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ABSTRACT

Adversarial training is one of the most effective adversarial defenses, but it incurs
a high computational cost. In this study, we present the first theoretical analysis
suggesting that adversarially pretrained transformers can serve as universally robust
foundation models—models that can robustly adapt to diverse downstream tasks
with only lightweight tuning. Specifically, we demonstrate that single-layer linear
transformers, after adversarial pretraining across a variety of classification tasks,
can robustly generalize to unseen classification tasks through in-context learning
from clean demonstrations (i.e., without requiring additional adversarial training or
examples). This universal robustness stems from the model’s ability to adaptively
focus on robust features within given tasks. We also show the two open challenges
for attaining robustness: accuracy–robustness trade-off and sample-hungry training.
This study initiates the discussion on the utility of universally robust foundation
models. While their training is expensive, the investment would prove worthwhile
as downstream tasks can enjoy free adversarial robustness.

1 INTRODUCTION

Adversarial examples—subtle and often imperceptible perturbations to inputs that lead machine learn-
ing models to make incorrect predictions—reveal a fundamental vulnerability in modern deep learning
systems (Szegedy et al., 2014). Adversarial training is one of the most effective defenses against such
attacks (Goodfellow et al., 2015; Madry et al., 2018), where classification loss is minimized over
worst-case (i.e., adversarial) perturbations. This min–max optimization significantly increases the
computational cost compared to standard training. Despite extensive efforts to develop alternative
defenses, most of them have subsequently been shown to offer only spurious robustness (Athalye
et al., 2018; Croce & Hein, 2020; Tramer et al., 2020). Consequently, adversarial training remains
the de facto standard, and practitioners must incur this cost to obtain adversarially robust models.

Recently, it has become common to leverage foundation models for target tasks. Thanks to large-scale
pretraining, these models can be adapted to diverse downstream tasks with only lightweight tuning.
This naturally raises the question: Can adversarially trained foundation models enable efficient and
robust adaptation to a wide range of downstream tasks? Although training such models is expensive,
the investment would be worthwhile if numerous downstream tasks can inherit adversarial robustness
for free, without requiring costly adversarial training themselves. While this is a promising research
direction, the utility of such universally robust foundation models remains largely unknown, as their
training is computationally and financially prohibitive to empirically evaluate across multiple runs.

In this study, we present the first theoretical analysis suggesting that adversarially pretrained trans-
formers can serve as universally robust foundation models. Specifically, we show that single-layer
linear transformers, after adversarial pretraining across a variety of classification tasks, can robustly
generalize to previously unseen classification tasks through in-context learning (Brown et al., 2020)
from clean demonstrations. Namely, these transformers can adapt robustly without requiring any
adversarial examples or additional training. In-context learning is a recently uncovered capability of
transformers that allows them to efficiently adapt to new tasks from a few input–output demonstrations
in the prompt, without any parameter updates.

Our analysis builds upon the conceptual framework of robust features (class-discriminative and
human-interpretable) and non-robust features (human-imperceptible yet predictive) (Ilyas et al., 2019;
Tsipras et al., 2019). Based on this framework, we show that adversarially pretrained single-layer
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linear transformers can adaptively focus on robust features within given downstream tasks, rather than
non-robust or non-predictive features, thereby achieving universal robustness. This framework also
reveals that the universal robustness holds under mild conditions, except in an unrealistic scenario
where non-robust features overwhelmingly outnumber robust ones.

We also show that two open challenges in robust machine learning (Schmidt et al., 2018; Tsipras
et al., 2019) still remain in our scenario. First, when adversarially pretrained, single-layer linear
transformers exhibit lower clean accuracy than their standard counterparts. Second, to achieve clean
accuracy comparable to standard models, these transformers require more in-context demonstrations.

Our contributions are summarized as follows:

• We provide the first theoretical support for universally robust foundation models: under mild
conditions, adversarially pretrained transformers with a single linear self-attention layer can
robustly adapt to unseen classification tasks through in-context learning.

• Based on the framework of robust and non-robust features, we derive the condition for
successful robust adaptation. Moreover, we show that the universal robustness arises from
the model’s adaptive focus on robust features within given (unseen) tasks.

• As open problems for these transformers, we identify the accuracy–robust trade-off and
sample-hungry in-context learning.

This study explores the potential of universally robust foundation models, which can endow diverse
downstream tasks with adversarial robustness without adversarial training. A key challenge is the
cost of adversarial pretraining. We assume that, as with standard foundation models, such efforts
would be undertaken by large companies, which could offset development costs through licensing or
API fees. The growing demand for safe and reliable AI strengthens this incentive. Encouragingly,
advances in acceleration techniques for adversarial training, such as fast adversarial training (Wong
et al., 2020) and adversarial finetuning (Jeddi et al., 2020), suggest that the cost of adversarial training
could approach that of standard training. We regard our theoretical analysis as an important first step
toward fostering the practical development of universally robust foundation models.

2 RELATED WORK

Additional related work can be found in Appendix A.

Adversarial Training. Adversarial training (Goodfellow et al., 2015; Madry et al., 2018), which
augments training data with adversarial examples (Szegedy et al., 2014), is one of the most effective
adversarial defenses. Its major limitation is the high computational cost. To address this, several
methods have focused on the efficient generation of adversarial examples (Andriushchenko & Flam-
marion, 2020; Kim et al., 2021; Park & Lee, 2021; Shafahi et al., 2019; Wong et al., 2020; Zhang
et al., 2019a) and adversarial finetuning (Jeddi et al., 2020; Mao et al., 2023; Suzuki et al., 2023;
Wang et al., 2024a). However, these methods still require task-specific adversarial training. In this
study, we introduce the concept of universally robust foundation models, which can adapt to a wide
range of downstream tasks without requiring any adversarial training or examples.

Robust and Non-Robust Features. It is often suggested that adversarial vulnerability arises from
the reliance of models on non-robust features (Ilyas et al., 2019; Tsipras et al., 2019). While robust
features are class-discriminative, human-interpretable, and semantically meaningful, non-robust
features are subtle, often imperceptible to humans, yet statistically correlated with labels and therefore
predictive. Humans can rely only on robust features, whereas models can leverage both features to
maximize accuracy. Tsipras et al. (2019) showed that standard classifiers depend heavily on non-
robust features, making them vulnerable to adversarial perturbations that can manipulate these subtle
features. They also showed that adversarial training forces models to rely solely on robust features,
thereby enhancing robustness, but often reduces clean accuracy, known as the accuracy–robustness
trade-off (Dobriban et al., 2023; Mehrabi et al., 2021; Raghunathan et al., 2019; 2020; Su et al., 2018;
Tsipras et al., 2019; Yang et al., 2020; Zhang et al., 2019b). Subsequent studies have confirmed
that adversarially trained neural networks place greater emphasis on robust features (Augustin et al.,
2020; Chalasani et al., 2020; Engstrom et al., 2019; Etmann et al., 2019; Kaur et al., 2019; Santurkar
et al., 2019; Srinivas et al., 2023; Tsipras et al., 2019; Zhang & Zhu, 2019). In this study, building
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on this perspective, we employ datasets consisting of robust and non-robust features. Based on this
framework, we find that adversarially pretrained single-layer linear transformers prioritize robust
features rather than non-robust features, and exhibit the accuracy–robustness trade-off.

3 THEORETICAL RESULTS

Notation. For n ∈ N, let [n] := {1, . . . , n}. Denote the i-th element of a vector a by ai, and the
element in the i-th row and j-th column of a matrix A by Ai,j . Let U(S) be the uniform distribution
over a set S ⊂ R. The sign function is denoted as sgn( · ). For d1, d2 ∈ N, let 1d1

and 1d1,d2
be the

d1-dimensional all-ones vector and d1 × d2 all-ones matrix, respectively. The d1 × d1 identity matrix
is denoted as Id1

. Similarly, we write the all-zeros vector and matrix as 0d1
and 0d1,d2

, respectively.
We use ≳, ≲, and ≈ only to hide constant factors in informal statements.

3.1 PROBLEM SETUP

Overview. We adversarially train a single-layer linear transformer on d ∈ N distinct datasets. The
c-th training data distribution is denoted byDtr

c for c ∈ [d]. The c-th dataset consists of N+1 samples,
{(x(c)

n , y
(c)
n )}N+1

n=1
i.i.d.∼ Dtr

c . The transformer is encouraged to adaptively learn data structures from
N clean in-context demonstrations {(xn, yn)}Nn=1 and generalize to the (N +1)-th perturbed sample
xN+1 + ∆, where ∆ represents an adversarial perturbation. We then evaluate the adversarial
robustness of the trained transformer on a test dataset {(xte

n , yten )}N+1
n=1

i.i.d.∼ Dte, which may exhibit
different structures from all training distributions.

Transformer. We first define the input sequence for a transformer as

Z∆ :=

[
x1 x2 · · · xN xN+1 +∆
y1 y2 · · · yN 0

]
∈ R(d+1)×(N+1), (1)

where x1, . . . ,xN ∈ Rd are training data, y1, . . . , yN ∈ {±1} are their binary labels, xN+1 ∈ Rd

is a test (query) sample, and ∆ ∈ Rd is an adversarial perturbation (see later). A transformer is
expected to adaptively learn data structures from N demonstrations {(xn, yn)}Nn=1 and to predict the
label of xN+1. The (d+ 1, N + 1)-th element of Z∆ serves as a placeholder for the prediction of
xN+1 +∆. We define a single-layer linear transformer f : R(d+1)×(N+1) → R(d+1)×(N+1), which
is commonly employed in theoretical studies of in-context learning (Ahn et al., 2023; Cheng et al.,
2024; Gatmiry et al., 2024; Mahankali et al., 2024; Zhang et al., 2024b), as follows:

f(Z∆;P ,Q) :=
1

N
PZ∆MZ⊤

∆QZ∆, M :=

[
In 0
0 0

]
∈ R(N+1)×(N+1), (2)

where P ∈ R(d+1)×(d+1) serves as the value weight matrix and Q ∈ R(d+1)×(d+1) serves as the
product of the key and query weight matrices. The mask matrix M is adopted from recent literature
on in-context learning to prevent tokens from attending to the query token (Ahn et al., 2023; Cheng
et al., 2024; Gatmiry et al., 2024; Li et al., 2025).

Training Data Distribution. The transformer is pretrained on d distinct datasets. Inspired by Tsipras
et al. (2019), we consider the following data structure that explicitly separates robust and non-robust
features (cf. Section 2) according to their dimensional indices:

Assumption 3.1 (Individual training data distribution). Let c ∈ [d] be the index of the training data
distribution and Dtr

c be the c-th distribution. A sample (x, y) ∼ Dtr
c satisfies the following:

y ∼ U({±1}), xc = y, ∀i ∈ [d], i ̸= c : xi ∼
{
U([0, yλ]) (y = 1)

U([yλ, 0]) (y = −1) , (3)

where 0 < λ < 1. For any i ̸= j, xi and xj are independent, given y.

In this distribution, a sample has a feature strongly correlated with its label (i.e., robust feature) at
the c-th dimension and has features weakly correlated (i.e., non-robust features) at other dimensions.
The correlation between non-robust features and the label is bounded by λ. The robust feature
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mimics human-interpretable, semantically meaningful attributes in natural objects (e.g., shape). The
non-robust features mimic human-imperceptible yet predictive attributes (e.g., texture).

Test Data Distribution. The test data distribution may exhibit more diverse structures than the
training data, and may include non-predictive features in addition to robust and non-robust features.

Assumption 3.2 (Test data distribution). Let the index sets of robust, non-robust, and irrelevant
features be Srob,Svul,Sirr ⊂ [d], respectively. Suppose that these sets are disjoint, i.e., Srob∩Svul =
Svul∩Sirr = Sirr∩Srob = ∅ and that Srob∪Svul∪Sirr = [d]. Let the number of robust, non-robust,
and irrelevant features be drob := |Srob|, dvul := |Svul|, and dirr := |Sirr|, respectively. Let the
scales of the robust, non-robust, and irrelevant features be α > 0, β > 0, and γ ≥ 0, respectively.
Let Dte be the test data distribution. A sample (x, y) ∼ Dte satisfies the following:

(1. Label) The label y follows the uniform distribution U({±1}).

(2. Expectation and Moments) For every i ∈ Sirr, E[xi] = 0. For every i ∈ [d] and n ∈ {2, 3, 4},
there exist constants Ci > 0 and Ci,n ≥ 0 such that

E[yxi] =





Ciα (i ∈ Srob)
Ciβ (i ∈ Svul)
0 (i ∈ Sirr)

, |E[(yxi − E[yxi])
n]| ≤





Ci,nα
n (i ∈ Srob)

Ci,nβ
n (i ∈ Svul)

Ci,nγ
n (i ∈ Sirr)

. (4)

(3. Covariance) There exist constants 0 ≤ qrob, qvul < 1 such that
∣∣{ i ∈ Srob |

∑
j∈Srob∪Svul

E[(xi − E[xi])(xj − E[xj ])] < 0
}∣∣ ≤ qrobdrob, (5)

∣∣{ i ∈ Svul |
∑

j∈Srob∪Svul
E[(xi − E[xi])(xj − E[xj ])] < 0

}∣∣ ≤ qvuldvul. (6)

(4. Independence) For every i ∈ Sirr, xi is independent of y and all xj for j ̸= i.

In contrast to the training distribution, the test distribution may contain drob robust features and dirr
irrelevant features. The latter simulates natural noise or redundant dimensions commonly found in
real-world data. For example, in MNIST (Deng, 2012), the top-left pixel is always zero and thus not
predictive. Assumption 4 requires each irrelevant feature to be independent of both the label and all
the other features. Robust and non-robust features are not assumed to be mutually independent.

Assumption 2 (Expectation) ensures that robust and non-robust features exhibit positive correlation
with the label. Given sufficient data, it is always possible to preprocess features to positively align
with the label. For example, with a large N , this can be achieved by multiplying each feature xi by
sgn(E[yxi]) ≈ sgn(

∑N
n=1 ynxn,i), ensuring E[y(sgn(E[yxi])xi)] = |E[yxi]| ≥ 0.

Assumption 2 (Moments) bounds the n-th central moment of each feature by a constant multiple of
the n-th power of its expectation. This property, commonly referred to as Taylor’s law (Taylor, 1961),
is observed in a wide range of natural datasets and distributions.

Assumption 3 bounds the number of features whose total covariance with other informative fea-
tures (i.e., robust and non-robust features) is negative. As stated in Theorem 3.6, we typically assume
that qrob and qvul are small (but not necessarily infinitesimal). This assumption prevents unrealistic
cases where useful features are overly anti-correlated with others, which could hinder learning. When
all predictive features are independent conditioned on the label, qrob = 0 and qvul = 0 satisfy this
assumption. We can observe that qrob and qvul are small in real-world datasets (cf. Fig. A2).

These conditions encompass a wide class of realistic data distributions.

• Example 1: Training data distribution. The training distribution Dtr
c is a special case of the test

distributionDte. In this case, the number of robust features is drob = 1 with scale α ≈ 1. Similarly,
dvul = d− 1 and β ≈ λ. There are no irrelevant features, i.e., dirr = 0. By construction, and due
to the properties of the uniform distribution, this distribution satisfies all the assumptions.

• Example 2: Basic distributions. The test distribution class includes basic distributions, such as
uniform, normal, exponential, beta, gamma, Bernoulli, binomial distributions, etc. For example,
consider normal distribution. Assumptions 3 and 4 are satisfied if all features are mutually
independent. The expectation and second-moment constraints can be satisfied by setting appropriate
mean and covariance. The third- and fourth-moment constraints are inherently satisfied.

4
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• Example 3: MNIST/Fashion-MNIST/CIFAR-10. Empirical evidence suggests that preprocessed
MNIST (Deng, 2012), Fashion-MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky, 2009)
approximately satisfy our assumptions. Consider MNIST. Let {x(0)

n }Nn=1, {x
(1)
n }Nn=1 ∈ [0, 1]784

denote the samples of digits zero and one, respectively. We assign y = 1 to digit zero and y = −1
to digit one. Center the data via x′ ← x − x̄ with x̄ := (1/2N)

∑N
n=1(x

(0)
n + x

(1)
n ) and align

features with the label using x′′ ← sgn(
∑N

n=1(x
(0)
n −x

(1)
n ))⊙x′. In this representation, common

background features yield near-zero expectations (i.e., γ ≈ 0), while discriminative features—such
as the left and right arcs of zero or the vertical stroke of one—correlate strongly with the label (i.e.,
α ≈ 0.2) (cf. Fig. A2). Additionally, some outlier-dependent pixels (e.g., corners occasionally
activated by slanted digits) exhibit weak correlation with the label (i.e., β ≈ 0.01), reflecting non-
robust but predictive attributes. Empirical analysis reveals that most dimensions exhibit positive
total covariance with others, consistent with Assumption 3 (cf. Fig. A2). The main departure from
our test distribution lies in the fact that real-world datasets exhibit a gradual transition in feature
importance rather than a binary separation between robust and non-robust features.

• Example 4: Linear combination of orthonormal bases. Under mild conditions, any distribution
comprising robust and non-robust directions forming an orthonormal basis can be transformed into
our setting via principal component analysis (cf. Appendix B).

Adversarial Attack. We assume that the test query xN+1 is subject to an adversarial perturbation
∆ constrained in the ℓ∞ norm, i.e., ∥∆∥∞ ≤ ϵ, where ϵ ≥ 0 denotes the perturbation budget. In
practice, ϵ is chosen to match the scale of non-robust features (e.g., ϵ ≈ λ for the training and ϵ ≈ β
for the test distribution). This ensures that perturbations effectively manipulate non-robust features
while leaving robust features intact and remaining imperceptible to humans.

Pretraining with In-Context Loss. For pretraining, we consider the following problem based on the
in-context loss (Ahn et al., 2023; Bai et al., 2023; Mahankali et al., 2024; Zhang et al., 2024b):

min
P ,Q∈[0,1](d+1)×(d+1)

E
c∼U([d]),{(xn,yn)}N+1

n=1

i.i.d.∼ Dtr
c

[
max

∥∆∥∞≤ϵ
−yN+1[f(Z∆;P ,Q)]d+1,N+1

]
. (7)

This formulation encourages the transformer to extract robust, generalizable representations from N
clean in-context demonstrations and accurately classify an adversarially perturbed query sample.

3.2 WARM-UP: LINEAR CLASSIFIERS AND ORACLE

Standard Linear Classifiers Extract All Features and Thus are Vulnerable. As a warm-up,
consider standard training of a linear classifier parameterized by w ∈ Rd on the c-th training
distribution Dtr

c . Standard training results in wstd := argminw∈[0,1]d E(x,y)∼Dtr
c
[−yw⊤x] = 1d.

This classifier utilizes all features, including the robust feature at the c-th dimension and other non-
robust features. Although wstd achieves correct predictions on clean samples, E[ywstd⊤x] > 0, it is
vulnerable to adversarial perturbations, E[min∥∆∥∞≤ϵ yw

std⊤(x+∆)] ≤ 0 for ϵ ≥ 1+(d−1)(λ/2)
d .1

This implies that, for a small d, the perturbation must be of the order ϵ ≳ 1, which affects the robust
feature and is human-perceptible. However, as d increases, the threshold decreases to ϵ ≳ λ, which is
at the scale of non-robust features and imperceptible yet can break the classifier predictions.

Linear Classifiers can be Specific Robust, but not Universally Robust. Consider adversarial
training minw∈[0,1]d E[max∥∆∥∞≤ϵ−yw⊤(x+∆)]. For ϵ ≥ λ

2 , the optimal solution wadv has one
at the c-th dimension and zero otherwise. The classifier relies solely on the robust feature at the
c-th dimension and ignores all non-robust features. Unlike wstd, this classifier can correctly classify
both clean and adversarial samples for 0 ≤ ϵ < 1; linear classifiers can be robust for a specific
training distribution. However, wadv tailored to Dtr

c is vulnerable on other distributions Dtr
c′ indexed

by c′ ̸= c; linear classifiers cannot be universally robust.

Universally Robust Classifiers Exist. Although linear classifiers cannot exhibit universal robustness
across all c, universally robust classifiers do exist. For example, the classifier h(x) := sgn(xi) with
i := argmaxi′∈[d] |xi′ | always produces correct predictions for clean data x ∼ Dtr

c for any c and
perturbed data x+∆ with ∥∆∥∞ ≤ 1

2 .

1E[min∥∆∥∞≤ϵ yw
std⊤

(x+∆)] = wstd⊤
(E[yx]− ϵ1d) = {1 + (d− 1)(λ/2)} − dϵ ≤ 0.

5
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Figure 1: Parameter heatmaps induced by adversarial training (7) with d = 20 and λ = 0.1. For the
standard, adversarial, and strong adversarial regimes, we used ϵ = 0, 1+(d−1)(λ/2)

d = 0.098, and
λ
2 + 3

2
2−λ

(d−1)λ2+3 = 0.95, respectively. We optimized (7) by stochastic gradient descent. Detailed
experimental settings can be found in Appendix C.

3.3 ADVERSARIAL PRETRAINING

In this section, we consider the global solution for the minimization problem (7).

Optimization Challenges. Although the training distributions are relatively simple, the minimization
problem (7) remains nontrivial due to the non-linearity and non-convexity in the trainable parameters
P and Q. The high non-linearity of self-attention and inner-maximization are also obstacles. Indeed,
the minimization problem (7) is rearranged as the following non-linear maximization problem:

Lemma 3.3 (Transformation of original optimization problem). The minimization problem (7) can be
transformed into the maximization problem maxb∈{0,1}d+1

∑d(d+1)
i=1 max(0,

∑d+1
j=1 bjhi,j), where

hi,j ∈ R is an (i, j)-dependent constant, and there exists a mapping from b to P and Q.

The proof can be found in Appendix D. This lemma highlights the inherent difficulty of optimizing
(7), which requires selecting a binary vector b that balances d(d+1) interdependent non-linear terms.

Global Solution. Considering the symmetric property of b and further transformation of the problem
in Lemma 3.3, we identify the global solution of (7) for some perturbation cases.

Theorem 3.4 (Parameters induced by adversarial pretraining). The global minimizer of (7) is
(

1. Standard; ϵ = 0
)

P = P std :=

[
0d,d+1

1⊤
d+1

]
and Q = Qstd := [1d+1,d 0d+1].

(
2. Adversarial; ϵ = 1+(d−1)(λ/2)

d

)
P = P adv :=

[
0d,d+1

1⊤
d+1

]
and Q = Qadv :=

[
Id 0d

0⊤
d 0

]
.

(
3. Strongly adversarial; ϵ ≥ λ

2 + 3
2

2−λ
(d−1)λ2+3

)
P = 0d+1,d+1 and Q = 0d+1,d+1.

The proof and optimal parameters for different ϵ can be found in Appendix D. Importantly, the
optimal P and Q are independent of any specific training distribution (i.e., index c), reflecting that the
transformer obtains learnability from demonstrations rather than memorizing individual tasks. The
experimental results via gradient descent completely align with our theoretical predictions (Fig. 1).

Failure Case. In the strong adversarial regime, the global optimum becomes P = Q = 0, causing
the transformer to always output zero regardless of the input. Namely, no universally robust single-
layer linear transformers exist, despite the existence of universally robust classifiers (cf. Section 3.2).
The perturbation scale ϵ ≥ λ

2 + 3
2

2−λ
(d−1)λ2+3 decreases in d: it transitions from ϵ = 1 when d = 1

to ϵ → λ
2 as d → ∞. In moderate dimensions (d ≈ 1

λ ), adversarial perturbations must be ϵ ≳ 1
to break robustness. They are comparable to the scale of robust features and thus perceptible
to humans, contradicting the concept of adversarial perturbations. However, in extremely high
dimensions (d ≳ 1

λ2 ), it suffices to perturb by only ϵ ≳ λ, which is on the same scale as non-robust
features and typically imperceptible, keeping the perturbation concept. This can be rephrased as:
under our training distributions, single-layer linear transformers cannot achieve universal robustness
when the non-robust dimensions (i.e., d− 1) substantially outnumber the robust dimension (i.e., 1).

6
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3.4 UNIVERSAL ROBUSTNESS

In this section, we show that universal robustness (over seen and unseen distributions) can be attained
by adversarial pretraining and clean in-context demonstrations.

Standard Pretraining Leads to Vulnerability. We begin by showing that the standard model fails
to classify adversarially perturbed inputs.

Theorem 3.5 (Standard pretraining case). There exist a constant C > 0 and a strictly positive
function g(drob, dvul, dirr, α, β, γ) such that

E
{(xn,yn)}N+1

n=1

i.i.d.∼ Dte

[
min

∥∆∥∞≤ϵ
yN+1[f(Z∆;P std,Qstd)]d+1,N+1

]

≤ g(drob, dvul, dirr, α, β, γ)
{

C(drobα+ dvulβ)︸ ︷︷ ︸
Prediction for original data

− (drob + dvul + dirr)ϵ︸ ︷︷ ︸
Adversarial effect

}
. (8)

The proof can be found in Appendix E. This result analyzes the expectation of the product between
the true label and model prediction for the query. A positive value indicates correct classification and
a nonpositive value indicates failure. Since g(drob, dvul, dirr, α, β, γ) is always positive, a nonpositive
C(drobα+ dvulβ)− (drob + dvul + dirr)ϵ implies incorrect classification.

The standard model extracts both features and thus is vulnerable. Assume dirr = 0. Like standard
linear classifiers, the standard model leverages both robust features drobα and non-robust features
dvulβ. This also makes vulnerability to adversarial perturbations contributing to the term (drob +
dvul)ϵ. The prediction becomes incorrect, C(drobα + dvulβ) − (drob + dvul)ϵ ≤ 0, when ϵ ≳
drobα+dvulβ
drob+dvul

. The perturbation size ϵ is at the same scale as non-robust features, ϵ ≈ β, when
dvul ≳ drob

α−β
β . In typical cases where the scale of robust features is much larger than that of

non-robust ones, α≫ β, we can informally conclude:

For ϵ ≈ β, if dvul ≳ α
β drob, then the normally pretrained single-layer linear transformer is vulnerable.

Non-predictive features accelerate vulnerability. Redundant dimensions dirr do not contribute to the
first term, i.e., accuracy, but they increase the second term, i.e., vulnerability. Therefore, they degrade
robustness without providing any benefit to prediction. In addition, dirr amplifies the adversarial
effect at a rate of dirrϵ, which is comparable to the effect from the useful dimensions, drobϵ and dvulϵ.

Adversarial Pretraining Leads to Universal Robustness. We now establish the universal robustness
of the adversarially pretrained model.

Theorem 3.6 (Adversarial pretraining case). Suppose that qrob and qvul defined in Assumption 3.2
are sufficiently small. There exist constants C1, C2 > 0 such that

E
{(xn,yn)}N+1

n=1

i.i.d.∼ Dte

[
min

∥∆∥∞≤ϵ
yN+1[f(Z∆;P adv,Qadv)]d+1,N+1

]

≥ C1(drobα+ dvulβ + 1)(drobα
2 + dvulβ

2)︸ ︷︷ ︸
Prediction for original data

− C2

{
(drobα+ dvulβ + 1)

(
drobα+ dvulβ +

dirrγ√
N

)
+ dirr

(√
dirr
N

+ 1

)
γ2

}
ϵ

︸ ︷︷ ︸
Adversarial effect

. (9)

The proof and generalized theorem can be found in Appendix E and Theorem E.1. For notational
simplicity, we assume small qrob and qvul. However, we do not require infinitesimal qrob and qvul.
See Theorem E.1 and Appendix B. In contrast to Theorem 3.5, this theorem provides the lower bound.
A positive right-hand side implies correct classification under adversarial perturbations.

The adversarially trained model prioritizes robust features. Assume dirr = 0. Up to constant factors,
the lower bound reduces to (drobα+dvulβ+1){drobα2+dvulβ

2−(drobα+dvulβ)ϵ}. The important

7
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factor is drobα2 + dvulβ
2 − (drobα+ dvulβ)ϵ, which determines the sign. As shown in Theorem 3.5,

the standard models extract features at scales drobα and dvulβ. In contrast, the adversarially trained
models extract them at quadratic scales drobα2 and dvulβ

2. Since robust features typically have larger
magnitude (α2 ≫ β2), the adversarially trained model places greater emphasis on robust features
and mitigate the influence of non-robust features, comparing the standard counterpart.

It is universally robust. As shown in the above discussion, to flip the prediction of the adversarially
trained model, the perturbation must satisfy ϵ ≳ drobα

2+dvulβ
2

drobα+dvulβ
. To maintain ϵ ≈ β, dvul needs to be

dvul ≳
drobα(α−β)

β2 . In typical cases where α≫ β, we can informally conclude:

For ϵ ≈ β, if dvul ≲ (αβ )
2drob, then the adversarially pretrained single-layer linear transformer is

universally robust.

This threshold represents a substantial improvement over the standard model’s robustness condition
of dvul ≲ α

β drob. For example, when α = 160/255 and β = 8/255, the standard model becomes
vulnerable at dvul ≳ 20drob, whereas the adversarially pretrained model remains robust up to
dvul ≲ 400drob. This result also suggests that they become vulnerable when non-robust dimensions
significantly outnumber robust ones, consistent with the failure case in Section 3.3.

It is more robust to attacks that exploit non-predictive features. Theorem 3.6 shows that even though
the adversary may exploit redundant dimensions, their effect is significantly attenuated. Assume
N →∞ for simplicity. The adversarial effect from irrelevant features then scales as dirrγ2ϵ, which
is linear in dirr. In contrast, the clean prediction scales as d2robα

3 and d2vulβ
3, i.e., quadratically in the

number of informative features. Thus, as long as useful features dominate in magnitude and number,
the influence of redundant features on the model’s robustness remains limited.

3.5 OPEN CHALLENGES

In this section, we show that two open challenges in robust classification (Schmidt et al., 2018;
Tsipras et al., 2019) persist in our setting.

Accuracy–Robustness Trade-Off. Inspired by Tsipras et al. (2019), we consider a situation where
robust features correlate with the label with some probability, yet non-robust features always correlate.

Theorem 3.7 (Accuracy–robustness trade-off). Assume |Srob| = 1, |Svul| = d−1, and |Sirr| = 0. In
addition to Assumption 3.2, for (x, y) ∼ Dte, suppose that yxi takes α with probability p > 0.5 and
−α with probability 1−p for i ∈ Srob. Moreover, yxi takes β with probability one for i ∈ Svul. Let
f̃(P ,Q) := E

{(xn,yn)}N
n=1

i.i.d.∼ Dte
[yN+1[f(Z0;P ,Q)]d+1,N+1]. Then, there exist strictly positive

functions g1(d, α, β) and g2(d, α, β) such that

f̃(P std,Qstd) =

{
g1(d, α, β)(α+ (d− 1)β) (w.p. p)

g1(d, α, β)(−α+ (d− 1)β) (w.p. 1− p)
, (10)

f̃(P adv,Qadv) ≤ g2(d, α, β){−(2p− 1)α2 + (d− 1)β2} (w.p. 1− p). (11)

The proof can be found in Appendix F. Different from Theorems 3.5 and 3.6, this theorem considers
the expectation over {(xn, yn)}Nn=1, instead of {(xn, yn)}N+1

n=1 . The query (xN+1, yN+1) behaves
probabilistically. If d ≳ α

β , the standard model can always produce correct predictions. However, if
d ≲ (2p− 1)(αβ )

2, the adversarially trained model produces incorrect predictions with probability
1− p. This discrepancy arises because the robust model discards non-robust but predictive features.

Need for Larger In-Context Sample Sizes. Building on the assumptions of Theorem 3.7, we
informally summarize Theorem G.1 as follows (omitting constant factors for clarity):

Consider ExN+1,yN+1
[yN+1[f(Z0;P ,Q)]d+1,N+1]. Assume d ≲ α

β , p → 0.5, and a small N
regime. With probability at least 1− exp(−N), the standard transformer outputs correct answers.
With probability at most 1− 1√

N
, the adversarially trained transformer outputs correct answers.

8
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Table 1: Accuracy (%) of normally and adversarially pretrained single-layer linear transformers. Left
values represent clean accuracy; right values represent robust accuracy. For Dtr (cf. Assumption 3.1),
we used d = 100 and λ = 0.1. For Dte (cf. Assumption 3.2), we constructed a test distribution from
multivariate normal distributions with drob = 10, dvul = 90, dirr = 0, α = 1.0, and β = 0.1. For
the real-world datasets, values were averaged across all 45 binary classification pairs from the 10
classes. The perturbation budgets were set as follows: ϵ = 0.15 for Dtr, 0.2 for Dte, 0.1 for MNIST
and CIFAR-10, and 0.15 for Fashion-MNIST. See Appendix C for details.

Dtr Dte MNIST FMNIST CIFAR10

Normally pretrained model 100 / 0 100 / 0 94 / 4 91 / 20 68 / 21
Adversarially pretrained model 100 / 100 99 / 95 93 / 72 89 / 62 64 / 34

This result indicates that the adversarially pretrained model requires substantially more in-context
demonstrations to match the clean accuracy of the standard model. In low-sample regimes, the
standard model rapidly approaches high accuracy, while the robust model converges more slowly due
to its reliance on robust features, which are underrepresented in small-sample regimes.

4 EXPERIMENTAL RESULTS

Additional results and detailed experimental settings are provided in Appendix C.

Verification of Theorem 3.4. We trained single-layer linear transformers (2) using stochastic gradient
descent over [0, 1]d with in-context loss (7). The training distribution was configured with d = 20

and λ = 0.1. We used ϵ = 0, 1+(d−1)(λ/2)
d = 0.098, and λ

2 + 3
2

2−λ
(d−1)λ2+3 = 0.95 for the standard,

adversarial, and strong adversarial regimes, respectively. The heatmaps of the learned parameters are
shown in Fig. 1. These results completely align with the theoretical predictions of Theorem 3.4.

Verification of Theorems 3.5 to 3.7. We evaluated normally and adversarially pretrained single-
layer linear transformers on Dtr, Dte, MNIST (Deng, 2012), Fashion-MNIST (Xiao et al., 2017),
and CIFAR-10 (Krizhevsky, 2009). These results are provided in Tab. 1. They suggest that the
standard models achieve high clean accuracy but suffer severe degradation under adversarial attacks,
consistent with Theorem 3.5. In contrast, the adversarially pretrained models maintain high robustness,
supporting Theorem 3.6, while their clean accuracy is lower, aligning with the accuracy–robustness
trade-off described in Theorem 3.7.

5 CONCLUSION AND LIMITATIONS

We theoretically demonstrated that single-layer linear transformers, after adversarial pretraining
across classification tasks, can robustly adapt to previously unseen classification tasks through in-
context learning, without any additional training. These results pave the way for universally robust
foundation models. We also showed that these transformers can adaptively focus on robust features,
exhibit an accuracy–robustness trade-off, and require a larger number of in-context demonstrations.

Our limitations include the assumptions on the data distributions and architectures. While we assume
that the data distributions consist of clearly separated robust and non-robust features, real-world
datasets typically exhibit a more gradual transition (cf. Section 3.1, especially Example 3). Single-
layer linear transformers lack the practical characteristics of multi-layer models and softmax attention.
Although such theoretical assumptions are standard and comparable in strength to those in prior
work (cf. studies on in-context learning in Appendix A), they limit the applicability of our results.

The cost of adversarial pretraining is the limitation of the concept of universally robust foundation
models. We expect that such efforts would be undertaken by large companies, which could offset de-
velopment costs through API fees. In addition, acceleration techniques for adversarial training, which
have been extensively studied in the existing literature, can reduce this cost to a level comparable to
standard training. Our theoretical analysis is an important first step toward fostering the practical
development of universally robust foundation models. See also the last paragraph in Section 1.

9
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REPRODUCIBILITY STATEMENT

All experimental procedures are described in Section 4 and Appendix C. The supplementary material
includes the source code to reproduce our experimental results. Proofs of the theorems are provided
in Appendices D to G.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to improve our writing. No essential contributions were made by the LLMs.
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A ADDITIONAL RELATED WORK

In-Context Learning. In-context learning has emerged as a remarkable property of large language
models, enabling them to adapt to a new task from a few input–output demonstrations without
any parameter updates (Brown et al., 2020). Recent work has shown that in-context learning can
implement various algorithms (Bai et al., 2023; Garg et al., 2022). One research direction has linked
in-context learning with preconditioned gradient descent through empirical (Akyürek et al., 2023;
Dai et al., 2023; Garg et al., 2022; Von Oswald et al., 2023; 2024) and theoretical analyses (Ahn
et al., 2023; Bai et al., 2023; Cheng et al., 2024; Gatmiry et al., 2024; Mahankali et al., 2024;
Zhang et al., 2024b). Additional results have indicated that in-context learning can implement
ridge regression (Akyürek et al., 2023; Bai et al., 2023), second-order optimization (Fu et al., 2024;
Giannou et al., 2024), reinforcement learning (Lee et al., 2023; Lin et al., 2024), and Bayesian model
averaging (Zhang et al., 2023). In terms of robustness, some studies have shown that in-context
learning can act as a nearly optimal predictor under noisy linear data (Bai et al., 2023) and noisy
labels (Frei & Vardi, 2025). Moreover, it has been demonstrated that in-context learning is robust
to shifts in the query distribution (Wies et al., 2023; Zhang et al., 2024b), but not necessarily to
shifts in the context (Shi et al., 2023; 2024; Wei et al., 2023b; Zhang et al., 2024b). In this study,
we focus on the adversarial robustness of in-context learning, rather than the underlying algorithms
or its robustness to random noise and distribution shifts. Specifically, we examine whether a single
adversarially pretrained transformer can robustly adapt to a broad range of tasks through in-context
learning.

Norm- and Token-Bounded Adversarial Examples. Adversarial examples were originally intro-
duced as subtle perturbations to natural data, designed to induce misclassifications in models (Croce
& Hein, 2020; Goodfellow et al., 2015; Madry et al., 2018; Szegedy et al., 2014). These perturba-
tions are typically constrained by a norm-based distance from the original inputs. The robustness
of transformers to such norm-bounded adversarial examples has been studied primarily in vision
transformers (Dosovitskiy et al., 2021). Several studies have shown that standard vision transformers
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are as vulnerable to these attacks as conventional vision models (Bai et al., 2021; Mahmood et al.,
2021), though some have reported marginal differences (Aldahdooh et al., 2021; Benz et al., 2021;
Bhojanapalli et al., 2021; Naseer et al., 2021; Paul & Chen, 2022; Shao et al., 2022; Tang et al.,
2021). In contrast, adversarial attacks on language models are often neither norm-constrained nor
imperceptible to humans. They involve substantial token modifications (Garg & Ramakrishnan, 2020;
Jin et al., 2020; Li et al., 2020; Zang et al., 2020), the insertion of adversarial tokens (Liu et al., 2024;
Shen et al., 2024; Wallace et al., 2019; Wei et al., 2023a; Zou et al., 2023), and the construction of
entirely new adversarial prompts (Carlini et al., 2021; 2022; Nasr et al., 2023; Perez & Ribeiro, 2022;
Wei et al., 2023a). These attacks aim not only to induce misclassification (Garg & Ramakrishnan,
2020; Jin et al., 2020; Li et al., 2020; Wallace et al., 2019; Zang et al., 2020), but also to provoke
objectionable outputs (Liu et al., 2024; Perez & Ribeiro, 2022; Shen et al., 2024; Wei et al., 2023a;
Zou et al., 2023) or to extract private information from training data (Carlini et al., 2021; 2022; Nasr
et al., 2023). They are generally bounded by token-level metrics (e.g., the number of modified tokens).
In this study, we focus exclusively on norm-bounded adversarial examples. Token-bounded ones are
out of scope.

Adversarial Training. Adversarial training, which augments training data with adversarial exam-
ples, is one of the most effective adversarial defenses (Goodfellow et al., 2015; Madry et al., 2018).
Although originally developed for conventional neural architectures, adversarial training has also
proven effective for transformers (Debenedetti et al., 2023; Liu et al., 2025; Shao et al., 2022; Tang
et al., 2021; Wu et al., 2022). A major limitation of adversarial training is its high computational
cost. To address this, several methods have focused on more efficient generation of adversarial
examples (Andriushchenko & Flammarion, 2020; Kim et al., 2021; Park & Lee, 2021; Shafahi et al.,
2019; Wong et al., 2020; Zhang et al., 2019a) and adversarial finetuning of standard pretrained
models (Jeddi et al., 2020; Mao et al., 2023; Suzuki et al., 2023; Wang et al., 2024a). More recently,
researchers have introduced adversarial prompt tuning, which trains visual (Mao et al., 2023; Wang
et al., 2024b), textual (Fan et al., 2024; Li et al., 2024; Zhang et al., 2024a), or bimodal prompts (Jia
et al., 2025; Luo et al., 2024; Yang et al., 2024; Zhou et al., 2024) in an adversarial manner. However,
these methods require retraining for each task. In this study, we explore the potential of adversarially
pretrained transformers for robust task adaptation via in-context learning, thereby eliminating the
task-specific retraining and associated computational overhead.

Adversarial Meta-Learning. Adversarial meta-learning seeks to develop a universally robust
meta-learner that can swiftly and reliably adapt to new tasks under adversarial conditions. Existing
approaches adversarially train a neural network on multiple tasks, and then finetune it on a target task
using clean (Goldblum et al., 2020; Hou et al., 2021; Liu et al., 2021; Wang et al., 2021; Yin et al.,
2018) or adversarial samples (Yin et al., 2018). In this study, we similarly aim to train such a meta-
learner. However, rather than relying on neural networks and finetuning, we employ a transformer as
the meta-learner and leverage its in-context learning ability for task adaptation.

Related but Distinct Work. We here review theoretical work on the adversarial robustness of
in-context learning. Assuming token-bounded adversarial examples, prior studies have shown that
even a single token modification in the context can significantly alter the output of a normally
trained model on a clean query (Anwar et al., 2024), and deeper layers can mitigate this (Li et al.,
2025). Assuming norm- and token-bounded examples, Fu et al. have shown that adversarial training
with short adversarial contexts can provide robustness against longer ones (Fu et al., 2025). They
considered a clean query and adversarial tokens appended to the original context. In this study, we
explore how adversarially trained models handle norm-bounded perturbations to a query in a clean
context. As a result, we reveal their universal robustness that can be generalized to a new task from a
few demonstrations.

B ADDITIONAL THEORETICAL SUPPORT AND INSIGHTS

B.1 LINEAR COMBINATION OF ORTHONORMAL BASES CAN BE TRANSFORMED INTO OUR
TEST DISTRIBUTION.

Our test data distribution, Assumption 3.2, can implicitly represent data distributions comprising
robust and non-robust directions forming an orthonormal basis. Consider d orthonormal bases,
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{ei}di=1. We set dirr = 0, namely d = drob + dvul. Each data point is represented as x =
c1e1 + c2e2 + · · · + cded, where coefficients ci are sampled probabilistically. These coefficients
satisfy E[yci] = Ciα for i ∈ Srob and β for i ∈ Svul. In addition, |E[(yci − E[yci])n]| ≤ Ci,nα

n

for i ∈ Srob and Ci,nβ
n for i ∈ Svul. Given a dataset of N i.i.d. samples {(xn, yn)}Nn=1, if cn,i is

independent of cn,j for i ̸= j conditional on y, and N is sufficiently large, then the covariance of yx
can be approximated as:

1

N

N∑

n=1

(
ynxn −

N∑

k=1

ykxk

)(
ynxn −

N∑

k=1

ykxk

)⊤

≈ E[(yx− E[yx])(yx− E[yx])⊤] (A12)

= E



(

d∑

i=1

(yici − E[yci])ei

)(
d∑

i=1

(yici − E[yci])ei

)⊤
 (A13)

=

d∑

i,j=1

E[(yci − E[yci])(ycj − E[ycj ])]eie⊤j (A14)

=

d∑

i∈Srob

Ci,2α
2eie

⊤
i +

d∑

i∈Svul

Ci,2β
2eie

⊤
i . (A15)

This implies that through principal component analysis for ynxn, we can obtain d orthonormal
bases, {ei}di=1. By projecting a sample xn onto these bases, we obtain a transformed sample
x′
n := {cn,1, cn,2, . . . , cn,d}. This demonstrates that when data is sampled from a distribution

comprising robust and non-robust directions forming an orthonormal basis, if the coefficients are
mutually independent and the sample size is sufficiently large, we can preprocess the data to satisfy
Assumption 3.2. Importantly, this preprocessing relies solely on statistics derivable from training
samples.

B.2 SUFFICIENT NUMBER OF DATASETS TO PROVIDE UNIVERSAL ROBUSTNESS

What determines the sufficient number of datasets needed to provide universal robustness to trans-
formers? We conjecture that this may be determined by the number of robust bases. In this paper,
we trained transformers using d datasets. This stems from training with datasets where only one
dimension is robust (in other words, datasets with a single robust basis), the number of dimensions
d, and the assumption that all dimensions might contain robust features. If we assume that robust
features never appear in the latter d′ dimensions, following the procedure in Appendix D, we can
train robust transformers using only d− d′ datasets that describe the first d− d′ robust features. From
this observation, we conjecture that the sufficient number of datasets required to provide universal
robustness to transformers depends on the number of robust bases in the assumed data structure.

B.3 EFFECTS OF qrob AND qvul

We here analyze how qrob and qvul affect the robustness of adversarially trained transformer. As
defined in Assumption 3.2, these parameters control the proportion of features whose total covariance
with other features is negative. Theorem E.1 suggests that the transformer prediction for unperturbed
data can be expressed as

C(drobα+ dvulβ)
{
(1− cqrob)drobα

2 + (1− cqvul)dvulβ
2
}
+ C ′(drobα

2 + dvulβ
2), (A16)

where

c :=
(maxi∈Srob∪Svul

Ci)(maxi∈Srob∪Svul
Ci,2)

mini∈Srob∪Svul
C3

i

. (A17)

Examining the term (1− cqrob)drobα
2+(1− cqvul)dvulβ

2, we observe that larger values of qrob and
qvul generally diminish the magnitude of transformer predictions. This indicates that negative correla-
tions between features degrade the robustness of adversarially trained transformers. Additionally, the
coefficient c is characterized by maxi∈Srob∪Svul

Ci,2, which represents a variance coefficient. This
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suggests that smaller feature variances enhance the robustness of adversarially trained transformers.
For example, if each feature variance Ci,2 is sufficiently small, even qrob = 1 and qvul = 1 may be
tolerated without significantly compromising robustness.

B.4 DISADVANTAGE OF STANDARD FINETUNING: PARAMETER SELECTION PERSPECTIVE

In this study, we investigate task adaptation through in-context learning. As an alternative lightweight
approach, standard finetuning—where all or part of the model parameters are updated—can also be
employed. However, a key drawback of standard finetuning is that it requires parameter updates,
whereas in-context learning does not. Moreover, finetuning necessitates careful selection of which
parameters to update. Our analysis shows that improper parameter selection during finetuning can
compromise the robustness initially established by adversarial pretraining. Consider adversarially
pretrained parameters, P adv and Qadv, and Dtr

c as a downstream data distribution.

First, we examine the scenario where only P is updated while keeping Qadv fixed, formulated as:

min
P∈[0,1](d+1)×(d+1)

E
{(xn,yn)}N+1

n=1

i.i.d.∼ Dtr
c

[
−yN+1[f(Z0;P ,Qadv)]d+1,N+1

]
. (A18)

In this case, as shown in the proof in Appendix D, P = P std(= P adv) is the global solution.
Consequently, as demonstrated in Theorem 3.6, the model’s robustness is preserved.

Conversely, consider training Q while keeping P adv fixed, formulated as:

min
Q∈[0,1](d+1)×(d+1)

E
{(xn,yn)}N+1

n=1

i.i.d.∼ Dtr
c

[
−yN+1[f(Z0;P

adv,Q)]d+1,N+1

]
. (A19)

In this scenario, Q = Qstd is the global solution. As established in Theorems 3.5, 3.7 and G.1, while
this configuration enables the transformer to perform well on unperturbed queries, it fails to maintain
robustness against perturbed inputs.

These findings highlight a critical insight: achieving robust task adaptation through standard finetuning
requires careful parameter selection; otherwise, the pretrained model’s adversarial robustness may be
compromised. This parameter sensitivity represents a disadvantage compared to in-context learning,
which preserves robustness without requiring parameter updates.

B.5 NAIVE ADVERSARIAL CONTEXT MAY NOT IMPROVE ROBUSTNESS

One approach to enhancing the robustness of a normally trained transformer is to incorporate
adversarial examples into the context. In this section, we show that this is not the case in our setting.
Consider the following transformer input:

Z ′ :=

[
x1 +∆1 x2 +∆2 · · · xN +∆N xN+1 +∆N+1

y1 y2 · · · yN 0

]
. (A20)

The adversarial perturbations for the context, ∆1, . . . ,∆N , are defined as ∆n := −ϵyn1d. In this
setting, for ϵ ≥ 1+(d−1)(λ/2)

d , the standard transformer prediction is given by:

E
{(xn,yn)}N+1

n=1

i.i.d.∼ Dtr
c

[
min

∥∆N+1∥∞≤ϵ
yN+1[f(Z

′;P std,Qstd)]d+1,N+1

]
≤ 0. (A21)

This result suggests that, in our setting, naive adversarial demonstrations do not improve the perfor-
mance of the standard transformer. Intuitively, because adversarial training generates new adversarial
examples at each step of gradient descent, fixed adversarial demonstrations may fail to counter newly
generated adversarial perturbations to the query.

C ADDITIONAL EXPERIMENTAL RESULTS

All experiments were conducted on Ubuntu 20.04.6 LTS, Intel Xeon Gold 6226R CPUs, and NVIDIA
RTX 6000 Ada GPUs.
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C.1 SUPPORT FOR ASSUMPTION 3.2.

The statistics of preprocessed MNIST, Fashion-MNIST, and CIFAR-10 are provided in Fig. A2.
Preprocessing was conducted as follows: (i) selection of two different classes from the ten avail-
able classes and assignment of binary labels to every sample from the training dataset, creating
{(xn, yn)}Nn=1; (ii) centering the data via x′ ← x− x̄ with x̄ := (1/N)

∑N
n=1 xn; and (iii) aligning

features with the label using x′′ ← sgn(
∑N

n=1 ynxn)⊙ x′. These preprocessed datasets exhibit that
each dimension has a positive correlation with the label and that few dimensions have negative total
covariance. The main distinction from Assumption 3.2 is that their features are not clearly separated
as robust or non-robust. Instead, they gradually transition from robust to non-robust characteristics.

C.2 VERIFICATION OF THEOREM 3.4.

We trained a single-layer transformer (2) with the in-context loss (7). The training distribution was
configured with d = 20 and λ = 0.1 in Fig. 1 and with d = 100 and λ = 0.1 in Fig. A3. For
standard, adversarial, and strong adversarial regimes, we used ϵ = 0, 1+(d−1)(λ/2)

d = 0.098, and
λ
2 + 3

2
2−λ

(d−1)λ2+3 = 0.95 in Fig. 1 and ϵ = 0, 1+(d−1)(λ/2)
d = 0.06, and λ

2 + 3
2

2−λ
(d−1)λ2+3 = 0.77 in

Fig. A3. Optimization was conducted using stochastic gradient descent with momentum 0.9. Learning
rates were set to 0.1 for all regimes in Fig. 1, and to 1.0 for standard and strong adversarial regimes and
0.2 for the adversarial regime in Fig. A3. Training ran for 100 epochs with a learning rate scheduler
that multiplied the rate by 0.1 when the loss did not improve within 10 epochs. In each iteration
of stochastic gradient descent, we sampled 1,000 datasets {(x(c)

n , y
(c)
n )}N+1

n=1 with N = 1, 000. The
distribution index c was randomly sampled from U([d]), meaning that in each iteration, each of the
1,000 datasets may have different c values. After each parameter update, we projected the parameters
to [0, 1]d. Adversarial perturbation was calculated as ∆ := −ϵyn sgn(Pd+1, ·Z0MZ⊤

0 Q · ,:d),
which represents the optimal attack. The heatmaps of the learned parameters in Figs. 1 and A3
completely align with the theoretical predictions of Theorem 3.4.

C.3 VERIFICATION OF THEOREMS 3.5 TO 3.7 AND G.1

We evaluated normally and adversarially pretrained single-layer transformers on Dtr, Dte, the
preprocessed MNIST, Fashion-MNIST, and CIFAR-10 datasets. For network parameters, we used
the theoretically predicted P std and Qstd as standard model parameters and P adv and Qadv as
adversarially trained model parameters. This approach allowed us to circumvent the computationally
expensive adversarial pretraining for every distinct d setting. As described previously, our empirical
results completely align with the theoretically predicted parameter configurations.

Configuration in Figs. A4 and A5. In Fig. A4, the basic settings were d = 100, λ = 0.1,
N = 1, 000, and ϵ = 0.15. In Fig. A5, they were drob = 10, dvul = 90, dirr = 0, α = 1.0, β = 0.1,
γ = 0.1, and ϵ = 0.2. The basic perturbation budget was set to 0.1. We considered 1,000 batches
where each batch contained 1,000 in-context demonstrations (i.e., N = 1000), and 1,000 queries.
The test distribution Dte was constructed based on normal distribution. During sampling, yxi was
sampled from N (α, α2) for i ∈ Srob, N (β, β2) for i ∈ Svul, and N (0, γ2) for i ∈ Sirr. Each
dimension is independent, given y.

Configuration in Fig. A6. The preprocessing procedure is described in Appendix C.1. As batches,
we considered 45 binary class pairs from ten classes. The basic perturbation budget was set to 0.1. In
the first row of Fig. A6, we used all training samples in the training dataset. As queries, we used all
test samples in the test dataset.

Analysis. In Figs. A4 to A6, standard transformers consistently demonstrate vulnerability to
adversarial attacks, whereas adversarially trained transformers maintain a certain level of robustness,
validating Theorems 3.5 and 3.6. However, adversarially pretrained transformers exhibit lower clean
accuracy, supporting Theorem 3.7.

In Figs. A4 and A5, we observe that a larger number of vulnerable dimensions increases model
vulnerability. Conversely, Fig. A5 shows that a larger number of robust dimensions enhances model
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Figure A2: Statistical properties of preprocessed MNIST, Fashion-MNIST, and CIFAR-10 datasets.
First row: Blue lines represent the mean of (1/N)

∑N
n=1 ynxn across 45 binary class pairs and

shaded regions represent the sample standard deviation. Orange lines represent typical perturbation
magnitude. Green dashed lines represent the (pseudo) threshold between robust and non-robust
dimensions. Second row: Blue lines represent the total covariance of each dimension with other
dimensions and shaded regions represent sample standard deviation across the 45 binary class pairs.
Green dashed lines represent the boundary between positive and negative total covariance.
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Figure A3: Parameter heatmaps induced by adversarial training (7) with d = 100 and λ = 0.1. For
the standard, adversarial, and strong adversarial regimes, we used ϵ = 0, 1+(d−1)(λ/2)

d = 0.06, and
λ
2 + 3

2
2−λ

(d−1)λ2+3 = 0.77, respectively. We optimized (7) by stochastic gradient descent.

robustness. Robust models are less susceptible to increasing vulnerable dimensions and benefit more
from increasing robust dimensions.

Additionally, as predicted in Theorems 3.5 and 3.6, standard training exhibits vulnerability to
increasing redundant dimensions, which is more detrimental than the harmful effect from increasing
vulnerable dimensions, since redundant dimensions do not benefit predictions and are only harmful for
robustness. In contrast, adversarially trained transformers exhibit significant resistance to increases in
these dimensions.

The second row of Fig. A6 indicates that standard transformers still achieve high classification
accuracy in small demonstration regimes, whereas adversarially trained transformers show degraded
performance. These results align with our theoretical predictions, Theorem G.1.

D PROOF OF LEMMA 3.3 AND THEOREM 3.4 (PRETRAINING)

Lemma 3.3 (Transformation of original optimization problem). The minimization problem (7) can be
transformed into the maximization problem maxb∈{0,1}d+1

∑d(d+1)
i=1 max(0,

∑d+1
j=1 bjhi,j), where

hi,j ∈ R is an (i, j)-dependent constant, and there exists a mapping from b to P and Q.

Proof. See “Overview” below.
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Figure A4: Accuracy (%) of normally and adversarially pretrained single-layer transformers. Lines
represent mean accuracy across batches and shaded regions represent unbiased standard deviation (no-
tably small in magnitude). We used 1,000 batches, each containing 1,000 in-context demonstra-
tions (N = 1000) and 1,000 query examples. Base configuration parameters were d = 100, λ = 0.1,
and ϵ = 0.15.
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Figure A5: Accuracy (%) of normally and adversarially pretrained single-layer transformers. Lines
represent mean accuracy across batches and shaded regions represent unbiased standard deviation.
We used 1,000 batches, each containing 1,000 in-context demonstrations (N = 1000) and 1,000
query examples. Base configuration parameters were drob = 10, dvul = 90, dirr = 0, α = 1.0,
β = 0.1, γ = 0.1, and ϵ = 0.2.
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Figure A6: Accuracy (%) of normally and adversarially pretrained single-layer transformers. Lines
represent mean accuracy across 45 binary classification tasks (derived from all possible pairs of the
ten classes) and shaded regions represent the unbiased standard deviation. The perturbation size was
basically ϵ = 0.1.
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Theorem 3.4 (Parameters induced by adversarial pretraining). The global minimizer of (7) is
(

1. Standard; ϵ = 0
)

P = P std :=

[
0d,d+1

1⊤
d+1

]
and Q = Qstd := [1d+1,d 0d+1].

(
2. Adversarial; ϵ = 1+(d−1)(λ/2)

d

)
P = P adv :=

[
0d,d+1

1⊤
d+1

]
and Q = Qadv :=

[
Id 0d

0⊤
d 0

]
.

(
3. Strongly adversarial; ϵ ≥ λ

2 + 3
2

2−λ
(d−1)λ2+3

)
P = 0d+1,d+1 and Q = 0d+1,d+1.

Proof. This is the special case of the following theorem.

Theorem D.1 (General case of Theorem 3.4). The global minimizer of (7) is as follows:
• If

0 ≤ ϵ ≤ λ(λ(d− 2) + 4)

2(λ(d− 1) + 2)
, (A22)

then P =

[
0d,d+1

1⊤
d+1

]
and Q = [1d+1,d 0d+1].

• If

ϵ =
1 + (d− 1)(λ/2)

d
, (A23)

then P =

[
0d,d+1

1⊤
d+1

]
and Q =

[
Id 0d

0⊤
d 0

]
.

• If

ϵ ≥ λ

2
+

3

2

2− λ

(d− 1)λ2 + 3
, (A24)

then P = 0d+1,d+1 and Q = 0d+1,d+1.

Proof.

Overview. The loss function L(P ,Q) is determined only by the last row of P and the first d
columns of Q. Let

P :=

[
0d,d+1

b⊤

]
, Q := [A 0d+1] , (A25)

where b ∈ Rd+1 and A := [a1 · · · ad] ∈ R(d+1)×d. With b, A, and G := Z∆MZ⊤
∆/N , the loss

function L(P ,Q) can be represented as:

L(P ,Q) := Ec,{(xn,yn)}N+1
n=1

[
max

∥∆∥∞≤ϵ
−yN+1[f(Z∆;P ,Q)]d+1,N+1

]
(A26)

= Ec,{(xn,yn)}N+1
n=1

[
max

∥∆∥∞≤ϵ
−yN+1

[
Z∆ +

1

N
PZ∆MZ⊤

∆QZ∆

]

d+1,N+1

]
(A27)

= Ec,{(xn,yn)}N+1
n=1

[
max

∥∆∥∞≤ϵ
−yN+1b

⊤GA(xN+1 +∆)

]
. (A28)

Using b and A, we redefine the loss function as L(b,A) := L(P ,Q). Since G does not include ∆
and max∥∆∥∞≤ϵ w

⊤∆ = ϵ∥w∥1 for w ∈ Rd, the inner maximization can be solved as:

L(b,A) = Ec,{(xn,yn)}N+1
n=1

[
−yN+1b

⊤GAxN+1 + ϵ∥b⊤GA∥1
]
. (A29)

When 0 ≤ b ≤ 1 and 0 ≤ A ≤ 1, then ∥b⊤GA∥1 = b⊤GA1 since all the elements of G are
nonnegative. Thus,

min
0≤b≤1,0≤A≤1

L(b,A)
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= min
0≤b≤1,0≤A≤1

Ec,{(xn,yn)}N+1
n=1

[
−yN+1b

⊤GAxN+1 + ϵb⊤GA1
]
. (A30)

Let the i-th row of G be g⊤
i . Rearranging the argument of the expectation as:

−yN+1b
⊤GAxN+1 + ϵb⊤GA1 = −

d+1∑

j=1

d∑

k=1

Aj,k

(
d+1∑

i=1

bigi,j(yN+1xN+1,k − ϵ)

)
. (A31)

Thus, the objective function can be represented as:

max
0≤b≤1,0≤A≤1

d+1∑

j=1

d∑

k=1

Aj,k

(
d+1∑

i=1

biEc,{(xn,yn)}N+1
n=1

[gi,j(yN+1xN+1,k − ϵ)]

)
. (A32)

Since the objective function is linear with respect to b and A, respectively, the optimal solution exists
on the boundary:

max
b∈{0,1}d+1,A∈{0,1}(d+1)×d

d+1∑

j=1

d∑

k=1

Aj,k

(
d+1∑

i=1

biEc,{(xn,yn)}N+1
n=1

[gi,j(yN+1xN+1,k − ϵ)]

)
. (A33)

This is maximized by Aj,k = 1 if
∑d+1

i=1 biEc,{(xn,yn)}N+1
n=1

[gi,j(yN+1xN+1,k − ϵ)]) ≥ 0 and 0
otherwise. Now,

max
b∈{0,1}d+1

d+1∑

j=1

d∑

k=1

ϕ

(
d+1∑

i=1

biEc,{(xn,yn)}N+1
n=1

[gi,j(yN+1xN+1,k − ϵ)]

)
, (A34)

where ϕ(x) := max(0, x). Calculating the expectation and optimizing b, we obtain the solution.

Calculation of the expectation. First, we consider the expectation given c. Since ynxn,i = 1 if
i = c and ynxn,i ∼ U(0, λ) otherwise, the expectation of ynxn can be calculated as:

E[ynxn,i | c] =
{
1 (i = c)
λ
2 (i ̸= c)

, E[ynx⊤
n | c] =

[
λ
2 · · · λ

2 1︸︷︷︸
c-th

λ
2 · · · λ

2

]
. (A35)

The expectation of G can be calculated as:

E{(xn,yn)}N
n=1

[G | c] = 1

N
E{(xn,yn)}N

n=1
[Z∆MZ⊤

∆ | c] (A36)

=
1

N

[ ∑N
n=1 Exn

[xnx
⊤
n | c]

∑N
n=1 Exn,yn

[ynxn | c]∑N
n=1 Exn,yn [ynx

⊤
n | c] N

]
(A37)

=

[
Exn

[xnx
⊤
n | c] Exn,yn

[ynxn | c]
Exn,yn

[ynx
⊤
n | c] 1

]
. (A38)

For yn = 1 and i, j ̸= c, E[x2
n,i | c] =

∫ λ

0
x2/λdx = λ2/3 and E[xn,ixn,j | c] = E[xn,i | c]E[xn,j |

c] = λ2/4. Thus,

E{(xn,yn)}N
n=1

[gi,j | c] =





1 (i = c) ∧ (j = i, d+ 1)
λ
2 (i = c) ∧ (j ̸= i, d+ 1)
λ2

3 (i ∈ [d], i ̸= c) ∧ (j = i)
λ
2 (i ∈ [d], i ̸= c) ∧ (j = c, d+ 1)
λ2

4 (i ∈ [d], i ̸= c) ∧ (j ̸= i, c, d+ 1)

1 (i = d+ 1) ∧ (j = c, d+ 1)
λ
2 (i = d+ 1) ∧ (j ̸= c, d+ 1)

. (A39)

Note that

E{(xn,yn)}N
n=1

[G | c]
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=




λ2/3 λ2/4 λ2/4 · · · λ2/4

c-th︷︸︸︷
λ/2 λ2/4 · · · λ2/4 λ/2

λ2/4 λ2/3 λ2/4 · · · λ2/4 λ/2 λ2/4 · · · λ2/4 λ/2
...

λ2/4 λ2/4 λ2/4 · · · λ2/3 λ/2 λ2/4 · · · λ2/4 λ/2
λ/2 λ/2 λ/2 · · · λ/2 1 λ/2 · · · λ/2 1
λ2/4 λ2/4 λ2/4 · · · λ2/4 λ/2 λ2/3 · · · λ2/4 λ/2

...
λ2/4 λ2/4 λ2/4 · · · λ2/4 λ/2 λ2/4 · · · λ2/3 λ/2
λ/2 λ/2 λ/2 · · · λ/2 1 λ/2 · · · λ/2 1




}c-th. (A40)

Let

hi(j; k; c) := E{(xn,yn)}N+1
n=1

[gi,j(yN+1xN+1,k − ϵ) | c]. (A41)

Let ϵ+ := 1− ϵ and ϵ− := λ/2− ϵ. By Eqs. (A35) and (A39),

hi(j; k; c) =





ϵ+ (i ∈ [d]) ∧ (j = i, d+ 1) ∧ (k = i) ∧ (c = i)

ϵ− (i ∈ [d]) ∧ (j = i, d+ 1) ∧ (k ̸= i) ∧ (c = i)
λ
2 ϵ+ (i ∈ [d]) ∧ (j ̸= i, d+ 1) ∧ (k = i) ∧ (c = i)
λ
2 ϵ− (i ∈ [d]) ∧ (j ̸= i, d+ 1) ∧ (k ̸= i) ∧ (c = i)
λ2

3 ϵ− (i ∈ [d]) ∧ (j = i) ∧ (k = i) ∧ (c ̸= i)
λ
2 ϵ− (i ∈ [d]) ∧ (j = c, d+ 1) ∧ (k = i) ∧ (c ̸= i)
λ2

4 ϵ− (i ∈ [d]) ∧ (j ̸= i, c, d+ 1) ∧ (k = i) ∧ (c ̸= i)
λ2

3 ϵ+ (i ∈ [d]) ∧ (j = i) ∧ (k = c) ∧ (c ̸= i)
λ
2 ϵ+ (i ∈ [d]) ∧ (j = c, d+ 1) ∧ (k = c) ∧ (c ̸= i)
λ2

4 ϵ+ (i ∈ [d]) ∧ (j ̸= i, c, d+ 1) ∧ (k = c) ∧ (c ̸= i)
λ2

3 ϵ− (i ∈ [d]) ∧ (j = i) ∧ (k ̸= i, c) ∧ (c ̸= i)
λ
2 ϵ− (i ∈ [d]) ∧ (j = c, d+ 1) ∧ (k ̸= i, c) ∧ (c ̸= i)
λ2

4 ϵ− (i ∈ [d]) ∧ (j ̸= i, c, d+ 1) ∧ (k ̸= i, c) ∧ (c ̸= i)

ϵ+ (i = d+ 1) ∧ (j = c, d+ 1) ∧ (k = c)

ϵ− (i = d+ 1) ∧ (j = c, d+ 1) ∧ (k ̸= c)
λ
2 ϵ+ (i = d+ 1) ∧ (j ̸= c, d+ 1) ∧ (k = c)
λ
2 ϵ− (i = d+ 1) ∧ (j ̸= c, d+ 1) ∧ (k ̸= c)

. (A42)

Then, we compute the expectation along c. Note that

Ec,{(xn,yn)}N+1
n=1

[gi,j(yN+1xN+1,k − ϵ)] =
1

d

d∑

c=1

hi(j; k; c). (A43)

Let Hi,j,k :=
∑d

c=1 hi(j; k; c). The summation of hi along c can be calculated as:

For (i ∈ [d]) ∧ (j = i) ∧ (k = i),

Hi,j,k = hi(j = i; k = i; c = i) +

d∑

c ̸=i

hi(j = i; k = i; c ̸= i) = ϵ+ +
λ2

3
(d− 1)ϵ− (A44)

=: r1. (A45)

For (i ∈ [d]) ∧ (j = i) ∧ (k ̸= i),

Hi,j,k = hi(j = i; k ̸= i; c = i) + hi(j = i; k = c; c ̸= i) +

d∑

c̸=i,k

h(j = i; k ̸= i, c; c ̸= i) (A46)

= ϵ− +
λ2

3
ϵ+ +

λ2

3
(d− 2)ϵ− (A47)

=: r2. (A48)
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For (i ∈ [d]) ∧ (j = d+ 1) ∧ (k = i),

Hi,j,k = hi(j = d+ 1; k = i; c = i) +

d∑

c̸=i

hi(j = d+ 1; k = i; c ̸= i) (A49)

= ϵ+ +
λ

2
(d− 1)ϵ− (A50)

=: r3. (A51)

For (i ∈ [d]) ∧ (j = d+ 1) ∧ (k ̸= i),

Hi,j,k = hi(j = d+ 1; k ̸= i; c = i) + hi(j = d+ 1; k = c; c ̸= i)

+

d∑

c ̸=i,k

hi(j = d+ 1; k ̸= i, c; c ̸= i) (A52)

= ϵ− +
λ

2
ϵ+ +

λ

2
(d− 2)ϵ− (A53)

=: r4. (A54)

For (i ∈ [d]) ∧ (j ̸= i, d+ 1) ∧ (k = i),

Hi,j,k = hi(j ̸= i, d+ 1; k = i; c = i) + hi(j = c; k = i; c ̸= i)

+

d∑

c̸=i,j

hi(j ̸= i, c, d+ 1; k = i; c ̸= i) (A55)

=
λ

2
ϵ+ +

λ

2
ϵ− +

λ2

4
(d− 2)ϵ− (A56)

=: r5. (A57)

For (i ∈ [d]) ∧ (j ̸= i, d+ 1) ∧ (k ̸= i) ∧ (j = k),

Hi,j,k = hi(j ̸= i, d+ 1; k ̸= i; c = i) + hi(j = c; k = c; c ̸= i)

+

d∑

c ̸=i,j,k

hi(j ̸= i, c, d+ 1; k ̸= i, c; c ̸= i) (A58)

=
λ

2
ϵ− +

λ

2
ϵ+ +

λ2

4
(d− 2)ϵ− (A59)

=: r5. (A60)

For (i ∈ [d]) ∧ (j ̸= i, d+ 1) ∧ (k ̸= i) ∧ (j ̸= k),

Hi,j,k = hi(j ̸= i, d+ 1; k ̸= i; c = i) + hi(j = c; k ̸= i, c; c ̸= i)

+ hi(j ̸= i, c, d+ 1; k = c; c ̸= i)

+

d∑

c ̸=i,j,k

hi(j ̸= i, c, d+ 1; k ̸= i, c; c ̸= i) (A61)

=
λ

2
ϵ− +

λ

2
ϵ− +

λ2

4
ϵ+ +

λ2

4
(d− 3)ϵ− (A62)

=: r6. (A63)

For (i = d+ 1) ∧ (j = d+ 1),

Hi,j,k = hi(j = d+ 1; k = c; c = k) +

d∑

c ̸=k

hi(j = d+ 1; k ̸= c; c ̸= k) (A64)

= ϵ+ + (d− 1)ϵ− (A65)
=: r7. (A66)
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For (i = d+ 1) ∧ (j ̸= d+ 1) ∧ (j = k),

Hi,j,k = hi(j = c; k = c; c = k) +

d∑

c ̸=k

hi(j ̸= d+ 1; k ̸= c; c ̸= k) (A67)

= ϵ+ +
λ

2
(d− 1)ϵ− (A68)

=: r3. (A69)

For (i = d+ 1) ∧ (j ̸= d+ 1) ∧ (j ̸= k),

Hi,j,k = hi(j = c; k ̸= c; c ̸= k) + hi(j ̸= c; k = c; c = k)

+

d∑

c̸=j,k

hi(j ̸= c, d+ 1; k ̸= c; c ̸= k) (A70)

= ϵ− +
λ

2
ϵ+ +

λ

2
(d− 2)ϵ− (A71)

=: r4. (A72)

Optimization of A and b. From Eq. (A34), we redefine the objective function as:

d max
b∈{0,1}d+1

d+1∑

j=1

d∑

k=1

ϕ

(
d+1∑

i=1

biEc,{(xn,yn)}N+1
n=1

[gi,j(yN+1xN+1,k − ϵ)]

)

= max
b∈{0,1}d+1

d+1∑

j=1

d∑

k=1

ϕ

(
d+1∑

i=1

biHi,j,k

)
. (A73)

Recall that we set Aj,k = 1 if
∑d+1

i=1 biHi,j,k ≥ 0 and 0 otherwise. Let [d]′ := {i ∈ [d] | bi = 1}
and d′ := |[d]′|. Now,

d+1∑

j=1

d∑

k=1

ϕ

(
d+1∑

i=1

biHi,j,k

)
=

d∑

k=1

ϕ


bd+1Hd+1,d+1,k + 1[k ∈ [d]′]Hk,d+1,k +

∑

i∈[d]′,i̸=k

Hi,d+1,k




+

d∑

j=1

ϕ


bd+1Hd+1,j,j + 1[j ∈ [d]′]Hj,j,j +

∑

i∈[d]′,i̸=j

Hi,j,j




+

d∑

j=1

d∑

k ̸=j

ϕ

(
bd+1Hd+1,j,k + 1[j ∈ [d]′]Hi,i,k

+ 1[k ∈ [d]′]Hi,j,i +
∑

i∈[d]′,i̸=j,k

Hi,j,k

)
. (A74)

By Eqs. (A51), (A54) and (A66),

d∑

k=1

ϕ


bd+1Hd+1,d+1,k + 1[k ∈ [d]′]Hk,d+1,k +

∑

i∈[d]′,i̸=k

Hi,d+1,k




=

d∑

k=1

ϕ


bd+1r7 + 1[k ∈ [d]′]r3 +

∑

i∈[d]′,i̸=k

r4


 (A75)

= d′ϕ(bd+1r7 + r3 + (d′ − 1)r4︸ ︷︷ ︸
=:s1(d′,bd+1)

) + (d− d′)ϕ(bd+1r7 + d′r4︸ ︷︷ ︸
=:s2(d′,bd+1)

). (A76)

By Eqs. (A45), (A60) and (A69),

d∑

j=1

ϕ


bd+1Hd+1,j,j + 1[j ∈ [d]′]Hj,j,j +

∑

i∈[d]′,i̸=j

Hi,j,j



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=

d∑

j=1

ϕ


bd+1r3 + 1[j ∈ [d]′]r1 +

∑

i∈[d]′,i̸=j

r5


 (A77)

= d′ϕ(bd+1r3 + r1 + (d′ − 1)r5︸ ︷︷ ︸
=:s3(d′,bd+1)

) + (d− d′)ϕ(bd+1r3 + d′r5︸ ︷︷ ︸
=:s4(d′,bd+1)

). (A78)

By Eqs. (A48), (A57), (A63) and (A72),

d∑

j=1

d∑

k ̸=j

ϕ


bd+1Hd+1,j,k + 1[j ∈ [d]′]Hi,i,k + 1[k ∈ [d]′]Hi,j,i +

∑

i∈[d]′,i̸=j,k

Hi,j,k




=

d∑

j=1

d∑

k ̸=j

ϕ


bd+1r4 + 1[j ∈ [d]′]r2 + 1[k ∈ [d]′]r5 +

∑

i∈[d]′,i̸=j,k

r6


 (A79)

= d′(d′ − 1)ϕ(bd+1r4 + r2 + r5 + (d′ − 2)r6︸ ︷︷ ︸
=:s5(d′,bd+1)

) + d′(d− d′)ϕ(bd+1r4 + r2 + (d′ − 1)r6︸ ︷︷ ︸
=:s6(d′,bd+1)

)

+ d′(d− d′)ϕ(bd+1r4 + r5 + (d′ − 1)r6︸ ︷︷ ︸
=:s7(d′,bd+1)

) + (d− d′)(d− d′ − 1)ϕ(bd+1r4 + d′r6︸ ︷︷ ︸
=:s8(d′,bd+1)

). (A80)

Now,
d+1∑

j=1

d∑

k=1

ϕ

(
d+1∑

i=1

biHi,j,k

)
= d′ϕ(s1(d

′, bd+1)) + (d− d′)ϕ(s2(d
′, bd+1)) + d′ϕ(s3(d

′, bd+1))

+ (d− d′)ϕ(s4(d
′, bd+1)) + d′(d′ − 1)ϕ(s5(d

′, bd+1))

+ d′(d− d′)ϕ(s6(d
′, bd+1)) + d′(d− d′)ϕ(s7(d

′, bd+1))

+ (d− d′)(d− d′ − 1)ϕ(s8(d
′, bd+1)) (A81)

=: score(d′, bd+1). (A82)

We shall now summarize the discussion to Lemma D.2. The rest of the proof is left to Lemma D.3.

Optimization of transformed problem.

Lemma D.2. Let ϕ(x) := max(0, x), d ∈ N, 0 < λ < 1, 0 ≤ ϵ < 1, ϵ+ := 1−ϵ, and ϵ− := λ/2−ϵ.
In addition, for d′ ∈ {0, . . . , d} and bd+1 ∈ {0, 1},

r1 := ϵ+ +
λ2

3
(d− 1)ϵ−, (A83)

r2 := ϵ− +
λ2

3
ϵ+ +

λ2

3
(d− 2)ϵ−, (A84)

r3 := ϵ+ +
λ

2
(d− 1)ϵ−, (A85)

r4 := ϵ− +
λ

2
ϵ+ +

λ

2
(d− 2)ϵ−, (A86)

r5 :=
λ

2
ϵ+ +

λ

2
ϵ− +

λ2

4
(d− 2)ϵ−, (A87)

r6 :=
λ

2
ϵ− +

λ

2
ϵ− +

λ2

4
ϵ+ +

λ2

4
(d− 3)ϵ−, (A88)

r7 := ϵ+ + (d− 1)ϵ−, (A89)

s1(d
′, bd+1) := bd+1r7 + r3 + (d′ − 1)r4, (A90)

s2(d
′, bd+1) := bd+1r7 + d′r4, (A91)

s3(d
′, bd+1) := bd+1r3 + r1 + (d′ − 1)r5, (A92)
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s4(d
′, bd+1) := bd+1r3 + d′r5, (A93)

s5(d
′, bd+1) := bd+1r4 + r2 + r5 + (d′ − 2)r6, (A94)

s6(d
′, bd+1) := bd+1r4 + r2 + (d′ − 1)r6, (A95)

s7(d
′, bd+1) := bd+1r4 + r5 + (d′ − 1)r6, (A96)

s8(d
′, bd+1) := bd+1r4 + d′r6, (A97)

score(d′, bd+1) := d′ϕ(s1(d
′, bd+1)) + (d− d′)ϕ(s2(d

′, bd+1)) + d′ϕ(s3(d
′, bd+1))

+ (d− d′)ϕ(s4(d
′, bd+1)) + d′(d′ − 1)ϕ(s5(d

′, bd+1))

+ d′(d− d′)ϕ(s6(d
′, bd+1)) + d′(d− d′)ϕ(s7(d

′, bd+1))

+ (d− d′)(d− d′ − 1)ϕ(s8(d
′, bd+1)). (A98)

Considering the following optimization problem:

max
d′∈{0,...,d},bd+1∈{0,1}

score(d′, bd+1). (A99)

Then, setting P ,Q ∈ R(d+1)×(d+1) to

P =

[
0d,d+1

b⊤

]
, Q = [A 0d+1] , b⊤ = [1 1 · · · 1︸ ︷︷ ︸

d′

0 0 · · · 0︸ ︷︷ ︸
d−d′

bd+1], (A100)

Ajk

=





1[bd+1r7 + 1[k ≤ d′]r3 + (d′ − 1[k ≤ d′])r4 ≥ 0]

(j = d+ 1)

1[bd+1r3 + 1[j ≤ d′]r1 + (d′ − 1[j ≤ d′])r5 ≥ 0]

(j ̸= d+ 1) ∧ (j = k)

1[bd+1r4 + 1[j ≤ d′]r2 + 1[k ≤ d′]r5 + (d′ − 1[j ≤ d′]− 1[k ≤ d′])r6 ≥ 0]

(j ̸= d+ 1) ∧ (j ̸= k)

,

(A101)

the global maximizer of (A99) is the global minimizer of (7).

Proof. See the above discussion.

Lemma D.3. The global maximizer of (A99) is as follows:
(a) If

0 ≤ ϵ ≤ λ(λ(d− 2) + 4)

2(λ(d− 1) + 2)
, (A102)

then d′ = d and bd+1 = 1. This corresponds to b = 1d+1 and A = 1d+1,d.
(b) If

ϵ =
λ(d− 1) + 2

2d
, (A103)

then d′ = d and bd+1 = 1. This corresponds to b = 1d+1 and A = [Id 0d]
⊤.

(c) If

ϵ ≥ λ

2
+

3

2

2− λ

λ2(d− 1) + 3
, (A104)

then d′ = 0 and bd+1 = 0. This corresponds to b = 1d+1 and A = 0d+1,d.
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Proof. For notational simplicity, we abbreviate terms including variables such as x1, x2, . . . (e.g.,
x2
1 + 3x2 + · · · ) using the notation Θ(x1, x2, . . .). In particular, when the expression is strictly

nonnegative (e.g., x2
1 + x2

2) or nonpositive, we use Θ+(x1, x2, . . .) or Θ−(x1, x2, . . .), respectively.
These terms are not essential to the analysis and too long. They can be derived by simple basic
arithmetic operations. These concrete values can be showed by our python codes.

We define ϵ1, . . . , ϵ7 as

r1 = 0⇐⇒ ϵ =
λ

2
+

3

2

2− λ

λ2(d− 1) + 3
=: ϵ1, (A105)

r2 = 0⇐⇒ ϵ =
λ(λ2(d− 2) + 2λ+ 3)

2(λ2(d− 1) + 3)
=: ϵ2, (A106)

r3 = 0⇐⇒ ϵ =
λ2(d− 1) + 4

2(λ(d− 1) + 2)
=: ϵ3, (A107)

r4 = 0⇐⇒ ϵ =
λ(λ(d− 2) + 4)

2(λ(d− 1) + 2)
=: ϵ4, (A108)

r5 = 0⇐⇒ ϵ =
λ2(d− 2) + 2λ+ 4

2(λ(d− 2) + 4)
=: ϵ5, (A109)

r6 = 0⇐⇒ ϵ =
λ(λ(d− 3) + 6)

2(λ(d− 2) + 4)
=: ϵ6, (A110)

r7 = 0⇐⇒ ϵ =
λ(d− 1) + 2

2d
=: ϵ7, (A111)

s5(d, 1) = 0⇐⇒ ϵ =
λ

2

3d2λ2 − 8dλ2 + 24dλ+ 4λ2 − 34λ+ 48

3d2λ2 − 5dλ2 + 18dλ+ 2λ2 − 18λ+ 24
=: ϵs5 . (A112)

Since

ϵ1 − ϵ3 =
λ(d− 1)(2− λ)(3− 2λ)

2(λ(d− 1) + 2)(λ2(d− 1) + 3)
≥ 0, (A113)

ϵ3 − ϵ5 =
(2− λ)2

(λ(d− 2) + 4)(λ(d− 1) + 2)
≥ 0, (A114)

ϵ5 − ϵ7 =
(d− 2)(2− λ)2

2d(λ(d− 2) + 4)
≥ 0, (A115)

ϵ7 − ϵs5 =
(2− λ)(−3dλ2 + 6dλ+ 2λ2 − 18λ+ 24)

2d(3d2λ2 − 5dλ2 + 18dλ+ 2λ2 − 18λ+ 24)
≥ 0, (A116)

ϵs5 − ϵ4 =
λ2(2− λ)

(λ(d− 1) + 2)(3d2λ2 − 5dλ2 + 18dλ+ 2λ2 − 18λ+ 24)
≥ 0, (A117)

ϵ4 − ϵ6 =
λ(2− λ)2

2(λ(d− 2) + 4)(λ(d− 1) + 2)
≥ 0, (A118)

ϵ6 − ϵ2 =
λ(3− λ)(2− λ)(1− λ)

2(λ(d− 2) + 4)(λ2(d− 1) + 3)
≥ 0, (A119)

for d ≥ 2, they are ordered as

ϵ2 ≤ ϵ6 ≤ ϵ4 ≤ ϵs5 ≤ ϵ7 ≤ ϵ5 ≤ ϵ3 ≤ ϵ1. (A120)

In score, bd+1 appears as bd+1r3, bd+1r4, or bd+1r7, each with a positive coefficient in d and d′. Thus,
if r3, r4, r7 ≤ 0, then bd+1 should be zero. If r3, r4, r7 ≥ 0, then bd+1 should be one. Considering
Ineq. (A120), for d ≥ 2, the optimal bd+1 is one if ϵ ≤ ϵ4 and zero if ϵ ≥ ϵ3.

One-Dimensional Case. If d = 1,

score(d′, bd+1)

= 1[d′ = 0](ϕ(bd+1r7) + ϕ(bd+1r3)) + 1[d′ = 1](ϕ(bd+1r7 + r3) + ϕ(bd+1r3 + r1)) (A121)

= 1[d′ = 0](ϕ(bd+1ϵ+) + ϕ(bd+1ϵ+))
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+ 1[d′ = 1](ϕ(bd+1ϵ+ + ϵ+) + ϕ(bd+1ϵ+ + ϵ+)). (A122)

As ϵ+ is always positive for 0 ≤ ϵ < 1, d′ = d = 1 and bd+1 = 1 are the optimal. This aligns with
the following case analysis.

Weak Adversarial (Case 1). Assume d ≥ 2 and 0 ≤ ϵ ≤ ϵ6. As ϵ ≤ ϵ6 ≤ ϵ4, bd+1 = 1
is the optimal. By Ineq. (A120), r1, r3, r4, r5, r6, r7 ≥ 0. The sign of r2 depends on ϵ. Thus,
s1(d

′, 1), s2(d
′, 1), s3(d

′, 1), s4(d
′, 1), s7(d

′, 1), s8(d
′, 1) ≥ 0 for 0 ≤ d′ ≤ d. In addition, for

d′ ≥ 2,

s5(d
′, 1) ≥ r4 + r2 (A123)

=
λ3

6
(d− 2) +

λ2

12
(3d− 2) +

3λ

2
− ϵ

6
(2λ2(d− 1) + 3λ(d− 1) + 12) (A124)

≥ λ2(2− λ)(5− 2λ)

12(λ(d− 2) + 4)
(∵ ϵ ≤ ϵ6) (A125)

≥ 0. (A126)

Thus, d′(d′ − 1)s5(d
′, 1) is nonnegative for 0 ≤ d′ ≤ d. Similarly, by s6(d

′, 1) ≥ r4 + r2 ≥ 0 for
d′ ≥ 1, d′(d′ − 1)s6(d

′, 1) is nonnegative for 0 ≤ d′ ≤ d. Thus,

score(d′, 1) := d′s1(d
′, 1) + (d− d′)s2(d

′, 1) + d′s3(d
′, 1) + (d− d′)s4(d

′, 1)

+ d′(d′ − 1)s5(d
′, 1) + d′(d− d′)s6(d

′, 1) + d′(d− d′)s7(d
′, 1)

+ (d− d′)(d− d′ − 1)s8(d
′, 1) (A127)

= dr7 + d′r3 + d′(d− 1)r4 + dr3 + d′r1 + d′(d− 1)r5

+ dr4 + d′r2 + d′r5 + d′(d− 1)(d− 2)r6. (A128)

This monotonically increases in d′. Therefore, d′ = d is the optimal. By Lemma D.2, b = 1d+1. In
addition, from s1(d, 1), s3(d, 1), s5(d, 1) ≥ 0, A = 1d+1,d.

Weak Adversarial (Case 2). Assume d ≥ 2 and ϵ6 ≤ ϵ ≤ ϵ4. As ϵ ≤ ϵ4, bd+1 = 1 is the optimal. By
Ineq. (A120), r1, r3, r4, r5, r7 ≥ 0 and r2, r6 ≤ 0. Thus, s1(d′, 1), s2(d′, 1), s3(d′, 1), s4(d′, 1) ≥ 0.
In addition,

s5(d
′, 1) ≥ s5(d, 1) ≥

λ2(2− λ)

12(λ(d− 1) + 2)
≥ 0 (∵ ϵ ≤ ϵ4), (A129)

s7(d
′, 1) ≥ s7(d, 1) ≥

λ(2− λ)3

8(λ(d− 1) + 2)
≥ 0 (∵ ϵ ≤ ϵ4). (A130)

Due to the following inequality, s8(d′, 1) is always larger than s6(d
′, 1):

s8(d
′, 1)− s6(d

′, 1) = −λ3

24
(d+ 1) +

5λ2

12
− λ

2
+

ϵ

12
(λ2(d+ 2) + 12(1− λ)) (A131)

≥ λ(3− λ)(2− λ)(1− λ)

6(λ(d− 2) + 4)
(∵ ϵ ≥ ϵ6) (A132)

≥ 0. (A133)

If s6(d′, 1), s8(d′, 1) ≥ 0,

d score(d′, 1)

dd′
=

(2 + λ(d− 1)− 2dϵ)(λ2(3d2 − 5d+ 2) + 18λ(d− 1) + 24)

24
≥ 0. (A134)

We used

2 + λ(d− 1)− 2dϵ ≥ (2− λ)2

λ(d− 1) + 2
≥ 0 (∵ ϵ ≤ ϵ4). (A135)

If s6(d′, 1) ≤ 0, s8(d
′, 1) ≥ 0,

d score(d′, 1)

dd′
= Θ(d, d′, λ)− ϵ

12
{3dλ2((d− d′)2 + 2d′2) + 6λ(2− λ)

{(
d− 1

2
d′
)2

+
11

4
d′2

}
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+ 8dd′λ2 + d′(4λ2 − 36λ+ 48)} (A136)

≥ Θ(d, λ)− λ(2− λ)

24(λ(d− 1) + 2)
d′(9d′λ(2− λ) + 6λ2(d+ 1)− 4λ(3d+ 7) + 24)

(∵ ϵ ≤ ϵ4) (A137)

≥ (2− λ)(dλ3 + dλ(12− 7λ)− λ3 + 11λ2 − 30λ+ 24)

12(λ(d− 1) + 2)
(A138)

≥ 0. (A139)

We used for 0 ≤ d′ ≤ d,

d′(9d′λ(2− λ) + 6λ2(d+ 1)− 4λ(3d+ 7) + 24)

≤ dλ(3dλ(2− λ) + 6λ2 − 28λ+ 24). (A140)

If s6(d′, 1) ≤ 0, s8(d
′, 1) ≤ 0,

d score(d′, 1)

dd′

= Θ(d, d′, λ)− ϵ

12
{3d2λ(λ+ 4) + 6d(−λ2 − λ+ 2) + 6λ+ 12(d− 1)

+ 2d′(3d2λ2 + 8dλ(−λ+ 1) + 4(2λ2 + (d− 6)λ+ 3)} (A141)

≥ Θ(d, λ)− λ(2− λ)

12(λ(d− 1) + 2)
d′(−3dλ2 + 6dλ+ 6λ2 − 20λ+ 12) (∵ ϵ ≤ ϵ4) (A142)

≥ (2− λ)(−dλ3 − 8dλ2 + 24dλ− 2λ3 + 22λ2 − 60λ+ 48)

24(λ(d− 1) + 2)
(∵ d′ ≤ d) (A143)

≥ 0. (A144)

From the above discussion, for any case, (s6, s8 ≥ 0), (s6 ≤ 0 and s8 ≥ 0), or (s6, s8 ≤ 0),
the derivative of score(d′, 1) with respect to d′ is nonnegative. Thus, d′ = d is the optimal. By
Lemma D.2, b = 1d+1. In addition, from s1(d, 1), s3(d, 1), s5(d, 1) ≥ 0, A = 1d+1,d.

Adversarial. Assume d ≥ 2 and ϵ = ϵ7. By Ineq. (A120), r1, r3, r5 ≥ 0, r7 = 0, and r2, r4, r6 ≤ 0.
Thus, s3(d′, bd+1), s4(d

′, bd+1) ≥ 0 and s2(d
′, bd+1), s6(d

′, bd+1), s8(d
′, bd+1) ≤ 0. Now,

s1(d
′, 1) = s1(d

′, 0) ≥ (d− d′)(2− λ)2

4d
≥ 0 (∵ ϵ = ϵ7). (A145)

Thus,

score(d′, bd+1) = d′s1(d
′, 0) + d′s3(d

′, bd+1) + (d− d′)s4(d
′, bd+1)

+ d′(d′ − 1)ϕ(s5(d
′, bd+1)) + d′(d− d′)ϕ(s7(d

′, bd+1)) (A146)

= d′s1(d
′, 0) + d′r1 + (d− 1)d′r5 + dbd+1r3

+ d′(d′ − 1)ϕ(bd+1r4 + r2 + r5 + (d′ − 2)r6)

+ d′(d− d′)ϕ(bd+1r4 + r5 + (d′ − 1)r6). (A147)

Since r4 is nonpositive, this indicates that score changes by dr3 + d′(d− 1)r4 at least by switching
bd+1 to one from zero. Moreover,

dr3 + d′(d− 1)r4 ≥
(d− 1)(d− d′)(2− λ)2

4d
≥ 0 (∵ ϵ = ϵ7). (A148)

Therefore, bd+1 = 1 is the optimal. From Ineq. (A120) and ϵ = ϵ7, s7(d′, bd+1)− s5(d
′, bd+1) ≥ 0.

If s5(d′, 1), s7(d′, 1) ≥ 0,

d score(d′, 1)

dd′
= Θ(d, d′, λ)−Θ+(d, d

′, λ)ϵ (A149)

= Θ(d, λ)−Θ+(d, λ)d
′ (∵ ϵ = ϵ7) (A150)

≥ 0 (∵ d′ ≤ ds5), (A151)
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where

s5(d
′, 1) ≥ 0⇐⇒ d′ ≤ 3dλ2 − 6dλ+ 2λ2 − 18λ+ 24

6λ(λ− 2)
=: ds5 . (A152)

When s5(d
′, 1) ≤ 0, s7(d

′, 1) ≥ 0, then d score(d′,1)
dd′ ≥ 0 similarly holds. If s5(d′, 1), s7(d′, 1) ≤ 0,

d score(d′,1)
dd′ ≥ 0 for d′ ≤ d − 1. Comparing score(d′, 1) with d′ = d − 1 and d′ = d, we obtain

score(d, 1) ≥ score(d − 1, 1). In summary, d′ = d is the optimal. By Lemma D.2, b = 1d+1. In
addition, from s3(d, 1) ≥ 0, s1(d, 1) = 0, and s5(d, 1) < 0, A = [Id 0d]

⊤.

Strong Adversarial. Assume d ≥ 2 and ϵ ≥ ϵ1. By Ineq. (A120), r1, . . . , r7 are nonpositive. Thus,
s1(d

′, bd+1), . . . , s8(d
′, bd+1) are nonpositive. Therefore, d′ = 0 and bd+1 = 0 are the optimal. By

Lemma D.2, b = 0d+1 and A = 0d+1,d.

E PROOF OF THEOREMS 3.5 AND 3.6 (ROBUSTNESS)

For notational convenience, we occasionally describe representations and equations under the
assumption that Srob := {1, . . . , drob}, Svul := {drob + 1, . . . , drob + dvul}, and Sirr :=
{drob + dvul + 1, . . . , drob + dvul + dirr}. This assumption is made without loss of generality.

We use uniform big-O and -Theta notation. Denote f(x) = O(g(x)) if there exists a positive constant
C > 0 such that |f(x)| ≤ C|g(x)| for every x in the domain. Denote f(x) = Θ(g(x)) if there exist
C1, C2 > 0 such that C1|g(x)| ≤ |f(x)| ≤ C2|g(x)| for every x in the domain.

For notational simplicity, we abbreviate the following matrix:



C1α
C2α

...
Cdrob

α
Cdrob+1β

...
Cdrob+dvul

β
Cdrob+dvul+1γ

...
Cdrob+dvul+dirrγ




as

[
Ciα
Ciβ
Ciγ

]
. (A153)

Theorem 3.5 (Standard pretraining case). There exist a constant C > 0 and a strictly positive
function g(drob, dvul, dirr, α, β, γ) such that

E
{(xn,yn)}N+1

n=1

i.i.d.∼ Dte

[
min

∥∆∥∞≤ϵ
yN+1[f(Z∆;P std,Qstd)]d+1,N+1

]

≤ g(drob, dvul, dirr, α, β, γ)
{

C(drobα+ dvulβ)︸ ︷︷ ︸
Prediction for original data

− (drob + dvul + dirr)ϵ︸ ︷︷ ︸
Adversarial effect

}
. (8)

Proof. Since b = 1d+1, A = 1d+1,d, and Z∆MZ⊤
∆ is positive semidefinite, every entry in

b⊤Z∆MZ⊤
∆A is nonnegative. Thus, we can solve the inner minimization as

min
∥∆∥∞≤ϵ

yN+1[f(Z∆;P ,Q)]d+1,N+1 = min
∥∆∥∞≤ϵ

1

N
b⊤Z∆MZ⊤

∆AyN+1(xN+1 +∆) (A154)

=
1

N
b⊤Z∆MZ⊤

∆A(yN+1xN+1 − ϵ1d). (A155)

Using (x, y) ∼ Dte,

E
[
1

N
Z∆MZ⊤

∆

]
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=

[
E[xx⊤] E[yx]
E[yx⊤] 1

]
(A156)

=

[
E[yx]E[yx⊤] E[yx]

E[yx⊤] 1

]
+

[
E[(yx− E[yx])(yx− E[yx])⊤] 0d

0⊤
d 0

]
. (A157)

Since the second term is positive semidefinite,

E
[
1

N
1⊤
d+1Z∆MZ⊤

∆1d+1

]

= 1⊤
d+1

([
E[yx]E[yx⊤] E[yx]

E[yx⊤] 1

]
+

[
E[(yx− E[yx])(yx− E[yx])⊤] 0d

0⊤
d 0

])
1d+1 (A158)

≥ 1⊤
d+1

[
E[yx⊤]E[yx] E[yx]

E[yx⊤] 1

]
1d+1. (A159)

Since every entry of E[yx⊤]E[yx] and E[yx] is nonnegative,

E
[
1

N
1⊤
d+1Z∆MZ⊤

∆1d+1

]
≥ 1⊤

d+1

[
E[yx⊤]E[yx] E[yx]

E[yx⊤] 1

]
1d+1 ≥ 1. (A160)

Representing E[b⊤Z∆MZ⊤
∆A/N ] = [g(drob, dvul, dirr, α, β, γ) · · · g(drob, dvul, dirr, α, β, γ)]

using some positive function g(drob, dvul, dirr, α, β, γ) > 0, there exists a positive constant C > 0
such that

E
[
1

N
b⊤Z∆MZ⊤

∆A(yN+1xN+1 − ϵ1d)

]

=



g(drob, dvul, dirr, α, β, γ)

...
g(drob, dvul, dirr, α, β, γ)




⊤

(E[yN+1xN+1]− ϵ1d) (A161)

= g(drob, dvul, dirr, α, β, γ)(Θ(drobα+ dvulβ)− dϵ) (A162)
≤ g(drob, dvul, dirr, α, β, γ)(C(drobα+ dvulβ)− (drob + dvul + dirr)ϵ). (A163)

Theorem 3.6 (Adversarial pretraining case). Suppose that qrob and qvul defined in Assumption 3.2
are sufficiently small. There exist constants C1, C2 > 0 such that

E
{(xn,yn)}N+1

n=1

i.i.d.∼ Dte

[
min

∥∆∥∞≤ϵ
yN+1[f(Z∆;P adv,Qadv)]d+1,N+1

]

≥ C1(drobα+ dvulβ + 1)(drobα
2 + dvulβ

2)︸ ︷︷ ︸
Prediction for original data

− C2

{
(drobα+ dvulβ + 1)

(
drobα+ dvulβ +

dirrγ√
N

)
+ dirr

(√
dirr
N

+ 1

)
γ2

}
ϵ

︸ ︷︷ ︸
Adversarial effect

. (9)

Proof. This is the special case of the following theorem.

Theorem E.1 (General case of Theorem 3.6). There exist constants C,C ′, C ′′ > 0 such that

E
{(xn,yn)}N+1

n=1

i.i.d.∼ Dte

[
min

∥∆∥∞≤ϵ
yN+1[f(Z∆;P adv,Qadv)]d+1,N+1

]

≥ C(drobα+ dvulβ)
{
(1− cqrob)drobα

2 + (1− cqvul)dvulβ
2
}
+ C ′(drobα

2 + dvulβ
2)

− C ′′′

{
(drobα+ dvulβ + 1)

(
drobα+ dvulβ +

dirrγ√
N

)
+ dirr

(√
dirr
N

+ 1

)
γ2

}
ϵ, (A164)
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where

c :=
(maxi∈Srob∪Svul

Ci)(maxi∈Srob∪Svul
Ci,2)

mini∈Srob∪Svul
C3

i

. (A165)

In particular, if there exists a constant C ′′′ > 0 such that 1− cqrob ≥ C ′′′ and 1− cqvul ≥ C ′′′, then
there exist constants C1, C2 > 0 such that Ineq. (9) holds.

Proof. Similarly to Eq. (A29), we can solve the minimization as

min
∥∆∥∞≤ϵ

yN+1[f(Z∆;P ,Q)]d+1,N+1

= min
∥∆∥∞≤ϵ

1

N
b⊤Z∆MZ⊤

∆AyN+1(xN+1 +∆) (A166)

=
1

N
b⊤Z∆MZ⊤

∆AyN+1xN+1 − ϵ

∥∥∥∥
1

N
b⊤Z∆MZ⊤

∆A

∥∥∥∥
1

. (A167)

By Eq. (A157), we can rearrange the first term as

E
[
1

N
b⊤Z∆MZ⊤

∆AyN+1xN+1

]

= 1⊤
d+1

[
E[x]E[x⊤]
E[yx⊤]

]
E[yN+1xN+1] + 1⊤

d E[(x− E[x])(x− E[x])⊤]E[yN+1xN+1]. (A168)

The first term of Eq. (A168) can be rearranged as

1⊤
d+1

[
E[x]E[x⊤]
E[yx⊤]

]
E[yN+1xN+1]

= 1⊤
d+1



CiCjα

2 CiCjαβ 0
CiCjαβ CiCjβ

2 0
0 0 C2

i γ
2I

Ciα Ciβ 0



[
Ciα
Ciβ
0

]
(A169)

=

( ∑

i∈Srob

Ciα+
∑

i∈Svul

Ciβ + 1

)( ∑

i∈Srob

C2
i α

2 +
∑

i∈Svul

C2
i β

2

)
(A170)

=

(
min

i∈Srob∪Svul

C3
i

)
(drobα+ dvulβ)(drobα

2 + dvulβ
2) +

∑

i∈Srob

C2
i α

2 +
∑

i∈Svul

C2
i β

2. (A171)

Consider the second term of Eq. (A168). Now,

|E[(xi − E[xi])(xj − E[xj ])]|

≤





√
Ci,2

√
Cj,2α

2 (i, j ∈ Srob)√
Ci,2

√
Cj,2β

2 (i, j ∈ Svul)√
Ci,2

√
Cj,2αβ (i ∈ Srob ∧ j ∈ Svul) ∨ (i ∈ Svul ∧ j ∈ Srob)

. (A172)

Let

S :=



i ∈ Srob ∪ Svul |

∑

j∈Srob∪Svul

E[(xi − E[xi])(xj − E[xj ])] < 0



. (A173)

The second term of Eq. (A168) can be computed as

1⊤
d E[(x− E[x])(x− E[x])⊤]E[yN+1xN+1]
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≥ −




√
Ci,2α

(∑
j∈Srob

√
Cj,2α+

∑
j∈Svul

√
Cj,2β

)

...√
Ci,2α

(∑
j∈Srob

√
Cj,2α+

∑
j∈Svul

√
Cj,2β

)




≤ qrobdrob

0√
Ci,2β

(∑
j∈Srob

√
Cj,2α+

∑
j∈Svul

√
Cj,2β

)

...√
Ci,2β

(∑
j∈Srob

√
Cj,2α+

∑
j∈Svul

√
Cj,2β

)




≤ qvuldvul

0




⊤

[
Ciα
Ciβ
0

]
(A174)

= −

( ∑

i∈Srob

√
Ci,2α+

∑

i∈Svul

√
Ci,2β

)

×

( ∑

i∈Srob∩S
Ci

√
Ci,2α

2 +
∑

i∈Svul∩S
Ci

√
Ci,2β

2

)
(A175)

≥ −
(

max
i∈Srob∪Svul

√
Ci,2

)(
max

i∈(Srob∪Svul)∩S
Ci

√
Ci,2

)

× (drobα+ dvulβ)(qrobdrobα
2 + qvuldvulβ

2) (A176)

≥ −
(

max
i∈Srob∪Svul

Ci

)(
max

i∈Srob∪Svul

Ci,2

)
(drobα+ dvulβ)(qrobdrobα

2 + qvuldvulβ
2). (A177)

By Lemma E.2, we can compute the second term as

E
[∥∥∥∥

1

N
b⊤Z∆MZ⊤

∆A

∥∥∥∥
1

]

= O

(
(drobα+ dvulβ + 1)

(
drobα+ dvulβ +

dirrγ√
N

)
+ dirr

(√
dirr
N

+ 1

)
γ2

)
. (A178)

Finally,

E
[
1

N
b⊤Z∆MZ⊤

∆AyN+1xN+1

]
− ϵE

[∥∥∥∥
1

N
b⊤Z∆MZ⊤

∆A

∥∥∥∥
1

]

≥
(

min
i∈Srob∪Svul

C3
i

)
(drobα+ dvulβ)(drobα

2 + dvulβ
2) +

∑

i∈Srob

C2
i α

2 +
∑

i∈Svul

C2
i β

2

−
(

max
i∈Srob∪Svul

Ci

)(
max

i∈Srob∪Svul

Ci,2

)
(drobα+ dvulβ)(qrobdrobα

2 + qvuldvulβ
2)

+O

(
(drobα+ dvulβ + 1)

(
drobα+ dvulβ +

dirrγ√
N

)
+ dirr

(√
dirr
N

+ 1

)
γ2

)
. (A179)

Lemma E.2. If (x1, y1), . . . , (xN , yN ) are i.i.d. and follow Dte, then

E
[∥∥∥∥

1

N
b⊤Z∆MZ⊤

∆A

∥∥∥∥
1

]

= O

(
(drobα+ dvulβ + 1)

(
drobα+ dvulβ +

dirrγ√
N

)
+ dirr

(√
dirr
N

+ 1

)
γ2

)
, (A180)

where b = 1d+1 and A⊤ := [Id 0d].
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Proof. We can rearrange the given expectation as

E
[∥∥∥∥

1

N
b⊤Z∆MZ⊤

∆A

∥∥∥∥
1

]
= E

[∥∥∥∥
1

N
1⊤
d+1

[∑N
n=1 xnx

⊤
n

∑N
n=1 ynxn∑N

n=1 ynx
⊤
n N

] [
Id
0⊤
d

]∥∥∥∥
1

]
(A181)

= E

[∥∥∥∥
1

N
1⊤
d+1

[∑N
n=1 xnx

⊤
n∑N

n=1 ynx
⊤
n

]∥∥∥∥
1

]
(A182)

=

d∑

i=1

E



∣∣∣∣∣∣
1

N

N∑

n=1


yn +

d∑

j=1

xn,j


xn,i

∣∣∣∣∣∣


. (A183)

By the Lyapunov inequality, for N + 1 i.i.d. random variables X,X1, . . . , XN ,

E

[∣∣∣∣∣
1

N

N∑

n=1

Xn

∣∣∣∣∣

]
≤

√√√√√E



(

1

N

N∑

n=1

Xn

)2

 =

√
1

N
E[X2] +

N − 1

N
E[X]2. (A184)

Thus, using (x, y) ∼ Dte,

d∑

i=1

E



∣∣∣∣∣∣
1

N

N∑

n=1


yn +

d∑

j=1

xn,j


xn,i

∣∣∣∣∣∣




≤
d∑

i=1

√√√√√√
1

N
E





y +

d∑

j=1

xj




2

x2
i


+

N − 1

N
E




y +

d∑

j=1

xj


xi



2

. (A185)

From Lemma E.3, we can compute the second term of using

E




y +

d∑

j=1

xj


xi


 = E[yxi] +

d∑

j=1

E[xjxi] (A186)

=





O(α(drobα+ dvulβ + 1)) (i ∈ Srob)
O(β(drobα+ dvulβ + 1)) (i ∈ Svul)
O(γ2) (i ∈ Sirr)

. (A187)

From Lemma E.3, we can compute the first term of using

E





y +

d∑

j=1

xj




2

x2
i


 = E[x2

i ] + 2

d∑

j=1

E[yxjx
2
i ] +

d∑

j,k=1

E[xjxkx
2
i ] (A188)

=





O(α2{(drobα+ dvulβ + 1)2 + dirrγ
2}) (i ∈ Srob)

O(β2{(drobα+ dvulβ + 1)2 + dirrγ
2}) (i ∈ Svul)

O(γ2{(drobα+ dvulβ + 1)2 + dirrγ
2}) (i ∈ Sirr)

. (A189)

Thus,

d∑

i=1

√√√√√√
1

N
E





y +

d∑

j=1

xj




2

x2
i


+

N − 1

N
E




y +

d∑

j=1

xj


xi



2

= O

(
drob

(
α(drobα+ dvulβ + 1) +

√
dirr
N

αγ

)

+ dvul

(
β(drobα+ dvulβ + 1) +

√
dirr
N

βγ

)
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+ dirr

(
γ2 +

γ√
N

(
(drobα+ dvulβ + 1) +

√
dirrγ

)))
(A190)

= O

(
(drobα+ dvulβ + 1)

(
drobα+ dvulβ +

dirrγ√
N

)
+ dirr

(√
dirr
N

+ 1

)
γ2

)
. (A191)

Lemma E.3. If (x, y) ∼ Dte, then
(a)

E[xjxi] =





O(α2) (i, j ∈ Srob)
O(β2) (i, j ∈ Svul)
O(γ2) (i = j) ∧ (i, j ∈ Sirr)
O(αβ) (i ∈ Srob ∧ j ∈ Svul) ∨ (i ∈ Svul ∧ j ∈ Srob)
0 (i ̸= j) ∧ (i ∈ Sirr ∨ j ∈ Sirr)

. (A192)

(b)

E[yxjx
2
i ] =





O(α3) (i, j ∈ Srob)
O(β3) (i, j ∈ Svul)
O(α2β) (i ∈ Srob ∧ j ∈ Svul)
O(αβ2) (i ∈ Svul ∧ j ∈ Srob)
O(αγ2) (i ∈ Sirr ∧ j ∈ Srob)
O(βγ2) (i ∈ Sirr ∧ j ∈ Svul)
0 (j ∈ Sirr)

. (A193)

(c)

E[xjxkx
2
i ]

=





O(α4) (i, j, k ∈ Srob)
O(β4) (i, j, k ∈ Svul)
O(γ4) (j = k) ∧ (i, j, k ∈ Sirr)
O(α3β) (i ∈ Srob) ∧ {(j ∈ Srob ∧ k ∈ Svul) ∨ (j ∈ Svul ∧ k ∈ Srob)}
O(αβ3) (i ∈ Svul) ∧ {(j ∈ Srob ∧ k ∈ Svul) ∨ (j ∈ Svul ∧ k ∈ Srob)}
O(α2β2) (i ∈ Srob ∧ j, k ∈ Svul) ∨ (i ∈ Svul ∧ j, k ∈ Srob)
O(α2γ2) (i ∈ Sirr ∧ j, k ∈ Srob) ∨ (j = k ∧ j, k ∈ dirr ∧ i ∈ Srob)
O(β2γ2) (i ∈ Sirr ∧ j, k ∈ Svul) ∨ (j = k ∧ j, k ∈ dirr ∧ i ∈ Svul)
O(αβγ2) (i ∈ Sirr) ∧ {(j ∈ Srob ∧ k ∈ Svul) ∨ (j ∈ Svul ∧ k ∈ Srob)}
0 (j ̸= k) ∧ (j ∈ Sirr ∨ k ∈ Sirr)

. (A194)

Proof. We first note that

E[x2
i ] = E[(yxi)

2] = E[(yxi − E[yxi])
2] + E[yxi]

2 =





O(α2) (i ∈ Srob)
O(β2) (i ∈ Svul)
O(γ2) (i ∈ Sirr)

, (A195)

E[yx3
i ] = E[(yxi)

3] (A196)

= E[(yxi − E[yxi])
3] + 3E[(yxi)

2]E[yxi]− 2E[yxi]
3 (A197)

=





O(α3) (i ∈ Srob)
O(β3) (i ∈ Svul)
0 (i ∈ Sirr)

, (A198)

E[x4
i ] = E[(yxi − E[yxi])

4] + 4E[yx3
i ]E[yxi]− 6E[x2

i ]E[yxi]
2 + 3E[yxi]

4 (A199)
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=





O(α4) (i ∈ Srob)
O(β4) (i ∈ Svul)
O(γ4) (i ∈ Sirr)

. (A200)

(a) For (i ̸= j) ∧ (i ∈ Sirr ∨ j ∈ Sirr), E[xjxi] = E[xj ]E[xi] = 0. Using the Cauthy-Schwarz
inequality,

E[xjxi] ≤
√
E[x2

j ]
√
E[x2

i ] (A201)

=





O(α2) (i, j ∈ Srob)
O(β2) (i, j ∈ Svul)
O(γ2) (i, j ∈ Sirr) ∧ (i = j)

O(αβ) (i ∈ Srob ∧ j ∈ Svul) ∨ (i ∈ Svul ∧ j ∈ Srob)

. (A202)

(b) For j ∈ Sirr, j = i, E[yxjx
2
i ] = E[y]E[x3

i ] = 0. For j ∈ Sirr, j ̸= i, E[yxjx
2
i ] = E[xj ]E[yx2

i ] =
0. Using the Cauthy-Schwarz inequality,

E[yxjx
2
i ] ≤

√
E[x2

j ]
√

E[x4
i ] =





O(α3) (i, j ∈ Srob)
O(β3) (i, j ∈ Svul)
O(α2β) (i ∈ Srob ∧ j ∈ Svul)
O(αβ2) (i ∈ Svul ∧ j ∈ Srob)
O(αγ2) (i ∈ Sirr ∧ j ∈ Srob)
O(βγ2) (i ∈ Sirr ∧ j ∈ Svul)

. (A203)

(c) For (j ̸= k) ∧ (j ∈ Sirr ∨ k ∈ Sirr), E[xjxkx
2
i ] = 0. For j = k, using the Cauthy-Schwarz

inequality,

E[xjxkx
2
i ] ≤

√
E[x4

j ]
√
E[x4

i ] =





O(γ4) (j = k) ∧ (i, j, k ∈ Sirr)
O(α2γ2) (j = k) ∧ (j, k ∈ dirr ∧ i ∈ Srob)
O(β2γ2) (j = k) ∧ (j, k ∈ dirr ∧ i ∈ Svul)

. (A204)

Using the Cauthy-Schwarz inequality,

E[xjxkx
2
i ]

≤
√
E[x2

j ]
√
E[x2

k]
√

E[x4
i ] (A205)

=





O(α4) (i, j, k ∈ Srob)
O(β4) (i, j, k ∈ Svul)
O(α3β) (i ∈ Srob) ∧ {(j ∈ Srob ∧ k ∈ Svul) ∨ (j ∈ Svul ∧ k ∈ Srob)}
O(αβ3) (i ∈ Svul) ∧ {(j ∈ Srob ∧ k ∈ Svul) ∨ (j ∈ Svul ∧ k ∈ Srob)}
O(α2β2) (i ∈ Srob ∧ j, k ∈ Svul) ∨ (i ∈ Svul ∧ j, k ∈ Srob)
O(α2γ2) (i ∈ Sirr ∧ j, k ∈ Srob)
O(β2γ2) (i ∈ Sirr ∧ j, k ∈ Svul)
O(αβγ2) (i ∈ Sirr) ∧ {(j ∈ Srob ∧ k ∈ Svul) ∨ (j ∈ Svul ∧ k ∈ Srob)}

. (A206)

F PROOF OF THEOREM 3.7 (TRADE-OFF)

Theorem 3.7 (Accuracy–robustness trade-off). Assume |Srob| = 1, |Svul| = d−1, and |Sirr| = 0. In
addition to Assumption 3.2, for (x, y) ∼ Dte, suppose that yxi takes α with probability p > 0.5 and
−α with probability 1−p for i ∈ Srob. Moreover, yxi takes β with probability one for i ∈ Svul. Let
f̃(P ,Q) := E

{(xn,yn)}N
n=1

i.i.d.∼ Dte
[yN+1[f(Z0;P ,Q)]d+1,N+1]. Then, there exist strictly positive
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functions g1(d, α, β) and g2(d, α, β) such that

f̃(P std,Qstd) =

{
g1(d, α, β)(α+ (d− 1)β) (w.p. p)

g1(d, α, β)(−α+ (d− 1)β) (w.p. 1− p)
, (10)

f̃(P adv,Qadv) ≤ g2(d, α, β){−(2p− 1)α2 + (d− 1)β2} (w.p. 1− p). (11)

Proof. Using b and A defined in Appendix D, we can rearrange f̃(P ,Q) as

f̃(P ,Q) := E{(xn,yn)}N
n=1

[yN+1[f(Z0;P ,Q)]d+1,N+1] (A207)

=
1

N
b⊤E{(xn,yn)}N

n=1
[Z0MZ⊤

0 ]AyN+1xN+1. (A208)

Standard Transformer. Similarly to the proof of Theorem 3.5, using some positive function
g(d, α, β) > 0, we can represent E[b⊤Z0MZ⊤

0 A/N ] = [g(d, α, β) · · · g(d, α, β)]. Thus,

1

N
bE{(xn,yn)}N

n=1
[Z0MZ⊤

0 ]AyN+1xN+1 =



g(d, α, β)

...
g(d, α, β)




⊤

yN+1xN+1 (A209)

= g(d, α, β)yN+1

d∑

i=1

xN+1,i (A210)

=

{
α+ (d− 1)β (w.p. p)

−α+ (d− 1)β (w.p. 1− p)
. (A211)

Adversarially Trained Transformer. Now,
1

N
E{(xn,yn)}N

n=1
[Z0MZ⊤

0 ]

=

[
E[(yx)(yx⊤)] E[yx]

E[yx⊤] 1

]
(A212)

=




α2 (2p− 1)αβ · · · (2p− 1)αβ (2p− 1)α
(2p− 1)αβ β2 · · · β2 β
(2p− 1)αβ β2 · · · β2 β

...
(2p− 1)αβ β2 · · · β2 β
(2p− 1)α β · · · β 1



. (A213)

Thus,

1

N
b⊤E{(xn,yn)}N

n=1
[Z0MZ⊤

0 ]A =




α{α+ (d− 1)(2p− 1)β + (2p− 1)}
β{(2p− 1)α+ (d− 1)β + 1}

...
β{(2p− 1)α+ (d− 1)β + 1}




⊤

. (A214)

Therefore,
1

N
b⊤E{(xn,yn)}N

n=1
[Z0MZ⊤

0 ]AyN+1xN+1

=




α{α+ (d− 1)(2p− 1)β + (2p− 1)}
β{(2p− 1)α+ (d− 1)β + 1}

...
β{(2p− 1)α+ (d− 1)β + 1}




⊤ 


yN+1xN+1,1

β
...
β


 (A215)

=





α2{α+ (d− 1)(2p− 1)β + (2p− 1)}
+(d− 1)β2{(2p− 1)α+ (d− 1)β + 1} (w.p. p)

−α2{α+ (d− 1)(2p− 1)β + (2p− 1)}
+(d− 1)β2{(2p− 1)α+ (d− 1)β + 1} (w.p. 1− p)

. (A216)
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In particular,

− α2{α+ (d− 1)(2p− 1)β + (2p− 1)}+ (d− 1)β2{(2p− 1)α+ (d− 1)β + 1}
= {(2p− 1)α+ (d− 1)β + 1}(−Cα2 + (d− 1)β2), (A217)

where

C =
α+ (d− 1)(2p− 1)β + (2p− 1)

(2p− 1)α+ (d− 1)β + 1
>

(2p− 1)2α+ (d− 1)(2p− 1)β + (2p− 1)

(2p− 1)α+ (d− 1)β + 1
(A218)

= 2p− 1. (A219)

G PROOF OF THEOREM G.1 (NEED FOR LARGER SAMPLE SIZE)

Theorem G.1 (Need for Larger Sample Size). Assume the same assumptions in Theorem 3.7. Then,

ExN+1,yN+1
[yN+1[f(Z0;P

std,Qstd)]d+1,N+1] > 0 (w.p. at least 1− e−pN ). (A220)

In addition, suppose that there exists a constant 0 < C < 1 such that (d− 1)β+1 < Cα. Moreover,
assume that N is an even number. Then, as p→ 1

2 with p > 1
2 , for 4 ≤ N ≤ 2

C ,

ExN+1,yN+1
[yN+1[f(Z0;P

adv,Qadv)]d+1,N+1] > 0
(

w.p. at most 1− 0.483√
N

< 1− e−pN

)
. (A221)

Proof. Using b and A defined in Appendix D, we can calculate

ExN+1,yN+1
[yN+1[f(Z0;P ,Q)]d+1,N+1] =

1

N
b⊤Z0MZ⊤

0 AE[yN+1xN+1]. (A222)

Now,

1

N
Z0MZ⊤

0

=




α2 β
N

∑N
n=1 ynxn,1 · · · β

N

∑N
n=1 ynxn,1

1
N

∑N
n=1 ynxn,1

β
N

∑N
n=1 ynxn,1 β2 · · · β2 β

β
N

∑N
n=1 ynxn,1 β2 · · · β2 β

...
β
N

∑N
n=1 ynxn,1 β2 · · · β2 β

1
N

∑N
n=1 ynxn,1 β · · · β 1




. (A223)

Standard Transformer. From the configuration of b and A, all the entries of b⊤Z0MZ⊤
0 A are the

same. Since all the entries of E[yN+1xN+1] are positive, with some positive function g(d, α, β) > 0,

1

N
b⊤Z0MZ⊤

0 AE[yN+1xN+1] = g(d, α, β)
1

N
1⊤
d+1Z0MZ⊤

0 1d+1. (A224)

Now,

1

N
1⊤
d+1Z0MZ⊤

0 1d+1

= (d− 1)2β2 + 2(d− 1)β + 1 + α2 +
2

N

N∑

n=1

ynxn,1 + 2(d− 1)
β

N

N∑

n=1

ynxn,1 (A225)

= {(d− 1)β + 1}2 + α2 +
2{(d− 1)β + 1}

N

N∑

n=1

ynxn,1 (A226)
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= [{(d− 1)β + 1} − α]
2
+

2{(d− 1)β + 1}
N

N∑

n=1

(α+ ynxn,1) (A227)

> 0 (w.p. at least 1− (1− p)N > 1− e−pN ). (A228)

Adversarially Trained Transformer. Note that E[yN+1xN+1] = [(2p− 1)α β · · · β]. Thus,

1

N
1⊤
d+1Z0MZ⊤

0 IdE[yN+1xN+1]

= (2p− 1)α

(
α2 + (d− 1)

β

N

N∑

n=1

ynxn,1 +
1

N

N∑

n=1

ynxn,1

)

+ (d− 1)β

(
β

N

N∑

n=1

ynxn,1 + (d− 1)β2 + β

)
(A229)

= [(2p− 1)α3 + (d− 1)β2{(d− 1)β + 1}]

+ [(2p− 1)α{(d− 1)β + 1}+ (d− 1)β2]
1

N

N∑

n=1

ynxn,1. (A230)

This indicates ExN+1,yN+1
[yN+1[f(Z0;P

adv,Qadv)]d+1,N+1] > 0 only if

1

N

N∑

n=1

ynxn,1 > − (2p− 1)α3 + (d− 1)β2{(d− 1)β + 1}
(2p− 1)α{(d− 1)β + 1}+ (d− 1)β2

. (A231)

Representing ynxn,1 = α(2Xn − 1) with Xn taking 1 with probability p and 0 with probability
1− p,

1

N

N∑

n=1

α(2Xn − 1) > − (2p− 1)α3 + (d− 1)β2{(d− 1)β + 1}
(2p− 1)α{(d− 1)β + 1}+ (d− 1)β2

⇐⇒
N∑

n=1

Xn >
N

2

(
1− 1

α

(2p− 1)α3 + (d− 1)β2{(d− 1)β + 1}
(2p− 1)α{(d− 1)β + 1}+ (d− 1)β2

)
. (A232)

Let Y ∼ B(N, p), where B(N, p) is the Binomial distribution. Consider the following probability:

PY∼B(N,p)

[
Y >

N

2

(
1− 1

α

(2p− 1)α3 + (d− 1)β2{(d− 1)β + 1}
(2p− 1)α{(d− 1)β + 1}+ (d− 1)β2

)]
. (A233)

When p→ 1/2,

PY∼B(N,p)

[
Y >

N

2

(
1− 1

α

(2p− 1)α3 + (d− 1)β2{(d− 1)β + 1}
(2p− 1)α{(d− 1)β + 1}+ (d− 1)β2

)]

→ PY∼B(N,1/2)

[
Y >

N

2

(
1− (d− 1)β + 1

α

)]
(A234)

≤ PY∼B(N,1/2)

[
Y >

N

2
(1− C)

]
(A235)

≤ PY∼B(N,1/2)

[
Y >

N

2
− 1

]
. (A236)

From Ash (1990), for an integer 0 < k < N/2,

PY∼B(N,1/2)[Y ≤ k] ≥ 1√
8N k

N (1− k
N )

exp

(
−ND

(
k

N
//
1

2

))
, (A237)

where D is the Kullback–Leibler divergence. Substituting k = N
2 − 1,

PY∼B(N,1/2)

[
Y ≤ N

2
− 1

]
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≥ 1√
8N( 12 −

1
N ){1− ( 12 −

1
N )}

exp

(
−ND

(
1

2
− 1

N
//
1

2

))
(A238)

=
1√

2(1− 4
N2 )

1√
N

exp

(
−ND

(
1

2
− 1

N
//
1

2

))
. (A239)

Note that

D

(
1

2
− 1

N
//
1

2

)
=

1

2

{(
1− 2

N

)
ln

(
1− 2

N

)
+

(
1 +

2

N

)
ln

(
1 +

2

N

)}
. (A240)

For N ≥ 4,

1√
2(1− 4

N2 )
exp

(
−ND

(
1

2
− 1

N
//
1

2

))
> 0.483. (A241)

In summary,

PY∼B(N,1/2)

[
Y >

N

2
− 1

]
= 1− PY∼B(N,1/2)

[
Y ≤ N

2
− 1

]
≤ 1− 0.483√

N
. (A242)
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