGAIL can
be guaranteed to learn a safe policy from unsafe expert data. At last, extensive
experiments in OpenAI Safety Gym conclude the effectiveness of our approach.

1 INTRODUCTION

Imitation Learning (IL), which learns from expert data or expert policies to reproduce an expert
policy, has achieved remarkable successes in various applications such as self-driving (Li et al.,
2017; Pan et al., 2020), navigation (Hussein et al., 2018), and robot locomotion (Yuan & Kitani,
2020). Most of these algorithms are trained in simulated environments, in which agents are free
to make mistakes. However, when deploying IL in real-world applications, the safety of agents is
paramount (Amodei et al., 2016; Ray et al., 2019; Arora & Doshi, 2021). A policy that is trained
without considering safety could generate improper or even harmful actions, and those actions may
destroy the safety of agents, which must be avoided in safety-critical scenarios (Sinha et al., 2020).

Nevertheless, little attention has been paid to guarantee the safety of agents in IL. Zhang & Cho
(2016) investigated the safety in behavioral cloning (BC) (Bain & Sammut, 1995), a branch of
IL, and proposed an algorithm named SafeDAgger. Following SafeDAgger, Menda et al. (2019)
advanced a modified version that uses the Gaussian Process (GP) (Rasmussen, 2003) to determine
the confidence of whether the agent’s decision is safe or not. However, the above-mentioned Safe
IL approaches rely on access to an expert policy and demand that the expert policy is absolutely
safe. Unfortunately, these two requirements–there should be an expert policy and the expert policy
is absolutely safe–could hardly be satisfied in reality.

In contrast, we present a more practical Safe IL task. In the new task, we only require expert data
rather than expert policies and the safety information provided by the environment. Besides, we do
not assume that expert data are totally safe, i.e., the expert data could contain a portion of unsafe
data. We nominate this kind of data, which are not guaranteed to be purely safe, as “unsafe expert
data” throughout this paper. Conducting Safe IL with unsafe expert data is more realistic because:
(1) massive amounts of expert data such as online videos (Peng et al., 2018a) or MoCap data (Peng
et al., 2018b) are available for IL, but it is hardly possible to require an expert who can always tell
us the correct action during learning; (2) it is costly and laborious to obtain purely safe expert data
because even experts could take dangerous actions (Council et al., 2003; Bickmore et al., 2018; Liu
et al., 2020; Lattanzi & Freschi, 2021). In consequence, it is challenging to conduct IL from unsafe
expert data to recover policies that can achieve expert-level performance and satisfy safety needs.
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Unfortunately, to the best of our knowledge, the Safe IL task described above is of significance and
needs to be solved urgently, but it has not been investigated until now.

To reproduce policies that can simultaneously achieve expert-level cumulative rewards and satisfy
safety constraints by imitating unsafe expert data, we interpret this Safe IL task as a constrained
optimization problem with Constrained Markov Decision Process (CMDP) (Altman, 1999), i.e., the
agent should try to behave as similarly as possible to the expert under safety constraints. Specifically,
we introduce an auxiliary cost constraint to restrict the policy generated by Generative Adversarial
Imitation Learning (GAIL) (Ho & Ermon, 2016), which leads to a constrained minimax saddle point
problem. To tackle the difficult inequality constraint, we adopt a Lagrange multiplier technique to
relax the constrained GAIL problem as an unconstrained one, abbreviated as LGAIL. Then, based on
a stochastic variant of dual ascent algorithm, we propose a new two-stage optimization framework
to solve LGAIL. Specifically, in the first stage, a discriminator is optimized to better measure the
similarity between the agent-generated state-action pairs and the expert ones. In the second stage,
forward reinforcement learning is employed to improve the similarity while considering safety con-
cerns via a Lagrange multiplier. To the end, we summarize our contributions as three-fold:

• We formalize a new Safe IL task with CMDP, where the agent has access to several unsafe expert
trajectories and the safety information provided by the environment.

• We develop a Safe IL algorithm–LGAIL, a neat yet effective way to tackle the new Safe IL task.
We also provide a theoretical interpretation of LGAIL, which indicates the proposed LGAIL can
be guaranteed to learn a safe policy from unsafe expert data.

• We carry out extensive experiments on various robot tasks in the OpenAI Safety Gym (Ray et al.,
2019) to illustrate that LGAIL can work well in the novel Safe IL task defined in this paper and
can serve as a baseline algorithm for future research.

2 RELATED WORK

Safe Reinforcement Learning (Safe RL). RL with safety-critical constraints, also known as Safe
RL, has received extensive attention in the past decades (Ray et al., 2019). The most popular way
to deal with Safe RL is to convert it into a constrained optimization problem via CMDP (Altman,
1999). There are two major classes of methods to solve Safe RL featured by CMDP, i.e., direct
approaches and indirect approaches. Constrained Policy Optimization (CPO) (Achiam et al., 2017)
is a representative algorithm of direct methods, in which the policy is optimized under the policy
improvement and safety constraints. Yang et al. (2020) split the optimization problem in CPO into
two steps: first, optimize the policy with consideration of only rewards; then project the optimized
policy into the nearest safe policy. Two milestones of indirect algorithms are TRPO-Lagrangian
and PPO-Lagrangian (Ray et al., 2019), which uses a Lagrange multiplier and shows outstanding
performance of satisfying constraints. Stooke et al. (2020) improve the Lagrangian methods with
PID control to reduce constraint-violating behaviors. However, the above methods cannot guarantee
the safety of agents during training. To achieve the training safety of agents, another spectrum of
Safe RL algorithms is developed based on Lyapunov functions (Chow et al., 2018; 2019).

Safe Imitation Learning (Safe IL). IL commits to reproduce an expert policy from expert data
or expert policies. In general, IL can be divided into behavioral cloning (BC) (Bain & Sammut,
1995; Ross et al., 2011) and inverse reinforcement learning (IRL) (Abbeel & Ng, 2004). The major
difference is that BC solves IL in a supervised learning manner, whereas IRL solves IL from the
perspective of RL (Torabi et al., 2018). BC enjoys merits of simpleness and high efficiency but
suffers from the compounding error and often fails to recover an expert policy compared to IRL (see
Hussein et al. (2017) and its reference therein). It looks like that IL and batch reinforcement learning
(Batch RL) (Lange et al., 2012; Fujimoto et al., 2019; Le et al., 2019) can solve the same problems.
Actually, it is not exact because Batch RL and IL are dramatically different in terms of the data such
that both domains cannot be compared. However, when it comes to Safe IL, there is few work. A
representative method is SafeDAgger (Zhang & Cho, 2016), which is built on the BC framework
DAGGER (Ross et al., 2011). SafeDAgger measures the difference between decisions of the learner
and the expert while interacting with environments. When the difference goes beyond a predefined
bound, the expert decision will be executed to ensure the safety of the learner. Menda et al. (2019)
present EnsembleDAgger that uses an ensemble of neural networks to approximate the confidence
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to determine whether it is safe to enforce the agent’s decision. However, both algorithms require a
safe expert policy, which is difficult to be satisfied in practice.

We consider a more practical task for Safe IL in this paper, where the agent is required to conduct
Safe IL with unsafe expert data. Compared with Zhang & Cho (2016); Menda et al. (2019), there
exist two main differences: first, there are no expert policies to teach the imitator; second, the
provided expert data could be unsafe. These two differences dramatically increase the difficulty of
conducting Safe IL. In addition, the considered Safe IL setting is different from IL from imperfect
demonstration (Wu et al., 2019) that merely considers performance and neglects the safety issue,
while our work simultaneously focuses on safety and performance issues.

3 PRELIMINARIES

Constrained Markov Decision Process (CMDP). CMDP (Altman, 1999; Achiam et al., 2017) is
modeled by (S,A, T,R,C, d0, γ), where S is state space, A represents action space, T = T (s′|s, a)
is the environment transition dynamic, R : S × A → R is the reward function, C : S × A → R is
the cost function, d0 is the cost limit, and γ is the discount factor. Let π(at|st) : S × A → [0, 1]
be a stochastic policy for the agent. The cost in CMDP refers to safety. When we talk about
“cost” in this paper, it indicates that we are focusing on safety. Let JR(π) = Es0,a0,··· [R0] with
Rt =

∑∞
l=0 γ

lrt+l denoting the expected discounted reward, where s0 ∼ ρ0(s0), at ∼ π(at|st),
st+1 ∼ T (st+1|st, at), and ρ0(s0) is the probability distribution of the initial state s0. Similarly, the
expected discounted cost is JC(π) = Es0,a0,··· [C0] with Ct =

∑∞
l=0 γ

lct+l. The goal of Safe RL
defined in Eq. (1) is to find the optimal policy π∗(at|st) that simultaneously satisfies the cost limit,

π∗ = arg max
π

JR(π) s.t. JC(π) ≤ d0. (1)

Generative Adversarial Imitation Learning (GAIL). GAIL conducts IL by minimizing the di-
vergence between experts’ and agents’ trajectories. The learned policy performs similarly to the
expert when the trajectory sampled from the agent’s policy matches that of the expert. It is formu-
lated as the following minimax saddle point optimization (Guo et al., 2018; Shin & Kim, 2019a;b):

min
θ

max
ω

Eπθ [logDw(s, a)] + EπE [log(1−Dw(s, a))]− βH(πθ), (2)

where Dw(s, a) is a discriminator that is parameterized with w, H(π) = Eπ[− log π(a|s)] is the
entropy of policy π, and β ≥ 0 is a hyperparameter.
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Figure 1: A toy example of IL from
purely safe expert trajectories.

In this section, we present the proposed Safe IL paradigm, La-
grangian Generative Adversarial Imitation Learning (LGAIL).
Below, we first formalize the new task of Safe IL with CMDP
in Subsection 4.1. Then, the detailed description of LGAIL is
presented in Subsections 4.2 and 4.3.

4.1 PROBLEM FORMULATION

Motivations. Three significant factors motivate us to study
safe IL with unsafe expert data. First, it is natural that expert
data may contain a portion of dangerous data due to the follow-
ing two reasons: (1) even senior experts could not be immune
to mistakes or dangerous decisions (Best, 1992; Culverhouse et al., 2003); (2) practical expert data
often come from various sources with distinct qualities (Tangkaratt et al., 2020). As a result, it is
likely that the expert data collected by sampling from varied experts include some unsafe actions
or trajectories, which we define as “unsafe expert data”. Second, ensuring the safety of agents is
paramount in most applications. For example, in robot locomotion, a series of dangerous actions
are likely to lead to the robot falling down, which may irrevocably damage the sophisticated robot
(Yu et al., 2019). What’s worse, in some safety-critical domains such as human-robot interaction,
robots could cause human injuries if no special operations are designed for safety. Hence, it is of
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significance to pay attention to safety issues in IL. Last but not least, we conduct a toy experiment
to demonstrate that without considering the safety, it is hard to ensure the training safety and final
safety. We employ the environment Safexp-PointGoal1-v0 in the OpenAI Safety Gym (Ray et al.,
2019) and conduct ordinary GAIL with 30 safe expert trajectories whose Cost is 8.0± 8.3 and Re-
turn is 19.5± 2.8. Details on the environment and metrics such as Cost and Return are presented in
Section 5. Every expert trajectory is safe such that its Cost is smaller than the cost limit d0 = 25.
From the IL results in Figure 1, surprisingly, even purely safe expert data are provided, the conven-
tional IL algorithm–GAIL, is not able to reproduce a safe expert policy. In addition, the Cost goes
beyond 150 at about 1.8 million interactions in Figure 1, which dramatically exceeds the cost limit.
The high Cost during training means that traditional GAIL could not maintain the training safety as
well. Therefore, with the three motivations and current problems of GAIL, we aim to solve the Safe
IL task, which is formalized subsequently.

Compared to traditional IL in which safe expert trajectories are provided (Yang et al., 2019), the new
task that considers safety during IL is different in that it does not require expert data to be absolutely
safe. We formalize the fact that the expert data could be unsafe with an assumption.

Assumption 1 We have access to a series of expert trajectories, in which some could be unsafe. We
term this kind of expert data as “unsafe expert data”.

The unsafe expert trajectories are denoted as τE = {τ1E , τ2E , ..., τNE }, and each trajectory τ iE where
i ∈ {1, ..., N} is composed of chronological states and actions. These expert trajectories can achieve
high episodic cumulative rewards, but among them there areM expert trajectories that do not satisfy
the safety constraints characterized by JC(τ jE) ≥ d0, 1 ≤ j ≤ M , where 0 ≤ M ≤ N . If M = 0,
there are no unsafe expert trajectories in τE , and τE is purely safe; if M = N , every trajectory
in τE is unsafe, and τE is purely unsafe; if 0 < M < N , τE is partially unsafe. Hence, the
definition of “unsafe expert data” in the paper is quite universal, which covers the ideal situation
that every expert trajectory is safe, a more practical situation that some expert data are unsafe, and
the extreme situation that each expert trajectory is unsafe. Naively conducting IL with unsafe expert
data will generate a policy that could be unsafe as well. To make it possible to achieve a safe agent,
a reasonable assumption on the access to the safety information is made below.

Assumption 2 The agent has direct access to the safety information from the environment.

Assumption 2 makes sense in reality because safety functions are generally clear and straightforward
to design compared to reward functions. For example, in autonomous driving, dangerous conditions
such as collisions with pedestrians or cars can be easily identified (Shin & Kim, 2019a). Therefore,
the aim is to obtain a safe policy utilizing unsafe expert data and the feedback of safety information
from the environment. The task of interest of this paper is presented as follows:

The task of interest: Given unsafe expert trajectories τE in Assumption 1 and
the safety information feedback in Assumption 2, we aim to find a policy that can

mimic the expert as much as possible under given safety constraints.

The task is new compared to previous Safe IL research in which a safe expert policy is required
(Zhang & Cho, 2016; Menda et al., 2019). Although conducting Safe IL in this task is arduous, it is
worth investigating Safe IL due to its potential for practical applications compared to former tasks.

4.2 SAFE IMITATION LEARNING

In this new task of Safe IL, there are two learning objectives. The first one is that the agent should
mimic the expert as much as possible via given expert trajectories when it comes to the episodic
cumulative rewards. The second one is that the agent should behave safely to meet the safety con-
straints utilizing the environment feedback. The safety should be considered as a hard constraint
because it represents physical requirement and should not be violated, which motivates us to model
safe IL as constrained optimization, i.e., the agent is supposed to mimic the expert as much as pos-
sible under safety constraints. Note that it is not a pure IL problem because the agent should behave
unlike the expert in some states due to safety concerns. Thus, we formulate Safe IL on the top of
GAIL as a constrained minimax saddle point optimization,

min
θ

max
ω

Eπθ [logDw(s, a)] + EπE [log(1−Dw(s, a))]− βH(πθ) s.t. JC(πθ) ≤ d0. (3)
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In other words, when optimizing the policy, similarities calculated by the discriminator Dw rewards
as well as violations of safety constraints should be considered.

Algorithm 1 Lagrangian Generative Adversarial Imitation Learning (LGAIL)
Input: Expert trajectories τE , iteration number m, cost limit d0, and learning rate η.
Parameter: Policy πθ, discriminator Dw, and Lagrange multiplier λ.
for i = 1 to m do

τ ∼ πθ . sample agent trajectories
ω ← arg max

ω
Êτ [logDw(s, a)] + ÊτE [log(1−Dw(s, a))] . update discriminator Dw

θ ← arg min
θ

Êτ [logDw(s, a)] + λ(JC(πθ)− d0)− βH(πθ) . update policy πθ
λ← (λ+ η(JC(πθ)− d0))+, where (·)+ = max{0, ·} . update Lagrange multiplier λ

end for

4.3 LAGRANGIAN GENERATIVE ADVERSARIAL IMITATION LEARNING

To solve the Safe IL problem, we propose a two-stage optimization framework, LGAIL, whose
pseudo-code is illustrated in Algorithm 1.

4.3.1 IMITATION LEARNING WITH A LAGRANGE MULTIPLIER

Directly solving the Safe IL task, which is a constrained optimization problem, is challenging. We
employ a Lagrange multiplier to relax the constrained optimization problem into an unconstrained
optimization one (Boyd et al., 2004), i.e., the safety constraints are converted into penalties. As a
result, we augment the policy improvement stage in GAIL with a Lagrange multiplier. Concretely,
the constrained optimization problem in Eq. (3) can be solved by penalizing violations of safety
constraints with a Lagrange multiplier while optimizing the policy to mimic the expert,

min
θ

max
ω

Eπθ [logDw(s, a)] + λ[JC(πθ)− d0]− βH(πθ) + EπE [log(1−Dw(s, a))], (4)

where λ is the Lagrange multiplier with λ ≥ 0.

This optimizing target contains both rewards and costs, which can help imitate the expert as well as
guarantee safety. There are two stages in LGAIL taking turns to (i) optimize a discriminator network
to enhance its ability on judging the quality of state-action pairs, and (ii) improve the performance
of the agent’s policy with the discriminator network and safety feedback information enabled by a
Lagrange multiplier. The Lagrange multiplier λ helps balance the competition between improving
rewards and reducing costs, and it is dynamically updated according to λ← (λ+η(JC(πθ)−d0))+,
where (·)+ = max{0, ·} and η is the learning rate. When the current policy is unsafe, λwill increase
so that the penalty on violations of constraints will play a bigger role. On the contrary, λ would
decrease so that the optimization concentrates more on mimicking the expert. LGAIL achieves: 1)
the first objective by using GAIL to imitate the expert; 2) the second one with a Lagrange multiplier
to force the agent to satisfy safety constraints, i.e., the Lagrange multiplier will penalize the agent
when the agent’s behaviors are unsafe while imitating the unsafe expert.

4.3.2 THEORETICAL INTERPRETATION

Safe IL defined in Eq. (3), is a constrained minimax saddle point problem. The inner max loop
mainly optimizes ω to obtain a better discriminator Dω(s, a), which assigns rewards to state-action
pairs (s, a). The outer optimizing loop mainly optimizes the policy with consideration of both
rewards and costs. Here, we only focus on the outer optimization loop. Assume the inner loop
obtains an optimal ω∗ as in Weng (2019), then the outer loop becomes,

min
θ

Eπθ [logDω∗(s, a)]− βH(πθ) + EπE [log(1−Dω∗(s, a))] s.t. JC(πθ) ≤ d0. (5)

The above constrained optimization problem can be solved with a Lagrange multiplier λ ≥ 0. The
Lagrangian function L(θ, λ, ω∗) of LGAIL is written as follows,

L(θ, λ, ω∗) =Eπθ [logDω∗(s, a)] + λ[JC(πθ)− d0]

− βH(πθ) + EπE [log(1−Dω∗(s, a))] + δ≥0(λ),
(6)
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where δ≥0(·) is an indicator function, i.e., δ≥0(λ) = 0 if λ ≥ 0, δ≥0(λ) = ∞ otherwise. The
Lagrange multiplier λ ≥ 0 penalizes violations of safety constraints to ensure that the policy is safe
while optimizing the policy to mimic the expert. The outer loop optimization can be solved by dual
ascent approaches. With dual ascent in a deterministic setting (Luo & Tseng, 1993; Andersson et al.,
2016), it is guaranteed to arrive at a stationary point satisfying the first-order optimality conditions

0 = ∇θL(θ, λ, w∗) & 0 ∈ ∇λL(θ, λ, w∗). (7)

Hence, it is clear from the above equation that (JC(πθ) − d0) ∈ N≥0(λ), where N≥0(x) is the
normal cone of set {x|x ≥ 0}. Consequently, we obtain JC(πθ) ≤ d0, meaning that LGAIL is
guaranteed to find a policy that satisfies the safety criterion with deterministic gradient descent.

In practical implementations, we use stochastic gradient descent with samples by interacting with the
environment. Besides, we do not exactly solve the inner and outer optimization problems. Instead,
we employ the approximation solutions of the inner and outer loops, and alternatively optimize
them. As a result, these approximation methods may cause instability on the convergence curve of
LGAIL. But our experiments empirically demonstrate that LGAIL finally finds a safe policy.

4.3.3 PRACTICAL IMPLEMENTATION

Eq. (4) defines the optimization target for LGAIL, in which three parameters are involved (θ for pol-
icy, w for discriminator, and Lagrage multiplier λ). We denote the optimization target as L(θ, λ, w).
Since we cannot access the expert policy, expert and agent trajectories, τE and τ , are used to approx-
imate the loss. Hence, we use Ê to represent an approximation of ideal expectation with sampled
data. The update law for the discriminator is,

∇wL(θ, λ, w) = Êτ [∇w logDw(s, a)] + ÊτE [∇w log(1−Dw(s, a))]. (8)

For the optimization of the policy, the rapid variation of λ may affect the training stability. Hence,
we adopt a technique (Stooke et al., 2020) to regulate the policy gradient

∇θL(θ, λ, w) = Êτ [∇θ log πθ(a|s)
1

1 + λ
(Qr(s, a)− λQc(s, a))]− β∇θH(πθ), (9)

in which Qr(s̄, ā) = Êτ [− log(Dw(s, a))|s0 = s̄, a0 = ā] and Qc(s, a) = Êτ [C(s, a))|s0 =
s̄, a0 = ā]. Two separate neural networks are adopted to maintain accurate approximation of q-
values for reward and cost. Besides, during training, the Lagrange multiplier λ is dynamically
updated to ensure the agent satisfy safety constraints according to,

∇λL(θ, λ, w) = Êτ (JC(πθ)− d0), (10)

in which the agent trajectories τ are used to estimate JC(πθ).

5 EXPERIMENTS

We investigate whether our algorithm LGAIL is able to solve the new Safe IL task in this paper,
i.e., whether LGAIL has the ability to reproduce safe expert behaviors from unsafe expert data with
the safety information feedback from the environment. We introduce our experiments from three
aspects, setups (Subsection 5.1), results (Subsection 5.2), and discussions (Subsection 5.3).

5.1 SETUPS

In the experiments, we adopt six standard Safety Gym environments (Ray et al., 2019) to demon-
strate the ability of LGAIL. In terms of robots, we use Point, Car, and Doggo; in terms of tasks, Goal
and Button are employed. The level of difficulty of the employed environments is set to 1. More
details on environments and unsafe expert data are in Appendix A.

Baselines. The Safe IL task in this paper is constructed for the first time, so there are no corre-
sponding baselines to compare. We select one representative IL algorithm, GAIL (Ho & Ermon,
2016), to serve as the baseline. Unfortunately, we are not able to compare with SafeDAgger (Zhang
& Cho, 2016) or EnsembleDAgger (Menda et al., 2019) because there are no expert policies in our
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Figure 2: Learning curves of LGAIL and the other baselines on Safety Gym benchmarks. Perfor-
mance is measured with Cost, Cost Rate, and Return. The x-axis represents time steps of interactions
with the environment. Each algorithm is evaluated with 5 random seeds.

Table 1: Summary of quantitative results. The columns represent the algorithms, while the rows
represent environments and metrics. Each result is averaged over 30 trails of a policy.

Environment LGAIL LGAIL-PS GAIL 2IWIL/IC-GAIL

Safexp-PointGoal1-v0
Cost 24.7±4.3 22.1±3.2 81.8±35.5 103.0±98.2

Cost Rate 0.026 0.026 0.099 0.09
Return 11.5±2.1 10.1±2.1 8.2±2.6 9.8±6.0

Safexp-PointButton1-v0
Cost 56.3±22.0 52.4±18.1 109.6±28.2 91.2±14.0

Cost Rate 0.059 0.059 0.119 0.108
Return 7.6±3.7 8.2±3.9 9.2±5.4 9.7±2.9

Safexp-CarGoal1-v0
Cost 24.7±2.2 21.6±2.1 41.6±7.8 43.9±10.6

Cost Rate 0.025 0.025 0.07 0.056
Return 18.9±2.3 19.8±1.1 20.7±2.0 21.4±1.1

Safexp-CarButton1-v0
Cost 192.8±15.5 195.1±19.1 232.4±24.3 251.0±23.0

Cost Rate 0.194 0.193 0.237 0.232
Return 19.1±1.1 18.0±1.1 19.2±1.2 18.2±1.5

task. We also could not compare with Le et al. (2019) because Batch RL needs data with rewards
and is not allowed to interact with the environment, whereas in our IL task the unsafe expert data
do not contain rewards. In addition, we relax the exact problem formulation of LGAIL to compare
with IL algorithms of learning from imperfect data (2IWIL and IC-GAIL) (Wu et al., 2019). More
details on 2IWIL and IC-GAIL are in Appendix B. Besides, we conduct LGAIL with purely safe
expert data and denote it as LGAIL-PS (LGAIL from Purely Safe expert data).

Metrics. To comprehensively measure the performance of all algorithms, three metrics are em-
ployed, i.e., Cost, Cost Rate, and Return. Cost JC(πθ) is the average episodic sum of costs, while
Return JR(πθ) is the average episodic return. Cost Rate is the rate that can be obtained by divid-
ing the total sum of costs of the whole training process by the total number of agent-environment
interactions. Cost and Cost Rate are related to the safety of the agent: the smaller they are, the safer
the agent is considered. Although both metrics are related to safety, Cost focuses on measuring the
current safety of a policy, while Cost Rate emphasizes the safety of whole training process. Hence,
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Cost Rate could be interpreted as a metric for the training safety to some extent. Return is used to
evaluate the performance of mimicking the expert.

5.2 RESULTS

In this subsection, we present the experiment results of the proposed algorithm–LGAIL. Learning
curves of four environments are presented in Figure 2, while quantitative results are in Table 1.
More experiment results are deferred to Appendix C. From Figure 2 and Table 1, it is clear that
LGAIL (including LGAIL and LGAIL-PS) is able to reproduce a safe policy that can satisfy the
safety constraints with comparable performance in imitating the expert.
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Figure 3: Impact of the cost limit on LGAIL with purely unsafe expert data. In the legend
LGAIL CL{x}, x represents the cost limit d0.

Safety. It can be seen that LGAIL can achieve much lower Cost and lower Cost Rate, which
means that LGAIL is safer compared to other baselines and the experts. For example, in Safexp-
PointGoal1-v0, the peak values of Cost for LGAIL and GAIL are about 60 and 230, respectively.
Besides, the Cost Rate of LGAIL is about only a quarter of GAIL’s Cost Rate, meaning that the vi-
olations of constraints using GAIL have been reduced by three quarters with LGAIL. In particular,
LGAIL is able to drive the learning process to generate an agent that can satisfy the given con-
straint threshold. The lower Cost and lower Cost Rate mean that the safety has both been improved
during training and at the end of training. Specifically, LGAIL-PS performs similarly to LGAIL,
which means that our algorithm is robust to the type of the expert data no matter it is purely safe or
not. Compared to GAIL, 2IWIL/IC-GAIL slightly improves the safety measured by Cost and Cost
Rate because 2IWIL/IC-GAIL tries to learn from purely safe expert data. These results verify that
a portion of unsafe expert data could cause a negative impact on the safety of IL algorithms. Al-
though 2IWIL/IC-GAIL performs slightly superior to GAIL in terms of safety, the performance of
2IWIL/IC-GAIL is still far from satisfactory, indicating that GAIL cannot recover a safe policy from
purely safe expert data. We provide further discussions on this phenomenon in the next subsection.

Return. We observe that all the algorithms can achieve the same level of performance. In other
words, with little sacrifice in Return, LGAIL obtains a notably safer agent compared against other
baselines. In Doggo tasks, LGAIL performs slightly worse than the other baselines. We think that
there are two possible reasons: (1) to keep safe, the agent in LGAIL should try to avoid and to keep
away from dangerous areas. This means that the agent should travel the long way around. As a
result, the rewards that LGAIL achieves in fixed steps would decrease. On the contrary, GAIL and
2IWIL/IC-GAIL do not take safety into consideration, so they can walk across dangerous areas to
achieve higher rewards; (2) LGAIL seeks a balance between rewards and costs, and adopts a more
conservative exploration strategy, leading to marginal performance degradation. When a policy is
unsafe, the Lagrange multiplier will increase and penalize the policy to ensure safety. Therefore,
LGAIL would take actions that are more conservative when it explores in the environment. In com-
plex environments, exploration is important for discovering better policies. Although LGAIL might
perform marginally worse than GAIL in complex environments regarding Return, the safety of the
agent of LGAIL has been enhanced dramatically, which is paramount in safety-critical environments
when deploying IL algorithms.

Furthermore, we test the extreme case where expert data are purely unsafe in environment Safexp-
PointGoal1-v0. We employ 15 purely unsafe expert trajectories, with their Cost 69.5 ± 15.3 and
Return 18.1±2.4. In particular, we adjust the cost limit d0 from 10 to 70 to investigate its impact on
safety and reward performance, whose results are shown in Figure 3. From the perspective of Cost
and Cost Rate, it is clear that LGAIL is able to obtain a safe agent that satisfies the cost constraint
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with purely unsafe expert data, whereas traditional GAIL cannot. Namely, given a fixed d0 no matter
it is large or small before training, LGAIL is able to reproduce a policy such that JC(πθ) ≤ d0. With
the decrease in the cost limit, the performance of the agent after training decreases slightly. Even
if the safety of the agent in LGAIL has been improved dramatically, the performance of LGAIL is
comparable to that of GAIL.

In summary, the two-stage optimization framework, LGAIL, is able to reproduce a safe policy with
unsafe expert data and the safety information feedback.

5.3 DISCUSSIONS

It is worthy of investigating why GAIL could not reproduce safe policies with purely safe expert data.
We conduct experiments to test the impact of the amount of expert data and the diversity of expert
data on the safety performance of GAIL. Some results are shown in Figure 4, while experiment
details and more results are deferred to Appendix C. From Figure 4, it is clear that: (1) GAIL
usually fails to recover a safe policy even with abundant purely safe expert data; (2) increasing the
number of expert data does not help improve the performance of GAIL in terms of both rewards and
costs; (3) GAIL performs worse with expert data that are sampled from multiple experts.

In our opinion, there are three possible reasons: (1) The purely safe expert data are unbalanced.
We think that the expert data contain more information on how to achieve rewards compared to the
information on how to be safe. Every safe expert trajectory achieves high rewards but low costs,
which means that rewards are dense while costs are sparse. As a result, GAIL is likely to mainly
develop the ability to accomplish tasks but neglecting the connotative ability to be safe. (2) GAIL
could not adapt well to dynamic environments due to the poor generalization ability. GAIL employs
the RL algorithms to serve as the generator, and RL algorithms often struggle with generalization
problems. Hence, GAIL is likely to generalize poorly in dynamic environments such that the recov-
ered policy could be unsafe. (3) Expert data sampled from a mixture of expert policies could provide
opposite information about safety. Different experts have their own preferences, which may mislead
the agent to dangerous actions. In contrast, our algorithm LGAIL explicitly considers safety issues
during imitating and regards them as constraints to regulate the IL process. This explicit modeling
enables LGAIL to generate policies with guaranteed safety.
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Figure 4: Impact of the number of expert data on GAIL with purely safe expert data. In the legend
GAILTraj{x}, x represents the number of expert trajectories.

6 CONCLUSION

In this paper, a new but more practical Safe IL task is constructed, in which an agent has access to
the safety information directly via interacting with the environment and several unsafe expert tra-
jectories. To conduct Safe IL in this task, we develop a two-stage optimization framework, dubbed
LGAIL, which can successfully imitate the expert and produce safety guaranteed policies. LGAIL
treats the Safe IL task as a constrained optimization problem, in which the agent tries to maximize
the cumulative episodic reward under safety constraints. LGAIL turns the constrained optimization
problem into a corresponding unconstrained one with a Lagrange multiplier. The effectiveness and
performance are illustrated and validated in extensive OpenAI Safety Gym benchmarks, meaning
that our algorithm is able to deal with the new Safe IL task. In addition, the safety of agents dur-
ing training is also enhanced dramatically compared to the baselines. Although the training safety
of LGAIL is significantly enhanced, LGAIL fails to strictly maintain the safety of agents during
training. A promising future direction would be achieving the training safety in Safe IL.
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REPRODUCIBILITY STATEMENT

We acknowledge the importance of reproducibility for research work and try whatever we can to
ensure the reproducibility of our work. We first introduce the environments used in detail in Ap-
pendix A. Since we are investigating a new safe imitation learning task, there are no existing data
to conduct experiments. Hence, we present how we obtain expert data for this new task in Ap-
pendix A. As for the implementation of our algorithm, details such as hyperparameters are provided
in Appendix B. Finally, we introduce error bars as well as the computing resources in Appendix C.
Our codes and data will be released upon publication.
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A ENVIRONMENT AND EXPERT DATA

In this section, we introduce the OpenAI Safety Gym benchmarks (Ray et al., 2019) used in our
experiments and give details on how to generate unsafe expert data.

(a) Safexp-PointGoal1-v0 (b) Safexp-CarGoal1-v0 (c) Safexp-DoggoGoal1-v0

(d) Safexp-PointButton1-v0 (e) Safexp-CarButton1-v0 (f) Safexp-DoggoButton1-v0

Figure 5: Screenshots of the OpenAI Safety Gym environments. In Safexp-PointGoal1-v0, the red
Point should navigate to the green cylinder while avoiding the purple hazards on the floor.

A.1 ENVIRONMENT OVERVIEW

OpenAI Safety Gym (Ray et al., 2019) is a highly configurable environment, which supports users
to construct desired environments with different robots, tasks, constraints, and observation spaces.
In general, tasks in Safety Gym demand the robot to navigate dangerous environments including
hazards and vases. There are three optional robots, i.e., Point, Car, and Doggo, while three task
options are offered, i.e., Goal, Button, and Push. Constraints such as hazards and vases can be
selected and placed into the environment. The information that an agent could receive may come
from standard robot sensors, velocity sensors, and lidars. Furthermore, the level of difficulty of
the man-made environment can be adjusted by increasing or decreasing the number of constraints.
Generally, Safety Gym is such a huge system that it cannot be explained in detail due to the various
configurable choices available.

Therefore, to give an intuitive understanding of the environments, we introduce a standard Safety
Gym environment–Safexp-PointGoal1-v0, which is shown in Figure 5. As can be interpreted from
its name, the robot in this environment is Point (the red object in Figure 5(a)), a small robot with
two actuators, one for turning and the other for moving forward/backward; the task is Goal, which
means that the robot should move to a goal position as depicted by the green area in Figure 5(a); the
number “1” after the task Goal represents the difficulty level of this task. In terms of constraints,
there are several hazards (purple circles on the floor in Figure 5(a)) that are randomly placed during
the environment initialization. When the robot steps into a hazardous area, the cost indicator ct will
be 1; otherwise, ct = 0 at each step. One episode will end after 1,000 steps. During the 1,000 steps,
if the goal has been achieved, a new goal will be randomly placed on the map. For more details on
the Safety Gym, we refer the readers to Ray et al. (2019).
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A.2 ENVIRONMENT SPECIFICATIONS

The specifications of the tested environments are listed in Table 2.

Table 2: Specifications of the OpenAI Safety Gym Benchmarks.
Environment State Space Action Space Max-Step
Safexp-PointGoal1-v0 60 2 1000
Safexp-PointButton1-v0 76 2 1000
Safexp-CarGoal1-v0 72 2 1000
Safexp-CarButton1-v0 88 2 1000
Safexp-DoggoGoal1-v0 104 12 1000
Safexp-DoggoButton1-v0 120 12 1000

A.3 UNSAFE EXPERT DATA

As stressed throughout the paper, “unsafe expert data” are provided to enable the Safe IL. We want to
emphasize again that our “unsafe expert data” are composed of safe expert trajectories and a portion
of unsafe expert data. This kind of expert data is of practical significance because collecting purely
safe expert data is costly and arduous. Here, we demonstrate how to generate such expert data. First,
we use the Safe RL algorithm TRPO-Lagrangian implementation (Trust Region Policy Optimization
Lagrangian) in Ray et al. (2019) to train an agent with a given cost limit. After training, an agent,
which can achieve high cumulative rewards and satisfy the cost limit, is obtained. This agent can be
regarded as a safe expert, and we can get a series of expert data by executing this policy in the Safety
Gym environments. Although this agent is considered to be safe in most cases, some trajectories
sampled from it could be unsafe due to dynamically changing environments. This means that safe
experts may still make mistakes and take dangerous actions, which is consistent with Assumption 1.

As a result, we can sample both safe trajectories and unsafe trajectories using such a safe expert.
With consideration of the fact that practical expert data may come from a variety of sources, we also
generate the data with multiple expert policies. In particular, for every Safety Gym environment, we
use TRPO-Lagrangian to train three safe experts from scratch separately. Default hyper-parameters
in Ray et al. (2019) are adopted and the cost limit for each environment are listed in Table 3. After
training, we construct 10 safe expert trajectories and 5 unsafe expert trajectories by sampling from
each expert. Both states and actions of the expert are recorded sequentially and a trajectory contains
1, 000 states and actions. Since there are three experts, we obtain a total number of 45 expert
trajectories for each environment, in which 30 trajectories are safe and the other 15 trajectories are
unsafe. The 45 expert trajectories are what we defined as “unsafe expert data”, and no labels are
provided to indicate whether one expert trajectory is safe or not during imitating.

Table 3: Cost limits for training safe experts.
Environment Cost Limit d0
Safexp-PointGoal1-v0 25
Safexp-PointButton1-v0 60
Safexp-CarGoal1-v0 25
Safexp-CarButton1-v0 200
Safexp-DoggoGoal1-v0 60
Safexp-DoggoButton1-v0 250

B IMPLEMENTATION DETAILS

We implement LGAIL based on two open source codes, OpenAI Baselines (Dhariwal et al., 2017)
and Safety Starter Agents (Ray et al., 2019). Following Dhariwal et al. (2017), we use the RL algo-
rithm Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) to serve as the generator.
We adopt the discriminator from OpenAI Baselines to replace the reward that is fed back from en-
vironments in Safety Starter Agents. We present the number of expert trajectories and the complete
hyper-parameters used for imitation learning in Table 4 and Table 5.
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We want to discuss a little bit more about one of the baselines, 2IWIL/IC-GAIL (Wu et al., 2019),
i.e., algorithms of learning from imperfect demonstration. The basic problem for learning from
imperfect demonstration is that expert data could be sampled from experts with different qualities
(Wu et al., 2019). Note that the quality here stands for the performance of the expert. In other
words, some expert data are sampled from optimal policies while others are sampled from sub-
optimal policies. The expert data sampled from sub-optimal policies could mislead the imitator to
sub-optimal performance. Besides, only a small portion of expert data is labeled with confidence
scores. If the confidence score conf(s, a) = 1, then the state-action pair (s, a) is sampled from
optimal policies. On the contrary, conf(s, a) = 0 means that (s, a) is sampled from sub-optimal
policies. Essentially, the aim of their solutions, 2IWIL and IC-GAIL, is to find all the state-action
pairs that are sampled from optimal policies and learn from these optimal data without distractions
of sub-optimal data (Wu et al., 2019). Therefore, in our experiments, we conduct imitation learning
from purely safe expert data, which is the ultimate form of 2IWIL and IC-GAIL.

Table 4: Number of expert trajectories. We abbreviate trajectories as Trajs.
Environment Total Expert Trajs Safe Expert Trajs Unsafe Expert Trajs
Safexp-PointGoal1-v0 45 30 15
Safexp-PointButton1-v0 45 30 15
Safexp-CarGoal1-v0 45 30 15
Safexp-CarButton1-v0 45 30 15
Safexp-DoggoGoal1-v0 45 30 15
Safexp-DoggoButton1-v0 45 30 15

Table 5: Hyper-parameters in experiments.
Hyper-parameters Value
Common parameters

Network size (Except the discriminator network) (256,256)
Network size (Discriminator network) (100,100)
Activation tanh
Batch size 3,000
Optimizer Adam
Generator network update times 1
Discriminator network update times 1

Common parameters for TRPO
Generalized Advantage Estimation Gamma 0.99
Generalized Advantage Estimation Lambda 0.97
Maximum KL 0.01
Learning rate (Value network) 1× 10−3

Value iteration 80
Policy entropy 0.0

Discriminator parameters
Learning rate (Discriminator network) 3× 10−4

Discriminator entropy 1× 10−3

Penalty parameters
Initial penalty 1
Penalty learning rate 5× 10−2

C ADDITIONAL EXPERIMENTS

We present more experimental results (including the quantitative results) in different environments
with various configurations here to further validate the proposed algorithm–LGAIL.
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C.1 COMPUTING RESOURCES

We use CPUs to run our experiments. The model name of the CPU is Intel(R) Xeon(R) Gold 6146
CPU @ 3.20GHz. The computation time for each environment is provided in Table 6.

Table 6: Computation time.
Environment Time
Safexp-PointGoal1-v0 about 4 hours
Safexp-PointButton1-v0 about 4 hours
Safexp-CarGoal1-v0 about 13 hours
Safexp-CarButton1-v0 about 20 hours
Safexp-DoggoGoal1-v0 about 14 hours
Safexp-DoggoButton1-v0 about 20 hours

C.2 EXPERIMENTS ON DOGGO TASKS

The learning curves in Safexp-DoggoGoal1-v0 and Safexp-DoggoButton1-v0 are presented in Fig-
ure 6, and quantitative results of these two environments are listed in Table 7. We only conduct
LGAIL with unsafe expert data rather than purely safe expert data because the former is more com-
plex, i.e., we do not conduct experiments of LGAIL-PS. Even in these complex environments, the
proposed algorithm LGAIL can still mimic the expert under safety constraints.

The phenomenon that LGAIL performs slightly worse than the other baselines has been discussed
in the paper. For Safexp-DoggoButton1-v0, the phenomenon that LGAIL did not reduce the cost is
because the Cost of LGAIL is lower than the cost limit d0 = 250. According to our algorithm, the
Lagrange multiplier will be zero if the current policy satisfies the cost limit. In other words, LGAIL
focuses on improving the rewards when the policy is safe. Hence, the learning curve of LGAIL
in Safexp-DoggoButton1-v0 is reasonable. To demonstrate that LGAIL is able to reduce costs, we
also conduct new experiments with lower cost limit d0 = 200. The learning curves of LGAIL in
Safexp-DoggoButton1-v0 with cost limit d0 = 200 are presented in Figure 7.

C.3 EXPERT PERFORMANCE

The performance of the expert data is presented in Table 8. As we discussed above, we sample 10
trajectories from each expert. Besides, during sampling, we select trajectories according to specific
reward or safety desires. The performance of the expert data in Table 8 is calculated from the
sampled data. However, Safety Gym is a dynamically changing environment such that it is not
enough to evaluate an expert with only 10 trajectories. Hence, we also provide the performance
of the expert in Table 9, which is evaluated with 100 trajectories. As we can see from Table 9,
the variance of an expert is relatively high. So even we test the expert with 100 trajectories, the
performance of the expert could vary if we retest it. In the learning curves, we plot the expert
performance rather than the performance of expert data because the former is fairer.

Table 7: Summary of quantitative results. The columns represent the algorithms, while the rows
represent environments and metrics. Each result is averaged over 30 trails of a policy.

Environment LGAIL LGAIL-PS GAIL 2IWIL/IC-GAIL

Safexp-DoggoGoal1-v0
Cost 58.9±7.6 - 80.4±7.5 73.1±6.8

Cost Rate 0.06 - 0.097 0.094
Return 7.2±1.1 - 11.6±0.5 10.5±0.3

Safexp-DoggoButton1-v0
Cost 241.7±16.6 - 232.4±7.7 228.6±10.0

Cost Rate 0.225 - 0.227 0.219
Return 8.2±0.5 - 8.0±0.2 7.6±0.5
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Table 8: Performance of the expert data.
Environment Cost Return

Safexp-PointGoal1-v0
Safe 8.0±8.29 19.5±2.8

Unsafe 64.9±13.3 18.9±2.7
Mixed 27.0±28.7 19.3±2.8

Safexp-PointButton1-v0
Safe 26.6±15.0 20.1±4.2

Unsafe 164.8±49.3 19.0±3.0
Mixed 72.7±72.1 19.8±4.0

Safexp-CarGoal1-v0
Safe 6.7±7.9 25.9±4.0

Unsafe 82.6±36.90 22.6±3.2
Mixed 32.0±42.1 24.8±4.1

Safexp-CarButton1-v0
Safe 139.2±41.7 23.8±5.4

Unsafe 310.5±40.9 24.3±4.0
Mixed 196.3±90.8 24.0±5.0

Safexp-DoggoGoal1-v0
Safe 24.9±12.4 21.0±3.7

Unsafe 121.6±26.5 20.4±2.8
Mixed 57.2±49.1 20.8±3.5

Safexp-DoggoButton1-v0
Safe 172.9±61.6 15.5±5.8

Unsafe 349.3±35.0 14.4±3.6
Mixed 231.7±99.3 15.1±5.2

Table 9: Performance of the expert that is evaluated with 100 trajectories.
Environment Cost Return

Safexp-PointGoal1-v0
Expert 1 27.8±18.5 15.6±3.2
Expert 2 12.5±18.9 13.4±7.7
Expert 3 26.1±27.9 17.9±4.6

Safexp-PointButton1-v0
Expert 1 54.8±40.2 13.4±5.3
Expert 2 46.7±55.1 11.8±8.5
Expert 3 70.6±56.7 13.9±6.4

Safexp-CarGoal1-v0
Expert 1 28.4±29.3 21.8±6.3
Expert 2 20.7±25.9 21.6±7.6
Expert 3 24.5±26.2 21.4±8.3

Safexp-CarButton1-v0
Expert 1 220.4±87.6 17.6±5.8
Expert 2 220.0±117.9 19.8±7.1
Expert 3 197.1±85.0 20.2±7.6

Safexp-DoggoGoal1-v0
Expert 1 54.2±45.2 15.0±5.8
Expert 2 56.6±46.1 22.8±4.3
Expert 3 57.2±42.2 18.1±5.1

Safexp-DoggoButton1-v0
Expert 1 218.0±95.1 9.5±5.2
Expert 2 243.4±115.9 11.5±4.6
Expert 3 256.8±107.4 13.0±6.4

17



Under review as a conference paper at ICLR 2022

2 4 6 8
TotalEnvInteracts 1e7

100

150

200

250

Co
st

2 4 6 8
TotalEnvInteracts 1e7

0.100

0.125

0.150

0.175

0.200

0.225

Co
st

 R
at

e

2 4 6 8
TotalEnvInteracts 1e7

5

0

5

10

15

Re
tu

rn

2 4 6 8
TotalEnvInteracts 1e7

25

50

75

100

125

150

175
Co

st

2 4 6 8
TotalEnvInteracts 1e7

0.04

0.06

0.08

0.10

0.12

Co
st

 R
at

e

2 4 6 8
TotalEnvInteracts 1e7

0

5

10

15

20

25

Re
tu

rn
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(a) Safexp-DoggoGoal1-v0

(b) Safexp-DoggoButton1-v0

Figure 6: Learning curves in Safexp-DoggoGoal1-v0 and Safexp-DoggoButton1-v0. Performance
is measured with Cost, Cost Rate, and Return. The x-axis represents time steps of interactions with
the environment. Each algorithm is evaluated with 5 random seeds.
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Figure 7: Learning curves in Safexp-DoggoButton1-v0 with different cost limits.

C.4 EXPERIMENTS ON “LEVEL 2” TASKS

We conduct experiments on “level 2” tasks (Safexp-PointGoal2-v0 and Safexp-PointButton2-v0) to
demonstrate the performance of LGAIL against other baselines. The learning curves are presented
in Figure 8. In more complex environments, performance degradation is observed for experts and
IL algorithms. However, experiment results show that LGAIL can work effectively in these com-
plex environments, i.e., LGAIL is able to achieve the same level of performance regarding Return
compared with GAIL and 2IWIL/IC-GAIL and simultaneously satisfy the cost limit.

C.5 IMPACT OF COST LIMITS

In the paper, we carry out experiments to investigate the impact of cost limits on LGAIL’s perfor-
mance with only unsafe expert data. We only present the results using Safexp-PointGoal1-v0 in the
paper. Here, more experiments in other environments are given, which are shown in Figure 9. We
can see that LGAIL is able to obtain a policy that satisfies the given cost limit.
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(a) Safexp-PointGoal2-v0

(b) Safexp-PointButton2-v0

Figure 8: Learning curves of LGAIL and the other baselines on Level 2 tasks. Performance is
measured with Cost, Cost Rate, and Return. The x-axis represents time steps of interactions with
the environment. Each algorithm is evaluated with 5 random seeds.

C.6 GAIL WITH PURELY SAFE EXPERT DATA

We conduct experiments to investigate the impact of the number of purely safe expert data as well
as the diversity of expert data on the performance of GAIL. Concretely, in environments Safexp-
PointGoal1-v0 and Safexp-PointButton1-v0, we train GAIL with different numbers of expert tra-
jectories (including 10, 30, 100, 300, and 1000 trajectories). These expert data are sampled from
a single expert. Each trajectory contains 1,000 state-action pairs. Hence, it means that one million
safe state-action pairs are provided when we use 1000 trajectories to train GAIL, which is a huge
amount of data. Besides, we also use purely safe expert data that are sampled from three indepen-
dent experts to train an agent. For the experiments that use data sampled from a mixture of expert
policies, we evaluate the performance of GAIL against different numbers of expert trajectories (300,
900, and 1500). The learning curves are presented in Figure 10. From the figures, we can see that
GAIL usually fails to recover a safe policy even with abundant purely safe expert data. For example,
in Safexp-PointGoal1-v0 with expert data from one expert, GAIL might manage to recover a safe
policy, but it is not guaranteed and could be affected by the expert data. In Safexp-PointButton1-v0,
GAIL fails to recover safe policies from purely safe expert data. Besides, we find that increasing
the number of expert data does not help improve the performance of GAIL in terms of both rewards
and costs. What’s worse, GAIL performs worse with expert data that are sampled from multiple
experts. In practice, expert data are often collected from various sources. As a result, GAIL is not
enough to solve the Safe IL task, whereas our algorithm LGAIL takes safety into consideration and
is guaranteed to generate safe policies.
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(b) Safexp-CarGoal1-v0
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Figure 9: Impact of constraint limit on LGAIL with purely unsafe expert data. In the legend
LGAIL CL{x}, x represents the cost limit d0.
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(a) Safexp-PointGoal1-v0 (purely safe expert data sampled from one expert)
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(b) Safexp-PointButton1-v0 (purely safe expert data sampled from one expert)
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(c) Safexp-PointButton1-v0 (purely safe expert data sampled from three experts)

Figure 10: Impact of the number of expert data on GAIL with purely safe expert data. In the legend
GAILTraj{x}, x represents the number of expert trajectories.
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