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ABSTRACT

We study unsupervised data selection for semi-supervised learning (SSL), where
a large-scale unlabeled data is available and a small subset of data is budgeted
for label acquisition. Existing SSL methods focus on learning a model that ef-
fectively integrates information from given small labeled data and large unlabeled
data, whereas we focus on selecting the right data for SSL without any label or
task information, in an also stark contrast to supervised data selection for active
learning. Intuitively, instances to be labeled shall collectively have maximum di-
versity and coverage for downstream tasks, and individually have maximum in-
formation propagation utility for SSL. We formalize these concepts in a three-step
data-centric SSL method that improves FixMatch in stability and accuracy by 8%
on CIFAR-10 (0.08% labeled) and 14% on ImageNet-1K (0.2% labeled). Our
work demonstrates that a small compute spent on careful labeled data selection
brings big annotation efficiency and model performance gain without changing
the learning pipeline. Our completely unsupervised data selection can be easily
extended to other weakly supervised learning settings.

1 INTRODUCTION

In many real-world applications, data are plenty but annotations are hard to get by. Semi-supervised
learning (SSL), i.e., learning from a small set of labeled data and large-scale unlabeled data, thus
becomes very relevant. We study the novel task of unsupervised data selection for SSL (Fig. 1).
Existing SSL methods assume that labeled and unlabeled data are already given (Fig. 1a) and what’s
left is to optimize the classifier by integrating information from both small labeled data and large
unlabeled data. The basic idea for SSL is that, while labeled data provides direct supervision on
the classifier, unlabeled data helps regularize the classifier in terms of smoothness and sharpness,
captured by consistent (Sajjadi et al., 2016; Tarvainen & Valpola, 2017; Xie et al., 2020; Lee et al.,
2013; Berthelot et al., 2019b;a; Sohn et al., 2020) and minimal entropy (Grandvalet et al., 2005; Lee
et al., 2013; Berthelot et al., 2019b) predictions respectively.
In practice, unlabeled data are ever expanding and labeled data have to be curated within a certain
annotation budget. Selecting which instances to be annotated not only becomes a valid question, but
can also play an important role in the model performance, fairness, robustness, safety, and scalability
(Halevy et al., 2009; Carlini et al., 2019; Sohn et al., 2020; Mehrabi et al., 2021; Sambasivan et al.,
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Figure 1: We consider the novel task of unsupervised data selection for semi-supervised learning
(SSL). a) Existing SSL methods focus on training the best model given labeled and unlabeled data,
whereas we focus on optimizing labeled data selection. b) Existing AL methods learn a classifier
based on random initial selection and alternate between training and instance selection, making its
annotation pipeline both difficult to implement and inefficient under low shot settings.
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Figure 2: We quantitatively and qualitatively compare our methods against previous works on four
properties, i.e., (a) classification accuracies on downstream tasks, (b) class coverage, (c) semantic
class distribution and (d) informativeness of queries, and drastically improve on all of them. Fix-
Match* and FixMatch in (a) denotes sampling with “supervised” stratified sampler, random sampler,
respectively. Different dot colors in (d) denote different classes. 20 instances are sampled from these
3 classes with various sampling strategies. Our selections consistently cover informative samples
across the space. (better viewed in color and zoomed in)

2021). We shift from past model-centric SSL to data-centric SSL, focusing on improving SSL
performance by optimizing data selection from large-scale unlabeled data for annotation (Fig. 1a).
Two simple instance selection strategies are adopted for studying SSL on fully-labeled datasets:
random sampling or stratified sampling by category (Berthelot et al., 2019a; Sohn et al., 2020).
Each sampler has its own caveats: Random sampling can fail to cover all semantic categories and
lead to poorer performance and model instability, whereas stratified sampling is in fact impossible in
reality: If we can sample data by their categories, we would already have the label of every instance!
Data selection for optimizing model training is not new; it is in fact the focus of active learning (AL),
where the task is defined by an initial set of labeled data and the goal is to select an additionally
labeled subset (Fig. 1b) such that a model learned over the subset is competitive with that over the
whole labeled dataset (Sener & Savarese, 2017; Ducoffe & Precioso, 2018; Yoo & Kweon, 2019).
However, our data-centric SSL addresses an unsupervised data selection problem: Given an SSL
model, among many possible ways to select a small fixed number of instances in the sea of unlabeled
data for labeling, which way would lead to the best SSL model performance, even though we have
no labels and thus no idea what the downstream classification task would be? This task is also in a
stark contrast to supervised data selection for AL, which is conditioned on an initial labeled set and
for the benefit of the particular supervised classification task.
We develop a Data-Centric SSL (DC-SSL) approach based on the intuition that ideal instances to be
labeled shall collectively have maximum diversity and coverage for downstream classification tasks,
and individually have maximum information propagation utility for SSL. It has three steps:
1. Unsupervised feature learning that maps data into a maximally discriminative feature space.
2. Select top-m representative instances for labeling per diversity, coverage, and information utility.
3. Apply an SSL method, e.g. FixMatch, on the selected labeled data and the rest unlabeled data.
Our result analysis shows several benefits over past model-centric SSL methods (Fig. 2):
• On classification accuracy (Fig. 2a): Just by selecting the right data to label, we improve the

classification accuracy of FixMatch by an astonishing 8% and 14% in CIFAR-10 (with 0.08%
labeled) and ImageNet-1k (with 0.2% labeled). These results are even better than from the practi-
cally infeasible stratified sampling which assumes perfectly balanced labeled instances.

• On class coverage (Fig. 2b) and data balance (Fig. 2c): Our method covers more classes of
CIFAR-10 with a much smaller labeling budget and a more balanced distribution over classes:
Ours cover 9.5 out of 10 classes on average when only 20 samples are selected for labeling. The
standard deviation on the number of samples per class is also greatly reduced, resulting in a more
uniform distribution over classes.

• On informativeness (Fig. 2d): Our method successfully discovers most representative and diver-
sified samples from the unlabeled data of ImageNet: The 20 selected instances tend to be located
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near density peaks; they are tightly connected to a large number of neighbors and spread out more
uniformly in the feature space, allowing labeling information to propagate more effectively and
widely. However, random and stratified sampling pick less informative outliers far too often, re-
sulting in low learning efficiency and sometimes even learning collapse. These reasons underlie
our better performance over stratified sampling, even though it is gauranteed to have balanced
labeled data across classes. Note that our least-20 samples have the lowest utility values, lying in
sparse areas with the weakest propagation abilities.

Our work shows that a small compute spent on careful labeled data selection brings big annotation
efficiency and model performance gain without changing the learning pipeline. Our completely
unsupervised data selection can be easily extended to other weakly supervised learning settings.

2 RELATED WORK

Active Learning (AL) aims to select a small subset of labeled data to achieve competitive perfor-
mance over supervised learning on fully labeled data (Cohn et al., 1994; Roy & Mccallum, 2001;
Bilgic & Getoor, 2009). Conventional AL has three major camps (Settles, 2009; Ren et al., 2020):
1) Membership query synthesis (Angluin, 1988) requests to generate a membership query in the
form of any unlabeled instance in the input space, including the membership queries generated
from scratch; 2) Stream-based selective sampling (Dagan & Engelson, 1995; Atlas et al., 1990) se-
lects one unlabeled instance at a time and uses informativeness to determine whether to query its
label; 3) Pool-based active learning (Tong & Koller, 2001; Huang et al., 2010; Wei et al., 2015)
generates queries in a greedy fashion by ranking unlabeled data. In Deep AL, Core-Set (Sener &
Savarese, 2017) approaches data selection as a set cover problem and with a derived upper bound
it is equivalent to the k-Center problem. Adversarial-based approaches (Ducoffe & Precioso, 2018)
use adversarial samples to estimate distance from decision boundaries based on sensitivity to ad-
versarial attacks. Learning Loss for Active Learning (Yoo & Kweon, 2019) makes use of a novel
parametric module to predict target losses of unlabeled data and queries the instance with largest
loss for label. Semi-supervised Active Learning (SSAL) combines AL with SSL. Song et al. (2019)
merges uncertainty-based metrics with MixMatch (Berthelot et al., 2019b). Gao et al. (2020) merges
consistency-based metrics with SSL.
AL/SSAL often rely on initial labeled data to learn the model and sampler, requiring multiple (e.g.
10) rounds of sequential annotation and significant modifications of existing annotation pipelines.
To our best knowledge, our work is the first unsupervised sampling method on large-scale recogni-
tion datasets that requests annotation only once, consistent with previous SSL pipelines. See more
comparisons in Sec. 4.3.
Self-supervised Learning learns representations transferable to downstream tasks without annota-
tions (Wu et al., 2018; Grill et al., 2020). Contrastive learning (Wu et al., 2018; He et al., 2020;
Chen et al., 2020a; Wang et al., 2021) learns representations that map similar samples or different
augmentations of the same instance close and dissimilar instances apart. Similarity-based methods
(Grill et al., 2020) learn representations without negative pairs by predicting the embedding of a tar-
get network with an online network. Feature learning with grouping (Yang et al., 2010; Xie et al.,
2016; Caron et al., 2018; Zhuang et al., 2019; Caron et al., 2020; Wang et al., 2021) respects the
natural grouping of data by exploiting clusters in the latent representation. We study unlabeled data
in such an unsupervisedly learned feature space, due to its high quality and low feature dimensions.
Semi-supervised Learning (SSL) integrates information from both small labeled data and large
unlabeled data. Consistency based regularization (Sajjadi et al., 2016; Tarvainen & Valpola, 2017;
Xie et al., 2020) applies a consistency term to the final loss by imposing invariance on unlabeled
data under augmentations. Pseudo-labeling, also known as self-training (Lee et al., 2013; Berthelot
et al., 2019b;a; Sohn et al., 2020), relies on the model’s high confidence predictions to produce
pseudo-labels of unlabeled data and trains them jointly with labeled data. FixMatch (Sohn et al.,
2020) integrates strong data augmentation (Cubuk et al., 2020), pseudo-labels filtering (Liu et al.,
2019) and temperature re-scaling to achieve the current SOTA on SSL. It also explores training on
the most representative samples ranked by (Carlini et al., 2019). However, (Carlini et al., 2019) is a
supervised method that requires the use of all data labels. As a two-stage method, SimCLRv2 (Chen
et al., 2020b) is a transfer learning method for SSL: It applies contrastive learning on unlabeled data,
followed by supervised learning on labeled data. Entropy-minimization (Grandvalet et al., 2005;
Lee et al., 2013; Berthelot et al., 2019b) assumes that classification boundaries do not pass through
high-density area of marginal distributions, enforcing confident predictions on unlabeled data.
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These SSL methods choose data to label by random sampling which leads to poor performance, or by
stratified sampling that selects the same number of samples per category, assuming unrealistically
that labels are available on all the data. Instead of focusing on novel models and algorithms, our
method is data-centric, focusing on choosing the right samples for most effective SSL.

3 DATA-CENTRIC SEMI-SUPERVISED LEARNING

Existing SSL methods are model-centric, focusing on novel models and algorithms. We instead
explore Data-Centric Semi-Supervised Learning (DC-SSL), focusing on selecting the most infor-
mative data to label for effective SSL. DC-SSL has three steps: 1) Unsupervised feature learning; 2)
Unsupervised sample selection for annotation; 3) Semi-supervised learning on selected labeled data
and rest unlabeled data. We also demonstrate how a large-scale model trained on general network-
crawled text-image pairs accelerates our algorithm on novel datasets while improving the quality.

3.1 PROBLEM SETUP

Consider a dataset D = (xi, yi)
n
i=1 with n images, and the labels yi are not known unless we

request annotation. Since there is no preview of yi for any of the xi, stratified sampling that results in
balanced labeled data per class is impossible, as commonly assumed in (Chen et al., 2020b; Berthelot
et al., 2019a; Sohn et al., 2020). Given a limited labeling budget, our goal is to identify the top-m
representative samples A = (xj , yj)

m
j=1 from D to annotate, so as to improve SSL performance

jointly trained on unlabeled data D and labeled data A. Several popular SSL methods are utilized to
verify the effectiveness of our data selection method while keeping the algorithms unchanged.

3.2 UNSUPERVISED REPRESENTATION LEARNING

We apply unsupervised feature learning, contrastive learning in particular, to obtain a lower dimen-
sional (128-D) representation that maximally maintains the individuality of each instance (Wu et al.,
2018; Oord et al., 2018; He et al., 2020; Chen et al., 2020a). Its quality is shown close to or even
better than the supervisedly learned representations on many downstream tasks. We learn a mapping
function f such that in the f(x) feature space, instance xi is attracted to its augmented version x′i
and repulsive to a different instance xj , j 6= i. We model f by a convolutional neural network, map-
ping x onto a d-dimensional hypersphere with L2 normalization. To make a fair comparison with
previous arts (Sohn et al., 2020; Cai et al., 2021), we use MoCo v2 to learn representations on Ima-
geNet with instance-centric contrastive loss. The feature spaces of CIFAR-10 images are extracted
with CLD (Wang et al., 2021), which adds a instance-group contrastive loss, due to its improved
feature quality. See formulations and interpretations of MoCo v2 and CLD in Appendix A.2.

3.3 UNSUPERVISED SAMPLE SELECTION FOR ANNOTATION

We represent (xi)
n
i=1 as a weighted graph G = (V,E;W ), where nodes are points in the feature

space, and edges between nodes are attached with weights of pairwise feature similarity (Bondy
et al., 1976; Deo, 1975; Chung & Graham, 1997; Shi & Malik, 2000): wij = 1/‖f(xi)− f(xj)‖,
where f(xi) is the L2 normalized feature of Vi, learned from e.g. MoCo (He et al., 2020). While
wij is equivalent to cosine similarity wij = cos(Vi, Vj) in theory, we find that 1/‖f(xi)− f(xj)‖
works better empirically than cos(Vi, Vj). Please see an explanation in Appendix A.3.
Given a labeling budget of m instances, we aim to select m instances that are diverse for coverage
and informative for propagating label information. We evaluate the utility of each instance in terms
of information transport efficiency on a graph.
Density estimation with K-NN. The most straightforward idea of sample selection for labeling is
to select the well-connected node, which is most likely to spread semantic information to nearby
nodes with the smallest cost. It corresponds to a density peak in the feature space. We evaluate the
density by K-Nearest Neighbor (K-NN) density estimation, whose key idea is to base estimation
on a closest K observations (Fix & Hodges, 1989; Loftsgaarden & Quesenberry, 1965). We also
conduct ablation studies on other density estimation methods and find our customized K-NN best
performing (Fig. 7).
The basic K-nearest neighbour density (K-NN) estimate is constructed as follows (Fix & Hodges,
1989; Loftsgaarden & Quesenberry, 1965; Orava, 2011):

f̂KNN(Vi,K) =
1

n

K∑
j=1

1

Ad ·D(Vi, V̂j)
, with Ad =

πd/2

Γ(d2 + 1)
(1)
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Figure 3: Two-hop propagation considers the in-
direct connection between two vertices, and more
accurately estimate the information dissemination
ability of each vertex. The overall distance, i.e.,
cost(·), of propagating semantic information from
vertex A to vertices B, C and vertex D to ver-
tices E, F are illustrated, where the purple and
magenta lines denote one-hop and two-hop propa-
gation, respectively. Numbers shown here are dis-
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Figure 4: A case where local density alone
gives a bad querying results. If we only sam-
ple three instances to be annotated from the
region with the highest estimated local den-
sity, only the three samples in cluster A will
be queried due to their highest density. How-
ever, this may impair the ability of queries to
capture multiple data distribution patterns and
is less efficient in propagating semantic infor-
mation to all unlabeled data.

whereAd is the volume of a unit d-dimensional ball, Γ(x) the Gamma function,Rdk(Vi) the distance
between Vi and its Kth nearest neighbor, D(Vi, V̂j) the radius Rdk(Vi) of the ball centered at Vi:

B(Vi, R
d
k(Vi)) = {V̂j : ‖Vi − V̂j‖≤ Rdk(Vi)}, j ∈ {1, ...,K}. (2)

Drawbacks of K-NN density estimation on self-supervised models. 1) Only the Kth nearest
neighbor is referenced, while the relationships with all other K−1 points in the ball are not taken
into consideration, rendering it sensitive to outliers. 2) Densest peaks capture representativeness in
local small regions but ignores diversity in the global feature space (Fig. 4). Nearby density peaks
also introduce redundancy along with deficient coverage. 3) Evaluating the utility of a node based
on its direct neighbours ignores indirect connections between nodes (Fig. 3). It is likely to miss
vertices (false negatives) without direct connections with anchored vertices, even if such vertices
are well connected to anchored vertices through other intermediate vertices. 4) Our unsupervisedly
learned feature does not model semantics explicitly. We propose an extended KNN estimator that
can mitigate the aforementioned issues.
Averaged distance function for robust density estimation. The basic K−NN estimator uses the
distance to the kth nearest neighbor alone (D(Vi, Vj)=Rdk(Vi)) for density estimation, which makes
it highly sensitive to outliers. We consider all k neighbors instead:

f̂KNN(Vi, k) =
k

n

1

Ad · 1
k

∑k
j=1

1
wij

. (3)

We compare it to alternative formulations and show its advantage in Sec. 4.4.
Multi-hop propagation for measuring indirect connections between vertices. To model indirect
connections, we formulate the utility of vertex Vi with two-hop propagation:

U(Vi) = f̂KNN(Vi,K) +
∑

V̂j∈B(Vi,Rdk(Vi))

cos(Vi, V̂j) · f̂KNN(V̂j ,K) (4)

Compared with a single-hop propagation for direct connections, the multi-hop propagation estimates
the information dissemination ability, i.e., informativeness of each vertex, more accurately. In Fig. 3,
the one-hop cost of information propagation from A to vertices (B, C) and D to (E, F ) is the same
for the left and right graphs, although C can be learned more effectively through B in the left
graph instead of directly from A. The two-hop propagation can be naturally extended to multi-hop
propagation by looking at higher order neighbors. In consideration of simplicity and efficiency, we
only explore propagation of up to two-hop.
K-Means clustering for diversity and coverage. The instances to be selected for labeling shall not
only be representative of its local neighbourhood, but also collectively capture the structure of the
entire unlabeled data. We perform K-Means clustering that partitions the n instances into m (≤n)
clusters S = {S1, S2, ..., Sm} in which each instance belongs to the cluster with the nearest cluster
centroid µ, serving as a prototype of the cluster (Lloyd, 1982; Forgy, 1965). m is approximately
equal to our annotation budget. The objective is to find S that minimizes the within-cluster sum of
squares (WCSS) (Kriegel et al., 2017):
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arg min
S

=

m∑
i=1

∑
V ∈Si

‖V − µi‖2 = arg min
S

m∑
i=1

|Si|Var(Si) (5)

We then query one instance from each cluster according to their utility score evaluated according
to Eqn. 4. The m centroids of K-Means clustering are initialized randomly and optimized with the
EM algorithm (McLachlan & Krishnan, 2007) until convergence.

Figure 5: Sampling with regularization (right) can produce more
uniform and diversified queries. On the contrary, the queries ac-
quired without regularization (left) are usually located in a small
dense region and have high correlations, losing the overall repre-
sentativeness. (better viewed in color)

Regularization with inter-
cluster information passing
channels. We observe that our
instance sampler still selects
samples very close to other
selected samples in adjacent re-
gions (Fig. 5), especially when
the densest area in a cluster is at
a corner or boundary.
To avoid such repetitive sam-
pling that reduces the total in-
formation carried in the labeled
set, we apply an iterated reg-
ularization algorithm. At each
iteration, different clusters ex-
change information about other
clusters’ selected samples and gradually adjust their selections for better diversity and coverage.
Specifically, after the original sample selection, we compute a regularizer Reg(Vi, t) for each
sample Vi based on the distance from each candidate to all members of the selected query set
V̂t−1 = {V̂ t−1

1 , ..., V̂ t−1
m } at iteration t−1, except for the query in the same cluster Si, with a

tunable strength hyperparameter α:

Reg(Vi, t) =
∑

V̂ t−1
j 6∈Si

1

‖Vi − V̂ t−1
j ‖α

. (6)

The regularizer is updated with an exponential moving average with momentum mreg:

R̄eg(Vi, t) = mreg · R̄eg(Vi, t− 1) + (1−mreg) · Reg(Vi, t). (7)

The new samples are chosen by subtracting the regularizer for that sample multiplied by a hyperpa-
rameter λ. λ controls the trade-off between diversity and informativeness: A low λ leads to samples
close to each other and of low diversity; a high λ leads to uniformly distributed samples of low
informativeness. After that, at iteration t, we select sample i with maximum regularized utility
U ′(Vi, t) in each cluster, formulated as:

U ′(Vi, t) = U(Vi)− λ · R̄eg(Vi, t). (8)

The selection formed at the last iteration is our final choice. By adding a soft regularization, this for-
mulation does not just push a data point selection away to a certain distance, but it considers tradeoff
between diversity and representativeness and asks each selection to find another mode in the cluster
which potentially brings new information if labeled, greatly improving the overall informativeness.
We refer readers to Alg. 1 in appendix for pseudo-code of the regularization algorithm.
For measuring the regularizer on large datasets, calculating the distances between a sample and all
queries in V̂t−1 is no longer feasible. Fortunately, only selected samples that are close to the current
candidate make a big difference in Reg(Vi, t). Therefore, we set a horizon h, defined as the number
of nearest neighbor selections from V̂t−1 to be considered, for large datasets. We found that h
ranging from 32 to 128 generally work well on 128-dim feature on MoCo or CLD and 512-dim
feature on CLIP and changing h does not make a difference.
Acceleration with general-domain multi-modal models. We further improve our method on two
aspects: 1) We need to train a self-supervised model for each new dataset, which is time-consuming
and could potentially delay data annotation in real-world applications. 2) Self-supervised methods
do not model semantic information explicitly, and datasets with varying intra-class variance assume
regions of various sizes and may be treated unexpectedly. To address these issues, we resort to a
large pretrained model that encodes semantics without manual human annotation.
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We make use of publicly-available CLIP (Radford et al., 2021) models, a collection of models trained
on Internet-crawled large-scale data with a wide general domain, and use CLIP’s image model as
feature extractor. We observe that such substitution does not hurt and even helps the performance
when annotation budget is large when compared to self-supervised models, demonstrating the effec-
tiveness of making use of semantic information. Since we do not need to train models with target
dataset, the whole sample selection process could complete in 0.5 hours on a commodity server with
one GPU, which illustrates the possibility of our methods without delaying the schedule of human
annotation or modifying the annotation pipeline to wait for self-supervised models and enables it for
industry on real-world dataset collection. More discussions on CLIP can be found in Appendix A.4.

4 EXPERIMENTS

In this section, we perform a comprehensive evaluation on the proposed Data-Centric Semi-
Supervised Learning (DC-SSL) integrated with two mainstream SSL approaches: pseudo-label-
based FixMatch (Sohn et al., 2020) and approach based on transfer learning (Chen et al., 2020b).

4.1 CIFAR-10: EXTREMELY LOW-SHOT SETTINGS

Accuracy (%) of Last Epoch (Best Epoch)
Sample Selection 40 labels 100 labels 250 labels
Random 82.94±9.77 (86.67±4.71) 88.72±4.61 (91.32±2.05) 93.28±0.04 (93.69±0.05)
DC-SSL (Ours) 91.10±0.95 (91.27±0.95) 93.22±0.31 (93.55±0.33) 93.63±0.14 (93.92±0.15)
∆ (DC-SSL - Random) ↑ 8.16 (↑ 4.60) ↑ 4.50 (↑ 2.23) ↑ 0.35 (↑ 0.23)
Stratified †* 88.61±3.35 90.19±2.24 94.93 ± 0.33

Table 1: CIFAR-10 experiments with pseudo-label-based SSL method FixMatch (Sohn et al., 2020),
with 3 different folds. †: not a fair comparison with us because it assumes balanced labeled data
available and leaks information about ground truth labels. * indicates results reported in FixMatch.
Note that the 0.35% improvement in 250 label task is not marginal, since 250 labels to 4000 labels
(16×) only leads to around 0.7% improvement as reported in FixMatch.

Setup. We evaluate both approaches on low-shot settings from 40 samples to 250 samples in total
(4 to 25 shots per class on average). We also re-evaluate FixMatch with random sampling as a
fair comparison. Since our work is data-centric, we follow the same training recipe unless stated.
Detailed setup is in Appendix A.7.
Main Results. Pseudo-label-based SSL. Three charming properties of DC-SSL are observed in the
CIFAR-10 experiments: efficiency, stability and counter-collapsing. In 40/100 labels task, collaps-
ing happens since outliers could mislead the network into classifying a range of samples to a wrong
class, which further generates wrong pseudo-labels and misleads the classifier. Our method reduces
this effect by selecting labels that are both representative and diverse, shown by reducing the differ-
ence between best and last epoch from 3.73% to negligible in 40 samples task. In 250 samples task,
although FixMatch already performs well, we are able to push the limit further by a small amount. In
40 samples task, two of first 5 seeds of random selection has labels from fewer than 10 classes and to
better understand the effect of our methods, we skip these two seeds in random selection, whereas it
does not occur in our method, even when we sample 100 times with 100 seeds. Transfer-learning-
based SSL. Since transfer learning only considers labeled samples in fine-tuning stage, the quality
of the trained classifier greatly depends on selected samples’ quality when compared to FixMatch.
Table. 2 shows that our improvement is prominent especially when the number of selected samples
is low. In 40 (250) labels case, we are able to achieve a 15.5% (2.7%) improvement.

4.2 IMAGENET

Setup. To further evaluate the effectiveness of our method on large-scale datasets with more classes.
We perform evaluation of our method on ImageNet (Russakovsky et al., 2015) with about 1.28M
images and 1k classes. We perform supervised learning (SL) and SSL on both 1% labeled data
(12820 samples) and 0.2% (2911 samples). More detailed setup on ImageNet are in Appendix A.8.
Main Results. As summarized in Table 3, samples selected from both MoCo and CLIP models
boost the performance of SL and SSL. In 1% case, DC-SSL provides 1.2% to 3.8% (2.8% to 3.4%)
gains in SL (SSL) setting. What is more interesting is the 0.2% setting, where our method leads
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Sampling Methods 40 Labels 100 Labels 150 Labels 250 Labels
Random 60.8 ± 3.2 73.7 ± 2.5 76.2 ± 2.2 79.4 ± 1.7
DC-SSL (Ours) 76.3 ± 1.6 ↑ 15.5 79.0 ± 0.3 ↑ 5.3 80.8 ± 0.5 ↑ 4.6 82.1 ± 0.3 ↑ 2.7
Stratified † 66.5 ± 1.6 74.5 ± 0.8 78.3 ± 1.1 80.4 ± 0.8

Table 2: CIFAR-10 experiments with transfer-learning-based SSL method, as proposed in Sim-
CLRv2 (Chen et al., 2020b), with the mean and std of 5 different folds and 2 runs in each fold. †:
assumes prior label information and thus not a fair comparison.

Supervised Learning Semi-supervised Learning
Sampling Methods 1% 0.20% 1% 0.20%
Random 23.5 6.0 58.8 34.3
DC-SSL with MoCo (Ours) 24.7 ↑ 1.2 9.2 ↑ 3.2 61.6 ↑ 2.8 48.6 ↑ 14.3
DC-SSL with CLIP (Ours) 27.3 ↑ 3.8 9.7 ↑ 3.7 62.2 ↑ 3.4 47.5 ↑ 13.2
Stratified † 22.9 6.3 60.9∗ 41.1

Table 3: ImageNet experiments with fully supervised training and SSL algorithm FixMatch (Sohn
et al., 2020) and Exponential Moving Average Normalization (EMAN) (Cai et al., 2021). * indicates
results reported in EMAN. Note that † is not a fair comparison, as explained earlier.

to an improvement ranging from 13.2% to 14.3%. We found that samples selected from MoCo
performs 1.1% better than samples from CLIP in the FixMatch setting. This is, in part, due to
mismatch between parameter initialization (MoCo) and the feature space used for the sampling
process (CLIP). However, for 1% case, we find that this dependency disappears and samples with
CLIP perform 0.6% better than MoCo counterparts, which demonstrates the benefits of using a
model with explicit semantic information during pretraining with sufficient general knowledge.
Universality in Results with CLIP: Since CLIP does not use ImageNet samples in training and the
downstream SSL task has never seen the CLIP model in training either, we stress the importance of
universality: it means that 1) when a new dataset is collected, we could use a general model with
knowledge of the target domain to select samples without waiting for self-supervised learning (see
Sec. 4.4); 2) different from active learning, where sample selection process is strictly coupled with
training, our annotated dataset works universally rather than only with the model used to select it.

4.3 COMPARISON WITH ACTIVE LEARNING AND SSAL METHODS

Following previous deep AL/SSAL works, we mainly use CIFAR-10 for comparison. Our method is
under disadvantage in comparison because we request annotation only once, but we still outperform
previous AL/SSAL algorithms with higher label efficiency. We first compare with AL. Since AL
only utilizes labeled samples, even recent AL algorithm Cho et al. (2021) requires at least 10,000
samples to achieve 90% accuracy (250× more than ours). For fair comparison, we attempt to allo-
cate 20 samples for initial learning, use AL to select another 20 samples, and utilize the 40 samples
in SSL. After implementation of Yoo & Kweon (2019), we found that since 20 is smaller than batch
size 128, AL model has about 20% accuracy given 20 initial labeled samples and thus could not
serve as a useful comparison. We then compare with SSAL. Similar to our work, SSAL (Gao et al.,
2020; Song et al., 2019) uses labeled samples with SSL methods. However, it still requires initial
annotation from random sampling. Since random sampling is not efficient on low-shot selection
(Fig. 2 (b)), to cover all classes in initial random sampling, such methods typically require much
more samples than DC-SSL as in Table 4. In contrast, our method could select samples efficiently
even in low-shot. We believe that it is possible to further improve our work if we use DC-SSL for
initial selection in SSAL and we leave it to future works due to the complexity of both algorithms.

4.4 ABLATION STUDY AND ANALYSIS

Component Analysis. To systematically investigate the contributions of each component we pro-
pose, we evaluate our method with an extensive ablation study. We adhere to previous settings unless
stated. Illustrated in Fig. 6, applying the vanilla version of our method based on first order scores
achieves large improvements on both SSL methods, especially transfer learning approach, where
the accuracy rises by 11.9%. Adding regularization gives another 4.6% and 3.3% by contributing to
sample diversity. In the end, 2-hop propagation leads to a marginal of 1.2% and 0.3% improvement
on both methods. These contributions together lead to our final 8.2% and 15.5% improvements.
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Sample Selection Accuracy (%) # Initial Labels* Label Budget
Core-Set (Sener & Savarese, 2017) † 48.33 ± 0.49 100 150
Core-Set † 50.96 ± 0.45 100 200
CBSSAL (Gao et al., 2020) 87.57 ± 0.31 100 150
DC-SSL (Ours) 91.10 ± 0.95 (↑ 3.53) 0 40
DC-SSL (Ours) 93.22 ± 0.31 (↑ 5.65) 0 100
Core-Set † 53.77 ± 0.49 100 250
Core-Set + SSL † 88.75 ± 0.42 100 250
CBSSAL 90.23 ± 0.39 100 250
MMA (Song et al., 2019) 91.69 ± 0.52 250 500
MMA + k-Means 91.46 ± 0.38 250 500
DC-SSL (Ours) 93.63 ± 0.14 (↑ 2.17) 0 250

Table 4: Comparison with active learning methods. Note that although MMA also experimented
with k-Means, it does not benefit their performance. †: from Gao et al. (2020). *: We give all
queries in one round and do not need initial labels. CBSSAL considers interacting with FixMatch
for better performance, however DC-SSL can still yield better performance without any initial labels.
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Figure 6: Illustration of our methods with
different ablations on CIFAR-10 with 40
samples. In both SSL methods, applying 1-
hop propagation gives a large improvements
(11.9% and 2.9%, respectively), and regular-
ization as well as 2-hop propagation together
give an additional improvement of 3.6% on
Transfer Learning and 5.3% on FixMatch.

Random
kNN Max

Ball Counts
*: (1-hop)

*: (1-hop+Reg)

*: (2-hop+Reg)
60

65

70

75

Ac
cu

ra
cy

 (%
)

60.8

67.3

70.7
72.8

76.0 76.3

Figure 7: Illustration of the behavior of different
utility estimations. KNN Max refers to vanilla K-
NN density estimation that takes the max distance of
K nearest-neighbors. Ball Counts counts neighbors
within a radius. Our methods (with *): 1-hop is our
method without regularization or second order term.
1-hop+Reg adds regularization and 2-hop+Reg adds
a second order propagation.

Formulation Analysis. We also systematically evaluated variants of our formulations used in rep-
resentativeness estimation, as presented in Fig. 7, by comparing different ablations of our methods
to other metrics. We compare against two common metrics: KNN Max (vanilla K-NN) and Ball
Counts, which uses neighbor counts within a radius. Although all three methods are much better
than random selection, our metric leads to the best outcome. More ablation studies on hyperparam-
eters, such as weight of regularizer and number of neighbors, can be found in Appendix A.5.
Run Time Analysis. We only add a negligible delay to label selection compared to SSL methods.
On ImageNet, we introduce only less than 1 GPU hour overhead when compared to about 2300 GPU
hours with the original FixMatch pipeline, which is in turn, much less than the time for labelling 1.28
million images with 1k categories. With CLIP, the data selection stage could start as soon as data
is available, which enables informative labeling with very low delay. Compared to active learning
which requires up to 10 rounds of sequential human annotations, we only request annotation once,
consistent to SSL pipelines. More discussions are in Appendix A.6.

5 SUMMARY

Existing SSL methods are model-centric, focusing on models and algorithms that integrate both la-
beled and unlabeled data. Instead, our DC-SSL is the first work that turns to labeled data selection in
SSL in an unsupervised way. By simply optimizing what is fed into a model, we demonstrate signif-
icant gains on annotation efficiency, model stability and accuracy on all experimented benchmarks.
Our work is also in a stark contrast to supervised data selection for active learning. Our completely
unsupervised data selection can be easily extended to other weakly supervised learning settings.
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REPRODUCIBILITY STATEMENT

In order to make our results reproducible, we listed all used parameters and changes we applied for
training in the Section A.7 and Section A.8 of Appendix and Section 4.1, 4.2 and 4.3 of Experiment,
and cited the corresponding papers on which our method is build on which provide publicly available
Github repositories themselves. We are committed to reproducible results reported in the paper and
public code release.
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A APPENDIX

Algorithm 1 The iterative regularization algorithm

Require:
{U(Vi)|Vi ∈ V}: The unregularized utility for each vertex Vi
λ: weight for applying regularization
mreg: momentum in exponential moving average
l: the number of iterations

Procedure:
R̄eg(Vi, 0)← 0, ∀Vi ∈ V
V̂0 ← samples with largest U(Vi) in each cluster
for t = 1 to l do

for all Vi ∈ V do
Reg(Vi, t)←

∑
V̂ t−1
j 6∈Si

1
‖Vi−V̂ t−1

j ‖α

R̄eg(Vi, t)← mreg · R̄eg(Vi, t− 1) + (1−mreg) · Reg(Vi, t)
U ′(Vi, t)← U(Vi)− λ · R̄eg(Vi, t)

end for
V̂t ← samples with largest U ′(Vi, t) in each cluster

end for
return V̂l

A.1 DETAILED DESCRIPTION FOR REGULARIZATION ALGORITHM

We summarized the regularization algorithm in pseudo-code in Alg. 1. In Alg. 1, we first obtain
V̂0, the selection without regularization, and set the moving average regularizer R̂eg(Vi, 0) to 0 for
every Vi ∈ V; then in each iteration, we update R̂eg(Vi, t) with moving average from a closeness
measurement to other previously selected samples, where t is the index of current iteration. We re-
select samples according to regularized utility at the end of each iteration, with λ being a balancing
factor. In the end, the selection from the last iteration is returned.

A.2 OVERVIEW ON UNSUPERVISED REPRESENTATION LEARNING

In self-supervised learning stage, we aim to learn a mapping function f such that in the f(x) fea-
ture space, the positive instance x′i is attracted to instance xi, meanwhile, the negative instance xj
(with j 6= i) is repelled, and we model f by a convolutional neural network, mapping x onto a d-
dimensional hypersphere with L2 normalization. To make a fair comparison with previous arts (Cai
et al., 2021), we use MoCo v2 (Chen et al., 2020c) to learn representations on ImageNet with the
instance-centric contrastive loss:

C
(
fi, f

+
i , f

−
6=i

)
=− log

exp(< fi, f
+
i >/T )

exp(< fi, f
+
i >/T ) +

∑
j 6=i

exp(< fi, f
−
j >/T )

(9)

where T is a regulating temperature. Minimizing it can be viewed as maximizing the mutual in-
formation (MI) lower bound between the features of the same instance (Hadsell et al., 2006; Oord
et al., 2018). For experiments on ImageNet, the MoCo model pre-trained for 800 epochs is used for
initializing SSL model, as in (Cai et al., 2021).
The feature spaces of CIFAR-10 data we work on are extracted with CLD (Wang et al., 2021). The
instance-group contrastive loss is added in symmetrical terms over views xi and x′i:

L(f ;TI , TG, λ)=
∑
i

C(fI(xi), vi, v6=i;TI)+C(fI(x
′
i), vi, v6=i;TI)

+λ
∑
i

C(fG(x′i),MΓ(i),M6=Γ(i);TG)+C(fG(xi),M
′
Γ′(i),M

′
Γ′(i);TG)

(10)

Cross-level discrimination of Eqn. 10 (second term) can be understood as minimizing the cross
entropy between hard clustering assignment based on fG(xi) and soft assignment predicted from
fG(x′i) in a different view, where fG (fI ) is instance (group) branch, and MΓ(i) denotes the cluster
centroid of instance xi with a cluster id Γ(i) (Wang et al., 2021). Empirically, we found that CLD has
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great feature quality on CIFAR-10 and better respects the underlying semantic structure of data. To
be consistent with original FixMatch settings, our semi-supervised learner on CIFAR-10 is trained
from scratch, without using pretrained weights.

A.3 USING EUCLIDEAN DISTANCE OR COSINE SIMILARITY?

Because the features of all instances are projected to a unit hypersphere with L2 normaliza-
tion, theoretically, maximizing the cosine similarity between two nodes is equivalent to maximiz-
ing the inverse of Euclidean distance between two nodes: arg maxi,j(‖f(xi) − f(xj)‖2)−1 =

arg maxi,j(2 − 2 cos(f(xi), f(xj)))
−1 = arg maxi,j(cos(f(xi), f(xj))). However, empirically,

using maximizing the inverse of Euclidean distance 1/d(·) as the objective function performs better
than maximizing the cosine similarity cos(x). The reason is that, when two nodes are very close to
each others, 1/d(·) is more sensitive to the change of its Euclidean distance, whereas cos(·) tends
to be saturated. Therefore, the function 1/d(·) has the desired property of non-saturating and can
better focus on the distance difference with closest neighbors.

A.4 GENERAL-DOMAIN MULTI-MODAL MODELS

Although our method works well in both small and large scale datasets, as we will demonstrate in
Section 4, there are still two interesting aspects that we would like to explore. First, in our approach,
self-supervised models need to be re-trained for each new dataset, which is time-consuming and
could potentially delay the schedule for data annotation in real-world industry. In addition, unsuper-
vised models do not model semantic information explicitly, which may lead to confusion that could
potentially be mitigated (e.g. datasets with varying intra-class variance will take regions of different
sizes and may be treated differently in an unexpected way).
To address these issues, we put our focus on a large pretrained model that encodes semantic in-
formation. However, a large fully-annotated dataset, which is required to train a large supervised
model, is very costly to obtain, and labelling the target dataset to train a supervised model defeats
our purpose of requiring only a small amount of annotation on the target dataset. Fortunately, the
availability of large-scale text-image pairs online makes it possible to train a large-scale model that
encodes images in the general domain with semantic information. In this paper, we make use of
publicly-available CLIP (Radford et al., 2021) models, a large-scale collection of models trained on
Internet-crawled data with a wide general domain and use CLIP’s image model as feature extractor.
As showed in Section 4, using models trained on multi-modal datasets answers these two issues.
Even through CLIP is never trained on our target dataset, nor does the categories in its training set
exactly matches the dataset we are using, using it to select does not degrade our performance of
sample selection and labeling pipeline. This indicates that the effectiveness of our label selection
does not necessarily depend whether same pretrained model is used in the downstream. In addition,
we observe that such substitution even helps with a slightly larger annotation budget, demonstrating
the effectiveness of making use of semantic information. Since we only perform inference on the
CLIP model, the whole sample selection process could complete in 0.5 hours on a commodity server
using one GPU, indicating the possibility of our methods without delaying the schedule of human
annotation or modifying the annotation pipeline and enables it to be used by industry on real-world
dataset collection.
Note that although CLIP supports zero-shot inference by using text input (e.g. class names) to
generate weights for classifier, it is not always possible to define a class with names or even know
all the classes beforehand. Since we only make use of the image part of the CLIP model, we do not
make use of prior text information (e.g. class descriptions) that are sometimes available in the real
world. We leave better integration of our methods and zero-shot multi-modal models to future work.

A.5 HYPERPARAMETER ANALYSIS

We focus on two most important hyperparameter here: λ, the weight for regularization, and
k, the number of neighbors we use for kNN. For hyperparam λ, we evaluated label selections
with different λ values used in regularization. In this series of experiments, we select λ ∈
{0, 0.1, 0.5, 1.0, 3.5, 7.0}, where 0 indicates no regularization and larger λ indicates a stronger reg-
ularization. We then evaluate the mean accuracy from 10 runs, the standard deviation of classes,
the difference with selection without regularization (i.e., λ = 0), and mean first order metric. We
observe that as λ gets larger, we select more different samples compared to the case without regular-
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Figure 8: Effect of different hyperparameters, λ (Fig.a,b,c) and K (Fig.d). λ balances representative
and uniformity across the feature space. Larger λ indicate more uniform choices but potentially
less representative samples, or vice versa. Larger K indicates that we are taking more neighbors
into account when estimating the representativeness, which reduces variance but may consider non-
relevant samples as being represented. Due to this trade-off, considering more neighbors usually
leads to better representativeness estimates, until K is greater than its optimal choice, 400.

ization, and instance standard deviation gets lower since we are sampling more uniformly across the
space. However, as a trade-off, we could not sample from area which has as high density as before
because selecting samples from that area leads to selections that are close to each other, leading to
high penalty. Here, uniformity and representativeness show a trade-off and the optimal choice is to
balance each other at λ = 0.5, which is demonstrated by the mean accuracy. For hyperparam k, we
find that although initially adding k contributes to a better representation estimation by considering
more neighbors, adding too much to k makes the selection algorithm lose focus. We find that k
around 400 is optimal for our scenario.

A.6 RUN TIME DISCUSSION

CLD only takes about 4 hours to train on CIFAR-10 on a single GPU and sample selection with
our method takes less than 10 minutes on CLD with one GPU. This takes significantly less GPU-
time than FixMatch (120 GPU hours with 4 GPUs), which is, in turn, much less than the time for
labelling the whole dataset of 50, 000 samples. On ImageNet, MoCo takes about 12 days with 8
GPUs to achieve 800 epochs (He et al., 2020), our algorithm takes about an hour on one GPU to
select samples for both 1% and 0.2% labels and in the end, FixMatch takes another 20 hours on
4 GPUs to train. Although it sounds like we are using a lot of compute time just to train a self-
supervised learning model for selecting what samples to annotate, the fact is that FixMatch requires
a self-supervised pretrained checkpoint to work well when the number of labeled samples is low, as
demonstrated in Cai et al. (2021). The only compute overhead introduced is the sample selection
process, which is negligible when compared to the other two stages. In addition, shown in our
experiments, CLIP, as a model trained on a general and diverse image-text dataset, could also be
used to select samples with comparable and sometimes even better samples to label, which indicates
that the self-supervised training stage is not required in our method for sample selection.

A.7 EXPERIMENT SETUP FOR CIFAR-10

Setup for FixMatch. To maintain consistency with the original FixMatch (Sohn et al., 2020), we
evaluate FixMatch trained on CIFAR-10 with 220 steps in total. To illustrate the ability of our
algorithm to select informative samples, we evaluate both approaches on an extremely-low setting
from 40 samples to 250 samples in total (4 shots to 25 shots per class on average). Since the original
FixMatch is evaluated with stratified sampling on CIFAR-10, we also retrain FixMatch with random
sampling with the same number of samples in total as a fair comparison. Unless otherwise stated, we
train FixMatch with a learning rate of 0.03, and weight decay 10−3 on 4 Nvidia RTX 2080 Ti GPUs
with batch size 64 for labeled samples and with 220 steps in total. All experiments are conducted
with same training and evaluation recipe for fair comparisons.
Setup For Transfer Learning. In addition to pseudo-label based semi-supervised learning methods,
we also evaluate our algorithm on two-stage SSL based on transfer learning (Chen et al., 2020b) by
fine-tuning the linear layer of a ResNet-18 pretrained with self-supervised learning algorithm CLD
(Wang et al., 2021). Specifically, we fine-tune the linear layer on a ResNet-18 trained with CLD
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(Wang et al., 2021). Since it is easy for the network to overfit the few-shot labeled samples, we freeze
the backbone and fine-tune only the linear layer. We use SGD with learning rate 0.01, momentum
0.9, and weight decay 10−4 for 5 epochs because longer training time will lead to overfitting.

A.8 EXPERIMENT SETUP FOR IMAGENET

To evaluate the effectiveness of our method on large-scale datasets with more classes, we perform
evaluation of our method on ImageNet (Russakovsky et al., 2015) with approximately 1 million
images and 1000 classes. We perform supervised learning and semi-supervised learning on both
1% labeled data (12820 samples) and the extremely data-scarce setting 0.2% (2911 samples). For
each of these settings, we use either a MoCo-pretrained model with Exponential Moving Average
Normalization (EMAN) (Cai et al., 2021) or a CLIP ViT/16 model (Dosovitskiy et al., 2020) to select
samples to annotate. For ImageNet 1%, we run K-Means clustering with 12900 clusters, which is
slightly more than 12820 samples we are selecting, because we observe that there will sometimes be
empty clusters. For ImageNet 0.2%, we use the same number of clusters as the number of samples
that we will select. In the supervised learning setting, we use a batch size of 256, learning rate
0.01, and weight decay 10−3 and train a ResNet-50 for 1000 epochs, with learning rate decayed by
0.1 at 700, 800, and 900 epochs. Since supervised learning only uses labeled data, training for 1000
epochs with 1% data takes about the same time to train the same network for 10 epochs with full data
labeled. In the semi-supervised learning setting, we use FixMatch Sohn et al. (2020) with EMAN
as our semi-supervised learning algorithm, and to maintain consistency with prior works, we use
the same setting as in Cai et al. (2021) besides the selection of input labeled data, unless otherwise
stated. Specifically we use a learning rate of 0.03 with weight decay 10−4and train a ResNet-50
for 50 epochs with a MoCo (He et al., 2020) model as pretrained model. We perform learning rate
warmup for 5 epochs and decay the learning rate by 0.1 at 30 and 40 epochs. Note that we load
MoCo model as the pretrained model for FixMatch for fair comparison so that the only difference
between MoCo and CLIP setting is the sample selection.

17


	Introduction
	Related Work
	Data-centric Semi-supervised Learning
	Problem Setup
	Unsupervised Representation Learning
	Unsupervised Sample Selection for Annotation

	Experiments
	CIFAR-10: Extremely Low-shot Settings
	ImageNet
	Comparison with Active Learning and SSAL Methods
	Ablation Study and Analysis

	Summary
	Appendix
	Detailed Description for Regularization Algorithm
	Overview on Unsupervised Representation Learning
	Using Euclidean Distance or Cosine Similarity?
	General-domain Multi-modal Models
	Hyperparameter Analysis
	Run Time Discussion
	Experiment Setup For CIFAR-10
	Experiment Setup for ImageNet


