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“A joyful Corgi with a fluffy coat and perky ears frolics in a sunlit park, the golden hues of sunset casting a warm glow on the
scene. The camera zooms in on the Corgi's expressive face, capturing its bright eyes and wide, happy grin...”

B
5

4 g
S d Seed (Ours) <\ 2
BANSA Score | §0.33 [P |

“A majestic brown Vbeor, with its thick fur glistening in the dappled sunlight, begins its ascent up a tbwering pine tree in a den“se
forest. The bear's powerful claws grip the rough bark as it climbs higher, its muscles rippling with each movement...”

Figure 1: Random Seed vs. Ours. We propose ANSE, a noise selection framework, and the BANSA
Score, an uncertainty-based metric. By selecting initial noise seeds with lower BANSA scores, which
indicate more certain noise samples, ANSE improves video generation performance.

ABSTRACT

The choice of initial noise strongly affects quality and prompt alignment in video
diffusion; different seeds for the same prompt can yield drastically different results.
While recent methods use externally designed priors (e.g., frequency filtering or
inter-frame smoothing), they often overlook internal model signals that indicate
inherently preferable seeds. To address this, we propose ANSE (Active Noise
Selection for Generation), a model-aware framework that selects high-quality
seeds by quantifying attention-based uncertainty. At its core is BANSA (Bayesian
Active Noise Selection via Attention), an acquisition function that measures en-
tropy disagreement across multiple stochastic attention samples to estimate model
confidence and consistency. For efficient inference-time deployment, we intro-
duce a Bernoulli-masked approximation of BANSA that estimates scores from
a single diffusion step and a subset of informative attention layers. Experiments
across diverse text-to-video backbones demonstrate improved video quality and
temporal coherence with marginal inference overhead, providing a principled and
generalizable approach to noise selection in video diffusion. See our project page:
https://anse—-anonymous.vercel.app/.
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Figure 2: Conceptual comparison of noise initialization. (a) Prior methods (Wu et al., 2024; [Yuan|
refine noise via frequency priors and full diffusion sampling, leading to high cost. (b)
Our method instead selects noise seeds by estimating attention-based uncertainty at the first denoising
step, enabling efficient, model-aware selection.

1 INTRODUCTION

Diffusion models have rapidly established themselves as a powerful class of generative models,
demonstrating state-of-the-art performance across images and videos (Rombach et al.| 2022; [Esser]
et al., [2024; Xie et al., 2024} |Chen et al., 2024bfla; [Wang et al.l 2025} [Yang et al., 2024; Zheng et al.,
2024 Team, 2025)). In particular, Text-to-Video (T2V) diffusion models have received increasing
attention for their ability to generate temporally coherent and visually rich video sequences. To
achieve this, most T2V model architectures extend Text-to-Image (T2I) diffusion backbones by
incorporating temporal modules or motion-aware attention layers (Blattmann et al., 2023} [He et al.,
2022}, Wang et al.}[2023} [Chen et al.} 2023} 20244} |Guo et al.}[2024b} [Wang et al.,[2025). Furthermore,
other works explore video generative structures, such as causal autoencoders or video autoencoder-
based models, which aim to generate full video volumes rather than a sequence of independent
frames (Hong et al., 2022} [Yang et al| 2024} [HaCohen et al.l 2024} [Kong et al.| 2024} Zheng et al.,

2024; [Team, 2025).

Beyond architectural design, another promising direction lies in improving noise initialization at
inference time for T2I and T2V generation (Guo et al.,[20244; [Eyring et al.}, 2024} [Chen et all,2024c}
[2025). This aligns with the growing trend of inference-time scaling, observed not only in
Large Language Models (Brown et al, 2024} [Snell et al.} 2024)) but also in diffusion-based generation
systems 2025)). Due to the iterative nature of the diffusion process, the choice of initial
noise profoundly influences video quality, temporal consistency, and prompt alignment
2023; [Wu et al, [2024; [Qiu et al} [Yuan et al, 2025). As illustrated in Figure[I] the same prompt
can lead to drastically different videos depending solely on the noise seed, motivating the need for
intelligent noise selection.

Recent approaches tackle this by introducing external noise priors. PYoCo [2023) enforces
inter-frame dependent patterns for coherence but requires heavy fine-tuning. FreeNoise (Qiu et al.)
reschedules noise across time with a fusion strategy, Freelnit (Wu et al.| [2024) preserves low-
frequency components via frequency filtering, and FreqPrior (Yuan et al.,[2025) extends this with
Gaussian-shaped priors and partial sampling. While effective, these methods rely on external priors
and repeated full diffusion passes, while ignoring internal model signals that identify inherently
preferable seeds.

To address this limitation, we propose a model-aware noise selection framework, ANSE (Active
Noise Selection for Generation), grounded in Bayesian uncertainty. At the core of ANSE is BANSA
(Bayesian Active Noise Selection via Attention), an acquisition function that identifies noise seeds
inducing confident and consistent attention behaviors under stochastic perturbations. A conceptual
comparison between our method and prior frequency-based approaches is illustrated in Figure [2}
highlighting the difference between external priors and model-informed uncertainty estimates.

Unlike BALD [2017), which estimates uncertainty from classification logits, BANSA
measures entropy in attention maps, arguably the most informative signals in diffusion. It compares
the mean of per-pass entropies with the entropy of the mean map, capturing both uncertainty and
cross-pass disagreement. A lower BANSA score indicates more confident, consistent attention and
empirically correlates with more coherent video generation (Fig. [T). To make BANSA inference-
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friendly, we approximate it with Bernoulli-masked attention, yielding multiple stochastic attention
samples from a single forward pass. We further cut cost by evaluating early denoising steps and only
a subset of informative layers selected via correlation analysis. Our contributions are threefold:

» We present ANSE, the first active noise selection framework for video diffusion, grounded
in a Bayesian formulation of attention-based uncertainty.

* We introduce BANSA, an acquisition function that measures attention consistency under
stochastic perturbations, enabling model-aware noise selection without retraining.

* Our method improves video quality and temporal consistency across diverse text-to-video
backbones, with only marginal inference overhead.

2 PRELIMINARY

Video Diffusion Models Diffusion models (Ho et al., [2020; |Song et al.,|2021b) have achieved
strong results across generative tasks. In T2V, pixel-space diffusion is costly, so most video diffusion
models adopt latent diffusion and operate in a compressed latent space. A video autoencoder with
encoder £ and decoder D reconstructs x as x = D(E(x)). Let zg = £(x). The forward diffusion
then progressively adds noise over time:

:\/dtZ0+\/1—dt€, ENN<O,I), tzl,...,T,

where &; is a pre-defined variance schedule. To learn the reverse process, a denoising network €y is
trained using the denoising score matching loss (Vincent, 201 1)):

‘CG = Ezt,e,t [HEO(Ztucvt) - 6||2:| )

where c is the conditioning text. Sampling starts from Gaussian noise zr ~ N (0,I) and uses a
deterministic DDIM solver (Song et al.}[2021a). Each step updates as:

Zi—1 = Var 2o(t) + /1 — a—1 €9(z¢, C, 1),

where the denoised latent estimate zg(t) = 2= 17\&/%9(2"’”) is obtained using Tweedie’s for-

mula (Efron, 2011} [Kim & Ye,|2021)). This iterative process continues until £ = 1, yielding the final
denoised latent zg, which is decoded into a video via D.

Bayesian Active Learning by Disagreement (BALD) Active learning selects the most informative
samples from an unlabeled pool to improve training. Acquisition functions are commonly uncertainty-
based (Houlsby et al., 2011} |Gal et al., 2017} |[Kirsch et al., 2019; (Yoo & Kweon, |2019) or distribution-
based (Mac Aodha et al.| [2014; Yang et al., 2015} |Sener & Savarese, [2017;Sinha et al.,|2019), and
some use external modules such as auxiliary predictors (Yoo & Kweonl, 2019 [Tran et al., [2019;
Kim et al.,[2021). While most prior work targets image classification, we adapt uncertainty-based
acquisition to text-to-video generation without additional models.

Predictive entropy is widely used, but it reflects data noise and does not isolate parameter uncertainty.
BALD instead measures epistemic uncertainty via the mutual information between predictions y and
parameters 6:

BALD(x) = H[p(y[x)] = Epoipy) [(HIp(y[x, 0)]], e

where H([p] = — > p(y)log p(y) is Shannon entropy (Shannon, 1948). The first term is the entropy
of the mean prediction, and the second is the average entropy across stochastic forward passes. A
high BALD score means predictions are confident yet disagree, indicating high epistemic uncertainty.
Since the posterior over 6 is intractable, BALD is approximated using K stochastic forward passes
(e.g., Monte Carlo dropout):

K

K
mD(x)z?l[[l(Zp(k) y|x]— ZH{ y|x}. 2)
k=1

k=1

We reinterpret BALD for inference-time generative modeling. Rather than selecting samples for
labeling, we apply BALD to rank noise seeds by their epistemic uncertainty. Selecting seeds with
lower BALD scores results in more stable model behavior and leads to higher-quality generations.
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Figure 3: Overview of our BANSA-based noise selection process. Given a text prompt ¢, we
compute BANSA scores for multiple noise seeds {z1, ...,z } using Bernoulli-masked attention
maps from selected layers at an early diffusion step. The seed with the lowest score, indicating
confident and consistent attention, is selected for generation.

3 METHODS

We propose ANSE, a framework for selecting high-quality noise seeds in T2V diffusion based
on model uncertainty (Fig. [2). ANSE centers on BANSA, an acquisition function that transfers
uncertainty criteria from classification to the attention space of generative diffusion models (Sec. [3.1)).
For efficient inference, we approximate BANSA via Bernoulli-masked attention sampling (Sec. |3.2).
To avoid redundancy, we select a representative attention layer using correlation-based linear probing
(Sec.[3.3). The full pipeline appears in Fig.[3

3.1 BANSA: BAYESIAN ACTIVE NOISE SELECTION VIA ATTENTION

We introduce BANSA, an acquisition function for selecting optimal noise seeds in T2V diffusion.
Unlike classifiers with explicit predictive distributions, diffusion models do not expose such outputs,
so we estimate uncertainty in the attention space where text and visual tokens align during generation.
We treat attention maps as stochastic predictions conditioned on the seed z, prompt c, and timestep ¢.
BANSA measures both disagreement and confidence across multiple attention samples, providing a
BALD-style uncertainty criterion tailored to the generative setting.

Definition 1 (BANSA Score). Let z be a noise seed, c a text prompt, and t a diffusion timestep. Let
Q(z,c,t),K(z,c,t) € RV*? denote the query and key matrices from a denoising network eg. The
attention map is computed as:

A(z,c,t) == Softmax (Q(z,c,t) K(z,c,t) ") € RNV, 3)
Let A(z,c,t) = {AD) ... AU denote a set of K stochastic attention maps obtained via forward
passes with random perturbations (e.g., Bernoulli masking). The BANSA score is defined as:
1 & 1 &
— el &) - = (%)
BANSA(z,c,t) == H (K;A ) K;H(A ), (4)

where H(A) == & ZZ\; Zjvzl —A;jlog A;;. This formulation captures both the sharpness (con-
fidence) and the consistency (agreement) of attention behavior. BANSA can be applied to various
attention types (e.g., cross-, self-, or temporal) and allows layer-wise interpretability.

Given a noise pool Z = {z1,...,z}, we select the optimal noise seed that minimizes score:
z" := arg min BANSA(z, ¢, t). 5)
zEZ

A desirable property of BANSA is that its score becomes zero when all attention samples are identical,
reflecting complete agreement and certainty. We formalize this as follows:
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Algorithm 1: Active Noise Selection with BANSA Score for Video Generation

Input: Text prompt ¢, noise pool Z = {z1, ...,z }, timestep ¢, cutoff layer d*
foreach z; € Z do

L Compute BANSA score: BAﬁS\A-ESd* (zi,¢,t) via Eq. (7);

Select optimal noise: z* = arg min,, BANSA-E< 4+ (2;, ¢, t);
return Generate video: O = SampleVideo(z*,c,t);

Proposition 1 (BANSA Zero Condition). Let A(z,c,t) = {AM ..., AU be a set of row-
stochastic attention maps. Then:

BANSA(z,c,t) =0 < AL =...= AF)

The proof is deferred to the Appendix [B] This result implies that minimizing the BANSA score
encourages attention that is both confident and consistent under stochastic perturbations. Empirically,
low BANSA correlates with better prompt alignment, temporal coherence, and visual fidelity. Thus,
BANSA provides a principled, model-aware criterion for noise selection in T2V.

3.2 STOCHASTIC APPROXIMATION OF BANSA VIA BERNOULLI-MASKED ATTENTION

While BANSA is principled for noise selection, computing it with /& independent passes per seed z
is costly. We instead draw K stochastic attention samples from a single pass via Bernoulli-masked
attention. Rather than running K passes, we inject stochasticity directly into the attention scores. For
each k=1,..., K, sample a binary mask mj, € {0, 1}*¥ i.i.d. from Bernoulli(p) and compute

masked attention map, A*)(z, ¢, t) := A(z, ¢, t) ® my, © denotes element-wise multiplication and
rows are re-normalized. Using these K such samples, we define the approximate BANSA:
1 1
- = — AR) (7 ¢ S A(k)
BANSA-E(z,c,t) := H (K > AW (z,c, t)) 7 ’;H(A (z,¢,t)). (6)

k=1

By concavity of entropy, BANSA-E > 0. Although approximate, it efficiently captures attention-level
epistemic uncertainty and serves as a practical surrogate for model-aware noise selection. E] As shown
in Table 4] experimental validation confirms that this method is sufficient for selecting optimal noisy
samples from the model’s perspective.

3.3 LAYER SELECTION VIA CUMULATIVE BANSA CORRELATION

BANSA can be computed at any layer, but behavior differs across depth. Using all layers is costly, so
we truncate at the smallest depth d* where the average BANSA up to d remains highly correlated
with the full-layer score. Given a noise seed z; € Z = {z1,...,z) } and L attention layers, we

compute per-layer scores BANSA-E) (z;, ¢, t) and define the cumulative average up to layer d as:
d
_ 1
BANSA-E<(z;, ¢, t) :== y > BANSA-E!)(z;, c,1). @)
=1
To find d*, we compute the Pearson correlation (Pearson, |1895) between the partial average
BANSA-E<4 and the full-layer average BANSA-E<y, and choose the smallest d such that

Corr (BANS\A—ESd, Bm—ES L) > 7. We validate this procedure using 100 prompts and 10

noise seeds across all evaluated models as detailed in Appendix D] As shown in Figure[7] the correla-
tion quickly stabilizes at a moderate depth, allowing us to select d* without using all layers. We then

define the BANSA score as BAﬁS\A-ESd* to guide noise selection, as summarized in Algorithm
With d* fixed per model, it adds no runtime cost, and BANSA-E<,- (truncated layer) consistently

matches the full-layer score and robustly preserves generation quality across models, confirming its
reliability as a practical surrogate as shown Appendix [D]and [E] (see detail).

'We use “Bayesian” in the sense of epistemic uncertainty estimation, following BALD (Houlsby et al.l 2011),
rather than a full posterior derivation.
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4 ANALYSIS OF BANSA-SELECTED NOISE

In this section, we aim to investigate the property of noise seeds selected by BANSA, and consist of
three experiments which declare our framework and interpret the noise seeds. Our framework does
not seek a universal “golden” seed, but selects the most suitable one for each prompt by minimizing
uncertainty. The effectiveness of a noise seed is therefore prompt-dependent: a seed that improves
one prompt may degrade another.

Experiment 1: Cross-Prompt Behavior. To Table 1: Cross-prompt evaluation of a high-
demonstrate this prompt-dependent behavior, We BANSA seed from A.

select a high-BANSA (worst-performing) seed

from prompt A and applied it to prompts B and ¢ _¥rom To Subject. BackGround
(Table|l) and measures Subject and Background A B  0.8491—0.8703 0.9157—0.9538
Consistency. The seed degraded quality for prompt A C 0.7683—0.7213  0.9368—0.9169

C but improved performance for prompt B, con-
firming that noise effectiveness depends on prompt context rather than intrinsic seed quality.

While Experiment 1 shows how noise effectiveness varies across prompts, the following two experi-
ments examine whether similar patterns also emerge within a fixed prompt.

Experiment 2: Intra-Prompt Attention Consis- Table 2: Pairwise distances within attention
tency. To examine whether BANSA uncertainty re- maps.

lates to attention stability, we generate five samples
per prompt (total 100 prompts), selected the highest- _ 1YP€
and lowest-scoring seeds, and computed pairwise Eu-  Euclid. 1.635 1.567 1.735
clidean distances between their attention maps (Ta-
ble[Z). Low-BANSA seeds showed smaller intra-group distances, indicating more stable and consis-
tent patterns, while high-BANSA seeds exhibited higher variability.

High (intra) Low (intra)  Cross

Experiment 3: Latent Trajectory and Expressiveness. Table 3: Latent stability and visual dy-
Beyond attention maps, we further investigate latent-space namics.

dynamics. Across 100 prompts with five repetitions each, -
we compare high- and low-BANSA seeds over all denois- _ GTOUP Traj. Var. |  Var. 1
ing steps (Table[3). We measured two metrics: (1) Latent ~ High BANSA 52.34 0.041
Trajectory Variation, obtained by applying a Butterworth Low BANSA 51.07 0.053
low-pass filter to isolate low-frequency structural compo-
nents (Wu et al., 2024} |Yuan et al.,2025) and computing their temporal variation, where lower values
indicate smoother and more stable trajectories; and (2) Intra-frame Variance, the average spatial
variance within frames, where higher values indicate richer dynamic expressiveness. Low-BANSA
seeds showed both lower trajectory variation and higher intra-frame variance, combining temporal
stability with more expressive video generation.

Takeaway and Relation to Prior Work. The three findings indicate that BANSA identifies seeds
with lower uncertainty, leading to (1) prompt-specific improvements, (2) more stable attention, and
(3) smoother yet more expressive latent dynamics. This is consistent with Freelnit|Wu et al.[(2024)
and FreeQPrior (Yuan et al.,2025)), which emphasize stable latent initialization and low-frequency
structure. BANSA complements these insights by offering an uncertainty-driven selector that explains
why such seeds generalize within a prompt while remaining prompt-dependent across prompts.

5 EXPERIMENTS

Experimental Setting. We evaluate ANSE on diverse T2V diffusion backbones—AnimateDiff (Guo
et al, 2024b), CogVideoX-2B/5B (Yang et al., 2024), Wan2.1 (Team, |2025), and Hunyuan-
Video (Kong et al., [2024). To rigorously evaluate our method, we follow each model’s official
sampling protocol; for resolution, Wan2.1 is evaluated at 480p and HunyuanVideo at 360p due to
resource limits. Results for noise-prior refinement baselines (FreqPrior (Yuan et al) 2025)) are
reported only on AnimateDiff, as they lack official support on the others and incur ~ 3 inference
time. ANSE is orthogonal and can be combined with these priors. Unless noted, we use a noise pool
of M=10 with K=10 stochastic passes per seed, and Bernoulli-masked attention with p=0.2. All
experiments run on NVIDIA H100 GPUs. Further details are in the Appendix
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Table 4: Quantitative results on VBench using AnimateDiff, CogVideoX-2B and -5B.

Backbone Model  Method  Quality Score Semantic Score  Total Score  Inference Time

Vanilla 80.22 69.03 77.98 28.23s
© lﬁ)";:“a‘”fc?(i);b:‘ +Ours 81.66 71.09 79.33 31.335(+10.08%)
Freqprior 81.22 70.45 79.07 58.01(4105.36%)
+ Ours 82.23 7323 80.43 61.125+5.30%)

CogVideoX-2B  Vanilla 82.08 76.83 81.03 247 8s
(Yang et al j2024) "1 s 82.56 78.06 81.66 269.35(+5.67%)

CogVideoX-5B  Vanilla 82.53 7750 81.52 667.3s
(Yang et al |PO24) "1 s 82.70 78.10 8171 75415 13.1%)

Table 5: Quantitative results on quality score metrics for HunyuanVideo and Wan2.1

Backbone Method Slfhject Baclfground Motion Aesﬂ.letic Imaging 'l:emp(.)ral Inf.erence
Model C yt C 1 Quality T Quality T Flickering Time |
HunyuanVideo Vanilla 0.9562 0.9656 0.9850 0.6276 0.6137 0.9921 52.3s
{Kong et al{024] — 0 ¢ 0.9612 0.9661 0.9858 06268  0.6151 0.9938 598514000
Wan2.1 Vanilla 0.9562 0.9656 0.9850 0.6276 06137 0.9943 4385
{Teamjj2025) +Ours 0.9612 0.9661 0.9858 06268 0.6151 09956 50.75021573%)

Evaluation Metric. We evaluate with VBench (Huang et al., [ 2024)), which reports a quality score
and a semantic score, combined into a total score on a 0—100 scale. For AnimateDiff and CogVideoX-
2B/5B, we report both quality and semantic scores. For HunyuanVideo and Wan2.1, we restrict
evaluation to the six quality dimensions due to computational constraints, while noting that semantic
evaluation can also be applied in principle. All reported results are obtained by repeating each
evaluation dimension five times and averaging the scores.

Quantitative Comparison. As shown in Table[d] ANSE consistently improves performance across
diverse T2V backbones. On AnimateDiff, ANSE outperforms the vanilla baseline and further
demonstrates clear advantages over noise-initialization methods such as FreqPrior (Yuan et al., 2025)).

Notably, ANSE is also fully compatible with FreqPrior, achieving even higher scores when combined.
Table @] also reports results on CogVideoX-2B and -5B, which adopt the more advanced MMDiT ar-
chitecture. ANSE improves quality, semantic, and total VBench scores on both scales, demonstrating
robust generalization across architectures and model sizes.

Table[5]presents additional results on recent state-of-the-art Table 6: Comparison with FVMD met-
models, HunyuanVideo and Wan2.1. ANSE achieves con- rics on MSRVTT dataset.
sistent improvements across quality metrics, underscoring

) L . . Backb
its plug-and-play applicability to a wide spectrum of video iavclodzf ¢ Methods  FVMD |
diffusion models—from U-Net to MMDIT, and from mid- F—— —

- unyuan Video Vanilla 17641.19
scale to the latest state-of-the-art systems. The statistical (Kong etal.|2024)  +Ours  16491.68
signicanse analysis of these are provied in Appendix Wan2.1(1.3B) Vanilla  16495.59

. . . . . (Team|[2025) + Ours 14306.19
We further evaluate motion quality using the Fréchet Video

Motion Distance (FVMD) (Liu et al [2024) on MSR-VTT (Xu et al.,2016), as shown in Table[6] We
sample 200 text prompts from the test split and generate videos with ANSE, using the corresponding
real videos as the reference distribution. ANSE consistently obtains lower FVMD scores, indicating
improved motion fidelity and reinforcing the motion-related gains observed in VBench.

Qualitative Comparison. Figure ] presents representative qualitative comparisons on CogVideoX-
2B, CogVideoX-5B, and Wan2.1 with and without ANSE. Our approach consistently enhances
semantic fidelity, motion realism, and visual clarity across diverse prompts. For example, in separate
prompts such as "exploding” and "descends gracefully”, ANSE captures critical semantic transi-
tions—generating visible explosions in the former and preserving smooth temporal continuity in the
latter. In other prompts like "koala playing the piano" and "tasting beer", it produces anatomically
coherent bodies with natural, expressive motion. These examples highlight ANSE’s ability to im-
prove spatial-temporal fidelity while generalizing effectively to large-scale video diffusion models.
Additional qualitative results, including other backbones, are provided in Appendix

Computational Cost. As shown in Table[d]and Table 5] ANSE introduces only a minimal increase
in inference time while delivering consistent quality gains. On AnimateDiff, inference time increases
by just +10.98%, compared to more than +105% when combined with FreqPrior and over +200%
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CogVideoX-2B + Ours
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“A vibrant, water-filled balloon hangs suspended in mid-air against a dark backdro uddenly, a pierces the balloon, and
in extreme slow motion, the rubber exploding apart, creating a mesmerizing cascade of water droplets...”
= 5 = 3 k-

CogVideoX-5B
BANSA Score l: 0.5

/ . =l
CogVideoX-58 +Oufé
BANSA Score'l: 0320 = = & N
“In a magical forest bathed in dappled sunlight, a charming koala bear sits at a grand piano, its furry paws gently pressing the
keys. The koala, with its soft grey fur and expressive eyes, wears a tiny bow tie, adding a whimsical touch...”
3 0 % ) 3 7 ) 3 - . 3

wan2.1
BANSA Score | : 0.51

.‘]‘I-‘

wan2.1 + Ours:

BANSA Score |: 0.29
“A bearded man in his thirties, wearing a plaid shirt and jeans, sits at a rustic wooden bar, surrounded by an array of beer taps
and vintage brewery decor. He carefully lifts a frosty pint glass filled with amber beer...”

Wwan2.1
BANSA Score |: 0.56

Wwan2.1 + Ours
BANSA Score |: 0.31

“A colossal, hyper-realistic spaceship descends gracefully onto the rugged Martian surface, its sleek metallic hull reflecting the
crimson hues of the planet. Dust and small rocks scatter as the landing thrusters engage, creating a dramatic cloud..”

Figure 4: Qualitative comparison with and without ANSE. (CogvideoX-2B, 5B and Wan2.1).
With ANSE, videos exhibit improved visual quality, better text alignment, and smoother motion
transitions compared to the baseline. White numbers show BANSA scores for the same prompt.

for Freelnit. On CogVideoX models, the overhead is similarly small: +8% on the 2B variant and
+13% on the 5B variant. For more recent architectures, ANSE adds only +14% on HunyuanVideo
and +15% on Wan2.1. The overhead comes only from seed evaluation and leaves the sampling
process and memory usage unchanged. In contrast, Freelnit and FreqPrior require multiple full passes,
causing large slowdowns. ANSE improves quality across diverse backbones while keeping inference
overhead below +15%, making it a practical plug-and-play solution for video diffusion.

6 ABLATION STUDY

Comparison of Acquisition Functions. Using CogVideoX-2B, we compare BANSA with random
sampling, entropy-based selection, and two variants: BANSA (B) with Bernoulli masking and
BANSA (D) with dropout-based stochasticity (Table[7). All methods improve over the baseline, but
BANSA (B) consistently achieves the best scores across quality, semantic, and total metrics. This
suggests that Bernoulli masking better captures attention-level uncertainty than dropout, underscoring
the importance of modeling uncertainty in line with the model’s structure.

Effect of Ensemble Size K. We investigate how the number of stochastic forward passes K
influences subject and background consistency (Table ). Both metrics improve as K increases from 1
to 10, indicating that larger ensembles provide more reliable noise evaluation. Performance saturates
at K = 10, which we set as the default in all experiments.
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Table 7: Comparison of different acquisition Table 8: Effect of varying the number of K.
functions for noise selection.

K Subject Consistency  Background Consistnecy

Method Quality Score ~ Semantic Score  Total Score 1 0.9618 0.9788

Random 82.08 76.83 81.03 3 0.9623 0.9793
5 0.9632 0.9798

Entropy 82.23 76.73 81.13

BANSA (D) 82.43 76.91 81.33 7 0.9638 0.9802

BANSA (B) 82.56 78.06 81.66 10 0.9641 0.9811

Table 9: Quantitative comparison of reversed BANSA scoring on CogVideoX-2B. This presents
results when selecting samples using the highest BANSA scores, compared to the default selection.

Method Subject Background  Temporal Motion Aesthetic  Imaging Dynamic Quality
etho Consistency Consistency  Flickering Smoothness  Quality Quality Degree Score
Vanilla 0.9616 0.9788 0.9715 0.9743 0.6195 0.6267 0.6380 82.08
+ Ours (reverse) 0.9626 0.9785 0.9700 0.9741 0.6181 0.6253 0.6328 81.93
+ Ours 0.9641 0.9811 0.9775 0.9746 0.6202 0.6276 0.6511 82.56

Table 10: Component analysis of Bernoulli masking parameters on Wan2.1 1.3B.

Backbone Bernoulli Subject Motion Aesthetic  Imaging Overall
Model p Consistency T Smoothness T Quality T Quality T Consistency 1

0.0 0.9254 0.9751 0.6464 0.6459 0.2731

Wan2.1 1.3B 0.2 0.9310 0.9786 0.6559 0.6516 0.2763

0.5 0.9308 0.9779 0.6543 0.6533 0.2727

0.7 0.9302 0.9778 0.6557 0.6529 0.2726

1.0 0.9232 0.9753 0.6451 0.6508 0.2721

Table 11: Quantitative evaluation on the IPOC-2B after post-training and Wan2.1 14B model.

Backbone Method Subject Background Temporal Motion Aesthetic  Imaging  Dynamic
Model Consistency T Consistency T Flickering T  Smoothness T Quality T Quality T Degree T
IPOC-2B Vanilla 0.9273 0.9535 0.9918 0.9741 0.6554 0.664 0.7527
+ Ours 0.9281 0.9534 0.9921 0.9745 0.6561 0.6644 0.7721
Wan2.1 14B Vanilla 0.9290 0.9587 0.9931 0.9759 0.6572 0.6552 0.5916
+ Ours 0.9302 0.9596 0.9938 0.9772 0.6601 0.6529 0.6277

Effect of Noise Pool Size /. We analyze the effect of noise pool size M, which controls the diversity
of candidate seeds in BANSA. Larger M improves the chance of finding high-quality seeds but
increases inference cost. As shown in Figure 8| (Appendix), performance saturates around M = 10
for CogVideoX-2B and -5B, which we adopt as the default for each model.

Reversing the BANSA Criterion. To further validate BANSA, we conduct a control experiment
where the noise seed with the highest BANSA score is selected—i.e., choosing the seed associated
with the greatest model uncertainty. As shown in Table [9] this reversal results in degradation of
quality-related metrics, confirming that lower BANSA scores are predictive of perceptually stronger
generations and supporting the validity of our selection strategy.

Effect of Bernoulli masking probability p. We conduct a sensitivity analysis on the Bernoulli
masking probability p using the Wanx 2.1 (1.3B) model. As shown in Table [T0] both disabling
masking (p = 0) and fully random masking (p = 1) degrade performance, indicating that the masking
probability has a meaningful impact on the results. The method remains stable within the intermediate
range p € [0.2,0.7], where overall performance varies only slightly. Among these configurations,
p = 0.2 delivers the best performance, which supports our choice of the default setting.

Evaluation on strong video backbones and post-RL models. We further evaluate our method on
stronger settings, including the large-capacity Wan2.1 14B backbone and the post-trained IPOC-2B
model. IPOC-2B is refined with a DPO-related preference alignment method (Yang et al., [2025]),
making it a competitive post-RL baseline. As shown in Table [T} our method consistently improves
over the vanilla models across most VBench dimensions, demonstrating generalization to larger
architectures and robustness under preference-aligned post-RL training.

User Study. We conducted a human preference study in which evaluators compared paired videos
generated with and without our method along two criteria: overall quality and text—video alignment.
As shown in Fig.[5](a), our method is consistently preferred on both aspects, indicating improvements
in perceptual quality and semantic alignment. The details are provided in Appendix
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Figure 5: (a) User study showing consistent human preference for our method in overall quality and
text—video alignment. (b) Correlation analysis where BANSA scores exhibit strong negative trends
with key VBench metrics, indicating that lower scores correspond to higher-quality generations.

Selected Seed (Qurs):
BANSAScorel 5038 2

g
a golden glow on the scene. The horse gracefully bends its neck, its reflection shlmmerm n the gentle r\pp\es of the water.

Figure 6: Failure case and limitation of our method. Although the BANSA score indicates low
uncertainty, the resulting video still contains unnatural content. This represent a limitation of ours:
we select optimal seeds but do not alter the generation process itself.

Analysis on correlation with actual quality. We examined how BANSA scores relate to quality
by sampling diverse prompts and noise inputs and visualizing their score—quality trends in Fig. [5{b).
Pearson correlations show strong negative relationships with Subject Consistency (—0.6672), Back-
ground Consistency (-0.7492), and Motion Smoothness (-0.6769), indicating that lower BANSA
scores reliably associate with higher-quality and more stable generations.

7 DISCUSSION AND LIMITATIONS

Our method focuses on noise—seed selection based on model uncertainty, which introduces several
limitations. As shown in Figure[f] even seeds with low BANSA scores may still produce unnatural
results because ANSE does not modify the subsequent sampling process. Moreover, BANSA captures
uncertainty at the attention level, which does not fully account for semantic or aesthetic quality.
Although evaluating multiple candidates with stronger quality metrics could reduce this gap, such an
approach is computationally prohibitive. A promising direction for future work is to integrate ANSE
with post-training refinement methods—such as Self-Forcing (SF) (Huang et al.| 2025)—that directly
enhance sample quality. Notably, ANSE already works effectively with post-RL refinement methods
like TPoC, and extending this compatibility to SF represents a natural next step. Such combinations
may yield complementary gains in both quality and robustness beyond seed selection alone.

8 CONCLUSION

We present ANSE, a framework for active noise selection in video diffusion models. At its core
is BANSA, an acquisition function that leverages attention-derived uncertainty to identify noise
seeds yielding confident, consistent attention and thus higher-quality generations. BANSA adapts the
BALD principle to the generative setting by operating in attention space, with efficient deployment
enabled through Bernoulli-masked attention and lightweight layer selection. Experiments across
multiple T2V backbones show that ANSE improves video quality and prompt alignment with minimal
inference overhead. This introduces an inference-time scaling paradigm, enhancing generation not by
altering the model or sampling steps, but through informed seed selection.

10
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A  SUPPLEMENTARY SECTION

In this supplementary document, we present the following:

* Proof of Proposition 1 from the main paper regarding the BANSA Zero condition in
Section Bl

* Implementation details of ANSE and evaluation metrics in Section|[C|
* Further explanation of layer selection through cumulative BANSA correlation in Section D}

* Additional ablation studies, including full-layer BANSA score analysis (Section[E), temporal
scope effects (Section[F), and attention-space effects (Section[G]).

* Additional analysis, including effect of CFG scale (Section [H), equivalent computation
budget (Section[l), statistical validation (Section[J)), and user study protocol (Section [K).

* Additional qualitative results demonstrating the impact of BANSA Score in Section[[]

B PROOF OF PROPOSITION 1

Proposition 1 (BANSA Zero Condition). Let A(z,c,t) = {AD ... A} be a set of row-
stochastic attention maps. Then:

BANSA(z,c,t) =0 < AW =...= A5

Proof. BANSA is defined as the difference between the average entropy and the entropy of the
average:

K K
1 1
=H|—= E (%) _ = (k)
BANSA(z, ¢, t) ( AV (z, ¢, t)) kg:er(A (z,c,t)).

k=1

Since the Shannon entropy H(-) is strictly concave over the probability simplex. Therefore, by
Jensen’s inequality:

1 & 1 &
= g AR ) > — E A
H ( k=1 ) B k:lH( )’

with equality if and only if A1) = ... = A Thus, BANSA(z, ¢, t) = 0 if and only if all attention
maps are identical. O

Remark 1. (Interpretation) This result confirms that the BANSA score quantifies disagreement
among sampled attention maps. A BANSA score of zero occurs only when all stochastic attention
realizations collapse to a single deterministic map—i.e., the model exhibits no epistemic uncertainty
in its attention distribution. Higher BANSA values indicate greater variation across samples, and thus,
higher uncertainty. In this sense, BANSA acts as a Jensen—Shannon-type divergence over attention
maps, capturing their dispersion under stochastic masking.

C FURTHER DETAILS ON EVALUATION METRICS AND IMPLEMENTATION

Evaluation Metrics To evaluate performance on Vbench, we use the Vbench-long version, where
prompts are augmented using GPT-40 across all evaluation dimensions. This version is specifically
designed for assessing videos longer than 4 seconds.

We rigorously evaluate our generated videos following the official evaluation protocol. The Quality
Score is a weighted average of the following aspects: subject consistency, background consistency,
temporal flickering, motion smoothness, aesthetic quality, imaging quality, and dynamic degree.

The Semantic Score is a weighted average of the following semantic dimensions: object class,
multiple objects, human action, color, spatial relationship, scene, appearance style, temporal style,
and overall consistency.
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Figure 7: Correlation analysis between cu- Figure 8: Ablation study on noise pool size M.
mulative BANSA score and full-layer scores. We evaluate total scores across three text-to-video
The 0.7 threshold is reached around layer 14 for diffusion models with varying M, and select suit-
CogVideoX-2B and layer 19 for CogVideoX-5B. able values based on computational cost.

The Total Score is then computed as a weighted combination of the Quality Score and Semantic
Score:
w2

Total Score = % - Quality Score + - Semantic Score

wy + w2 wy + wa
where w; = 4 and ws = 1, following the default setting in the official implementation.

Implementation We compute our BANSA score using the BALD-style formulation, which yields
non-negative values. For clearer visualization, we normalize the BANSA scores from their original
range (minimum: 0.45, maximum: 0.60) to the [0, 1] interval. This normalization is used solely for
visual clarity in figures and plots, and does not affect the noise selection process, which operates
on the raw BANSA scores. All models are evaluated using their default inference configurations:
AnimateDiff (50 steps), CogVideo-X (50 steps), Wan2.1 (50 steps), and HunyuanVideo (50 steps).

D FURTHER DETAIL OF BANSA LAYER-WISE CORRELATION ANALYSIS

Prompt construction. We evenly sampled 100 prompts from the four official VBench categories:
Subject Consistency, Overall Consistency, Temporal Flickering, and Scene. Each category contains
25 prompts, selected to ensure diversity in motion, structure, and semantics.

Below are representative examples:

* Subject Consistency (e.g., “A young man with long, flowing hair sits on a rustic wooden
stool in a cozy room, strumming an acoustic guitar...”)

* Overall Consistency (e.g., “A mesmerizing splash of turquoise water erupts in extreme slow
motion, each droplet suspended in mid-air...”)

» Temporal Flickering (e.g., “A cozy restaurant with flickering candles and soft music. Patrons
dine peacefully as snow falls outside...”)

* Scene (e.g., “A university campus transitions from lively student life to a golden sunset
behind the clock tower...”)

Prompt sampling was stratified to ensure coverage of diverse visual and temporal patterns. The full
list of prompts will be made publicly available upon code release.

BANSA score computation and correlation analysis. For each prompt, we generated 10 videos
using different random noise seeds and computed BANSA scores at each attention layer. This yielded
one full-layer BANSA score and a set of layer-wise scores per seed. To obtain stable estimates, we
averaged the per-layer and full-layer BANSA scores across the 10 seeds, reducing noise-specific
variance and capturing consistent uncertainty patterns.

We then computed Pearson correlations between the cumulative BANSA scores (summed from layer
1 to d) and the official quality scores. The optimal depth d* was defined as the smallest d at which the
correlation exceeded 0.7, a widely used threshold indicating a strong positive relationship. As shown
in Figure[7] this point was reached at d* = 14 for CogVideoX-2B and d* = 19 for CogVideoX-5B.
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For AnimateDiff, the correlation crossed the threshold earlier at d* = 10, while for HunyuanVideo
and Wanx 2.1 it consistently appeared around d* = 20. These model-specific depths were applied
throughout all experiments. Such consistency across architectures empirically supports our choice
of the 0.7 threshold and ensures that the correlation analysis reflects generalizable, noise-agnostic
patterns of attention-based uncertainty.

Table 12: Comparison between full-layer and truncated BANSA score.

Backbone Method Subject Background Temporal Motion Aesthetic  Imaging Dynamic Quality Inference
Model Consistency T Consistency T Flickering T Smoothness T Quality T Quality T Degree T Score T Time |
CoavideoX-2B Full-layer 0.9639 0.9810 0.9801 0.9743 0.6198 0.6244 0.6516 82.58 303.7
2 Truncated 0.9641 0.9811 0.9775 0.9746 0.6202 0.6276 0.6511 82.56 269.3
CoavideoX-5B Full-layer 0.9660 0.9630 0.9863 0.9708 0.6168 0.6290 0.6979 82.71 810.3
2 Truncated 0.9658 0.9639 0.9861 0.9711 0.6179 0.6290 0.6918 82.70 754.3

E EFFECTIVENESS OF TRUNCATED BANSA SCORE

To reduce the computational overhead of BANSA evaluation, we adopt a truncated score that
aggregates attention uncertainty only up to a fixed depth d*, rather than summing over all layers.
To evaluate the effectiveness of this approximation, we compared the final generation quality when
selecting noise seeds using either the full-layer or truncated BANSA scores.

As shown in Table [I2] both approaches yield highly similar results across all seven dimensions
of the VBench evaluation protocol (subject consistency, background consistency, aesthetic quality,
imaging quality, motion smoothness, dynamic degree, and temporal flickering). Importantly, the
overall quality scores are preserved despite the substantial reduction in attention layers used.

This demonstrates that truncated BANSA is sufficient to capture the key uncertainty signals for
reliable noise selection while reducing inference time. The strong alignment in quality stems from
the fact that our method relies on relative ranking rather than absolute values, allowing for efficient
yet robust selection with significantly lower computational cost. We attribute this effectiveness to
the fact that most informative attention behaviors emerge early in the denoising process, allowing
accurate uncertainty estimation without full-layer computation.

Table 13: Effect of temporal scope in BANSA score on generation quality.

BANSA Scope Subject Temporal Motion Aesthetic  Imaging Dynamic Inference
P Consistency T Flickering  Smoothness T Quality T Quality T Degree T  Time |
1-step 0.9639 0.9801 0.9743 0.6198 0.6244 0.6516 x 1
25-step avg 0.9651 0.9798 0.9746 0.6202 0.6271 0.6511 x 25
50-step avg 0.9652 0.9799 0.9751 0.6203 0.6276 0.6514 % 50

F EFFECT OF TEMPORAL SCOPE IN BANSA SCORE

While our method computes the BANSA score only at the first denoising step to minimize cost, it is
natural to ask whether incorporating more timesteps improves its predictive power for noise selection.
To investigate this, we compute the average BANSA score across the first 1, 25, and 50 denoising
steps and compare their effectiveness in predicting video quality.

Table [[3]reports the VBench scores for subject consistency, aesthetic quality, imaging quality, motion
smoothness, dynamic degree, and temporal flickering when using BANSA computed over different
temporal scopes. Although using more timesteps results in slightly better quality, the gains are
marginal. This indicates that most of the predictive signal for noise quality is embedded early in the
generation trajectory.

More importantly, since BANSA is used solely to assess the uncertainty of the initial noise seed—not
to track full-step generation behavior—our 1-step computation is sufficient to capture the core
uncertainty signal. In contrast, computing BANSA over all steps requires running multiple attention
forward passes across the full trajectory, resulting in substantial computational overhead that limits
its practicality for real-world applications.
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Table 14: Quantitative results on VBench using AnimateDiff, CogVideoX-2B and -5B.

Backbone Model Method Quality Score  Semantic Score  Total Score
AnimateDiff Vanilla 80.22 69.03 77.98
(Guo et al.||2024b) + Ours (Self-Attention) 81.68 70.72 79.19
+ Ours (Cross-Attention) 81.66 71.09 79.33

G EFFECT OF ATTENTION SPACE IN BANSA SCORE

To further examine whether BANSA scores capture quality- or semantic-related uncertainty, we
conducted additional experiments with the AnimateDiff backbone, which separates self- and cross-
attention layers. Unlike CogVideo and Wanx, which adopt an MMDIT architecture where multimodal
attention entangles both components, AnimateDiff provides a clearer lens for disentangling semantic
effects. As shown in Table[T4] applying BANSA to self-attention primarily improved perceptual
quality scores, whereas applying it to cross-attention enhanced semantic alignment. This indicates
that uncertainty over noise manifests differently depending on the attention type, supporting the
interpretation that BANSA reflects both quality- and semantics-related variations. In contrast,
MMDiT-based models such as CogVideo and Wanx integrate these dimensions within their unified
attention structure, making them more suitable for overall noise selection in the main paper’s
experiments.

Table 15: Ablation study on the interaction between higher CFG scale and ours on Wan2.1(1.3B).

Backbone Method CFG Sgbject Motion Aesthetic Imaging
Model Scale Consistency T Smoothness T Quality T Quality T
Vanilla 5.0 0.9285 0.9748 0.6465 0.6519
Wanx 2.1 1.3B  Ours 5.0 0.9310 0.9786 0.6559 0.6516
Vanilla 7.5 0.9266 0.9740 0.6447 0.6357
Ours 7.5 0.9276 0.9755 0.6519 0.6409

H EFFECT OF CFG SCALE ON OUR METHOD

Classifier-free guidance (CFG) modifies the conditional-unconditional interpolation only at the final
stage of inference, whereas our method selects noise seeds at initialization based on attention-level
uncertainty. Since they operate at different points in the pipeline, their effects are largely independent:
CFG adjusts the extrapolation strength, while our method chooses seeds that lead to more stable
early-stage behavior.

To assess potential interactions, we increased the CFG scale from the default value of 5.0 to 7.5 on
the Wanx 2.1 (1.3B) model, as shown in Table Higher CFG values generally degrade performance
by pushing sampling beyond the model’s calibrated range. Nevertheless, our method consistently
outperforms the vanilla baseline under both settings, indicating that its benefits remain stable across
different CFG scales.

Table 16: Ablation study under an equivalent computation budget. Increasing the baseline sampling
steps does not consistently improve performance, whereas our method achieves better results with
fewer effective steps.

Backbone Method ~ Steps SL}bject Motion Aesthetic Imaging
Model Consistency T Smoothness T Quality T Quality 1
Vanilla 50 0.9285 0.9748 0.6465 0.6519
Wan2.113B “vonila 60 0.9274 0.9745 0.6476  0.6492
Ours < 60 0.9310 0.9786 0.6559 0.6516
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I EFFECT OF EQUIVALENT COMPUTATION BUDGET

Our method evaluates M = 10 noise candidates, but the actual computation is lower than 50 + 10
steps because many candidates terminate early during partial denoising. To assess whether the
baseline could benefit from additional computation, we increased its sampling steps from 50 to 60.
As shown in Table[T6] this results in only marginal changes and even degrades some metrics, likely
because the model is not calibrated for longer sampling schedules.

In contrast, our method consistently improves performance while requiring fewer effective steps than
the 60-step baseline, suggesting that the gains stem from selecting more stable noise initializations
rather than from additional compute. This highlights the efficiency advantage of our approach under
equivalent or lower computation budgets.

Table 17: Comparison of VBench Quality Scores With and Without BANSA. Scores are reported as
mean (95% confidence interval, CI: lower — upper).

Backbone

Model Method

Subject
Consistency 1 (CI)

Background
Consistency 1 (CI)

Temporal
Flickering 1 (CI)

Motion
Smoothness 1 (CI)

Aesthetic
Quality 1 (CI)

Imaging
Quality 1 (CI)

Dynamic
Degree 1 (CI)

Baseline

o Vil -2]
CoguideoX-28  DEe

0.9616 (0.9606 - 0.9626)
0.9639 (0.9629 - 0.9649)

0.9788 (0.9779 - 0.9797)
0.9810 (0.9795 - 0.9825)

0.9715 (0.9688 - 0.9742)
0.9801 (0.9781 - 0.9821)

0.9738 (0.9733 - 0.9753)
0.9743 (0.9737 - 0.9756)

0.6195 (0.6116 - 0.6274)
0.6198 (0.6119 - 0.6277)

0.6267 (0.6160 - 0.6374)
0.6244 (0.6137 - 0.6351)

0.6380 (0.6133 - 0.6627)
0.6500 (0.6255 - 0.6745)

Baseline

CogvideoX-5B (1

0.9616 (0.9608 - 0.9624)
0.9660 (0.9653 - 0.9667)

09616 (0.9602 - 0.9630)
0.9630 (0.9616 - 0.9644)

0.9862 (0.9833 - 0.9891)
0.9863 (0.9835 - 0.9891)

0.9712 (0.9703 - 0.9721)
0.9708 (0.9700 - 0.9716)

0.6162 (0.6084 - 0.6240)
0.6168 (0.6089 - 0.6247)

0.6272 (0.6170 - 0.6374)
0.6290 (0.6189 - 0.6391)

0.6895 (0.6655 - 0.7135)
0.6979 (0.6738 - 0.7220)

Table 18: Comparison of VBench Semantic Scores With and Without BANSA. Scores are reported
as mean (95% confidence interval, CI: lower — upper).

Backbone ‘ Object Maltiple N Spatial Temporal Overall Homan Appearance

Model Method Class 1 (CI) Object 1 (CI) Color H(Ch Relationship 1( (C) Scene 1(Ch Style 1 (Cl) Consistency 1 (CI) Action 1 (C) Stylet (CI)
Copvideoxap Baseline 08522 08511-08533) 06391 06376 0.6406) 0.8318 (08302 -0.8334) 07145 (0.6963-0.7333) 04815 (04801 -0.4829) 02488 (0.2453-02523) 0272202679 0.2763) 0.9860 (0.9743-09977) 02497 (02483 -0.2511)
videoX 2B Cours 08842 (08831 0.8853)  0.6596 (06581 - 0.6611) 08255 (0.8240-0.8270) 0.6915 (06728 -07102) _0.5286 (0.5272- 0.5300) 0547 (0.2511-0.2583) 02760 (02718 - 02802) _0.9870 (09757 - 0.9963) 02507 (0.2493 - 0.2521)
Comvideoxsp Bascline 08595 (08385 08605) 06511 (0649606526 0.8218 (08202 0.8234) 0.6872 (0.6675 -0.7069) 05233 (05219 0.5247) 02552 (02513 -02591) 02761 (02717 -0.2803) 0.9900 (09813 -09987) 02483 (02354 -02612)
e Ours 08675 (0.8665 - 0.8685) 0.6658 (0.6643 - 0.6673) 0.8201 (08186 - 0.8216) 0.6831 (0.6637-0.7025) 05255 (0.5241-0.5269) 02585 (0.2546 - 02624) 0.2773 (0.2730 - 02816) _0.9980 (0.9910 - 1.00S0) _0.2524 02511 - 0.2537)

Table 19: Comparison of VBench Quality Scores for HunyuanVideo and Wan2.1. Scores are reported
as mean (95% confidence interval, CI: lower — upper).

Backbone Method Subject Background Motion Aesthetic Imaging Temporal
Model Consistency 1 (CI) Consistency 1 (CI) Smoothness 1 (CI) Quality 1 (CI) Quality 1 (CI) Flickering 1 (CI)
Hunyuan ~ Vanilla  0.9562 (0.9551 —0.9573)  0.9656 (0.9645 — 0.9667) ~ 0.9850 (0.9838 —0.9862)  0.6276 (0.6198 — 0.6354)  0.6137 (0.6059 - 0.6215)  0.9921 (0.9902 — 0.9940)
Video +Ours  0.9612 (0.9603 - 0.9621)  0.9661 (0.9650 — 0.9672)  0.9858 (0.9847 — 0.9869)  0.6268 (0.6191 — 0.6345)  0.6151 (0.6075 - 0.6227)  0.9938 (0.9919 - 0.9957)
Wan2. 1 Vanilla  0.9562 (0.9553 - 0.9571)  0.9656 (0.9644 — 0.9668) ~ 0.9850 (0.9839 —0.9861)  0.6276 (0.6201 — 0.6351)  0.6137 (0.6061 —0.6213)  0.9943 (0.9924 - 0.9962)
. +Ours  0.9612 (0.9601 - 0.9623)  0.9661 (0.9649 — 0.9673)  0.9858 (0.9846 — 0.9870)  0.6268 (0.6190 — 0.6346)  0.6151 (0.6073 — 0.6229)  0.9956 (0.9935 - 0.9977)

J  STATISTICAL VALIDATION OF RESULTS

Our VBench evaluation uses 4,750 videos (five samples per prompt) across 17 fine-grained dimen-
sions, where even small absolute gains are meaningful. To assess statistical significance, we computed
95% confidence intervals using 10 independent runs, each based on random subsets of 100 videos. As
shown in Tables[T7} [T8] and[T9] our method consistently improves or maintains performance across
quality-, semantic-, and motion-related metrics without exhibiting bias toward any particular subset.
These statistical results provide strong evidence of the robustness and reliability of our approach.

K USER STUDY PROTOCOL

As presented in Fig.[5](a), we conduct a human evaluation study to complement automated metrics
and directly assess whether ANSE improves video quality and prompt coherence. We evaluate four
representative video diffusion models—CogVideoX-2B, CogVideoX-5B, Wan 2.1, and Hunyuan-
Video—by comparing their outputs with and without ANSE. To construct a fair evaluation protocol,
we randomly sample 30 prompts from the Subject Consistency and Overall Consistency dimensions
of the VBench benchmark. For each prompt, we generate paired videos using identical noise seeds
for both the baseline and the ANSE-equipped models.

We recruit 12 independent human evaluators, all of whom remain fully blind to the models and are
restricted to participating only once. Each evaluator is shown two videos side-by-side (baseline vs.
ANSE) and responds to two questions:

1. Video Quality: “Which video appears more stable and visually pleasing?”

2. Prompt Alignment: “Which video better represents the given text prompt?”
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The order of prompts and the arrangement of video pairs are fully randomized. Across all backbones
and prompts, models equipped with ANSE are consistently preferred in terms of both video quality
and prompt alignment, demonstrating the practical effectiveness and robustness of ANSE.

L ADDITIONAL QUALITATIVE COMPARISON

More qualitative results. Figures[9] [T0] [T1] [[2] and [T3]present additional examples generated
using our noise selection framework including diverse backbone such as, AnimateDiff, CogVideoX2B
and 5B, HunyangVideo, and Wan2.1. Across diverse prompts, the selected seeds yield improved
spatial detail, aesthetic quality, and semantic alignment, further validating the robustness of our
approach. These examples complement our quantitative findings by illustrating the visual impact of
BANSA-based noise selection.

Effect of BANSA score on generation quality. Figures [I4] provide a qualitative comparison of
outputs generated using three types of noise seeds: a randomly sampled seed, the seed with the
highest BANSA score (lowest quality), and the seed with the lowest BANSA score (highest quality).
All videos were generated using 50 denoising steps with the CogVideoX-5B backbone. The lowest-
BANSA seed consistently produces sharper, more coherent, and semantically faithful videos, whereas
the highest-BANSA seed often leads to structural artifacts or temporal instability. These results
highlight the practical value of BANSA-guided noise selection.
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“A motorcycle accelerating to gain speed for cornering.” “A train accelerating to gain speed.”

Figure 9: Effect of ANSE on semantic fidelity and motion stability in AnimateDiff and FreqPrior.
Each block compares baseline generations with those using ANSE-selected noise. In addition, while
FreqPrior serves as a noise-refinement baseline, our method is fully compatible and achieves further
improvements when combined.
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CogVideoX-2B

BANSA Score: 0.61

CogVideoX-2B + Ours d A &
BANSAScorel: 043 e e = =
“In a charming Parisian café, an animated panda sits at a quaint wooden table, sipping coffee from a delicate porcelain cup.
The panda, wearing a stylish beret and a striped scarf, gazes out the window at the bustling Paris streets

CogVideoX-2B
BANSA Score{0.54
A b,

A

" - = L s 4 . :
CogVideoX-2B + Oulis ) >
BANSA Score |: 0330 | v et / ey

“A cool cat, sporting sleek black sunglasses and a red lifeguard vest, sits confidently on a high lifeguard chair overlooking a

CogVideoX-5B
BANSA Score |: 0.59

CogVideoX-5B + Ours
BANSA Score |: 0.32

“A young woman with flawless skin and a serene expression sits at a vanity, bathed in soft morning light. She begins by
applying a light moisturizer, her fingers moving gently across her face. Next, she uses a foundation brush to blend a sheer..”

¥
k&

CogVideoX:5B

BANSA Score|: 0.58

CogVidéoX—SB} dars
BANSA Score |: 0.41

“An astronaut in a pristine white spacesuit, floats effortlessly against the vast, star-studded expanse of space. As the camera
zooms out, the intricate details of the suit, including the life-support backpack and tether,.”

Figure 10: Effect of ANSE on semantic fidelity and motion stability in CogVideoX outputs.
Each block compares baseline generations with those using ANSE-selected noise. Across both
CogVideoX-2B and 5B, ANSE improves semantic alignment to the prompt and reduces artifacts
such as temporal flickering and object distortion. White numbers show BANSA scores for the same
prompt.
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CogVideoX-2B
BANSA Score |: 0:51

/3%

0ogVideoX-2B + Ours
JANSA Score | : 0.31

“A sophisticated couple, dressed in elegant evening attire, walks down a dimly lit street, their formcxl The man, in a tailored
black tuxedo, and the woman, in a flowing red gown, share a black umbrella as the rain captures their synchronized steps..”

T
CogVideoX-2B
BANSA Score |2 0.59

CogV|deoX -2B 4+ Qurs
BANSA Score | 0.44

“A drone captures a breathtaking aerial view of a festive celebration in a snow-covered town square, centered around a
towering, brilliantly lit Christmas tree adorned with twinkling lights and ornaments. The scene is alive with vibrant fireworks..”

CogyideoX-58"
BANSA Score |: 0.61

CongdeoX 5B + Qurs
BANSA Score |: 0.25

“In a whimsical forest clearing, a raccoon with a mischievous glint in its eye stands on a tree stump, holding an electric gunor
The raccoon, wearing a tlng Ieother jacket, strums the guitar with surpnsmg skill, its tiny pows movmg deftly over the stnngs

CogVideoX=5B
BANSA Score

CogVideoX=5B' + Qurs
BANSA'Score!:033 ¢ =
“A majestic elephant stro s grocefullg through a Ius verdant forest, its massive feet gently pressing |nto the soft eorth The
sunlight filters through the dense canopy, casting dappled shadows on its wrinkled, grey skin.... ...

Figure 11: Additional qualitative comparison of CogVideoX variants with and without ANSE.
Results from CogVideoX-2B are shown in the first two rows; the rest show CogVideoX-5B. With
ANSE, videos exhibit improved visual quality, better text alignment, and smoother motion transitions
compared to the baseline. White numbers show BANSA scores for the same prompt.
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“A fluffy white sheep, woolly coat leisurely strolls through a picturesque meadow, dotted with vibrant wildflowers and lush green
grass. The sheep's calm demeanor and slow, deliberate steps exude tranquility as it meanders along a narrow dirt path.. ”
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“ A majestic chestnut horse with a glossy coat leisurely strolls through a sun-dappled meadow, its mane gently swaying in the

breeze. As it walks, the horse's hooves softly tread on the lush, green grass, creating a rhythmic,..”
77 R/ 5% 3

s

HunyangVideo
BANSA Score | : 0.

HunyangVideo + Ours j

BANSA Score | : 0.24 E
“A dynamic athlete, soars through the air in a packed, electrifying arena. with sweat glistening on their determined face, grips
the basketball tightly. As they approach the hoop, emphasizing grace of the jump.

HunyangVideo
BANSA Score |:0.79

HunyangVideo + Ours
BANSA Score | : 0.30

“A young woman with long, dark hair sits alone in a dimly lit room, her face illuminated by the soft glow of a nearby lamp. Tears
stream down her cheeks, ....The camera captures her quivering lips and the silent sobs that shake her shoulders.., ”

Figure 12: Additional qualitative comparison of HunyangVideo with and without ANSE. With
ANSE, the generated videos achieve sharper visual fidelity, stronger alignment between text and
content, and smoother motion progression than the baseline. White numbers show BANSA scores for
the same prompt.
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“A determined individual in a sleek black tank top and gray athletic shorts performs push-ups on a pristine wooden floor in a
minimalist, sunlit room. The camera captures the sweat glistening on their forehead, emphasizing their intense focus ..”
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Bl ~ =
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“A majestic steam troln with its vintage black and red ccrrlcges chugs along a winding mountainside track enveloped |n a
cloud of white steam. The train's powerful engine, adorned with brass accents, gleams in the sunlight as it ascends....

Wan2.1-1.3B
BANSA Score | : 0.69

ch21 1.3B + Ours
BANSA Score::0:22 3 =
“A vibrant, multi- colored ice cream cone sits on a rustlc wooden toble its creamy swirls beg|nn|ng to soften under the warm

sunllght streaming through a nearby wmdow The camera zooms in to copture the |ntr|cate detolls of the meltlng ice cream”

wan2.1:1.38
BANSA Score {077
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“A vibrant clownfish, W|th its striking orange and white str|pes gracefully navigates through a lush coral reef teeming wnh life.
The fish weaves between the intricate branches of colorful corals, which range from deep purples to bright yellows, ..

Figure 13: Additional qualitative comparison of Wan2.1 with and without ANSE. ANSE enables
videos to deliver higher visual quality, more accurate adherence to the given text, and more seamless
motion dynamics compared to the baseline. White numbers show BANSA scores for the same
prompt.
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“A lone bicycle, with its sleek frame and black tires, glides effortlessly through a vast, snow-covered field under a pale winter sky. The rider,
bundled in a red parka, black gloves, and a woolen hat, pedals steadily, leaving a delicate trail in the pristine snow. The scene captures the quiet
serenity of the landscape, with snowflakes gently falling and the distant silhouette of bare trees lining the horizon. As the rider continues, the sun

[aansa Geso 8 3 B Y : 3|
“A majestic giraffe, its long neck gracefully arching, bends down to drink from a serene river, surrounded by lush greenery and tall grasses. The
sun casts a golden glow, highlighting the giraffe's patterned coat and the gentle ripples in the water. Nearby, a family of zebras grazes
peacefully, adding to the tranquil scene. Birds flutter above, their reflections dancing on the water’s surface. The giraffe's delicate movements
create a sense of harmony with nature, as the river flows gently, reflecting the vibrant colors of the surrounding landscape...”

Figure 14: Qualitative comparison of generations from different noise seeds. We compare outputs
generated from a randomly sampled seed (top), the seed with the highest BANSA score (middle),
and the seed with the lowest score (bottom), using the same prompt and model. BANSA-selected
seeds produce more coherent structure, stable motion, and stronger semantic alignment than both
random and high-uncertainty seeds.
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