

ADVERSARIALLY PRETRAINED TRANSFORMERS MAY BE UNIVERSALLY ROBUST IN-CONTEXT LEARNERS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Adversarial training is one of the most effective adversarial defenses, but it incurs
012 a high computational cost. In this study, we present the first theoretical analysis
013 suggesting that adversarially pretrained transformers can serve as *universally robust*
014 *foundation models*—models that can robustly adapt to diverse downstream tasks
015 with only lightweight tuning. Specifically, we demonstrate that single-layer linear
016 transformers, after adversarial pretraining across a variety of classification tasks,
017 can robustly generalize to unseen classification tasks through in-context learning
018 from clean demonstrations (i.e., without requiring additional adversarial training or
019 examples). This universal robustness stems from the model’s ability to adaptively
020 focus on robust features within given tasks. We also show the two open challenges
021 for attaining robustness: accuracy–robustness trade-off and sample-hungry training.
022 This study initiates the discussion on the utility of universally robust foundation
023 models. While their training is expensive, the investment would prove worthwhile
024 as downstream tasks can enjoy free adversarial robustness.
025

1 INTRODUCTION

026 Adversarial examples—subtle and often imperceptible perturbations to inputs that lead machine learning
027 models to make incorrect predictions—reveal a fundamental vulnerability in modern deep learning
028 systems (Szegedy et al., 2014). Adversarial training is one of the most effective defenses against such
029 attacks (Goodfellow et al., 2015; Madry et al., 2018), where classification loss is minimized over
030 worst-case (i.e., adversarial) perturbations. This min–max optimization significantly increases the
031 computational cost compared to standard training. Despite extensive efforts to develop alternative
032 defenses, most of them have subsequently been shown to offer only spurious robustness (Athalye
033 et al., 2018; Croce & Hein, 2020; Tramer et al., 2020). Consequently, adversarial training remains
034 the de facto standard, and practitioners must incur this cost to obtain adversarially robust models.
035

036 Recently, it has become common to leverage foundation models for target tasks. Thanks to large-scale
037 pretraining, these models can be adapted to diverse downstream tasks with only lightweight tuning.
038 This naturally raises the question: *Can adversarially trained foundation models enable efficient and*
039 *robust adaptation to a wide range of downstream tasks?* Although training such models is expensive,
040 the investment would be worthwhile if numerous downstream tasks can inherit adversarial robustness
041 for free, without requiring costly adversarial training themselves. While this is a promising research
042 direction, the utility of such *universally robust foundation models* remains largely unknown, as their
043 training is computationally and financially prohibitive to empirically evaluate across multiple runs.

044 In this study, we present the first theoretical analysis suggesting that adversarially pretrained trans-
045 formers can serve as universally robust foundation models. Specifically, we show that single-layer
046 linear transformers, after adversarial pretraining across a variety of classification tasks, can robustly
047 generalize to previously unseen classification tasks through in-context learning (Brown et al., 2020)
048 from clean demonstrations. Namely, these transformers can adapt robustly without requiring any
049 adversarial examples or additional training. In-context learning is a recently uncovered capability of
050 transformers that allows them to efficiently adapt to new tasks from a few input–output demonstrations
051 in the prompt, without any parameter updates.

052 Our analysis builds upon the conceptual framework of robust features (class-discriminative and
053 human-interpretable) and non-robust features (human-imperceptible yet predictive) (Ilyas et al., 2019;
Tsipras et al., 2019). Based on this framework, we show that adversarially pretrained single-layer

054 linear transformers can adaptively focus on robust features within given downstream tasks, rather than
 055 non-robust or non-predictive features, thereby achieving universal robustness. This framework also
 056 reveals that the universal robustness holds under mild conditions, except in an unrealistic scenario
 057 where non-robust features overwhelmingly outnumber robust ones.

058 We also show that two open challenges in robust machine learning (Schmidt et al., 2018; Tsipras
 059 et al., 2019) still remain in our scenario. First, when adversarially pretrained, single-layer linear
 060 transformers exhibit lower clean accuracy than their standard counterparts. Second, to achieve clean
 061 accuracy comparable to standard models, these transformers require more in-context demonstrations.

062 Our contributions are summarized as follows:

- 064 • We provide the first theoretical support for universally robust foundation models: under mild
 065 conditions, adversarially pretrained transformers with a single linear self-attention layer can
 066 robustly adapt to unseen classification tasks through in-context learning.
- 067 • Based on the framework of robust and non-robust features, we derive the condition for
 068 successful robust adaptation. Moreover, we show that the universal robustness arises from
 069 the model’s adaptive focus on robust features within given (unseen) tasks.
- 070 • As open problems for these transformers, we identify the accuracy–robust trade-off and
 071 sample-hungry in-context learning.

073 This study explores the potential of universally robust foundation models, which can endow diverse
 074 downstream tasks with adversarial robustness without adversarial training. A key challenge is the
 075 cost of adversarial pretraining. We assume that, as with standard foundation models, such efforts
 076 would be undertaken by large companies, which could offset development costs through licensing or
 077 API fees. The growing demand for safe and reliable AI strengthens this incentive. Encouragingly,
 078 advances in acceleration techniques for adversarial training, such as fast adversarial training (Wong
 079 et al., 2020) and adversarial finetuning (Jeddi et al., 2020), suggest that the cost of adversarial training
 080 could approach that of standard training. We regard our theoretical analysis as an important first step
 081 toward fostering the practical development of universally robust foundation models.

083 2 RELATED WORK

085 Additional related work can be found in [Appendix A](#).

087 **Adversarial Training.** Adversarial training (Goodfellow et al., 2015; Madry et al., 2018), which
 088 augments training data with adversarial examples (Szegedy et al., 2014), is one of the most effective
 089 adversarial defenses. Its major limitation is the high computational cost. To address this, several
 090 methods have focused on the efficient generation of adversarial examples (Andriushchenko & Flam-
 091 marion, 2020; Kim et al., 2021; Park & Lee, 2021; Shafahi et al., 2019; Wong et al., 2020; Zhang
 092 et al., 2019a) and adversarial finetuning (Jeddi et al., 2020; Mao et al., 2023; Suzuki et al., 2023;
 093 Wang et al., 2024a). However, these methods still require task-specific adversarial training. In this
 094 study, we introduce the concept of universally robust foundation models, which can adapt to a wide
 095 range of downstream tasks without requiring any adversarial training or examples.

096 **Robust and Non-Robust Features.** It is often suggested that adversarial vulnerability arises from
 097 the reliance of models on non-robust features (Ilyas et al., 2019; Tsipras et al., 2019). While robust
 098 features are class-discriminative, human-interpretable, and semantically meaningful, non-robust
 099 features are subtle, often imperceptible to humans, yet statistically correlated with labels and therefore
 100 predictive. Humans can rely only on robust features, whereas models can leverage both features to
 101 maximize accuracy. Tsipras et al. (2019) showed that standard classifiers depend heavily on non-
 102 robust features, making them vulnerable to adversarial perturbations that can manipulate these subtle
 103 features. They also showed that adversarial training forces models to rely solely on robust features,
 104 thereby enhancing robustness, but often reduces clean accuracy, known as the accuracy–robustness
 105 trade-off (Dobriban et al., 2023; Mehrabi et al., 2021; Raghunathan et al., 2019; 2020; Su et al., 2018;
 106 Tsipras et al., 2019; Yang et al., 2020; Zhang et al., 2019b). Subsequent studies have confirmed
 107 that adversarially trained neural networks place greater emphasis on robust features (Augustin et al.,
 108 2020; Chalasani et al., 2020; Engstrom et al., 2019; Etmann et al., 2019; Kaur et al., 2019; Santurkar
 109 et al., 2019; Srinivas et al., 2023; Tsipras et al., 2019; Zhang & Zhu, 2019). In this study, building

108 on this perspective, we employ datasets consisting of robust and non-robust features. Based on this
 109 framework, we find that adversarially pretrained single-layer linear transformers prioritize robust
 110 features rather than non-robust features, and exhibit the accuracy–robustness trade-off.

112 3 THEORETICAL RESULTS

114 **Notation.** For $n \in \mathbb{N}$, let $[n] := \{1, \dots, n\}$. Denote the i -th element of a vector \mathbf{a} by a_i , and the
 115 element in the i -th row and j -th column of a matrix \mathbf{A} by $A_{i,j}$. Let $U(\mathcal{S})$ be the uniform distribution
 116 over a set $\mathcal{S} \subset \mathbb{R}$. The sign function is denoted as $\text{sgn}(\cdot)$. For $d_1, d_2 \in \mathbb{N}$, let $\mathbf{1}_{d_1}$ and $\mathbf{1}_{d_1, d_2}$ be the
 117 d_1 -dimensional all-ones vector and $d_1 \times d_2$ all-ones matrix, respectively. The $d_1 \times d_1$ identity matrix
 118 is denoted as \mathbf{I}_{d_1} . Similarly, we write the all-zeros vector and matrix as $\mathbf{0}_{d_1}$ and $\mathbf{0}_{d_1, d_2}$, respectively.
 119 We use \gtrsim , \lesssim , and \approx only to hide constant factors in informal statements.

121 3.1 PROBLEM SETUP

123 **Overview.** We adversarially train a single-layer linear transformer on $d \in \mathbb{N}$ distinct datasets. The
 124 c -th training data distribution is denoted by $\mathcal{D}_c^{\text{tr}}$ for $c \in [d]$. The c -th dataset consists of $N+1$ samples,
 125 $\{(\mathbf{x}_n^{(c)}, y_n^{(c)})\}_{n=1}^{N+1} \stackrel{\text{i.i.d.}}{\sim} \mathcal{D}_c^{\text{tr}}$. The transformer is encouraged to adaptively learn data structures from
 126 N clean in-context demonstrations $\{(\mathbf{x}_n, y_n)\}_{n=1}^N$ and generalize to the $(N+1)$ -th perturbed sample
 127 $\mathbf{x}_{N+1} + \Delta$, where Δ represents an adversarial perturbation. We then evaluate the adversarial
 128 robustness of the trained transformer on a test dataset $\{(\mathbf{x}_n^{\text{te}}, y_n^{\text{te}})\}_{n=1}^{N+1} \stackrel{\text{i.i.d.}}{\sim} \mathcal{D}^{\text{te}}$, which may exhibit
 129 different structures from all training distributions.

130 **Transformer.** We first define the input sequence for a transformer as

$$132 \quad \mathbf{Z}_\Delta := \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} + \Delta \\ y_1 & y_2 & \cdots & y_N & 0 \end{bmatrix} \in \mathbb{R}^{(d+1) \times (N+1)}, \quad (1)$$

135 where $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathbb{R}^d$ are training data, $y_1, \dots, y_N \in \{\pm 1\}$ are their binary labels, $\mathbf{x}_{N+1} \in \mathbb{R}^d$
 136 is a test (query) sample, and $\Delta \in \mathbb{R}^d$ is an adversarial perturbation (see later). A transformer is
 137 expected to adaptively learn data structures from N demonstrations $\{(\mathbf{x}_n, y_n)\}_{n=1}^N$ and to predict the
 138 label of \mathbf{x}_{N+1} . The $(d+1, N+1)$ -th element of \mathbf{Z}_Δ serves as a placeholder for the prediction of
 139 $\mathbf{x}_{N+1} + \Delta$. We define a single-layer linear transformer $\mathbf{f} : \mathbb{R}^{(d+1) \times (N+1)} \rightarrow \mathbb{R}^{(d+1) \times (N+1)}$, which
 140 is commonly employed in theoretical studies of in-context learning (Ahn et al., 2023; Cheng et al.,
 141 2024; Gatmiry et al., 2024; Mahankali et al., 2024; Zhang et al., 2024b), as follows:

$$142 \quad \mathbf{f}(\mathbf{Z}_\Delta; \mathbf{P}, \mathbf{Q}) := \frac{1}{N} \mathbf{P} \mathbf{Z}_\Delta \mathbf{M} \mathbf{Z}_\Delta^\top \mathbf{Q} \mathbf{Z}_\Delta, \quad \mathbf{M} := \begin{bmatrix} \mathbf{I}_n & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{(N+1) \times (N+1)}, \quad (2)$$

145 where $\mathbf{P} \in \mathbb{R}^{(d+1) \times (d+1)}$ serves as the value weight matrix and $\mathbf{Q} \in \mathbb{R}^{(d+1) \times (d+1)}$ serves as the
 146 product of the key and query weight matrices. The mask matrix \mathbf{M} is adopted from recent literature
 147 on in-context learning to prevent tokens from attending to the query token (Ahn et al., 2023; Cheng
 148 et al., 2024; Gatmiry et al., 2024; Li et al., 2025).

149 **Training Data Distribution.** The transformer is pretrained on d distinct datasets. Inspired by Tsipras
 150 et al. (2019), we consider the following data structure that explicitly separates robust and non-robust
 151 features (cf. Section 2) according to their dimensional indices:

153 **Assumption 3.1** (Individual training data distribution). Let $c \in [d]$ be the index of the training data
 154 distribution and $\mathcal{D}_c^{\text{tr}}$ be the c -th distribution. A sample $(\mathbf{x}, y) \sim \mathcal{D}_c^{\text{tr}}$ satisfies the following:

$$155 \quad y \sim U(\{\pm 1\}), \quad x_c = y, \quad \forall i \in [d], i \neq c : x_i \sim \begin{cases} U([0, y\lambda]) & (y = 1) \\ U([y\lambda, 0]) & (y = -1) \end{cases}, \quad (3)$$

158 where $0 < \lambda < 1$. For any $i \neq j$, x_i and x_j are independent, given y .

160 In this distribution, a sample has a feature strongly correlated with its label (i.e., robust feature) at
 161 the c -th dimension and has features weakly correlated (i.e., non-robust features) at other dimensions.
 The correlation between non-robust features and the label is bounded by λ . The robust feature

162 mimics human-interpretable, semantically meaningful attributes in natural objects (e.g., shape). The
 163 non-robust features mimic human-imperceptible yet predictive attributes (e.g., texture).

164 **Test Data Distribution.** The test data distribution may exhibit more diverse structures than the
 165 training data, and may include non-predictive features in addition to robust and non-robust features.

166 **Assumption 3.2** (Test data distribution). Let the index sets of robust, non-robust, and irrelevant
 167 features be $\mathcal{S}_{\text{rob}}, \mathcal{S}_{\text{vul}}, \mathcal{S}_{\text{irr}} \subset [d]$, respectively. Suppose that these sets are disjoint, i.e., $\mathcal{S}_{\text{rob}} \cap \mathcal{S}_{\text{vul}} =$
 168 $\mathcal{S}_{\text{vul}} \cap \mathcal{S}_{\text{irr}} = \mathcal{S}_{\text{irr}} \cap \mathcal{S}_{\text{rob}} = \emptyset$ and that $\mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}} \cup \mathcal{S}_{\text{irr}} = [d]$. Let the number of robust, non-robust,
 169 and irrelevant features be $d_{\text{rob}} := |\mathcal{S}_{\text{rob}}|$, $d_{\text{vul}} := |\mathcal{S}_{\text{vul}}|$, and $d_{\text{irr}} := |\mathcal{S}_{\text{irr}}|$, respectively. Let the
 170 scales of the robust, non-robust, and irrelevant features be $\alpha > 0$, $\beta > 0$, and $\gamma \geq 0$, respectively.
 171 Let \mathcal{D}^{te} be the test data distribution. A sample $(\mathbf{x}, y) \sim \mathcal{D}^{\text{te}}$ satisfies the following:
 172

173 (1. Label) The label y follows the uniform distribution $U(\{\pm 1\})$.

174 (2. Expectation and Moments) For every $i \in \mathcal{S}_{\text{irr}}$, $\mathbb{E}[x_i] = 0$. For every $i \in [d]$ and $n \in \{2, 3, 4\}$,
 175 there exist constants $C_i > 0$ and $C_{i,n} \geq 0$ such that

$$\mathbb{E}[yx_i] = \begin{cases} C_i \alpha & (i \in \mathcal{S}_{\text{rob}}) \\ C_i \beta & (i \in \mathcal{S}_{\text{vul}}) \\ 0 & (i \in \mathcal{S}_{\text{irr}}) \end{cases}, \quad |\mathbb{E}[(yx_i - \mathbb{E}[yx_i])^n]| \leq \begin{cases} C_{i,n} \alpha^n & (i \in \mathcal{S}_{\text{rob}}) \\ C_{i,n} \beta^n & (i \in \mathcal{S}_{\text{vul}}) \\ C_{i,n} \gamma^n & (i \in \mathcal{S}_{\text{irr}}) \end{cases}. \quad (4)$$

176 (3. Covariance) There exist constants $0 \leq q_{\text{rob}}, q_{\text{vul}} < 1$ such that

$$|\{i \in \mathcal{S}_{\text{rob}} \mid \sum_{j \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}} \mathbb{E}[(x_i - \mathbb{E}[x_i])(x_j - \mathbb{E}[x_j])] < 0\}| \leq q_{\text{rob}} d_{\text{rob}}, \quad (5)$$

$$|\{i \in \mathcal{S}_{\text{vul}} \mid \sum_{j \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}} \mathbb{E}[(x_i - \mathbb{E}[x_i])(x_j - \mathbb{E}[x_j])] < 0\}| \leq q_{\text{vul}} d_{\text{vul}}. \quad (6)$$

177 (4. Independence) For every $i \in \mathcal{S}_{\text{irr}}$, x_i is independent of y and all x_j for $j \neq i$.

178 In contrast to the training distribution, the test distribution may contain d_{rob} robust features and d_{irr}
 179 irrelevant features. The latter simulates natural noise or redundant dimensions commonly found in
 180 real-world data. For example, in MNIST (Deng, 2012), the top-left pixel is always zero and thus not
 181 predictive. Assumption 4 requires each irrelevant feature to be independent of both the label and all
 182 the other features. Robust and non-robust features are not assumed to be mutually independent.

183 Assumption 2 (Expectation) ensures that robust and non-robust features exhibit positive correlation
 184 with the label. Given sufficient data, it is always possible to preprocess features to positively align
 185 with the label. For example, with a large N , this can be achieved by multiplying each feature x_i by
 186 $\text{sgn}(\mathbb{E}[yx_i]) \approx \text{sgn}(\sum_{n=1}^N y_n x_{n,i})$, ensuring $\mathbb{E}[y(\text{sgn}(\mathbb{E}[yx_i])x_i)] = |\mathbb{E}[yx_i]| \geq 0$.

187 Assumption 2 (Moments) bounds the n -th central moment of each feature by a constant multiple of
 188 the n -th power of its expectation. This property, commonly referred to as Taylor’s law (Taylor, 1961),
 189 is observed in a wide range of natural datasets and distributions.

190 Assumption 3 bounds the number of features whose total covariance with other informative
 191 features (i.e., robust and non-robust features) is negative. As stated in Theorem 3.6, we typically assume
 192 that q_{rob} and q_{vul} are small (but not necessarily infinitesimal). This assumption prevents unrealistic
 193 cases where useful features are overly anti-correlated with others, which could hinder learning. When
 194 all predictive features are independent conditioned on the label, $q_{\text{rob}} = 0$ and $q_{\text{vul}} = 0$ satisfy this
 195 assumption. We can observe that q_{rob} and q_{vul} are small in real-world datasets (cf. Fig. A2).

196 These conditions encompass a wide class of realistic data distributions.

197 • **Example 1: Training data distribution.** The training distribution $\mathcal{D}_c^{\text{tr}}$ is a special case of the test
 198 distribution \mathcal{D}^{te} . In this case, the number of robust features is $d_{\text{rob}} = 1$ with scale $\alpha \approx 1$. Similarly,
 199 $d_{\text{vul}} = d - 1$ and $\beta \approx \lambda$. There are no irrelevant features, i.e., $d_{\text{irr}} = 0$. By construction, and due
 200 to the properties of the uniform distribution, this distribution satisfies all the assumptions.

201 • **Example 2: Basic distributions.** The test distribution class includes basic distributions, such as
 202 uniform, normal, exponential, beta, gamma, Bernoulli, binomial distributions, etc. For example,
 203 consider normal distribution. Assumptions 3 and 4 are satisfied if all features are mutually
 204 independent. The expectation and second-moment constraints can be satisfied by setting appropriate
 205 mean and covariance. The third- and fourth-moment constraints are inherently satisfied.

216 • **Example 3: MNIST/Fashion-MNIST/CIFAR-10.** Empirical evidence suggests that preprocessed
 217 MNIST (Deng, 2012), Fashion-MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky, 2009)
 218 approximately satisfy our assumptions. Consider MNIST. Let $\{\mathbf{x}_n^{(0)}\}_{n=1}^N, \{\mathbf{x}_n^{(1)}\}_{n=1}^N \in [0, 1]^{784}$
 219 denote the samples of digits zero and one, respectively. We assign $y = 1$ to digit zero and $y = -1$
 220 to digit one. Center the data via $\mathbf{x}' \leftarrow \mathbf{x} - \bar{\mathbf{x}}$ with $\bar{\mathbf{x}} := (1/2N) \sum_{n=1}^N (\mathbf{x}_n^{(0)} + \mathbf{x}_n^{(1)})$ and align
 221 features with the label using $\mathbf{x}'' \leftarrow \text{sgn}(\sum_{n=1}^N (\mathbf{x}_n^{(0)} - \mathbf{x}_n^{(1)})) \odot \mathbf{x}'$. In this representation, common
 222 background features yield near-zero expectations (i.e., $\gamma \approx 0$), while discriminative features—such
 223 as the left and right arcs of zero or the vertical stroke of one—correlate strongly with the label (i.e.,
 224 $\alpha \approx 0.2$) (cf. Fig. A2). Additionally, some outlier-dependent pixels (e.g., corners occasionally
 225 activated by slanted digits) exhibit weak correlation with the label (i.e., $\beta \approx 0.01$), reflecting non-
 226 robust but predictive attributes. Empirical analysis reveals that most dimensions exhibit positive
 227 total covariance with others, consistent with Assumption 3 (cf. Fig. A2). The main departure from
 228 our test distribution lies in the fact that real-world datasets exhibit a gradual transition in feature
 229 importance rather than a binary separation between robust and non-robust features.

230 • **Example 4: Linear combination of orthonormal bases.** Under mild conditions, any distribution
 231 comprising robust and non-robust directions forming an orthonormal basis can be transformed into
 232 our setting via principal component analysis (cf. Appendix B).

233 **Adversarial Attack.** We assume that the test query \mathbf{x}_{N+1} is subject to an adversarial perturbation
 234 Δ constrained in the ℓ_∞ norm, i.e., $\|\Delta\|_\infty \leq \epsilon$, where $\epsilon \geq 0$ denotes the perturbation budget. In
 235 practice, ϵ is chosen to match the scale of non-robust features (e.g., $\epsilon \approx \lambda$ for the training and $\epsilon \approx \beta$
 236 for the test distribution). This ensures that perturbations effectively manipulate non-robust features
 237 while leaving robust features intact and remaining imperceptible to humans.

238 **Pretraining with In-Context Loss.** For pretraining, we consider the following problem based on the
 239 in-context loss (Ahn et al., 2023; Bai et al., 2023; Mahankali et al., 2024; Zhang et al., 2024b):

$$241 \min_{\mathbf{P}, \mathbf{Q} \in [0, 1]^{(d+1) \times (d+1)}} \mathbb{E}_{c \sim U([d]), \{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1} \stackrel{\text{i.i.d.}}{\sim} \mathcal{D}_c^{\text{tr}}} \left[\max_{\|\Delta\|_\infty \leq \epsilon} -y_{N+1} [f(\mathbf{Z}_\Delta; \mathbf{P}, \mathbf{Q})]_{d+1, N+1} \right]. \quad (7)$$

242 This formulation encourages the transformer to extract robust, generalizable representations from N
 243 clean in-context demonstrations and accurately classify an adversarially perturbed query sample.

244 3.2 WARM-UP: LINEAR CLASSIFIERS AND ORACLE

245 **Standard Linear Classifiers Extract All Features and Thus are Vulnerable.** As a warm-up,
 246 consider standard training of a linear classifier parameterized by $\mathbf{w} \in \mathbb{R}^d$ on the c -th training
 247 distribution $\mathcal{D}_c^{\text{tr}}$. Standard training results in $\mathbf{w}^{\text{std}} := \arg \min_{\mathbf{w} \in [0, 1]^d} \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}_c^{\text{tr}}} [-y\mathbf{w}^\top \mathbf{x}] = \mathbf{1}_d$.
 248 This classifier utilizes all features, including the robust feature at the c -th dimension and other non-
 249 robust features. Although \mathbf{w}^{std} achieves correct predictions on clean samples, $\mathbb{E}[y\mathbf{w}^{\text{std}\top} \mathbf{x}] > 0$, it is
 250 vulnerable to adversarial perturbations, $\mathbb{E}[\min_{\|\Delta\|_\infty \leq \epsilon} y\mathbf{w}^{\text{std}\top} (\mathbf{x} + \Delta)] \leq 0$ for $\epsilon \geq \frac{1+(d-1)(\lambda/2)}{d}$.¹
 251 This implies that, for a small d , the perturbation must be of the order $\epsilon \gtrsim 1$, which affects the robust
 252 feature and is human-perceptible. However, as d increases, the threshold decreases to $\epsilon \gtrsim \lambda$, which is
 253 at the scale of non-robust features and imperceptible yet can break the classifier predictions.

254 **Linear Classifiers can be Specific Robust, but not Universally Robust.** Consider adversarial
 255 training $\min_{\mathbf{w} \in [0, 1]^d} \mathbb{E}[\max_{\|\Delta\|_\infty \leq \epsilon} -y\mathbf{w}^\top (\mathbf{x} + \Delta)]$. For $\epsilon \geq \frac{\lambda}{2}$, the optimal solution \mathbf{w}^{adv} has one
 256 at the c -th dimension and zero otherwise. The classifier relies solely on the robust feature at the
 257 c -th dimension and ignores all non-robust features. Unlike \mathbf{w}^{std} , this classifier can correctly classify
 258 both clean and adversarial samples for $0 \leq \epsilon < 1$; linear classifiers can be robust for a specific
 259 training distribution. However, \mathbf{w}^{adv} tailored to $\mathcal{D}_c^{\text{tr}}$ is vulnerable on other distributions $\mathcal{D}_{c'}^{\text{tr}}$ indexed
 260 by $c' \neq c$; linear classifiers cannot be universally robust.

261 **Universally Robust Classifiers Exist.** Although linear classifiers cannot exhibit universal robustness
 262 across all c , universally robust classifiers do exist. For example, the classifier $h(\mathbf{x}) := \text{sgn}(x_i)$ with
 263 $i := \arg \max_{i' \in [d]} |x_{i'}|$ always produces correct predictions for clean data $\mathbf{x} \sim \mathcal{D}_c^{\text{tr}}$ for any c and
 264 perturbed data $\mathbf{x} + \Delta$ with $\|\Delta\|_\infty \leq \frac{1}{2}$.

265 ¹ $\mathbb{E}[\min_{\|\Delta\|_\infty \leq \epsilon} y\mathbf{w}^{\text{std}\top} (\mathbf{x} + \Delta)] = \mathbf{w}^{\text{std}\top} (\mathbb{E}[y\mathbf{x}] - \epsilon\mathbf{1}_d) = \{1 + (d-1)(\lambda/2)\} - d\epsilon \leq 0$.

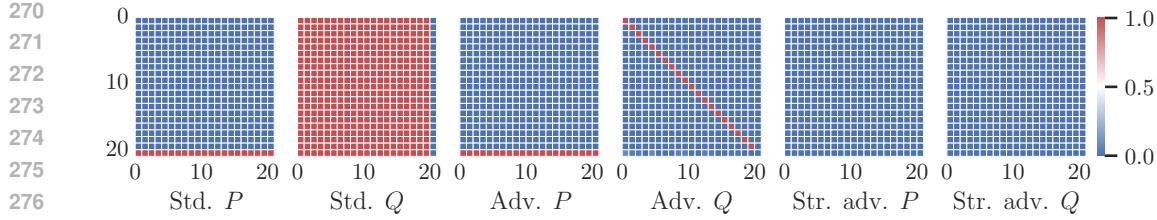


Figure 1: Parameter heatmaps induced by adversarial training (7) with $d = 20$ and $\lambda = 0.1$. For the standard, adversarial, and strong adversarial regimes, we used $\epsilon = 0$, $\frac{1+(d-1)(\lambda/2)}{d} = 0.098$, and $\frac{\lambda}{2} + \frac{3}{2} \frac{2-\lambda}{(d-1)\lambda^2+3} = 0.95$, respectively. We optimized (7) by stochastic gradient descent. Detailed experimental settings can be found in [Appendix C](#).

3.3 ADVERSARIAL PRETRAINING

In this section, we consider the global solution for the minimization problem (7).

Optimization Challenges. Although the training distributions are relatively simple, the minimization problem (7) remains nontrivial due to the non-linearity and non-convexity in the trainable parameters \mathbf{P} and \mathbf{Q} . The high non-linearity of self-attention and inner-maximization are also obstacles. Indeed, the minimization problem (7) is rearranged as the following non-linear maximization problem:

Lemma 3.3 (Transformation of original optimization problem). The minimization problem (7) can be transformed into the maximization problem $\max_{\mathbf{b} \in \{0,1\}^{d+1}} \sum_{i=1}^{d(d+1)} \max(0, \sum_{j=1}^{d+1} b_j h_{i,j})$, where $h_{i,j} \in \mathbb{R}$ is an (i, j) -dependent constant, and there exists a mapping from \mathbf{b} to \mathbf{P} and \mathbf{Q} .

The proof can be found in [Appendix D](#). This lemma highlights the inherent difficulty of optimizing (7), which requires selecting a binary vector \mathbf{b} that balances $d(d+1)$ interdependent non-linear terms.

Global Solution. Considering the symmetric property of \mathbf{b} and further transformation of the problem in [Lemma 3.3](#), we identify the global solution of (7) for some perturbation cases.

Theorem 3.4 (Parameters induced by adversarial pretraining). The global minimizer of (7) is

$$(1. \text{ Standard; } \epsilon = 0) \quad \mathbf{P} = \mathbf{P}^{\text{std}} := \begin{bmatrix} \mathbf{0}_{d,d+1} \\ \mathbf{1}_{d+1}^\top \end{bmatrix} \quad \text{and} \quad \mathbf{Q} = \mathbf{Q}^{\text{std}} := [\mathbf{1}_{d+1,d} \quad \mathbf{0}_{d+1}].$$

$$(2. \text{ Adversarial; } \epsilon = \frac{1+(d-1)(\lambda/2)}{d}) \quad \mathbf{P} = \mathbf{P}^{\text{adv}} := \begin{bmatrix} \mathbf{0}_{d,d+1} \\ \mathbf{1}_{d+1}^\top \end{bmatrix} \quad \text{and} \quad \mathbf{Q} = \mathbf{Q}^{\text{adv}} := \begin{bmatrix} \mathbf{I}_d & \mathbf{0}_d \\ \mathbf{0}_d^\top & 0 \end{bmatrix}.$$

$$(3. \text{ Strongly adversarial; } \epsilon \geq \frac{\lambda}{2} + \frac{3}{2} \frac{2-\lambda}{(d-1)\lambda^2+3}) \quad \mathbf{P} = \mathbf{0}_{d+1,d+1} \quad \text{and} \quad \mathbf{Q} = \mathbf{0}_{d+1,d+1}.$$

The proof and optimal parameters for different ϵ can be found in [Appendix D](#). Importantly, the optimal \mathbf{P} and \mathbf{Q} are independent of any specific training distribution (i.e., index c), reflecting that the transformer obtains learnability from demonstrations rather than memorizing individual tasks. The experimental results via gradient descent completely align with our theoretical predictions ([Fig. 1](#)).

Failure Case. In the strong adversarial regime, the global optimum becomes $\mathbf{P} = \mathbf{Q} = \mathbf{0}$, causing the transformer to always output zero regardless of the input. Namely, no universally robust single-layer linear transformers exist, despite the existence of universally robust classifiers (cf. [Section 3.2](#)). The perturbation scale $\epsilon \geq \frac{\lambda}{2} + \frac{3}{2} \frac{2-\lambda}{(d-1)\lambda^2+3}$ decreases in d : it transitions from $\epsilon = 1$ when $d = 1$ to $\epsilon \rightarrow \frac{\lambda}{2}$ as $d \rightarrow \infty$. In moderate dimensions ($d \approx \frac{1}{\lambda}$), adversarial perturbations must be $\epsilon \gtrsim 1$ to break robustness. They are comparable to the scale of robust features and thus perceptible to humans, contradicting the concept of adversarial perturbations. However, in extremely high dimensions ($d \gtrsim \frac{1}{\lambda^2}$), it suffices to perturb by only $\epsilon \gtrsim \lambda$, which is on the same scale as non-robust features and typically imperceptible, keeping the perturbation concept. This can be rephrased as: under our training distributions, single-layer linear transformers cannot achieve universal robustness when the non-robust dimensions (i.e., $d - 1$) substantially outnumber the robust dimension (i.e., 1).

324 3.4 UNIVERSAL ROBUSTNESS
325326 In this section, we show that universal robustness (over seen and unseen distributions) can be attained
327 by adversarial pretraining and clean in-context demonstrations.328 **Standard Pretraining Leads to Vulnerability.** We begin by showing that the standard model fails
329 to classify adversarially perturbed inputs.
330331 **Theorem 3.5** (Standard pretraining case). There exist a constant $C > 0$ and a strictly positive
332 function $g(d_{\text{rob}}, d_{\text{vul}}, d_{\text{irr}}, \alpha, \beta, \gamma)$ such that
333

334
$$\mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1} \sim \mathcal{D}^{\text{te}}} \left[\min_{\|\Delta\|_\infty \leq \epsilon} y_{N+1} [f(\mathbf{Z}_\Delta; \mathbf{P}^{\text{std}}, \mathbf{Q}^{\text{std}})]_{d+1, N+1} \right]$$

335
336
$$\leq g(d_{\text{rob}}, d_{\text{vul}}, d_{\text{irr}}, \alpha, \beta, \gamma) \left\{ \underbrace{C(d_{\text{rob}}\alpha + d_{\text{vul}}\beta)}_{\text{Prediction for original data}} - \underbrace{(d_{\text{rob}} + d_{\text{vul}} + d_{\text{irr}})\epsilon}_{\text{Adversarial effect}} \right\}. \quad (8)$$

337
338

339 The proof can be found in [Appendix E](#). This result analyzes the expectation of the product between
340 the true label and model prediction for the query. A positive value indicates correct classification and
341 a nonpositive value indicates failure. Since $g(d_{\text{rob}}, d_{\text{vul}}, d_{\text{irr}}, \alpha, \beta, \gamma)$ is always positive, a nonpositive
342 $C(d_{\text{rob}}\alpha + d_{\text{vul}}\beta) - (d_{\text{rob}} + d_{\text{vul}} + d_{\text{irr}})\epsilon$ implies incorrect classification.
343344 *The standard model extracts both features and thus is vulnerable.* Assume $d_{\text{irr}} = 0$. Like standard
345 linear classifiers, the standard model leverages both robust features $d_{\text{rob}}\alpha$ and non-robust features
346 $d_{\text{vul}}\beta$. This also makes vulnerability to adversarial perturbations contributing to the term $(d_{\text{rob}} +$
347 $d_{\text{vul}})\epsilon$. The prediction becomes incorrect, $C(d_{\text{rob}}\alpha + d_{\text{vul}}\beta) - (d_{\text{rob}} + d_{\text{vul}})\epsilon \leq 0$, when $\epsilon \gtrsim$
348 $\frac{d_{\text{rob}}\alpha + d_{\text{vul}}\beta}{d_{\text{rob}} + d_{\text{vul}}}$. The perturbation size ϵ is at the same scale as non-robust features, $\epsilon \approx \beta$, when
349 $d_{\text{vul}} \gtrsim d_{\text{rob}} \frac{\alpha - \beta}{\beta}$. In typical cases where the scale of robust features is much larger than that of
350 non-robust ones, $\alpha \gg \beta$, we can informally conclude:351 For $\epsilon \approx \beta$, if $d_{\text{vul}} \gtrsim \frac{\alpha}{\beta} d_{\text{rob}}$, then the normally pretrained single-layer linear transformer is vulnerable.
352353 *Non-predictive features accelerate vulnerability.* Redundant dimensions d_{irr} do not contribute to the
354 first term, i.e., accuracy, but they increase the second term, i.e., vulnerability. Therefore, they degrade
355 robustness without providing any benefit to prediction. In addition, d_{irr} amplifies the adversarial
356 effect at a rate of $d_{\text{irr}}\epsilon$, which is comparable to the effect from the useful dimensions, $d_{\text{rob}}\epsilon$ and $d_{\text{vul}}\epsilon$.
357358 **Adversarial Pretraining Leads to Universal Robustness.** We now establish the universal robustness
359 of the adversarially pretrained model.360 **Theorem 3.6** (Adversarial pretraining case). Suppose that q_{rob} and q_{vul} defined in [Assumption 3.2](#)
361 are sufficiently small. There exist constants $C_1, C_2 > 0$ such that
362

363
$$\mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1} \sim \mathcal{D}^{\text{te}}} \left[\min_{\|\Delta\|_\infty \leq \epsilon} y_{N+1} [f(\mathbf{Z}_\Delta; \mathbf{P}^{\text{adv}}, \mathbf{Q}^{\text{adv}})]_{d+1, N+1} \right]$$

364
365
$$\geq \underbrace{C_1(d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1)(d_{\text{rob}}\alpha^2 + d_{\text{vul}}\beta^2)}_{\text{Prediction for original data}}$$

366
367
$$- C_2 \underbrace{\left\{ (d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1) \left(d_{\text{rob}}\alpha + d_{\text{vul}}\beta + \frac{d_{\text{irr}}\gamma}{\sqrt{N}} \right) + d_{\text{irr}} \left(\sqrt{\frac{d_{\text{irr}}}{N}} + 1 \right) \gamma^2 \right\} \epsilon}_{\text{Adversarial effect}}. \quad (9)$$

368
369
370

371 The proof and generalized theorem can be found in [Appendix E](#) and [Theorem E.1](#). For notational
372 simplicity, we assume small q_{rob} and q_{vul} . However, we do not require infinitesimal q_{rob} and q_{vul} .
373 See [Theorem E.1](#) and [Appendix B](#). In contrast to [Theorem 3.5](#), this theorem provides the lower bound.
374 A positive right-hand side implies correct classification under adversarial perturbations.
375376 *The adversarially trained model prioritizes robust features.* Assume $d_{\text{irr}} = 0$. Up to constant factors,
377 the lower bound reduces to $(d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1)\{d_{\text{rob}}\alpha^2 + d_{\text{vul}}\beta^2 - (d_{\text{rob}}\alpha + d_{\text{vul}}\beta)\epsilon\}$. The important

378 factor is $d_{\text{rob}}\alpha^2 + d_{\text{vul}}\beta^2 - (d_{\text{rob}}\alpha + d_{\text{vul}}\beta)\epsilon$, which determines the sign. As shown in [Theorem 3.5](#),
 379 the standard models extract features at scales $d_{\text{rob}}\alpha$ and $d_{\text{vul}}\beta$. In contrast, the adversarially trained
 380 models extract them at quadratic scales $d_{\text{rob}}\alpha^2$ and $d_{\text{vul}}\beta^2$. Since robust features typically have larger
 381 magnitude ($\alpha^2 \gg \beta^2$), the adversarially trained model places greater emphasis on robust features
 382 and mitigate the influence of non-robust features, comparing the standard counterpart.

383 *It is universally robust.* As shown in the above discussion, to flip the prediction of the adversarially
 384 trained model, the perturbation must satisfy $\epsilon \gtrsim \frac{d_{\text{rob}}\alpha^2 + d_{\text{vul}}\beta^2}{d_{\text{rob}}\alpha + d_{\text{vul}}\beta}$. To maintain $\epsilon \approx \beta$, d_{vul} needs to be
 385 $d_{\text{vul}} \gtrsim \frac{d_{\text{rob}}\alpha(\alpha - \beta)}{\beta^2}$. In typical cases where $\alpha \gg \beta$, we can informally conclude:
 386

388 For $\epsilon \approx \beta$, if $d_{\text{vul}} \lesssim (\frac{\alpha}{\beta})^2 d_{\text{rob}}$, then the adversarially pretrained single-layer linear transformer is
 389 universally robust.

391 This threshold represents a substantial improvement over the standard model’s robustness condition
 392 of $d_{\text{vul}} \lesssim \frac{\alpha}{\beta} d_{\text{rob}}$. For example, when $\alpha = 160/255$ and $\beta = 8/255$, the standard model becomes
 393 vulnerable at $d_{\text{vul}} \gtrsim 20d_{\text{rob}}$, whereas the adversarially pretrained model remains robust up to
 394 $d_{\text{vul}} \lesssim 400d_{\text{rob}}$. This result also suggests that they become vulnerable when non-robust dimensions
 395 significantly outnumber robust ones, consistent with the failure case in [Section 3.3](#).

396 *It is more robust to attacks that exploit non-predictive features.* [Theorem 3.6](#) shows that even though
 397 the adversary may exploit redundant dimensions, their effect is significantly attenuated. Assume
 398 $N \rightarrow \infty$ for simplicity. The adversarial effect from irrelevant features then scales as $d_{\text{irr}}\gamma^2\epsilon$, which
 399 is linear in d_{irr} . In contrast, the clean prediction scales as $d_{\text{rob}}^2\alpha^3$ and $d_{\text{vul}}^2\beta^3$, i.e., quadratically in the
 400 number of informative features. Thus, as long as useful features dominate in magnitude and number,
 401 the influence of redundant features on the model’s robustness remains limited.

402 3.5 OPEN CHALLENGES

405 In this section, we show that two open challenges in robust classification ([Schmidt et al., 2018](#);
 406 [Tsipras et al., 2019](#)) persist in our setting.

407 **Accuracy–Robustness Trade-Off.** Inspired by [Tsipras et al. \(2019\)](#), we consider a situation where
 408 robust features correlate with the label with some probability, yet non-robust features always correlate.

410 **Theorem 3.7** (Accuracy–robustness trade-off). Assume $|\mathcal{S}_{\text{rob}}| = 1$, $|\mathcal{S}_{\text{vul}}| = d - 1$, and $|\mathcal{S}_{\text{irr}}| = 0$. In
 411 addition to [Assumption 3.2](#), for $(\mathbf{x}, y) \sim \mathcal{D}^{\text{te}}$, suppose that yx_i takes α with probability $p > 0.5$ and
 412 $-\alpha$ with probability $1 - p$ for $i \in \mathcal{S}_{\text{rob}}$. Moreover, yx_i takes β with probability one for $i \in \mathcal{S}_{\text{vul}}$. Let
 413 $\tilde{f}(\mathbf{P}, \mathbf{Q}) := \mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^N \stackrel{\text{i.i.d.}}{\sim} \mathcal{D}^{\text{te}}} [y_{N+1}[f(\mathbf{Z}_0; \mathbf{P}, \mathbf{Q})]_{d+1, N+1}]$. Then, there exist strictly positive
 414 functions $g_1(d, \alpha, \beta)$ and $g_2(d, \alpha, \beta)$ such that

$$416 \quad \tilde{f}(\mathbf{P}^{\text{std}}, \mathbf{Q}^{\text{std}}) = \begin{cases} g_1(d, \alpha, \beta)(\alpha + (d-1)\beta) & (\text{w.p. } p) \\ g_1(d, \alpha, \beta)(-\alpha + (d-1)\beta) & (\text{w.p. } 1-p) \end{cases}, \quad (10)$$

$$418 \quad \tilde{f}(\mathbf{P}^{\text{adv}}, \mathbf{Q}^{\text{adv}}) \leq g_2(d, \alpha, \beta)\{-(2p-1)\alpha^2 + (d-1)\beta^2\} \quad (\text{w.p. } 1-p). \quad (11)$$

420 The proof can be found in [Appendix F](#). Different from [Theorems 3.5](#) and [3.6](#), this theorem considers
 421 the expectation over $\{(\mathbf{x}_n, y_n)\}_{n=1}^N$, instead of $\{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1}$. The query $(\mathbf{x}_{N+1}, y_{N+1})$ behaves
 422 probabilistically. If $d \gtrsim \frac{\alpha}{\beta}$, the standard model can always produce correct predictions. However, if
 423 $d \lesssim (2p-1)(\frac{\alpha}{\beta})^2$, the adversarially trained model produces incorrect predictions with probability
 424 $1 - p$. This discrepancy arises because the robust model discards non-robust but predictive features.

426 **Need for Larger In-Context Sample Sizes.** Building on the assumptions of [Theorem 3.7](#), we
 427 informally summarize [Theorem G.1](#) as follows (omitting constant factors for clarity):

428 Consider $\mathbb{E}_{\mathbf{x}_{N+1}, y_{N+1}} [y_{N+1}[f(\mathbf{Z}_0; \mathbf{P}, \mathbf{Q})]_{d+1, N+1}]$. Assume $d \lesssim \frac{\alpha}{\beta}$, $p \rightarrow 0.5$, and a small N
 429 regime. With probability at least $1 - \exp(-N)$, the standard transformer outputs correct answers.
 430 With probability at most $1 - \frac{1}{\sqrt{N}}$, the adversarially trained transformer outputs correct answers.

432
 433 Table 1: Accuracy (%) of normally and adversarially pretrained single-layer linear transformers. Left
 434 values represent clean accuracy; right values represent robust accuracy. For \mathcal{D}^{tr} (cf. [Assumption 3.1](#)),
 435 we used $d = 100$ and $\lambda = 0.1$. For \mathcal{D}^{te} (cf. [Assumption 3.2](#)), we constructed a test distribution from
 436 multivariate normal distributions with $d_{\text{rob}} = 10$, $d_{\text{vul}} = 90$, $d_{\text{irr}} = 0$, $\alpha = 1.0$, and $\beta = 0.1$. For
 437 the real-world datasets, values were averaged across all 45 binary classification pairs from the 10
 438 classes. The perturbation budgets were set as follows: $\epsilon = 0.15$ for \mathcal{D}^{tr} , 0.2 for \mathcal{D}^{te} , 0.1 for MNIST
 439 and CIFAR-10, and 0.15 for Fashion-MNIST. See [Appendix C](#) for details.

	\mathcal{D}^{tr}	\mathcal{D}^{te}	MNIST	FMNIST	CIFAR10
Normally pretrained model	100 / 0	100 / 0	94 / 4	91 / 20	68 / 21
Adversarially pretrained model	100 / 100	99 / 95	93 / 72	89 / 62	64 / 34

445 This result indicates that the adversarially pretrained model requires substantially more in-context
 446 demonstrations to match the clean accuracy of the standard model. In low-sample regimes, the
 447 standard model rapidly approaches high accuracy, while the robust model converges more slowly due
 448 to its reliance on robust features, which are underrepresented in small-sample regimes.

4 EXPERIMENTAL RESULTS

450 Additional results and detailed experimental settings are provided in [Appendix C](#).
 451

452 **Verification of Theorem 3.4.** We trained single-layer linear transformers (2) using stochastic gradient
 453 descent over $[0, 1]^d$ with in-context loss (7). The training distribution was configured with $d = 20$
 454 and $\lambda = 0.1$. We used $\epsilon = 0$, $\frac{1+(d-1)(\lambda/2)}{d} = 0.098$, and $\frac{\lambda}{2} + \frac{3}{2} \frac{2-\lambda}{(d-1)\lambda^2+3} = 0.95$ for the standard,
 455 adversarial, and strong adversarial regimes, respectively. The heatmaps of the learned parameters are
 456 shown in [Fig. 1](#). These results completely align with the theoretical predictions of [Theorem 3.4](#).
 457

458 **Verification of Theorems 3.5 to 3.7.** We evaluated normally and adversarially pretrained single-
 459 layer linear transformers on \mathcal{D}^{tr} , \mathcal{D}^{te} , MNIST (Deng, 2012), Fashion-MNIST (Xiao et al., 2017),
 460 and CIFAR-10 (Krizhevsky, 2009). These results are provided in [Tab. 1](#). They suggest that the
 461 standard models achieve high clean accuracy but suffer severe degradation under adversarial attacks,
 462 consistent with [Theorem 3.5](#). In contrast, the adversarially pretrained models maintain high robustness,
 463 supporting [Theorem 3.6](#), while their clean accuracy is lower, aligning with the accuracy–robustness
 464 trade-off described in [Theorem 3.7](#).
 465

5 CONCLUSION AND LIMITATIONS

466 We theoretically demonstrated that single-layer linear transformers, after adversarial pretraining
 467 across classification tasks, can robustly adapt to previously unseen classification tasks through in-
 468 context learning, without any additional training. These results pave the way for universally robust
 469 foundation models. We also showed that these transformers can adaptively focus on robust features,
 470 exhibit an accuracy–robustness trade-off, and require a larger number of in-context demonstrations.

471 Our limitations include the assumptions on the data distributions and architectures. While we assume
 472 that the data distributions consist of clearly separated robust and non-robust features, real-world
 473 datasets typically exhibit a more gradual transition (cf. [Section 3.1](#), especially Example 3). Single-
 474 layer linear transformers lack the practical characteristics of multi-layer models and softmax attention.
 475 Although such theoretical assumptions are standard and comparable in strength to those in prior
 476 work (cf. studies on in-context learning in [Appendix A](#)), they limit the applicability of our results.
 477

478 The cost of adversarial pretraining is the limitation of the concept of universally robust foundation
 479 models. We expect that such efforts would be undertaken by large companies, which could offset de-
 480 velopment costs through API fees. In addition, acceleration techniques for adversarial training, which
 481 have been extensively studied in the existing literature, can reduce this cost to a level comparable to
 482 standard training. Our theoretical analysis is an important first step toward fostering the practical
 483 development of universally robust foundation models. See also the last paragraph in [Section 1](#).
 484

486 REPRODUCIBILITY STATEMENT
487488 All experimental procedures are described in [Section 4](#) and [Appendix C](#). The supplementary material
489 includes the source code to reproduce our experimental results. Proofs of the theorems are provided
490 in [Appendices D to G](#).491 THE USE OF LARGE LANGUAGE MODELS (LLMs)
492493 We used LLMs to improve our writing. No essential contributions were made by the LLMs.
494495 REFERENCES
496497 Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
498 preconditioned gradient descent for in-context learning. In *NeurIPS*, volume 36, pp. 45614–45650,
499 2023.500 Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
501 algorithm is in-context learning? investigations with linear models. In *ICLR*, 2023.503 Ahmed Aldahdooh, Wassim Hamidouche, and Olivier Deforges. Reveal of vision transformers
504 robustness against adversarial attacks. *arXiv:2106.03734*, 2021.506 Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast adversarial
507 training. In *NeurIPS*, volume 33, pp. 16048–16059, 2020.508 Usman Anwar, Johannes Von Oswald, Louis Kirsch, David Krueger, and Spencer Frei. Adversarial
509 robustness of in-context learning in transformers for linear regression. *arXiv:2411.05189*, 2024.511 Robert B Ash. *Information Theory*. Courier Corporation, 1990.512 Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
513 security: Circumventing defenses to adversarial examples. In *ICML*, pp. 274–283, 2018.515 Maximilian Augustin, Alexander Meinke, and Matthias Hein. Adversarial robustness on in-and
516 out-distribution improves explainability. In *ECCV*, pp. 228–245, 2020.517 Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
518 Provable in-context learning with in-context algorithm selection. In *NeurIPS*, volume 36, pp.
519 57125–57211, 2023.521 Yutong Bai, Jieru Mei, Alan L Yuille, and Cihang Xie. Are transformers more robust than cnns? In
522 *NeurIPS*, volume 34, pp. 26831–26843, 2021.523 Philipp Benz, Soomin Ham, Chaoning Zhang, Adil Karjauv, and In So Kweon. Adversarial robustness
524 comparison of vision transformer and MLP-mixer to CNNs. In *BMVC*, 2021.526 Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and
527 Andreas Veit. Understanding robustness of transformers for image classification. In *ICCV*, pp.
528 10231–10241, 2021.529 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
530 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
531 few-shot learners. In *NeurIPS*, volume 33, pp. 1877–1901, 2020.533 Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
534 Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
535 from large language models. In *USENIX Security*, pp. 2633–2650, 2021.536 Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
537 Zhang. Quantifying memorization across neural language models. In *ICLR*, 2022.538 Prasad Chalasani, Jiefeng Chen, Amrita Roy Chowdhury, Xi Wu, and Somesh Jha. Concise explana-
539 tions of neural networks using adversarial training. In *ICML*, pp. 1383–1391, 2020.

540 Xiang Cheng, Yuxin Chen, and Suvrit Sra. Transformers implement functional gradient descent to
 541 learn non-linear functions in context. In *ICML*, 2024.

542

543 Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
 544 of diverse parameter-free attacks. In *ICML*, pp. 2206–2216, 2020.

545

546 Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
 547 learn in-context? language models implicitly perform gradient descent as meta-optimizers. In *ACL*,
 548 2023.

549

550 Edoardo Debenedetti, Vikash Sehwag, and Prateek Mittal. A light recipe to train robust vision
 551 transformers. In *SaTML*, pp. 225–253, 2023.

552

553 Li Deng. The MNIST database of handwritten digit images for machine learning research. *Signal
 Processing Magazine*, 29(6):141–142, 2012.

554

555 Edgar Dobriban, Hamed Hassani, David Hong, and Alexander Robey. Provable tradeoffs in adversar-
 556 ially robust classification. *IEEE Transactions on Information Theory*, 2023.

557

558 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 559 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
 560 is worth 16x16 words: Transformers for image recognition at scale. In *ICLR*, 2021.

561

562 Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon Tran, and Aleksander
 563 Madry. Adversarial robustness as a prior for learned representations. *arXiv:1906.00945*, 2019.

564

565 Christian Etmann, Sebastian Lunz, Peter Maass, and Carola-Bibiane Schönlieb. On the connection
 566 between adversarial robustness and saliency map interpretability. In *ICML*, 2019.

567

568 Hao Fan, Zhaoyang Ma, Yong Li, Rui Tian, Yunli Chen, and Chenlong Gao. Mixprompt: Enhancing
 569 generalizability and adversarial robustness for vision-language models via prompt fusion. In *ICIC*,
 570 pp. 328–339, 2024.

571

572 Spencer Frei and Gal Vardi. Trained transformer classifiers generalize and exhibit benign overfitting
 573 in-context. In *ICLR*, 2025.

574

575 Deqing Fu, Tian-qi Chen, Robin Jia, and Vatsal Sharan. Transformers learn to achieve second-order
 576 convergence rates for in-context linear regression. In *NeurIPS*, volume 37, pp. 98675–98716, 2024.

577

578 Shaopeng Fu, Liang Ding, and Di Wang. "short-length" adversarial training helps llms defend
 579 "long-length" jailbreak attacks: Theoretical and empirical evidence. *arXiv:2502.04204*, 2025.

580

581 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
 582 in-context? a case study of simple function classes. In *NeurIPS*, volume 35, pp. 30583–30598,
 583 2022.

584

585 Siddhant Garg and Goutham Ramakrishnan. BAE: BERT-based adversarial examples for text
 586 classification. In *EMNLP*, pp. 6174–6181, 2020.

587

588 Khashayar Gatmiry, Nikunj Saunshi, Sashank J Reddi, Stefanie Jegelka, and Sanjiv Kumar. Can
 589 looped transformers learn to implement multi-step gradient descent for in-context learning? In
 590 *ICML*, 2024.

591

592 Angeliki Giannou, Liu Yang, Tianhao Wang, Dimitris Papailiopoulos, and Jason D Lee. How well
 593 can transformers emulate in-context newton's method? *arXiv:2403.03183*, 2024.

594

595 Micah Goldblum, Liam Fowl, and Tom Goldstein. Adversarially robust few-shot learning: A
 596 meta-learning approach. In *NeurIPS*, volume 33, pp. 17886–17895, 2020.

597

598 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 599 examples. In *ICLR*, 2015.

600

601 Yufan Hou, Lixin Zou, and Weidong Liu. Task-based focal loss for adversarially robust meta-learning.
 602 In *ICPR*, pp. 2824–2829, 2021.

594 Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
 595 Madry. Adversarial examples are not bugs, they are features. In *NeurIPS*, volume 32, pp. 125–136,
 596 2019.

597 Ahmadreza Jeddi, Mohammad Javad Shafiee, and Alexander Wong. A simple fine-tuning is all you
 598 need: Towards robust deep learning via adversarial fine-tuning. *arXiv:2012.13628*, 2020.

600 Xiaojun Jia, Sensen Gao, Simeng Qin, Ke Ma, Xinfeng Li, Yihao Huang, Wei Dong, Yang Liu, and
 601 Xiaochun Cao. Evolution-based region adversarial prompt learning for robustness enhancement in
 602 vision-language models. *arXiv:2503.12874*, 2025.

603 Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is BERT really robust? a strong baseline for
 604 natural language attack on text classification and entailment. In *AAAI*, volume 34, pp. 8018–8025,
 605 2020.

607 Simran Kaur, Jeremy Cohen, and Zachary C Lipton. Are perceptually-aligned gradients a general
 608 property of robust classifiers? In *NeurIPS WS*, 2019.

609 Hoki Kim, Woojin Lee, and Jaewook Lee. Understanding catastrophic overfitting in single-step
 610 adversarial training. In *AAAI*, volume 35, pp. 8119–8127, 2021.

612 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
 613 of Toronto, 2009.

614 Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
 615 Brunskill. Supervised pretraining can learn in-context reinforcement learning. In *NeurIPS*,
 616 volume 36, pp. 43057–43083, 2023.

618 Lin Li, Haoyan Guan, Jianing Qiu, and Michael Spratling. One prompt word is enough to boost
 619 adversarial robustness for pre-trained vision-language models. In *CVPR*, pp. 24408–24419, 2024.

620 Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. BERT-ATTACK: Adversarial
 621 attack against BERT using BERT. In *EMNLP*, pp. 6193–6202, 2020.

623 Tianle Li, Chenyang Zhang, Xingwu Chen, Yuan Cao, and Difan Zou. On the robustness of
 624 transformers against context hijacking for linear classification. *arXiv:2502.15609*, 2025.

625 Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
 626 ment learning via supervised pretraining. In *ICLR*, 2024.

628 Chang Liu, Yinpeng Dong, Wenzhao Xiang, Xiao Yang, Hang Su, Jun Zhu, Yuefeng Chen, Yuan He,
 629 Hui Xue, and Shibao Zheng. A comprehensive study on robustness of image classification models:
 630 Benchmarking and rethinking. *IJCV*, 133(2):567–589, 2025.

632 Fan Liu, Shuyu Zhao, Xuelong Dai, and Bin Xiao. Long-term cross adversarial training: A robust
 633 meta-learning method for few-shot classification tasks. In *ICML WS*, 2021.

634 Xiaogeng Liu, Nan Xu, Muhan Chen, and Chaowei Xiao. AutoDAN: Generating stealthy jailbreak
 635 prompts on aligned large language models. In *ICLR*, 2024.

637 Lin Luo, Xin Wang, Bojia Zi, Shihao Zhao, and Xingjun Ma. Adversarial prompt distillation for
 638 vision-language models. *arXiv:2411.15244*, 2024.

639 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 640 Towards deep learning models resistant to adversarial attacks. In *ICLR*, 2018.

642 Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is provably
 643 the optimal in-context learner with one layer of linear self-attention. In *ICLR*, 2024.

644 Kaleel Mahmood, Rigel Mahmood, and Marten Van Dijk. On the robustness of vision transformers
 645 to adversarial examples. In *ICCV*, pp. 7838–7847, 2021.

647 Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick. Understanding zero-shot
 648 adversarial robustness for large-scale models. In *ICLR*, 2023.

648 Mohammad Mehrabi, Adel Javanmard, Ryan A Rossi, Anup Rao, and Tung Mai. Fundamental
 649 tradeoffs in distributionally adversarial training. In *ICML*, pp. 7544–7554, 2021.
 650

651 Muhammad Muzammal Naseer, Kanchana Ranasinghe, Salman H Khan, Munawar Hayat, Fahad
 652 Shahbaz Khan, and Ming-Hsuan Yang. Intriguing properties of vision transformers. In *NeurIPS*,
 653 volume 34, pp. 23296–23308, 2021.

654 Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A Feder Cooper, Daphne Ippolito,
 655 Christopher A Choquette-Choo, Eric Wallace, Florian Tramèr, and Katherine Lee. Scalable
 656 extraction of training data from (production) language models. *arXiv:2311.17035*, 2023.
 657

658 Geon Yeong Park and Sang Wan Lee. Reliably fast adversarial training via latent adversarial
 659 perturbation. In *ICCV*, pp. 7758–7767, 2021.

660 Sayak Paul and Pin-Yu Chen. Vision transformers are robust learners. In *AAAI*, volume 36, pp.
 661 2071–2081, 2022.

662 Fábio Perez and Ian Ribeiro. Ignore previous prompt: Attack techniques for language models. In
 663 *NeurIPS WS*, 2022.

664 Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C Duchi, and Percy Liang. Adversarial
 665 training can hurt generalization. In *ICML WS*, 2019.

666 Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John Duchi, and Percy Liang. Understanding
 667 and mitigating the tradeoff between robustness and accuracy. In *ICML*, 2020.

668 Shibani Santurkar, Andrew Ilyas, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
 669 Madry. Image synthesis with a single (robust) classifier. In *NeurIPS*, volume 32, 2019.

670 Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry. Adver-
 671 sariably robust generalization requires more data. In *NeurIPS*, volume 31, 2018.

672 Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S
 673 Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In *NeurIPS*, 2019.

674 Rulin Shao, Zhouxing Shi, Jinfeng Yi, Pin-Yu Chen, and Cho-Jui Hsieh. On the adversarial robustness
 675 of vision transformers. *TMLR*, 2022.

676 Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. "Do anything now":
 677 Characterizing and evaluating in-the-wild jailbreak prompts on large language models. In *ACM*
 678 *CCS*, pp. 1671–1685, 2024.

679 Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael Schärli,
 680 and Denny Zhou. Large language models can be easily distracted by irrelevant context. In *ICML*,
 681 pp. 31210–31227, 2023.

682 Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context
 683 learning differently? In *ICML*, 2024.

684 Suraj Srinivas, Sebastian Bordt, and Himabindu Lakkaraju. Which models have perceptually-aligned
 685 gradients? an explanation via off-manifold robustness. In *NeurIPS*, volume 36, 2023.

686 Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao. Is robustness the
 687 cost of accuracy?—a comprehensive study on the robustness of 18 deep image classification models.
 688 In *ECCV*, pp. 631–648, 2018.

689 Satoshi Suzuki, Shin'ya Yamaguchi, Shoichiro Takeda, Sekitoshi Kanai, Naoki Makishima, Atsushi
 690 Ando, and Ryo Masumura. Adversarial finetuning with latent representation constraint to mitigate
 691 accuracy-robustness tradeoff. In *ICCV*, pp. 4367–4378, 2023.

692 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
 693 and Rob Fergus. Intriguing properties of neural networks. In *ICLR*, 2014.

702 Shiyu Tang, Ruihao Gong, Yan Wang, Aishan Liu, Jiakai Wang, Xinyun Chen, Fengwei Yu, Xiang-
 703 long Liu, Dawn Song, Alan Yuille, et al. RobustART: Benchmarking robustness on architecture
 704 design and training techniques. *arXiv:2109.05211*, 2021.

705

706 L. R. Taylor. Aggregation, variance and the mean. *Nature*, 189:732–735, 1961.

707

708 Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to
 709 adversarial example defenses. In *NeurIPS*, volume 33, pp. 1633–1645, 2020.

710

711 Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
 712 Robustness may be at odds with accuracy. In *ICLR*, 2019.

713

714 Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
 715 Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
 716 *ICML*, pp. 35151–35174, 2023.

717

718 Johannes Von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind
 719 Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, et al.
 720 Uncovering mesa-optimization algorithms in transformers. In *ICLR WS*, 2024.

721

722 Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal adversarial
 723 triggers for attacking and analyzing NLP. In *EMNLP-IJCNLP*, 2019.

724

725 Ren Wang, Kaidi Xu, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Chuang Gan, and Meng Wang. On
 726 fast adversarial robustness adaptation in model-agnostic meta-learning. In *ICLR*, 2021.

727

728 Sibo Wang, Jie Zhang, Zheng Yuan, and Shiguang Shan. Pre-trained model guided fine-tuning for
 729 zero-shot adversarial robustness. In *CVPR*, pp. 24502–24511, 2024a.

730

731 Xin Wang, Kai Chen, Xingjun Ma, Zhineng Chen, Jingjing Chen, and Yu-Gang Jiang. Advqdet:
 732 Detecting query-based adversarial attacks with adversarial contrastive prompt tuning. In *ACM
 733 MM*, pp. 6212–6221, 2024b.

734

735 Alexander Wei, Nika Haghatalab, and Jacob Steinhardt. Jailbroken: How does LLM safety training
 736 fail? In *NeurIPS*, volume 36, pp. 80079–80110, 2023a.

737

738 Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao
 739 Liu, Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently.
 740 *arXiv:2303.03846*, 2023b.

741

742 Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. In *NeurIPS*,
 743 volume 36, pp. 36637–36651, 2023.

744

745 Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training. In
 746 *ICLR*, 2020.

747

748 Boxi Wu, Jindong Gu, Zhifeng Li, Deng Cai, Xiaofei He, and Wei Liu. Towards efficient adversarial
 749 training on vision transformers. In *ECCV*, pp. 307–325, 2022.

750

751 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for bench-
 752 marking machine learning algorithms. *arXiv:1708.07747*, 2017.

753

754 Fan Yang, Mingxuan Xia, Sangzhou Xia, Chicheng Ma, and Hui Hui. Revisiting the robust general-
 755 ization of adversarial prompt tuning. *arXiv:2405.11154*, 2024.

756

757 Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Russ R Salakhutdinov, and Kamalika Chaud-
 758 huri. A closer look at accuracy vs. robustness. In *NeurIPS*, volume 33, pp. 8588–8601, 2020.

759

760 Chengxiang Yin, Jian Tang, Zhiyuan Xu, and Yanzhi Wang. Adversarial meta-learning.
 761 *arXiv:1806.03316*, 2018.

762

763 Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu, and Maosong Sun.
 764 Word-level textual adversarial attacking as combinatorial optimization. In *ACL*, pp. 6066–6080,
 765 2020.

756 Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only propagate
757 once: Accelerating adversarial training via maximal principle. In *NeurIPS*, 2019a.
758

759 Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
760 Theoretically principled trade-off between robustness and accuracy. In *ICML*, pp. 7472–7482,
761 2019b.

762 Jiaming Zhang, Xingjun Ma, Xin Wang, Lingyu Qiu, Jiaqi Wang, Yu-Gang Jiang, and Jitao Sang.
763 Adversarial prompt tuning for vision-language models. In *ECCV*, pp. 56–72, 2024a.
764

765 Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
766 *JMLR*, 25(49):1–55, 2024b.

767 Tianyuan Zhang and Zhanxing Zhu. Interpreting adversarially trained convolutional neural networks.
768 In *ICML*, pp. 7502–7511, 2019.
769

770 Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-context
771 learning learn? bayesian model averaging, parameterization, and generalization. *arXiv:2305.19420*,
772 2023.

773 Yiwei Zhou, Xiaobo Xia, Zhiwei Lin, Bo Han, and Tongliang Liu. Few-shot adversarial prompt
774 learning on vision-language models. In *NeurIPS*, volume 37, pp. 3122–3156, 2024.
775

776 Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal
777 and transferable adversarial attacks on aligned language models. *arXiv:2307.15043*, 2023.
778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810	A Additional Related Work	16
811		
812	B Additional Theoretical Support and Insights	17
813		
814	B.1 Linear Combination of Orthonormal Bases can be Transformed into Our Test Distri-	
815	bution.	17
816	B.2 Sufficient Number of Datasets to Provide Universal Robustness	18
817		
818	B.3 Effects of q_{rob} and q_{vul}	18
819	B.4 Disadvantage of Standard Finetuning: Parameter Selection Perspective	19
820		
821	B.5 Naive Adversarial Context may not Improve Robustness	19
822		
823	C Additional Experimental Results	19
824		
825	C.1 Support for Assumption 3.2.	20
826	C.2 Verification of Theorem 3.4.	20
827	C.3 Verification of Theorems 3.5 to 3.7 and G.1	20
828		
829	D Proof of Lemma 3.3 and Theorem 3.4 (Pretraining)	21
830		
831	E Proof of Theorems 3.5 and 3.6 (Robustness)	33
832		
833	F Proof of Theorem 3.7 (Trade-Off)	39
834		
835	G Proof of Theorem G.1 (Need for Larger Sample Size)	41
836		
837		
838	A ADDITIONAL RELATED WORK	
839		
840		

In-Context Learning. In-context learning has emerged as a remarkable property of large language models, enabling them to adapt to a new task from a few input–output demonstrations without any parameter updates (Brown et al., 2020). Recent work has shown that in-context learning can implement various algorithms (Bai et al., 2023; Garg et al., 2022). One research direction has linked in-context learning with preconditioned gradient descent through empirical (Akyürek et al., 2023; Dai et al., 2023; Garg et al., 2022; Von Oswald et al., 2023; 2024) and theoretical analyses (Ahn et al., 2023; Bai et al., 2023; Cheng et al., 2024; Gatmiry et al., 2024; Mahankali et al., 2024; Zhang et al., 2024b). Additional results have indicated that in-context learning can implement ridge regression (Akyürek et al., 2023; Bai et al., 2023), second-order optimization (Fu et al., 2024; Giannou et al., 2024), reinforcement learning (Lee et al., 2023; Lin et al., 2024), and Bayesian model averaging (Zhang et al., 2023). In terms of robustness, some studies have shown that in-context learning can act as a nearly optimal predictor under noisy linear data (Bai et al., 2023) and noisy labels (Frei & Vardi, 2025). Moreover, it has been demonstrated that in-context learning is robust to shifts in the query distribution (Wies et al., 2023; Zhang et al., 2024b), but not necessarily to shifts in the context (Shi et al., 2023; 2024; Wei et al., 2023b; Zhang et al., 2024b). In this study, we focus on the adversarial robustness of in-context learning, rather than the underlying algorithms or its robustness to random noise and distribution shifts. Specifically, we examine whether a single adversarially pretrained transformer can robustly adapt to a broad range of tasks through in-context learning.

Norm- and Token-Bounded Adversarial Examples. Adversarial examples were originally introduced as subtle perturbations to natural data, designed to induce misclassifications in models (Croce & Hein, 2020; Goodfellow et al., 2015; Madry et al., 2018; Szegedy et al., 2014). These perturbations are typically constrained by a norm-based distance from the original inputs. The robustness of transformers to such norm-bounded adversarial examples has been studied primarily in vision transformers (Dosovitskiy et al., 2021). Several studies have shown that standard vision transformers

864 are as vulnerable to these attacks as conventional vision models (Bai et al., 2021; Mahmood et al.,
 865 2021), though some have reported marginal differences (Aldahdooh et al., 2021; Benz et al., 2021;
 866 Bhojanapalli et al., 2021; Naseer et al., 2021; Paul & Chen, 2022; Shao et al., 2022; Tang et al.,
 867 2021). In contrast, adversarial attacks on language models are often neither norm-constrained nor
 868 imperceptible to humans. They involve substantial token modifications (Garg & Ramakrishnan, 2020;
 869 Jin et al., 2020; Li et al., 2020; Zang et al., 2020), the insertion of adversarial tokens (Liu et al., 2024;
 870 Shen et al., 2024; Wallace et al., 2019; Wei et al., 2023a; Zou et al., 2023), and the construction of
 871 entirely new adversarial prompts (Carlini et al., 2021; 2022; Nasr et al., 2023; Perez & Ribeiro, 2022;
 872 Wei et al., 2023a). These attacks aim not only to induce misclassification (Garg & Ramakrishnan,
 873 2020; Jin et al., 2020; Li et al., 2020; Wallace et al., 2019; Zang et al., 2020), but also to provoke
 874 objectionable outputs (Liu et al., 2024; Perez & Ribeiro, 2022; Shen et al., 2024; Wei et al., 2023a;
 875 Zou et al., 2023) or to extract private information from training data (Carlini et al., 2021; 2022; Nasr
 876 et al., 2023). They are generally bounded by token-level metrics (e.g., the number of modified tokens).
 877 In this study, we focus exclusively on norm-bounded adversarial examples. Token-bounded ones are
 878 out of scope.

879 **Adversarial Training.** Adversarial training, which augments training data with adversarial examples,
 880 is one of the most effective adversarial defenses (Goodfellow et al., 2015; Madry et al., 2018).
 881 Although originally developed for conventional neural architectures, adversarial training has also
 882 proven effective for transformers (Debenedetti et al., 2023; Liu et al., 2025; Shao et al., 2022; Tang
 883 et al., 2021; Wu et al., 2022). A major limitation of adversarial training is its high computational
 884 cost. To address this, several methods have focused on more efficient generation of adversarial
 885 examples (Andriushchenko & Flammarion, 2020; Kim et al., 2021; Park & Lee, 2021; Shafahi et al.,
 886 2019; Wong et al., 2020; Zhang et al., 2019a) and adversarial finetuning of standard pretrained
 887 models (Jeddi et al., 2020; Mao et al., 2023; Suzuki et al., 2023; Wang et al., 2024a). More recently,
 888 researchers have introduced adversarial prompt tuning, which trains visual (Mao et al., 2023; Wang
 889 et al., 2024b), textual (Fan et al., 2024; Li et al., 2024; Zhang et al., 2024a), or bimodal prompts (Jia
 890 et al., 2025; Luo et al., 2024; Yang et al., 2024; Zhou et al., 2024) in an adversarial manner. However,
 891 these methods require retraining for each task. In this study, we explore the potential of adversarially
 892 pretrained transformers for robust task adaptation via in-context learning, thereby eliminating the
 893 task-specific retraining and associated computational overhead.

894 **Adversarial Meta-Learning.** Adversarial meta-learning seeks to develop a universally robust
 895 meta-learner that can swiftly and reliably adapt to new tasks under adversarial conditions. Existing
 896 approaches adversarially train a neural network on multiple tasks, and then finetune it on a target task
 897 using clean (Goldblum et al., 2020; Hou et al., 2021; Liu et al., 2021; Wang et al., 2021; Yin et al.,
 898 2018) or adversarial samples (Yin et al., 2018). In this study, we similarly aim to train such a meta-
 899 learner. However, rather than relying on neural networks and finetuning, we employ a transformer as
 900 the meta-learner and leverage its in-context learning ability for task adaptation.

901 **Related but Distinct Work.** We here review theoretical work on the adversarial robustness of
 902 in-context learning. Assuming token-bounded adversarial examples, prior studies have shown that
 903 even a single token modification in the context can significantly alter the output of a normally
 904 trained model on a clean query (Anwar et al., 2024), and deeper layers can mitigate this (Li et al.,
 905 2025). Assuming norm- and token-bounded examples, Fu et al. have shown that adversarial training
 906 with short adversarial contexts can provide robustness against longer ones (Fu et al., 2025). They
 907 considered a clean query and adversarial tokens appended to the original context. In this study, we
 908 explore how adversarially trained models handle norm-bounded perturbations to a query in a clean
 909 context. As a result, we reveal their universal robustness that can be generalized to a new task from a
 910 few demonstrations.

912 B ADDITIONAL THEORETICAL SUPPORT AND INSIGHTS

914 B.1 LINEAR COMBINATION OF ORTHONORMAL BASES CAN BE TRANSFORMED INTO OUR 915 TEST DISTRIBUTION.

917 Our test data distribution, [Assumption 3.2](#), can implicitly represent data distributions comprising
 robust and non-robust directions forming an orthonormal basis. Consider d orthonormal bases,

918 $\{\mathbf{e}_i\}_{i=1}^d$. We set $d_{\text{irr}} = 0$, namely $d = d_{\text{rob}} + d_{\text{vul}}$. Each data point is represented as $\mathbf{x} = c_1\mathbf{e}_1 + c_2\mathbf{e}_2 + \dots + c_d\mathbf{e}_d$, where coefficients c_i are sampled probabilistically. These coefficients 919 satisfy $\mathbb{E}[yc_i] = C_i\alpha$ for $i \in \mathcal{S}_{\text{rob}}$ and β for $i \in \mathcal{S}_{\text{vul}}$. In addition, $|\mathbb{E}[(yc_i - \mathbb{E}[yc_i])^n]| \leq C_{i,n}\alpha^n$ 920 for $i \in \mathcal{S}_{\text{rob}}$ and $C_{i,n}\beta^n$ for $i \in \mathcal{S}_{\text{vul}}$. Given a dataset of N i.i.d. samples $\{(\mathbf{x}_n, y_n)\}_{n=1}^N$, if $c_{n,i}$ is 921 independent of $c_{n,j}$ for $i \neq j$ conditional on y , and N is sufficiently large, then the covariance of $y\mathbf{x}$ 922 can be approximated as: 923

$$\begin{aligned} 924 & \frac{1}{N} \sum_{n=1}^N \left(y_n \mathbf{x}_n - \sum_{k=1}^N y_k \mathbf{x}_k \right) \left(y_n \mathbf{x}_n - \sum_{k=1}^N y_k \mathbf{x}_k \right)^\top \\ 925 & \approx \mathbb{E}[(y\mathbf{x} - \mathbb{E}[y\mathbf{x}])(y\mathbf{x} - \mathbb{E}[y\mathbf{x}])^\top] \end{aligned} \quad (\text{A12})$$

$$926 = \mathbb{E} \left[\left(\sum_{i=1}^d (y_i c_i - \mathbb{E}[yc_i]) \mathbf{e}_i \right) \left(\sum_{i=1}^d (y_i c_i - \mathbb{E}[yc_i]) \mathbf{e}_i \right)^\top \right] \quad (\text{A13})$$

$$927 = \sum_{i,j=1}^d \mathbb{E}[(yc_i - \mathbb{E}[yc_i])(yc_j - \mathbb{E}[yc_j])] \mathbf{e}_i \mathbf{e}_j^\top \quad (\text{A14})$$

$$928 = \sum_{i \in \mathcal{S}_{\text{rob}}} C_{i,2}\alpha^2 \mathbf{e}_i \mathbf{e}_i^\top + \sum_{i \in \mathcal{S}_{\text{vul}}} C_{i,2}\beta^2 \mathbf{e}_i \mathbf{e}_i^\top. \quad (\text{A15})$$

939 This implies that through principal component analysis for $y_n \mathbf{x}_n$, we can obtain d orthonormal 940 bases, $\{\mathbf{e}_i\}_{i=1}^d$. By projecting a sample \mathbf{x}_n onto these bases, we obtain a transformed sample 941 $\mathbf{x}'_n := \{c_{n,1}, c_{n,2}, \dots, c_{n,d}\}$. This demonstrates that when data is sampled from a distribution 942 comprising robust and non-robust directions forming an orthonormal basis, if the coefficients are 943 mutually independent and the sample size is sufficiently large, we can preprocess the data to satisfy 944 **Assumption 3.2**. Importantly, this preprocessing relies solely on statistics derivable from training 945 samples.

946 B.2 SUFFICIENT NUMBER OF DATASETS TO PROVIDE UNIVERSAL ROBUSTNESS

948 What determines the sufficient number of datasets needed to provide universal robustness to trans- 949 formers? We conjecture that this may be determined by the number of robust bases. In this paper, 950 we trained transformers using d datasets. This stems from training with datasets where only one 951 dimension is robust (in other words, datasets with a single robust basis), the number of dimensions 952 d , and the assumption that all dimensions might contain robust features. If we assume that robust 953 features never appear in the latter d' dimensions, following the procedure in [Appendix D](#), we can 954 train robust transformers using only $d - d'$ datasets that describe the first $d - d'$ robust features. From 955 this observation, we conjecture that the sufficient number of datasets required to provide universal 956 robustness to transformers depends on the number of robust bases in the assumed data structure.

957 B.3 EFFECTS OF q_{rob} AND q_{vul}

959 We here analyze how q_{rob} and q_{vul} affect the robustness of adversarially trained transformer. As 960 defined in [Assumption 3.2](#), these parameters control the proportion of features whose total covariance 961 with other features is negative. [Theorem E.1](#) suggests that the transformer prediction for unperturbed 962 data can be expressed as

$$963 C(d_{\text{rob}}\alpha + d_{\text{vul}}\beta) \{(1 - cq_{\text{rob}})d_{\text{rob}}\alpha^2 + (1 - cq_{\text{vul}})d_{\text{vul}}\beta^2\} + C'(d_{\text{rob}}\alpha^2 + d_{\text{vul}}\beta^2), \quad (\text{A16})$$

965 where

$$966 c := \frac{(\max_{i \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}} C_i)(\max_{i \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}} C_{i,2})}{\min_{i \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}} C_i^3}. \quad (\text{A17})$$

969 Examining the term $(1 - cq_{\text{rob}})d_{\text{rob}}\alpha^2 + (1 - cq_{\text{vul}})d_{\text{vul}}\beta^2$, we observe that larger values of q_{rob} and 970 q_{vul} generally diminish the magnitude of transformer predictions. This indicates that negative correlations 971 between features degrade the robustness of adversarially trained transformers. Additionally, the coefficient c is characterized by $\max_{i \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}} C_{i,2}$, which represents a variance coefficient. This

suggests that smaller feature variances enhance the robustness of adversarially trained transformers. For example, if each feature variance $C_{i,2}$ is sufficiently small, even $q_{\text{rob}} = 1$ and $q_{\text{vul}} = 1$ may be tolerated without significantly compromising robustness.

B.4 DISADVANTAGE OF STANDARD FINETUNING: PARAMETER SELECTION PERSPECTIVE

In this study, we investigate task adaptation through in-context learning. As an alternative lightweight approach, standard finetuning—where all or part of the model parameters are updated—can also be employed. However, a key drawback of standard finetuning is that it requires parameter updates, whereas in-context learning does not. Moreover, finetuning necessitates careful selection of which parameters to update. Our analysis shows that improper parameter selection during finetuning can compromise the robustness initially established by adversarial pretraining. Consider adversarially pretrained parameters, \mathbf{P}^{adv} and \mathbf{Q}^{adv} , and $\mathcal{D}_c^{\text{tr}}$ as a downstream data distribution.

First, we examine the scenario where only \mathbf{P} is updated while keeping \mathbf{Q}^{adv} fixed, formulated as:

$$\min_{\mathbf{P} \in [0,1]^{(d+1) \times (d+1)}} \mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1} \stackrel{\text{i.i.d.}}{\sim} \mathcal{D}_c^{\text{tr}}} [-y_{N+1} [f(\mathbf{Z}_0; \mathbf{P}, \mathbf{Q}^{\text{adv}})]_{d+1, N+1}]. \quad (\text{A18})$$

In this case, as shown in the proof in [Appendix D](#), $\mathbf{P} = \mathbf{P}^{\text{std}} (= \mathbf{P}^{\text{adv}})$ is the global solution. Consequently, as demonstrated in [Theorem 3.6](#), the model’s robustness is preserved.

Conversely, consider training \mathbf{Q} while keeping \mathbf{P}^{adv} fixed, formulated as:

$$\min_{\mathbf{Q} \in [0,1]^{(d+1) \times (d+1)}} \mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1} \stackrel{\text{i.i.d.}}{\sim} \mathcal{D}_c^{\text{tr}}} [-y_{N+1} [f(\mathbf{Z}_0; \mathbf{P}^{\text{adv}}, \mathbf{Q})]_{d+1, N+1}]. \quad (\text{A19})$$

In this scenario, $\mathbf{Q} = \mathbf{Q}^{\text{std}}$ is the global solution. As established in [Theorems 3.5, 3.7](#) and [G.1](#), while this configuration enables the transformer to perform well on unperturbed queries, it fails to maintain robustness against perturbed inputs.

These findings highlight a critical insight: achieving robust task adaptation through standard finetuning requires careful parameter selection; otherwise, the pretrained model’s adversarial robustness may be compromised. This parameter sensitivity represents a disadvantage compared to in-context learning, which preserves robustness without requiring parameter updates.

B.5 NAIVE ADVERSARIAL CONTEXT MAY NOT IMPROVE ROBUSTNESS

One approach to enhancing the robustness of a normally trained transformer is to incorporate adversarial examples into the context. In this section, we show that this is not the case in our setting. Consider the following transformer input:

$$\mathbf{Z}' := \begin{bmatrix} \mathbf{x}_1 + \Delta_1 & \mathbf{x}_2 + \Delta_2 & \cdots & \mathbf{x}_N + \Delta_N & \mathbf{x}_{N+1} + \Delta_{N+1} \\ y_1 & y_2 & \cdots & y_N & 0 \end{bmatrix}. \quad (\text{A20})$$

The adversarial perturbations for the context, $\Delta_1, \dots, \Delta_N$, are defined as $\Delta_n := -\epsilon y_n \mathbf{1}_d$. In this setting, for $\epsilon \geq \frac{1+(d-1)(\lambda/2)}{d}$, the standard transformer prediction is given by:

$$\mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1} \stackrel{\text{i.i.d.}}{\sim} \mathcal{D}_c^{\text{tr}}} \left[\min_{\|\Delta_{N+1}\|_\infty \leq \epsilon} y_{N+1} [f(\mathbf{Z}'; \mathbf{P}^{\text{std}}, \mathbf{Q}^{\text{std}})]_{d+1, N+1} \right] \leq 0. \quad (\text{A21})$$

This result suggests that, in our setting, naive adversarial demonstrations do not improve the performance of the standard transformer. Intuitively, because adversarial training generates new adversarial examples at each step of gradient descent, fixed adversarial demonstrations may fail to counter newly generated adversarial perturbations to the query.

C ADDITIONAL EXPERIMENTAL RESULTS

All experiments were conducted on Ubuntu 20.04.6 LTS, Intel Xeon Gold 6226R CPUs, and NVIDIA RTX 6000 Ada GPUs.

1026 C.1 SUPPORT FOR ASSUMPTION 3.2.
1027

1028 The statistics of preprocessed MNIST, Fashion-MNIST, and CIFAR-10 are provided in [Fig. A2](#).
 1029 Preprocessing was conducted as follows: (i) selection of two different classes from the ten available
 1030 classes and assignment of binary labels to every sample from the training dataset, creating
 1031 $\{(x_n, y_n)\}_{n=1}^N$; (ii) centering the data via $\mathbf{x}' \leftarrow \mathbf{x} - \bar{\mathbf{x}}$ with $\bar{\mathbf{x}} := (1/N) \sum_{n=1}^N \mathbf{x}_n$; and (iii) aligning
 1032 features with the label using $\mathbf{x}'' \leftarrow \text{sgn}(\sum_{n=1}^N y_n \mathbf{x}_n) \odot \mathbf{x}'$. These preprocessed datasets exhibit that
 1033 each dimension has a positive correlation with the label and that few dimensions have negative total
 1034 covariance. The main distinction from [Assumption 3.2](#) is that their features are not clearly separated
 1035 as robust or non-robust. Instead, they gradually transition from robust to non-robust characteristics.
 1036

1037 C.2 VERIFICATION OF THEOREM 3.4.
1038

1039 We trained a single-layer transformer [\(2\)](#) with the in-context loss [\(7\)](#). The training distribution was
 1040 configured with $d = 20$ and $\lambda = 0.1$ in [Fig. 1](#) and with $d = 100$ and $\lambda = 0.1$ in [Fig. A3](#). For
 1041 standard, adversarial, and strong adversarial regimes, we used $\epsilon = 0$, $\frac{1+(d-1)(\lambda/2)}{d} = 0.098$, and
 1042 $\frac{\lambda}{2} + \frac{3}{2} \frac{2-\lambda}{(d-1)\lambda^2+3} = 0.95$ in [Fig. 1](#) and $\epsilon = 0$, $\frac{1+(d-1)(\lambda/2)}{d} = 0.06$, and $\frac{\lambda}{2} + \frac{3}{2} \frac{2-\lambda}{(d-1)\lambda^2+3} = 0.77$ in
 1043 [Fig. A3](#). Optimization was conducted using stochastic gradient descent with momentum 0.9. Learning
 1044 rates were set to 0.1 for all regimes in [Fig. 1](#), and to 1.0 for standard and strong adversarial regimes and
 1045 0.2 for the adversarial regime in [Fig. A3](#). Training ran for 100 epochs with a learning rate scheduler
 1046 that multiplied the rate by 0.1 when the loss did not improve within 10 epochs. In each iteration
 1047 of stochastic gradient descent, we sampled 1,000 datasets $\{(x_n^{(c)}, y_n^{(c)})\}_{n=1}^{N+1}$ with $N = 1,000$. The
 1048 distribution index c was randomly sampled from $U([d])$, meaning that in each iteration, each of the
 1049 1,000 datasets may have different c values. After each parameter update, we projected the parameters
 1050 to $[0, 1]^d$. Adversarial perturbation was calculated as $\Delta := -\epsilon y_n \text{sgn}(P_{d+1, \cdot} Z_0 M Z_0^\top Q_{\cdot, d})$,
 1051 which represents the optimal attack. The heatmaps of the learned parameters in [Figs. 1](#) and [A3](#)
 1052 completely align with the theoretical predictions of [Theorem 3.4](#).
 1053

1054 C.3 VERIFICATION OF THEOREMS 3.5 TO 3.7 AND G.1
1055

1056 We evaluated normally and adversarially pretrained single-layer transformers on \mathcal{D}^{tr} , \mathcal{D}^{te} , the
 1057 preprocessed MNIST, Fashion-MNIST, and CIFAR-10 datasets. For network parameters, we used
 1058 the theoretically predicted P^{std} and Q^{std} as standard model parameters and P^{adv} and Q^{adv} as
 1059 adversarially trained model parameters. This approach allowed us to circumvent the computationally
 1060 expensive adversarial pretraining for every distinct d setting. As described previously, our empirical
 1061 results completely align with the theoretically predicted parameter configurations.
 1062

1062 **Configuration in [Figs. A4](#) and [A5](#).** In [Fig. A4](#), the basic settings were $d = 100$, $\lambda = 0.1$,
 1063 $N = 1,000$, and $\epsilon = 0.15$. In [Fig. A5](#), they were $d_{\text{rob}} = 10$, $d_{\text{vul}} = 90$, $d_{\text{irr}} = 0$, $\alpha = 1.0$, $\beta = 0.1$,
 1064 $\gamma = 0.1$, and $\epsilon = 0.2$. The basic perturbation budget was set to 0.1. We considered 1,000 batches
 1065 where each batch contained 1,000 in-context demonstrations (i.e., $N = 1000$), and 1,000 queries.
 1066 The test distribution \mathcal{D}^{te} was constructed based on normal distribution. During sampling, y_{xi} was
 1067 sampled from $\mathcal{N}(\alpha, \alpha^2)$ for $i \in \mathcal{S}_{\text{rob}}$, $\mathcal{N}(\beta, \beta^2)$ for $i \in \mathcal{S}_{\text{vul}}$, and $\mathcal{N}(0, \gamma^2)$ for $i \in \mathcal{S}_{\text{irr}}$. Each
 1068 dimension is independent, given y .
 1069

1070 **Configuration in [Fig. A6](#).** The preprocessing procedure is described in [Appendix C.1](#). As batches,
 1071 we considered 45 binary class pairs from ten classes. The basic perturbation budget was set to 0.1. In
 1072 the first row of [Fig. A6](#), we used all training samples in the training dataset. As queries, we used all
 1073 test samples in the test dataset.
 1074

1075 **Analysis.** In [Figs. A4](#) to [A6](#), standard transformers consistently demonstrate vulnerability to
 1076 adversarial attacks, whereas adversarially trained transformers maintain a certain level of robustness,
 1077 validating [Theorems 3.5](#) and [3.6](#). However, adversarially pretrained transformers exhibit lower clean
 1078 accuracy, supporting [Theorem 3.7](#).
 1079

In [Figs. A4](#) and [A5](#), we observe that a larger number of vulnerable dimensions increases model
 vulnerability. Conversely, [Fig. A5](#) shows that a larger number of robust dimensions enhances model

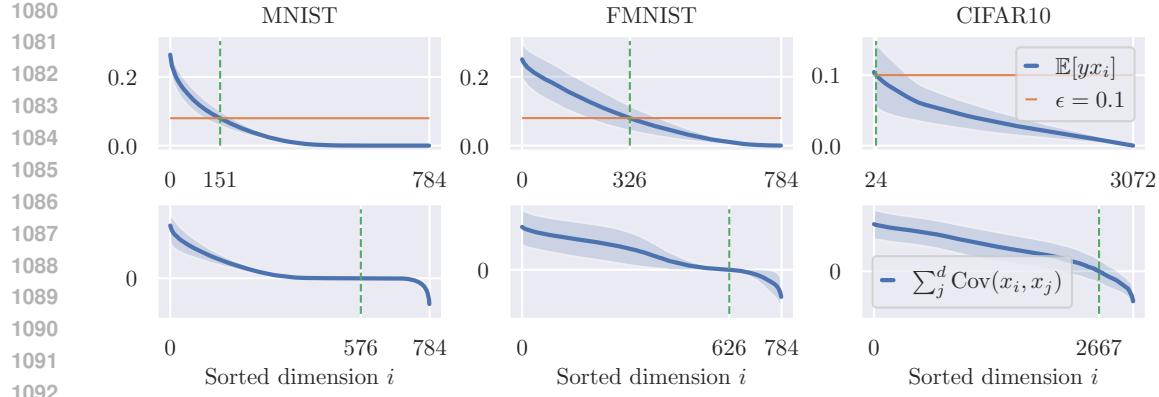


Figure A2: Statistical properties of preprocessed MNIST, Fashion-MNIST, and CIFAR-10 datasets.

First row: Blue lines represent the mean of $(1/N) \sum_{n=1}^N y_n \mathbf{x}_n$ across 45 binary class pairs and shaded regions represent the sample standard deviation. Orange lines represent typical perturbation magnitude. Green dashed lines represent the (pseudo) threshold between robust and non-robust dimensions. **Second row:** Blue lines represent the total covariance of each dimension with other dimensions and shaded regions represent sample standard deviation across the 45 binary class pairs. Green dashed lines represent the boundary between positive and negative total covariance.

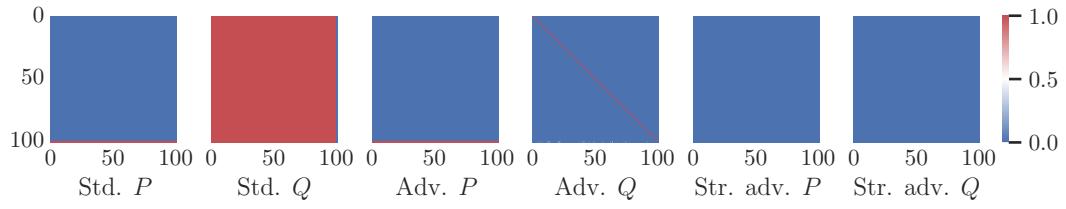


Figure A3: Parameter heatmaps induced by adversarial training (7) with $d = 100$ and $\lambda = 0.1$. For the standard, adversarial, and strong adversarial regimes, we used $\epsilon = 0$, $\frac{1+(d-1)(\lambda/2)}{d} = 0.06$, and $\frac{\lambda}{2} + \frac{3}{2} \frac{2-\lambda}{(d-1)\lambda^2+3} = 0.77$, respectively. We optimized (7) by stochastic gradient descent.

robustness. Robust models are less susceptible to increasing vulnerable dimensions and benefit more from increasing robust dimensions.

Additionally, as predicted in [Theorems 3.5](#) and [3.6](#), standard training exhibits vulnerability to increasing redundant dimensions, which is more detrimental than the harmful effect from increasing vulnerable dimensions, since redundant dimensions do not benefit predictions and are only harmful for robustness. In contrast, adversarially trained transformers exhibit significant resistance to increases in these dimensions.

The second row of [Fig. A6](#) indicates that standard transformers still achieve high classification accuracy in small demonstration regimes, whereas adversarially trained transformers show degraded performance. These results align with our theoretical predictions, [Theorem G.1](#).

D PROOF OF LEMMA 3.3 AND THEOREM 3.4 (PRETRAINING)

Lemma 3.3 (Transformation of original optimization problem). The minimization problem (7) can be transformed into the maximization problem $\max_{\mathbf{b} \in \{0,1\}^{d+1}} \sum_{i=1}^{d(d+1)} \max(0, \sum_{j=1}^{d+1} b_j h_{i,j})$, where $h_{i,j} \in \mathbb{R}$ is an (i, j) -dependent constant, and there exists a mapping from \mathbf{b} to \mathbf{P} and \mathbf{Q} .

Proof. See “Overview” below. \square

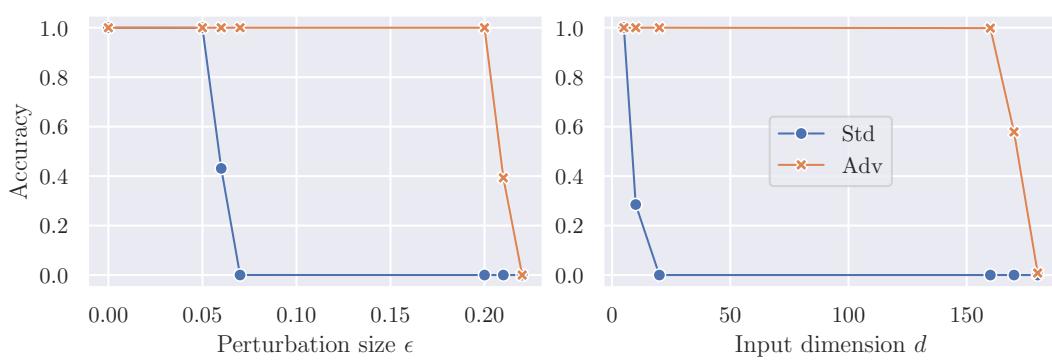


Figure A4: Accuracy (%) of normally and adversarially pretrained single-layer transformers. Lines represent mean accuracy across batches and shaded regions represent unbiased standard deviation (notably small in magnitude). We used 1,000 batches, each containing 1,000 in-context demonstrations ($N = 1000$) and 1,000 query examples. Base configuration parameters were $d = 100$, $\lambda = 0.1$, and $\epsilon = 0.15$.

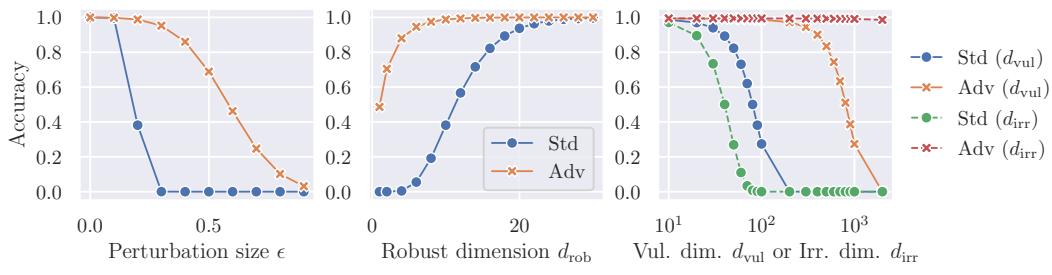


Figure A5: Accuracy (%) of normally and adversarially pretrained single-layer transformers. Lines represent mean accuracy across batches and shaded regions represent unbiased standard deviation. We used 1,000 batches, each containing 1,000 in-context demonstrations ($N = 1000$) and 1,000 query examples. Base configuration parameters were $d_{\text{rob}} = 10$, $d_{\text{vul}} = 90$, $d_{\text{irr}} = 0$, $\alpha = 1.0$, $\beta = 0.1$, $\gamma = 0.1$, and $\epsilon = 0.2$.

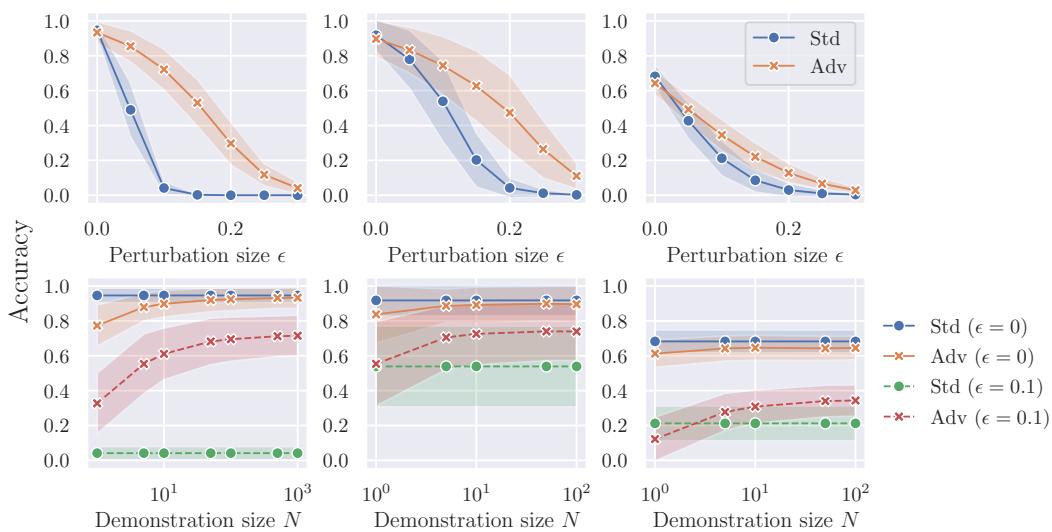


Figure A6: Accuracy (%) of normally and adversarially pretrained single-layer transformers. Lines represent mean accuracy across 45 binary classification tasks (derived from all possible pairs of the ten classes) and shaded regions represent the unbiased standard deviation. The perturbation size was basically $\epsilon = 0.1$.

1188
1189**Theorem 3.4** (Parameters induced by adversarial pretraining). The global minimizer of (7) is1190
1191

$$(1. \text{ Standard; } \epsilon = 0) \quad \mathbf{P} = \mathbf{P}^{\text{std}} := \begin{bmatrix} \mathbf{0}_{d,d+1} \\ \mathbf{1}_{d+1}^\top \end{bmatrix} \quad \text{and} \quad \mathbf{Q} = \mathbf{Q}^{\text{std}} := [\mathbf{1}_{d+1,d} \quad \mathbf{0}_{d+1}].$$

1192
1193
1194

$$(2. \text{ Adversarial; } \epsilon = \frac{1+(d-1)(\lambda/2)}{d}) \quad \mathbf{P} = \mathbf{P}^{\text{adv}} := \begin{bmatrix} \mathbf{0}_{d,d+1} \\ \mathbf{1}_{d+1}^\top \end{bmatrix} \quad \text{and} \quad \mathbf{Q} = \mathbf{Q}^{\text{adv}} := \begin{bmatrix} \mathbf{I}_d & \mathbf{0}_d \\ \mathbf{0}_d^\top & 0 \end{bmatrix}.$$

1195
1196

$$(3. \text{ Strongly adversarial; } \epsilon \geq \frac{\lambda}{2} + \frac{3}{2} \frac{2-\lambda}{(d-1)\lambda^2+3}) \quad \mathbf{P} = \mathbf{0}_{d+1,d+1} \quad \text{and} \quad \mathbf{Q} = \mathbf{0}_{d+1,d+1}.$$

1197

Proof. This is the special case of the following theorem. \square

1198

Theorem D.1 (General case of Theorem 3.4). The global minimizer of (7) is as follows:1200
1201

- If

1203
1204

$$0 \leq \epsilon \leq \frac{\lambda(\lambda(d-2)+4)}{2(\lambda(d-1)+2)}, \quad (\text{A22})$$

1205
1206
1207

$$\text{then } \mathbf{P} = \begin{bmatrix} \mathbf{0}_{d,d+1} \\ \mathbf{1}_{d+1}^\top \end{bmatrix} \text{ and } \mathbf{Q} = [\mathbf{1}_{d+1,d} \quad \mathbf{0}_{d+1}].$$

1208

- If

1209
1210

$$\epsilon = \frac{1+(d-1)(\lambda/2)}{d}, \quad (\text{A23})$$

1211
1212
1213

$$\text{then } \mathbf{P} = \begin{bmatrix} \mathbf{0}_{d,d+1} \\ \mathbf{1}_{d+1}^\top \end{bmatrix} \text{ and } \mathbf{Q} = \begin{bmatrix} \mathbf{I}_d & \mathbf{0}_d \\ \mathbf{0}_d^\top & 0 \end{bmatrix}.$$

1214

- If

1215
1216

$$\epsilon \geq \frac{\lambda}{2} + \frac{3}{2} \frac{2-\lambda}{(d-1)\lambda^2+3}, \quad (\text{A24})$$

1217
1218

$$\text{then } \mathbf{P} = \mathbf{0}_{d+1,d+1} \text{ and } \mathbf{Q} = \mathbf{0}_{d+1,d+1}.$$

1219
1220*Proof.*1221
1222**Overview.** The loss function $\mathcal{L}(\mathbf{P}, \mathbf{Q})$ is determined only by the last row of \mathbf{P} and the first d columns of \mathbf{Q} . Let1223
1224
1225

$$\mathbf{P} := \begin{bmatrix} \mathbf{0}_{d,d+1} \\ \mathbf{b}^\top \end{bmatrix}, \quad \mathbf{Q} := [\mathbf{A} \quad \mathbf{0}_{d+1}], \quad (\text{A25})$$

1226
1227where $\mathbf{b} \in \mathbb{R}^{d+1}$ and $\mathbf{A} := [\mathbf{a}_1 \cdots \mathbf{a}_d] \in \mathbb{R}^{(d+1) \times d}$. With \mathbf{b} , \mathbf{A} , and $\mathbf{G} := \mathbf{Z}_\Delta \mathbf{M} \mathbf{Z}_\Delta^\top / N$, the loss function $\mathcal{L}(\mathbf{P}, \mathbf{Q})$ can be represented as:1228
1229

$$\mathcal{L}(\mathbf{P}, \mathbf{Q}) := \mathbb{E}_{c, \{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1}} \left[\max_{\|\Delta\|_\infty \leq \epsilon} -y_{N+1} [f(\mathbf{Z}_\Delta; \mathbf{P}, \mathbf{Q})]_{d+1, N+1} \right] \quad (\text{A26})$$

1230
1231
1232

$$= \mathbb{E}_{c, \{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1}} \left[\max_{\|\Delta\|_\infty \leq \epsilon} -y_{N+1} \left[\mathbf{Z}_\Delta + \frac{1}{N} \mathbf{P} \mathbf{Z}_\Delta \mathbf{M} \mathbf{Z}_\Delta^\top \mathbf{Q} \mathbf{Z}_\Delta \right]_{d+1, N+1} \right] \quad (\text{A27})$$

1233
1234

$$= \mathbb{E}_{c, \{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1}} \left[\max_{\|\Delta\|_\infty \leq \epsilon} -y_{N+1} \mathbf{b}^\top \mathbf{G} \mathbf{A} (\mathbf{x}_{N+1} + \Delta) \right]. \quad (\text{A28})$$

1235
1236
1237Using \mathbf{b} and \mathbf{A} , we redefine the loss function as $\mathcal{L}(\mathbf{b}, \mathbf{A}) := \mathcal{L}(\mathbf{P}, \mathbf{Q})$. Since \mathbf{G} does not include Δ and $\max_{\|\Delta\|_\infty \leq \epsilon} \mathbf{w}^\top \Delta = \epsilon \|\mathbf{w}\|_1$ for $\mathbf{w} \in \mathbb{R}^d$, the inner maximization can be solved as:1238
1239

$$\mathcal{L}(\mathbf{b}, \mathbf{A}) = \mathbb{E}_{c, \{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1}} [-y_{N+1} \mathbf{b}^\top \mathbf{G} \mathbf{A} \mathbf{x}_{N+1} + \epsilon \|\mathbf{b}^\top \mathbf{G} \mathbf{A}\|_1]. \quad (\text{A29})$$

1240
1241When $0 \leq \mathbf{b} \leq 1$ and $0 \leq \mathbf{A} \leq 1$, then $\|\mathbf{b}^\top \mathbf{G} \mathbf{A}\|_1 = \mathbf{b}^\top \mathbf{G} \mathbf{A} \mathbf{1}$ since all the elements of \mathbf{G} are nonnegative. Thus,

$$\min_{0 \leq \mathbf{b} \leq 1, 0 \leq \mathbf{A} \leq 1} \mathcal{L}(\mathbf{b}, \mathbf{A})$$

$$= \min_{0 \leq \mathbf{b} \leq 1, 0 \leq \mathbf{A} \leq 1} \mathbb{E}_{c, \{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1}} [-y_{N+1} \mathbf{b}^\top \mathbf{G} \mathbf{A} \mathbf{x}_{N+1} + \epsilon \mathbf{b}^\top \mathbf{G} \mathbf{A} \mathbf{1}]. \quad (\text{A30})$$

Let the i -th row of \mathbf{G} be \mathbf{g}_i^\top . Rearranging the argument of the expectation as:

$$-y_{N+1} \mathbf{b}^\top \mathbf{G} \mathbf{A} \mathbf{x}_{N+1} + \epsilon \mathbf{b}^\top \mathbf{G} \mathbf{A} \mathbf{1} = - \sum_{j=1}^{d+1} \sum_{k=1}^d A_{j,k} \left(\sum_{i=1}^{d+1} b_i g_{i,j} (y_{N+1} x_{N+1,k} - \epsilon) \right). \quad (\text{A31})$$

Thus, the objective function can be represented as:

$$\max_{0 \leq \mathbf{b} \leq 1, 0 \leq \mathbf{A} \leq 1} \sum_{j=1}^{d+1} \sum_{k=1}^d A_{j,k} \left(\sum_{i=1}^{d+1} b_i \mathbb{E}_{c, \{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1}} [g_{i,j} (y_{N+1} x_{N+1,k} - \epsilon)] \right). \quad (\text{A32})$$

Since the objective function is linear with respect to \mathbf{b} and \mathbf{A} , respectively, the optimal solution exists on the boundary:

$$\max_{\mathbf{b} \in \{0,1\}^{d+1}, \mathbf{A} \in \{0,1\}^{(d+1) \times d}} \sum_{j=1}^{d+1} \sum_{k=1}^d A_{j,k} \left(\sum_{i=1}^{d+1} b_i \mathbb{E}_{c, \{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1}} [g_{i,j} (y_{N+1} x_{N+1,k} - \epsilon)] \right). \quad (\text{A33})$$

This is maximized by $A_{j,k} = 1$ if $\sum_{i=1}^{d+1} b_i \mathbb{E}_{c, \{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1}} [g_{i,j} (y_{N+1} x_{N+1,k} - \epsilon)] \geq 0$ and 0 otherwise. Now,

$$\max_{\mathbf{b} \in \{0,1\}^{d+1}} \sum_{j=1}^{d+1} \sum_{k=1}^d \phi \left(\sum_{i=1}^{d+1} b_i \mathbb{E}_{c, \{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1}} [g_{i,j} (y_{N+1} x_{N+1,k} - \epsilon)] \right), \quad (\text{A34})$$

where $\phi(x) := \max(0, x)$. Calculating the expectation and optimizing \mathbf{b} , we obtain the solution.

Calculation of the expectation. First, we consider the expectation given c . Since $y_n x_{n,i} = 1$ if $i = c$ and $y_n x_{n,i} \sim U(0, \lambda)$ otherwise, the expectation of $y_n \mathbf{x}_n$ can be calculated as:

$$\mathbb{E}[y_n x_{n,i} \mid c] = \begin{cases} 1 & (i = c) \\ \frac{\lambda}{2} & (i \neq c) \end{cases}, \quad \mathbb{E}[y_n \mathbf{x}_n^\top \mid c] = \left[\frac{\lambda}{2} \quad \cdots \quad \frac{\lambda}{2} \quad \underbrace{1}_{c\text{-th}} \quad \frac{\lambda}{2} \quad \cdots \quad \frac{\lambda}{2} \right]. \quad (\text{A35})$$

The expectation of \mathbf{G} can be calculated as:

$$\mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^N} [\mathbf{G} \mid c] = \frac{1}{N} \mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^N} [\mathbf{Z}_\Delta \mathbf{M} \mathbf{Z}_\Delta^\top \mid c] \quad (\text{A36})$$

$$= \frac{1}{N} \left[\frac{\sum_{n=1}^N \mathbb{E}_{\mathbf{x}_n} [\mathbf{x}_n \mathbf{x}_n^\top \mid c]}{\sum_{n=1}^N \mathbb{E}_{\mathbf{x}_n, y_n} [y_n \mathbf{x}_n^\top \mid c]} \quad \frac{\sum_{n=1}^N \mathbb{E}_{\mathbf{x}_n, y_n} [y_n \mathbf{x}_n \mid c]}{N} \right] \quad (\text{A37})$$

$$= \begin{bmatrix} \mathbb{E}_{\mathbf{x}_n} [\mathbf{x}_n \mathbf{x}_n^\top \mid c] & \mathbb{E}_{\mathbf{x}_n, y_n} [y_n \mathbf{x}_n \mid c] \\ \mathbb{E}_{\mathbf{x}_n, y_n} [y_n \mathbf{x}_n^\top \mid c] & 1 \end{bmatrix}. \quad (\text{A38})$$

For $y_n = 1$ and $i, j \neq c$, $\mathbb{E}[x_{n,i}^2 \mid c] = \int_0^\lambda x^2 / \lambda \, dx = \lambda^2 / 3$ and $\mathbb{E}[x_{n,i} x_{n,j} \mid c] = \mathbb{E}[x_{n,i} \mid c] \mathbb{E}[x_{n,j} \mid c] = \lambda^2 / 4$. Thus,

$$\mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^N} [g_{i,j} \mid c] = \begin{cases} 1 & (i = c) \wedge (j = i, d+1) \\ \frac{\lambda}{2} & (i = c) \wedge (j \neq i, d+1) \\ \frac{\lambda^2}{3} & (i \in [d], i \neq c) \wedge (j = i) \\ \frac{\lambda}{2} & (i \in [d], i \neq c) \wedge (j = c, d+1) \\ \frac{\lambda^2}{4} & (i \in [d], i \neq c) \wedge (j \neq i, c, d+1) \\ 1 & (i = d+1) \wedge (j = c, d+1) \\ \frac{\lambda}{2} & (i = d+1) \wedge (j \neq c, d+1) \end{cases}. \quad (\text{A39})$$

Note that

$$\mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^N} [\mathbf{G} \mid c]$$

$$\begin{aligned}
& \text{1296} & & \lambda^2/3 & \lambda^2/4 & \lambda^2/4 & \cdots & \lambda^2/4 & \overbrace{\lambda/2}^{\text{c-th}} & \lambda^2/4 & \cdots & \lambda^2/4 & \lambda/2 \\
& \text{1297} & & \lambda^2/4 & \lambda^2/3 & \lambda^2/4 & \cdots & \lambda^2/4 & \lambda/2 & \lambda^2/4 & \cdots & \lambda^2/4 & \lambda/2 \\
& \text{1298} & & \vdots & & & & & & & & & \\
& \text{1299} & & \lambda^2/4 & \lambda^2/4 & \lambda^2/4 & \cdots & \lambda^2/3 & \lambda/2 & \lambda^2/4 & \cdots & \lambda^2/4 & \lambda/2 \\
& \text{1300} & & \lambda/2 & \lambda/2 & \lambda/2 & \cdots & \lambda/2 & 1 & \lambda/2 & \cdots & \lambda/2 & 1 \\
& \text{1301} & & \lambda^2/4 & \lambda^2/4 & \lambda^2/4 & \cdots & \lambda^2/4 & \lambda/2 & \lambda^2/3 & \cdots & \lambda^2/4 & \lambda/2 \\
& \text{1302} & & \vdots & & & & & & & & & \\
& \text{1303} & & \lambda^2/4 & \lambda^2/4 & \lambda^2/4 & \cdots & \lambda^2/4 & \lambda/2 & \lambda^2/4 & \cdots & \lambda^2/3 & \lambda/2 \\
& \text{1304} & & \lambda/2 & \lambda/2 & \lambda/2 & \cdots & \lambda/2 & 1 & \lambda/2 & \cdots & \lambda/2 & 1 \\
& \text{1305} & & \vdots & & & & & & & & & \\
& & = & \left[\begin{array}{cccccccccc} \lambda^2/3 & \lambda^2/4 & \lambda^2/4 & \cdots & \lambda^2/4 & \lambda/2 & \lambda^2/4 & \cdots & \lambda^2/4 & \lambda/2 \\ \lambda^2/4 & \lambda^2/3 & \lambda^2/4 & \cdots & \lambda^2/4 & \lambda/2 & \lambda^2/4 & \cdots & \lambda^2/4 & \lambda/2 \\ \vdots & & & & & & & & & \\ \lambda^2/4 & \lambda^2/4 & \lambda^2/4 & \cdots & \lambda^2/3 & \lambda/2 & \lambda^2/4 & \cdots & \lambda^2/4 & \lambda/2 \\ \lambda/2 & \lambda/2 & \lambda/2 & \cdots & \lambda/2 & 1 & \lambda/2 & \cdots & \lambda/2 & 1 \\ \lambda^2/4 & \lambda^2/4 & \lambda^2/4 & \cdots & \lambda^2/4 & \lambda/2 & \lambda^2/3 & \cdots & \lambda^2/4 & \lambda/2 \\ \lambda^2/4 & \lambda^2/4 & \lambda^2/4 & \cdots & \lambda^2/4 & \lambda/2 & \lambda^2/4 & \cdots & \lambda^2/3 & \lambda/2 \\ \lambda/2 & \lambda/2 & \lambda/2 & \cdots & \lambda/2 & 1 & \lambda/2 & \cdots & \lambda/2 & 1 \end{array} \right] \} \text{c-th.} \quad (\text{A40})
\end{aligned}$$

Let

$$h_i(j; k; c) := \mathbb{E}_{\{(x_m, y_m)\}_{m=1}^{N+1}}[g_{i,j}(y_{N+1}x_{N+1,k} - \epsilon) \mid c]. \quad (\text{A41})$$

Let $\epsilon_+ := 1 - \epsilon$ and $\epsilon_- := \lambda/2 - \epsilon$. By Eqs. (A35) and (A39),

$$h_i(j; k; c) = \begin{cases} \epsilon_+ & (i \in [d]) \wedge (j = i, d + 1) \wedge (k = i) \wedge (c = i) \\ \epsilon_- & (i \in [d]) \wedge (j = i, d + 1) \wedge (k \neq i) \wedge (c = i) \\ \frac{\lambda}{2}\epsilon_+ & (i \in [d]) \wedge (j \neq i, d + 1) \wedge (k = i) \wedge (c = i) \\ \frac{\lambda}{2}\epsilon_- & (i \in [d]) \wedge (j \neq i, d + 1) \wedge (k \neq i) \wedge (c = i) \\ \frac{\lambda^2}{3}\epsilon_- & (i \in [d]) \wedge (j = i) \wedge (k = i) \wedge (c \neq i) \\ \frac{\lambda}{2}\epsilon_- & (i \in [d]) \wedge (j = c, d + 1) \wedge (k = i) \wedge (c \neq i) \\ \frac{\lambda^2}{4}\epsilon_- & (i \in [d]) \wedge (j \neq i, c, d + 1) \wedge (k = i) \wedge (c \neq i) \\ \frac{\lambda^2}{3}\epsilon_+ & (i \in [d]) \wedge (j = i) \wedge (k = c) \wedge (c \neq i) \\ \frac{\lambda}{2}\epsilon_+ & (i \in [d]) \wedge (j = c, d + 1) \wedge (k = c) \wedge (c \neq i) \\ \frac{\lambda^2}{4}\epsilon_+ & (i \in [d]) \wedge (j \neq i, c, d + 1) \wedge (k = c) \wedge (c \neq i) \\ \frac{\lambda^2}{3}\epsilon_- & (i \in [d]) \wedge (j = i) \wedge (k \neq i, c) \wedge (c \neq i) \\ \frac{\lambda}{2}\epsilon_- & (i \in [d]) \wedge (j = c, d + 1) \wedge (k \neq i, c) \wedge (c \neq i) \\ \frac{\lambda^2}{4}\epsilon_- & (i \in [d]) \wedge (j \neq i, c, d + 1) \wedge (k \neq i, c) \wedge (c \neq i) \\ \epsilon_+ & (i = d + 1) \wedge (j = c, d + 1) \wedge (k = c) \\ \epsilon_- & (i = d + 1) \wedge (j = c, d + 1) \wedge (k \neq c) \\ \frac{\lambda}{2}\epsilon_+ & (i = d + 1) \wedge (j \neq c, d + 1) \wedge (k = c) \\ \frac{\lambda}{2}\epsilon_- & (i = d + 1) \wedge (j \neq c, d + 1) \wedge (k \neq c) \end{cases} \quad (\text{A42})$$

Then, we compute the expectation along c . Note that

$$\mathbb{E}_{c, \{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1}} [g_{i,j}(y_{N+1}x_{N+1,k} - \epsilon)] = \frac{1}{d} \sum_{i=1}^d h_i(j; k; c). \quad (\text{A43})$$

Let $H_{i,j,k} := \sum_{c=1}^d h_i(j; k; c)$. The summation of h_i along c can be calculated as:

For $(i \in [d]) \wedge (i \equiv i) \wedge (k \equiv i)$

$$H_{i,j,k} = h_i(j=i; k=i; c=i) + \sum_{\substack{c \\ \neq i}}^d h_i(j=i; k=i; c \neq i) = \epsilon_+ + \frac{\lambda^2}{3}(d-1)\epsilon_- \quad (\text{A44})$$

$$= x_1 \quad (A45)$$

For $(i \in [d]) \wedge (j = i) \wedge (k \neq i)$,

$$H_{i,j,k} = h_i(j = i; k \neq i; c = i) + h_i(j = i; k = c; c \neq i) + \sum_{c \neq i, k}^d h(j = i; k \neq i, c; c \neq i) \quad (\text{A46})$$

$$= \epsilon_- + \frac{\lambda^2}{3} \epsilon_+ + \frac{\lambda^2}{3} (d-2) \epsilon_- \quad (\text{A47})$$

$$=: r_2. \quad (\text{A48})$$

1350 For $(i \in [d]) \wedge (j = d + 1) \wedge (k = i)$,

1351

$$1352 H_{i,j,k} = h_i(j = d + 1; k = i; c = i) + \sum_{c \neq i}^d h_i(j = d + 1; k = i; c \neq i) \quad (A49)$$

1353

1354

$$1355 = \epsilon_+ + \frac{\lambda}{2}(d - 1)\epsilon_- \quad (A50)$$

1356

$$1357 =: r_3. \quad (A51)$$

1358 For $(i \in [d]) \wedge (j = d + 1) \wedge (k \neq i)$,

1359

$$1360 H_{i,j,k} = h_i(j = d + 1; k \neq i; c = i) + h_i(j = d + 1; k = c; c \neq i) \\ 1361 + \sum_{c \neq i, k}^d h_i(j = d + 1; k \neq i, c; c \neq i) \quad (A52)$$

1362

1363

$$1364 = \epsilon_- + \frac{\lambda}{2}\epsilon_+ + \frac{\lambda}{2}(d - 2)\epsilon_- \quad (A53)$$

1365

1366

$$1367 =: r_4. \quad (A54)$$

1368 For $(i \in [d]) \wedge (j \neq i, d + 1) \wedge (k = i)$,

1369

$$1370 H_{i,j,k} = h_i(j \neq i, d + 1; k = i; c = i) + h_i(j = c; k = i; c \neq i) \\ 1371 + \sum_{c \neq i, j}^d h_i(j \neq i, c, d + 1; k = i; c \neq i) \quad (A55)$$

1372

1373

$$1374 = \frac{\lambda}{2}\epsilon_+ + \frac{\lambda}{2}\epsilon_- + \frac{\lambda^2}{4}(d - 2)\epsilon_- \quad (A56)$$

1375

1376

$$1377 =: r_5. \quad (A57)$$

1378 For $(i \in [d]) \wedge (j \neq i, d + 1) \wedge (k \neq i) \wedge (j = k)$,

1379

$$1380 H_{i,j,k} = h_i(j \neq i, d + 1; k \neq i; c = i) + h_i(j = c; k = c; c \neq i) \\ 1381 + \sum_{c \neq i, j, k}^d h_i(j \neq i, c, d + 1; k \neq i, c; c \neq i) \quad (A58)$$

1382

1383

$$1384 = \frac{\lambda}{2}\epsilon_- + \frac{\lambda}{2}\epsilon_+ + \frac{\lambda^2}{4}(d - 2)\epsilon_- \quad (A59)$$

1385

1386

$$1387 =: r_5. \quad (A60)$$

1388 For $(i \in [d]) \wedge (j \neq i, d + 1) \wedge (k \neq i) \wedge (j \neq k)$,

1389

$$1390 H_{i,j,k} = h_i(j \neq i, d + 1; k \neq i; c = i) + h_i(j = c; k \neq i, c; c \neq i) \\ 1391 + h_i(j \neq i, c, d + 1; k = c; c \neq i) \\ 1392 + \sum_{c \neq i, j, k}^d h_i(j \neq i, c, d + 1; k \neq i, c; c \neq i) \quad (A61)$$

1393

1394

$$1395 = \frac{\lambda}{2}\epsilon_- + \frac{\lambda}{2}\epsilon_- + \frac{\lambda^2}{4}\epsilon_+ + \frac{\lambda^2}{4}(d - 3)\epsilon_- \quad (A62)$$

1396

1397

$$1398 =: r_6. \quad (A63)$$

1399 For $(i = d + 1) \wedge (j = d + 1)$,

1400

$$1401 H_{i,j,k} = h_i(j = d + 1; k = c; c = k) + \sum_{c \neq k}^d h_i(j = d + 1; k \neq c; c \neq k) \quad (A64)$$

1402

1403

$$1404 = \epsilon_+ + (d - 1)\epsilon_- \quad (A65)$$

1405

$$1406 =: r_7. \quad (A66)$$

1404 For $(i = d + 1) \wedge (j \neq d + 1) \wedge (j = k)$,

1405

$$H_{i,j,k} = h_i(j = c; k = c; c = k) + \sum_{c \neq k}^d h_i(j \neq d + 1; k \neq c; c \neq k) \quad (\text{A67})$$

1406

$$= \epsilon_+ + \frac{\lambda}{2}(d - 1)\epsilon_- \quad (\text{A68})$$

1407

$$=: r_3. \quad (\text{A69})$$

1412 For $(i = d + 1) \wedge (j \neq d + 1) \wedge (j \neq k)$,

1413

$$H_{i,j,k} = h_i(j = c; k \neq c; c \neq k) + h_i(j \neq c; k = c; c = k) \quad (\text{A70})$$

1414

$$+ \sum_{c \neq j, k}^d h_i(j \neq c, d + 1; k \neq c; c \neq k) \quad (\text{A71})$$

1415

$$= \epsilon_- + \frac{\lambda}{2}\epsilon_+ + \frac{\lambda}{2}(d - 2)\epsilon_- \quad (\text{A72})$$

1416

$$=: r_4.$$

1421 **Optimization of A and b .** From Eq. (A34), we redefine the objective function as:

1422

$$\begin{aligned} & \max_{\mathbf{b} \in \{0,1\}^{d+1}} \sum_{j=1}^{d+1} \sum_{k=1}^d \phi \left(\sum_{i=1}^{d+1} b_i \mathbb{E}_{c, \{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1}} [g_{i,j}(y_{N+1} x_{N+1,k} - \epsilon)] \right) \\ &= \max_{\mathbf{b} \in \{0,1\}^{d+1}} \sum_{j=1}^{d+1} \sum_{k=1}^d \phi \left(\sum_{i=1}^{d+1} b_i H_{i,j,k} \right). \end{aligned} \quad (\text{A73})$$

1429 Recall that we set $A_{j,k} = 1$ if $\sum_{i=1}^{d+1} b_i H_{i,j,k} \geq 0$ and 0 otherwise. Let $[d'] := \{i \in [d] \mid b_i = 1\}$
1430 and $d' := |[d']|$. Now,

1431

$$\begin{aligned} \sum_{j=1}^{d+1} \sum_{k=1}^d \phi \left(\sum_{i=1}^{d+1} b_i H_{i,j,k} \right) &= \sum_{k=1}^d \phi \left(b_{d+1} H_{d+1,d+1,k} + \mathbb{1}[k \in [d']] H_{k,d+1,k} + \sum_{i \in [d]', i \neq k} H_{i,d+1,k} \right) \\ &+ \sum_{j=1}^d \phi \left(b_{d+1} H_{d+1,j,j} + \mathbb{1}[j \in [d']] H_{j,j,j} + \sum_{i \in [d]', i \neq j} H_{i,j,j} \right) \\ &+ \sum_{j=1}^d \sum_{k \neq j}^d \phi \left(b_{d+1} H_{d+1,j,k} + \mathbb{1}[j \in [d']] H_{i,i,k} \right. \\ &\quad \left. + \mathbb{1}[k \in [d']] H_{i,j,i} + \sum_{i \in [d]', i \neq j, k} H_{i,j,k} \right). \end{aligned} \quad (\text{A74})$$

1444 By Eqs. (A51), (A54) and (A66),

1445

$$\begin{aligned} & \sum_{k=1}^d \phi \left(b_{d+1} H_{d+1,d+1,k} + \mathbb{1}[k \in [d']] H_{k,d+1,k} + \sum_{i \in [d]', i \neq k} H_{i,d+1,k} \right) \\ &= \sum_{k=1}^d \phi \left(b_{d+1} r_7 + \mathbb{1}[k \in [d']] r_3 + \sum_{i \in [d]', i \neq k} r_4 \right) \end{aligned} \quad (\text{A75})$$

1452

$$= d' \phi \underbrace{(b_{d+1} r_7 + r_3 + (d' - 1)r_4)}_{=: s_1(d', b_{d+1})} + (d - d') \phi \underbrace{(b_{d+1} r_7 + d' r_4)}_{=: s_2(d', b_{d+1})}. \quad (\text{A76})$$

1454 By Eqs. (A45), (A60) and (A69),

1455

$$\sum_{j=1}^d \phi \left(b_{d+1} H_{d+1,j,j} + \mathbb{1}[j \in [d']] H_{j,j,j} + \sum_{i \in [d]', i \neq j} H_{i,j,j} \right)$$

$$\begin{aligned}
&= \sum_{j=1}^d \phi \left(b_{d+1} r_3 + \mathbb{1}[j \in [d]'] r_1 + \sum_{i \in [d]', i \neq j} r_5 \right) \tag{A77} \\
&= d' \phi \underbrace{(b_{d+1} r_3 + r_1 + (d' - 1) r_5)}_{=:s_3(d', b_{d+1})} + (d - d') \phi \underbrace{(b_{d+1} r_3 + d' r_5)}_{=:s_4(d', b_{d+1})}. \tag{A78}
\end{aligned}$$

By Eqs. (A48), (A57), (A63) and (A72),

$$\begin{aligned}
&\sum_{j=1}^d \sum_{k \neq j}^d \phi \left(b_{d+1} H_{d+1,j,k} + \mathbb{1}[j \in [d]'] H_{i,i,k} + \mathbb{1}[k \in [d]'] H_{i,j,i} + \sum_{i \in [d]', i \neq j, k} H_{i,j,k} \right) \\
&= \sum_{j=1}^d \sum_{k \neq j}^d \phi \left(b_{d+1} r_4 + \mathbb{1}[j \in [d]'] r_2 + \mathbb{1}[k \in [d]'] r_5 + \sum_{i \in [d]', i \neq j, k} r_6 \right) \tag{A79} \\
&= d'(d' - 1) \phi \underbrace{(b_{d+1} r_4 + r_2 + r_5 + (d' - 2) r_6)}_{=:s_5(d', b_{d+1})} + d'(d - d') \phi \underbrace{(b_{d+1} r_4 + r_2 + (d' - 1) r_6)}_{=:s_6(d', b_{d+1})} \\
&\quad + d'(d - d') \phi \underbrace{(b_{d+1} r_4 + r_5 + (d' - 1) r_6)}_{=:s_7(d', b_{d+1})} + (d - d')(d - d' - 1) \phi \underbrace{(b_{d+1} r_4 + d' r_6)}_{=:s_8(d', b_{d+1})}. \tag{A80}
\end{aligned}$$

Now,

$$\begin{aligned}
&\sum_{j=1}^{d+1} \sum_{k=1}^d \phi \left(\sum_{i=1}^{d+1} b_i H_{i,j,k} \right) = d' \phi(s_1(d', b_{d+1})) + (d - d') \phi(s_2(d', b_{d+1})) + d' \phi(s_3(d', b_{d+1})) \\
&\quad + (d - d') \phi(s_4(d', b_{d+1})) + d'(d' - 1) \phi(s_5(d', b_{d+1})) \\
&\quad + d'(d - d') \phi(s_6(d', b_{d+1})) + d'(d - d') \phi(s_7(d', b_{d+1})) \\
&\quad + (d - d')(d - d' - 1) \phi(s_8(d', b_{d+1})). \tag{A81}
\end{aligned}$$

$$=: \text{score}(d', b_{d+1}). \tag{A82}$$

We shall now summarize the discussion to [Lemma D.2](#). The rest of the proof is left to [Lemma D.3](#). \square

Optimization of transformed problem.

Lemma D.2. Let $\phi(x) := \max(0, x)$, $d \in \mathbb{N}$, $0 < \lambda < 1$, $0 \leq \epsilon < 1$, $\epsilon_+ := 1 - \epsilon$, and $\epsilon_- := \lambda/2 - \epsilon$. In addition, for $d' \in \{0, \dots, d\}$ and $b_{d+1} \in \{0, 1\}$,

$$r_1 := \epsilon_+ + \frac{\lambda^2}{3}(d - 1)\epsilon_-, \tag{A83}$$

$$r_2 := \epsilon_- + \frac{\lambda^2}{3}\epsilon_+ + \frac{\lambda^2}{3}(d - 2)\epsilon_-, \tag{A84}$$

$$r_3 := \epsilon_+ + \frac{\lambda}{2}(d - 1)\epsilon_-, \tag{A85}$$

$$r_4 := \epsilon_- + \frac{\lambda}{2}\epsilon_+ + \frac{\lambda}{2}(d - 2)\epsilon_-, \tag{A86}$$

$$r_5 := \frac{\lambda}{2}\epsilon_+ + \frac{\lambda}{2}\epsilon_- + \frac{\lambda^2}{4}(d - 2)\epsilon_-, \tag{A87}$$

$$r_6 := \frac{\lambda}{2}\epsilon_- + \frac{\lambda}{2}\epsilon_- + \frac{\lambda^2}{4}\epsilon_+ + \frac{\lambda^2}{4}(d - 3)\epsilon_-, \tag{A88}$$

$$r_7 := \epsilon_+ + (d - 1)\epsilon_-, \tag{A89}$$

$$s_1(d', b_{d+1}) := b_{d+1} r_7 + r_3 + (d' - 1) r_4, \tag{A90}$$

$$s_2(d', b_{d+1}) := b_{d+1} r_7 + d' r_4, \tag{A91}$$

$$s_3(d', b_{d+1}) := b_{d+1} r_3 + r_1 + (d' - 1) r_5, \tag{A92}$$

1512 $s_4(d', b_{d+1}) := b_{d+1}r_3 + d'r_5,$ (A93)

1513 $s_5(d', b_{d+1}) := b_{d+1}r_4 + r_2 + r_5 + (d' - 2)r_6,$ (A94)

1514 $s_6(d', b_{d+1}) := b_{d+1}r_4 + r_2 + (d' - 1)r_6,$ (A95)

1515 $s_7(d', b_{d+1}) := b_{d+1}r_4 + r_5 + (d' - 1)r_6,$ (A96)

1516 $s_8(d', b_{d+1}) := b_{d+1}r_4 + d'r_6,$ (A97)

1517

1518
$$\begin{aligned} \text{score}(d', b_{d+1}) := & d'\phi(s_1(d', b_{d+1})) + (d - d')\phi(s_2(d', b_{d+1})) + d'\phi(s_3(d', b_{d+1})) \\ & + (d - d')\phi(s_4(d', b_{d+1})) + d'(d' - 1)\phi(s_5(d', b_{d+1})) \\ & + d'(d - d')\phi(s_6(d', b_{d+1})) + d'(d - d')\phi(s_7(d', b_{d+1})) \\ & + (d - d')(d - d' - 1)\phi(s_8(d', b_{d+1})). \end{aligned} \quad (\text{A98})$$

1519
1520 Considering the following optimization problem:

1521
$$\max_{d' \in \{0, \dots, d\}, b_{d+1} \in \{0, 1\}} \text{score}(d', b_{d+1}). \quad (\text{A99})$$

1522
1523 Then, setting $\mathbf{P}, \mathbf{Q} \in \mathbb{R}^{(d+1) \times (d+1)}$ to

1524
$$\mathbf{P} = \begin{bmatrix} \mathbf{0}_{d, d+1} \\ \mathbf{b}^\top \end{bmatrix}, \quad \mathbf{Q} = [\mathbf{A} \quad \mathbf{0}_{d+1}], \quad \mathbf{b}^\top = [\underbrace{1 \quad 1 \quad \cdots \quad 1}_{d'} \quad \underbrace{0 \quad 0 \quad \cdots \quad 0}_{d-d'} \quad b_{d+1}], \quad (\text{A100})$$

1525
$$A_{jk} = \begin{cases} \mathbb{1}[b_{d+1}r_7 + \mathbb{1}[k \leq d']r_3 + (d' - \mathbb{1}[k \leq d'])r_4 \geq 0] \\ \quad (j = d + 1) \\ \mathbb{1}[b_{d+1}r_3 + \mathbb{1}[j \leq d']r_1 + (d' - \mathbb{1}[j \leq d'])r_5 \geq 0] \\ \quad (j \neq d + 1) \wedge (j = k) \\ \mathbb{1}[b_{d+1}r_4 + \mathbb{1}[j \leq d']r_2 + \mathbb{1}[k \leq d']r_5 + (d' - \mathbb{1}[j \leq d'] - \mathbb{1}[k \leq d'])r_6 \geq 0] \\ \quad (j \neq d + 1) \wedge (j \neq k) \end{cases}, \quad (\text{A101})$$

1526
1527 the global maximizer of (A99) is the global minimizer of (7).1544
1545 *Proof.* See the above discussion. \square 1546
1547 **Lemma D.3.** The global maximizer of (A99) is as follows:1548
1549 (a) If

1550
$$0 \leq \epsilon \leq \frac{\lambda(\lambda(d - 2) + 4)}{2(\lambda(d - 1) + 2)}, \quad (\text{A102})$$

1551
1552 then $d' = d$ and $b_{d+1} = 1$. This corresponds to $\mathbf{b} = \mathbf{1}_{d+1}$ and $\mathbf{A} = \mathbf{1}_{d+1, d}$.1553
1554 (b) If

1555
$$\epsilon = \frac{\lambda(d - 1) + 2}{2d}, \quad (\text{A103})$$

1556
1557 then $d' = d$ and $b_{d+1} = 1$. This corresponds to $\mathbf{b} = \mathbf{1}_{d+1}$ and $\mathbf{A} = [\mathbf{I}_d \quad \mathbf{0}_d]^\top$.1558
1559 (c) If

1560
$$\epsilon \geq \frac{\lambda}{2} + \frac{3}{2} \frac{2 - \lambda}{\lambda^2(d - 1) + 3}, \quad (\text{A104})$$

1561
1562 then $d' = 0$ and $b_{d+1} = 0$. This corresponds to $\mathbf{b} = \mathbf{1}_{d+1}$ and $\mathbf{A} = \mathbf{0}_{d+1, d}$.

1566 *Proof.* For notational simplicity, we abbreviate terms including variables such as x_1, x_2, \dots (e.g.,
 1567 $x_1^2 + 3x_2 + \dots$) using the notation $\Theta(x_1, x_2, \dots)$. In particular, when the expression is strictly
 1568 nonnegative (e.g., $x_1^2 + x_2^2$) or nonpositive, we use $\Theta_+(x_1, x_2, \dots)$ or $\Theta_-(x_1, x_2, \dots)$, respectively.
 1569 These terms are not essential to the analysis and too long. They can be derived by simple basic
 1570 arithmetic operations. These concrete values can be showed by our python codes.

1571 We define $\epsilon_1, \dots, \epsilon_7$ as
 1572

$$1573 \quad r_1 = 0 \iff \epsilon = \frac{\lambda}{2} + \frac{3}{2} \frac{2-\lambda}{\lambda^2(d-1)+3} =: \epsilon_1, \quad (\text{A105})$$

$$1575 \quad r_2 = 0 \iff \epsilon = \frac{\lambda(\lambda^2(d-2)+2\lambda+3)}{2(\lambda^2(d-1)+3)} =: \epsilon_2, \quad (\text{A106})$$

$$1578 \quad r_3 = 0 \iff \epsilon = \frac{\lambda^2(d-1)+4}{2(\lambda(d-1)+2)} =: \epsilon_3, \quad (\text{A107})$$

$$1580 \quad r_4 = 0 \iff \epsilon = \frac{\lambda(\lambda(d-2)+4)}{2(\lambda(d-1)+2)} =: \epsilon_4, \quad (\text{A108})$$

$$1582 \quad r_5 = 0 \iff \epsilon = \frac{\lambda^2(d-2)+2\lambda+4}{2(\lambda(d-2)+4)} =: \epsilon_5, \quad (\text{A109})$$

$$1585 \quad r_6 = 0 \iff \epsilon = \frac{\lambda(\lambda(d-3)+6)}{2(\lambda(d-2)+4)} =: \epsilon_6, \quad (\text{A110})$$

$$1587 \quad r_7 = 0 \iff \epsilon = \frac{\lambda(d-1)+2}{2d} =: \epsilon_7, \quad (\text{A111})$$

$$1589 \quad s_5(d, 1) = 0 \iff \epsilon = \frac{\lambda(3d^2\lambda^2 - 8d\lambda^2 + 24d\lambda + 4\lambda^2 - 34\lambda + 48)}{2(3d^2\lambda^2 - 5d\lambda^2 + 18d\lambda + 2\lambda^2 - 18\lambda + 24)} =: \epsilon_{s_5}. \quad (\text{A112})$$

1591 Since

$$1593 \quad \epsilon_1 - \epsilon_3 = \frac{\lambda(d-1)(2-\lambda)(3-2\lambda)}{2(\lambda(d-1)+2)(\lambda^2(d-1)+3)} \geq 0, \quad (\text{A113})$$

$$1595 \quad \epsilon_3 - \epsilon_5 = \frac{(2-\lambda)^2}{(\lambda(d-2)+4)(\lambda(d-1)+2)} \geq 0, \quad (\text{A114})$$

$$1598 \quad \epsilon_5 - \epsilon_7 = \frac{(d-2)(2-\lambda)^2}{2d(\lambda(d-2)+4)} \geq 0, \quad (\text{A115})$$

$$1600 \quad \epsilon_7 - \epsilon_{s_5} = \frac{(2-\lambda)(-3d\lambda^2 + 6d\lambda + 2\lambda^2 - 18\lambda + 24)}{2d(3d^2\lambda^2 - 5d\lambda^2 + 18d\lambda + 2\lambda^2 - 18\lambda + 24)} \geq 0, \quad (\text{A116})$$

$$1602 \quad \epsilon_{s_5} - \epsilon_4 = \frac{\lambda^2(2-\lambda)}{(\lambda(d-1)+2)(3d^2\lambda^2 - 5d\lambda^2 + 18d\lambda + 2\lambda^2 - 18\lambda + 24)} \geq 0, \quad (\text{A117})$$

$$1605 \quad \epsilon_4 - \epsilon_6 = \frac{\lambda(2-\lambda)^2}{2(\lambda(d-2)+4)(\lambda(d-1)+2)} \geq 0, \quad (\text{A118})$$

$$1607 \quad \epsilon_6 - \epsilon_2 = \frac{\lambda(3-\lambda)(2-\lambda)(1-\lambda)}{2(\lambda(d-2)+4)(\lambda^2(d-1)+3)} \geq 0, \quad (\text{A119})$$

1609 for $d \geq 2$, they are ordered as
 1610

$$1611 \quad \epsilon_2 \leq \epsilon_6 \leq \epsilon_4 \leq \epsilon_{s_5} \leq \epsilon_7 \leq \epsilon_5 \leq \epsilon_3 \leq \epsilon_1. \quad (\text{A120})$$

1612 In score, b_{d+1} appears as $b_{d+1}r_3, b_{d+1}r_4$, or $b_{d+1}r_7$, each with a positive coefficient in d and d' . Thus,
 1613 if $r_3, r_4, r_7 \leq 0$, then b_{d+1} should be zero. If $r_3, r_4, r_7 \geq 0$, then b_{d+1} should be one. Considering
 1614 **Ineq. (A120)**, for $d \geq 2$, the optimal b_{d+1} is one if $\epsilon \leq \epsilon_4$ and zero if $\epsilon \geq \epsilon_3$.

1615 **One-Dimensional Case.** If $d = 1$,

$$1617 \quad \text{score}(d', b_{d+1}) \\ 1618 \quad = \mathbb{1}[d' = 0](\phi(b_{d+1}r_7) + \phi(b_{d+1}r_3)) + \mathbb{1}[d' = 1](\phi(b_{d+1}r_7 + r_3) + \phi(b_{d+1}r_3 + r_1)) \quad (\text{A121}) \\ 1619 \quad = \mathbb{1}[d' = 0](\phi(b_{d+1}\epsilon_+) + \phi(b_{d+1}\epsilon_+))$$

$$1620 \quad + \mathbb{1}[d' = 1](\phi(b_{d+1}\epsilon_+ + \epsilon_+) + \phi(b_{d+1}\epsilon_+ + \epsilon_+)). \quad (A122)$$

1621
1622 As ϵ_+ is always positive for $0 \leq \epsilon < 1$, $d' = d = 1$ and $b_{d+1} = 1$ are the optimal. This aligns with
1623 the following case analysis.

1624 **Weak Adversarial (Case 1).** Assume $d \geq 2$ and $0 \leq \epsilon \leq \epsilon_6$. As $\epsilon \leq \epsilon_6 \leq \epsilon_4$, $b_{d+1} = 1$
1625 is the optimal. By Ineq. (A120), $r_1, r_3, r_4, r_5, r_6, r_7 \geq 0$. The sign of r_2 depends on ϵ . Thus,
1626 $s_1(d', 1), s_2(d', 1), s_3(d', 1), s_4(d', 1), s_7(d', 1), s_8(d', 1) \geq 0$ for $0 \leq d' \leq d$. In addition, for
1627 $d' \geq 2$,

$$1628 \quad s_5(d', 1) \geq r_4 + r_2 \quad (A123)$$

$$1629 \quad = \frac{\lambda^3}{6}(d-2) + \frac{\lambda^2}{12}(3d-2) + \frac{3\lambda}{2} - \frac{\epsilon}{6}(2\lambda^2(d-1) + 3\lambda(d-1) + 12) \quad (A124)$$

$$1630 \quad \geq \frac{\lambda^2(2-\lambda)(5-2\lambda)}{12(\lambda(d-2)+4)} \quad (\because \epsilon \leq \epsilon_6) \quad (A125)$$

$$1631 \quad \geq 0. \quad (A126)$$

1632 Thus, $d'(d'-1)s_5(d', 1)$ is nonnegative for $0 \leq d' \leq d$. Similarly, by $s_6(d', 1) \geq r_4 + r_2 \geq 0$ for
1633 $d' \geq 1$, $d'(d'-1)s_6(d', 1)$ is nonnegative for $0 \leq d' \leq d$. Thus,

$$1634 \quad \text{score}(d', 1) := d's_1(d', 1) + (d-d')s_2(d', 1) + d's_3(d', 1) + (d-d')s_4(d', 1) \\ 1635 \quad + d'(d'-1)s_5(d', 1) + d'(d-d')s_6(d', 1) + d'(d-d')s_7(d', 1) \\ 1636 \quad + (d-d')(d-d'-1)s_8(d', 1) \quad (A127)$$

$$1637 \quad = dr_7 + d'r_3 + d'(d-1)r_4 + dr_3 + d'r_1 + d'(d-1)r_5 \\ 1638 \quad + dr_4 + d'r_2 + d'r_5 + d'(d-1)(d-2)r_6. \quad (A128)$$

1639 This monotonically increases in d' . Therefore, $d' = d$ is the optimal. By Lemma D.2, $\mathbf{b} = \mathbf{1}_{d+1}$. In
1640 addition, from $s_1(d, 1), s_3(d, 1), s_5(d, 1) \geq 0$, $\mathbf{A} = \mathbf{1}_{d+1, d}$.

1641 **Weak Adversarial (Case 2).** Assume $d \geq 2$ and $\epsilon_6 \leq \epsilon \leq \epsilon_4$. As $\epsilon \leq \epsilon_4$, $b_{d+1} = 1$ is the optimal. By
1642 Ineq. (A120), $r_1, r_3, r_4, r_5, r_7 \geq 0$ and $r_2, r_6 \leq 0$. Thus, $s_1(d', 1), s_2(d', 1), s_3(d', 1), s_4(d', 1) \geq 0$.
1643 In addition,

$$1644 \quad s_5(d', 1) \geq s_5(d, 1) \geq \frac{\lambda^2(2-\lambda)}{12(\lambda(d-1)+2)} \geq 0 \quad (\because \epsilon \leq \epsilon_4), \quad (A129)$$

$$1645 \quad s_7(d', 1) \geq s_7(d, 1) \geq \frac{\lambda(2-\lambda)^3}{8(\lambda(d-1)+2)} \geq 0 \quad (\because \epsilon \leq \epsilon_4). \quad (A130)$$

1646 Due to the following inequality, $s_8(d', 1)$ is always larger than $s_6(d', 1)$:

$$1647 \quad s_8(d', 1) - s_6(d', 1) = -\frac{\lambda^3}{24}(d+1) + \frac{5\lambda^2}{12} - \frac{\lambda}{2} + \frac{\epsilon}{12}(\lambda^2(d+2) + 12(1-\lambda)) \quad (A131)$$

$$1648 \quad \geq \frac{\lambda(3-\lambda)(2-\lambda)(1-\lambda)}{6(\lambda(d-2)+4)} \quad (\because \epsilon \geq \epsilon_6) \quad (A132)$$

$$1649 \quad \geq 0. \quad (A133)$$

1650 If $s_6(d', 1), s_8(d', 1) \geq 0$,

$$1651 \quad \frac{d \text{score}(d', 1)}{dd'} = \frac{(2+\lambda(d-1)-2d\epsilon)(\lambda^2(3d^2-5d+2) + 18\lambda(d-1) + 24)}{24} \geq 0. \quad (A134)$$

1652 We used

$$1653 \quad 2 + \lambda(d-1) - 2d\epsilon \geq \frac{(2-\lambda)^2}{\lambda(d-1)+2} \geq 0 \quad (\because \epsilon \leq \epsilon_4). \quad (A135)$$

1654 If $s_6(d', 1) \leq 0, s_8(d', 1) \geq 0$,

$$1655 \quad \frac{d \text{score}(d', 1)}{dd'} = \Theta(d, d', \lambda) - \frac{\epsilon}{12}\{3d\lambda^2((d-d')^2 + 2d'^2) + 6\lambda(2-\lambda)\left\{\left(d - \frac{1}{2}d'\right)^2 + \frac{11}{4}d'^2\right\}$$

$$+ 8dd'\lambda^2 + d'(4\lambda^2 - 36\lambda + 48)\} \quad (\text{A136})$$

$$\geq \Theta(d, \lambda) - \frac{\lambda(2 - \lambda)}{24(\lambda(d - 1) + 2)} d'(9d'\lambda(2 - \lambda) + 6\lambda^2(d + 1) - 4\lambda(3d + 7) + 24) \quad (\text{A137})$$

$$\geq \frac{(2 - \lambda)(d\lambda^3 + d\lambda(12 - 7\lambda) - \lambda^3 + 11\lambda^2 - 30\lambda + 24)}{12(\lambda(d - 1) + 2)} \quad (\text{A138})$$

$$\geq 0. \quad (\text{A139})$$

We used for $0 \leq d' \leq d$,

$$\begin{aligned} & d'(9d'\lambda(2 - \lambda) + 6\lambda^2(d + 1) - 4\lambda(3d + 7) + 24) \\ & \leq d\lambda(3d\lambda(2 - \lambda) + 6\lambda^2 - 28\lambda + 24). \end{aligned} \quad (\text{A140})$$

If $s_6(d', 1) \leq 0, s_8(d', 1) \leq 0$,

$$\begin{aligned} & \frac{d \text{score}(d', 1)}{dd'} \\ &= \Theta(d, d', \lambda) - \frac{\epsilon}{12} \{3d^2\lambda(\lambda + 4) + 6d(-\lambda^2 - \lambda + 2) + 6\lambda + 12(d - 1) \\ & \quad + 2d'(3d^2\lambda^2 + 8d\lambda(-\lambda + 1) + 4(2\lambda^2 + (d - 6)\lambda + 3)\} \end{aligned} \quad (\text{A141})$$

$$\geq \Theta(d, \lambda) - \frac{\lambda(2 - \lambda)}{12(\lambda(d - 1) + 2)} d'(-3d\lambda^2 + 6d\lambda + 6\lambda^2 - 20\lambda + 12) \quad (\because \epsilon \leq \epsilon_4) \quad (\text{A142})$$

$$\geq \frac{(2 - \lambda)(-d\lambda^3 - 8d\lambda^2 + 24d\lambda - 2\lambda^3 + 22\lambda^2 - 60\lambda + 48)}{24(\lambda(d - 1) + 2)} \quad (\because d' \leq d) \quad (\text{A143})$$

$$\geq 0. \quad (\text{A144})$$

From the above discussion, for any case, $(s_6, s_8 \geq 0)$, $(s_6 \leq 0 \text{ and } s_8 \geq 0)$, or $(s_6, s_8 \leq 0)$, the derivative of $\text{score}(d', 1)$ with respect to d' is nonnegative. Thus, $d' = d$ is the optimal. By [Lemma D.2](#), $\mathbf{b} = \mathbf{1}_{d+1}$. In addition, from $s_1(d, 1), s_3(d, 1), s_5(d, 1) \geq 0, \mathbf{A} = \mathbf{1}_{d+1, d}$.

Adversarial. Assume $d \geq 2$ and $\epsilon = \epsilon_7$. By [Ineq. \(A120\)](#), $r_1, r_3, r_5 \geq 0, r_7 = 0$, and $r_2, r_4, r_6 \leq 0$. Thus, $s_3(d', b_{d+1}), s_4(d', b_{d+1}) \geq 0$ and $s_2(d', b_{d+1}), s_6(d', b_{d+1}), s_8(d', b_{d+1}) \leq 0$. Now,

$$s_1(d', 1) = s_1(d', 0) \geq \frac{(d - d')(2 - \lambda)^2}{4d} \geq 0 \quad (\because \epsilon = \epsilon_7). \quad (\text{A145})$$

Thus,

$$\begin{aligned} \text{score}(d', b_{d+1}) &= d's_1(d', 0) + d's_3(d', b_{d+1}) + (d - d')s_4(d', b_{d+1}) \\ & \quad + d'(d' - 1)\phi(s_5(d', b_{d+1})) + d'(d - d')\phi(s_7(d', b_{d+1})) \end{aligned} \quad (\text{A146})$$

$$\begin{aligned} &= d's_1(d', 0) + d'r_1 + (d - 1)d'r_5 + db_{d+1}r_3 \\ & \quad + d'(d' - 1)\phi(b_{d+1}r_4 + r_2 + r_5 + (d' - 2)r_6) \\ & \quad + d'(d - d')\phi(b_{d+1}r_4 + r_5 + (d' - 1)r_6). \end{aligned} \quad (\text{A147})$$

Since r_4 is nonpositive, this indicates that score changes by $dr_3 + d'(d - 1)r_4$ at least by switching b_{d+1} to one from zero. Moreover,

$$dr_3 + d'(d - 1)r_4 \geq \frac{(d - 1)(d - d')(2 - \lambda)^2}{4d} \geq 0 \quad (\because \epsilon = \epsilon_7). \quad (\text{A148})$$

Therefore, $b_{d+1} = 1$ is the optimal. From [Ineq. \(A120\)](#) and $\epsilon = \epsilon_7$, $s_7(d', b_{d+1}) - s_5(d', b_{d+1}) \geq 0$. If $s_5(d', 1), s_7(d', 1) \geq 0$,

$$\frac{d \text{score}(d', 1)}{dd'} = \Theta(d, d', \lambda) - \Theta_+(d, d', \lambda)\epsilon \quad (\text{A149})$$

$$= \Theta(d, \lambda) - \Theta_+(d, \lambda)d' \quad (\because \epsilon = \epsilon_7) \quad (\text{A150})$$

$$\geq 0 \quad (\because d' \leq d_{s_5}), \quad (\text{A151})$$

1728 where

1729
1730 $s_5(d', 1) \geq 0 \iff d' \leq \frac{3d\lambda^2 - 6d\lambda + 2\lambda^2 - 18\lambda + 24}{6\lambda(\lambda - 2)} =: d_{s_5}.$ (A152)
1731

1732 When $s_5(d', 1) \leq 0, s_7(d', 1) \geq 0$, then $\frac{d \text{score}(d', 1)}{dd'} \geq 0$ similarly holds. If $s_5(d', 1), s_7(d', 1) \leq 0,$
1733 $\frac{d \text{score}(d', 1)}{dd'} \geq 0$ for $d' \leq d - 1$. Comparing $\text{score}(d', 1)$ with $d' = d - 1$ and $d' = d$, we obtain
1734 $\text{score}(d, 1) \geq \text{score}(d - 1, 1)$. In summary, $d' = d$ is the optimal. By Lemma D.2, $\mathbf{b} = \mathbf{1}_{d+1}$. In
1735 addition, from $s_3(d, 1) \geq 0, s_1(d, 1) = 0$, and $s_5(d, 1) < 0$, $\mathbf{A} = [\mathbf{I}_d \ \mathbf{0}_d]^\top$.
17361737 **Strong Adversarial.** Assume $d \geq 2$ and $\epsilon \geq \epsilon_1$. By Ineq. (A120), r_1, \dots, r_7 are nonpositive. Thus,
1738 $s_1(d', b_{d+1}), \dots, s_8(d', b_{d+1})$ are nonpositive. Therefore, $d' = 0$ and $b_{d+1} = 0$ are the optimal. By
1739 Lemma D.2, $\mathbf{b} = \mathbf{0}_{d+1}$ and $\mathbf{A} = \mathbf{0}_{d+1, d}$. \square

1740

1741 E PROOF OF THEOREMS 3.5 AND 3.6 (ROBUSTNESS)

1742

1743 For notational convenience, we occasionally describe representations and equations under the
1744 assumption that $\mathcal{S}_{\text{rob}} := \{1, \dots, d_{\text{rob}}\}$, $\mathcal{S}_{\text{vul}} := \{d_{\text{rob}} + 1, \dots, d_{\text{rob}} + d_{\text{vul}}\}$, and $\mathcal{S}_{\text{irr}} :=$
1745 $\{d_{\text{rob}} + d_{\text{vul}} + 1, \dots, d_{\text{rob}} + d_{\text{vul}} + d_{\text{irr}}\}$. This assumption is made without loss of generality.1746 We use *uniform* big-O and -Theta notation. Denote $f(x) = \mathcal{O}(g(x))$ if there exists a positive constant
1747 $C > 0$ such that $|f(x)| \leq C|g(x)|$ for every x in the domain. Denote $f(x) = \Theta(g(x))$ if there exist
1748 $C_1, C_2 > 0$ such that $C_1|g(x)| \leq |f(x)| \leq C_2|g(x)|$ for every x in the domain.

1749

1750 For notational simplicity, we abbreviate the following matrix:

1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3

$$1782 \quad = \begin{bmatrix} \mathbb{E}[\mathbf{x}\mathbf{x}^\top] & \mathbb{E}[\mathbf{y}\mathbf{x}] \\ \mathbb{E}[\mathbf{y}\mathbf{x}^\top] & 1 \end{bmatrix} \quad (A156)$$

$$1784 \quad = \begin{bmatrix} \mathbb{E}[\mathbf{y}\mathbf{x}]\mathbb{E}[\mathbf{y}\mathbf{x}^\top] & \mathbb{E}[\mathbf{y}\mathbf{x}] \\ \mathbb{E}[\mathbf{y}\mathbf{x}^\top] & 1 \end{bmatrix} + \begin{bmatrix} \mathbb{E}[(\mathbf{y}\mathbf{x} - \mathbb{E}[\mathbf{y}\mathbf{x}])(\mathbf{y}\mathbf{x} - \mathbb{E}[\mathbf{y}\mathbf{x}])^\top] & \mathbf{0}_d \\ \mathbf{0}_d^\top & 0 \end{bmatrix}. \quad (A157)$$

1787 Since the second term is positive semidefinite,

$$1788 \quad \mathbb{E}\left[\frac{1}{N}\mathbf{1}_{d+1}^\top \mathbf{Z}_\Delta \mathbf{M} \mathbf{Z}_\Delta^\top \mathbf{1}_{d+1}\right] \\ 1789 \quad = \mathbf{1}_{d+1}^\top \left(\begin{bmatrix} \mathbb{E}[\mathbf{y}\mathbf{x}]\mathbb{E}[\mathbf{y}\mathbf{x}^\top] & \mathbb{E}[\mathbf{y}\mathbf{x}] \\ \mathbb{E}[\mathbf{y}\mathbf{x}^\top] & 1 \end{bmatrix} + \begin{bmatrix} \mathbb{E}[(\mathbf{y}\mathbf{x} - \mathbb{E}[\mathbf{y}\mathbf{x}])(\mathbf{y}\mathbf{x} - \mathbb{E}[\mathbf{y}\mathbf{x}])^\top] & \mathbf{0}_d \\ \mathbf{0}_d^\top & 0 \end{bmatrix}\right) \mathbf{1}_{d+1} \quad (A158)$$

$$1793 \quad \geq \mathbf{1}_{d+1}^\top \begin{bmatrix} \mathbb{E}[\mathbf{y}\mathbf{x}^\top]\mathbb{E}[\mathbf{y}\mathbf{x}] & \mathbb{E}[\mathbf{y}\mathbf{x}] \\ \mathbb{E}[\mathbf{y}\mathbf{x}^\top] & 1 \end{bmatrix} \mathbf{1}_{d+1}. \quad (A159)$$

1795 Since every entry of $\mathbb{E}[\mathbf{y}\mathbf{x}^\top]\mathbb{E}[\mathbf{y}\mathbf{x}]$ and $\mathbb{E}[\mathbf{y}\mathbf{x}]$ is nonnegative,

$$1797 \quad \mathbb{E}\left[\frac{1}{N}\mathbf{1}_{d+1}^\top \mathbf{Z}_\Delta \mathbf{M} \mathbf{Z}_\Delta^\top \mathbf{1}_{d+1}\right] \geq \mathbf{1}_{d+1}^\top \begin{bmatrix} \mathbb{E}[\mathbf{y}\mathbf{x}^\top]\mathbb{E}[\mathbf{y}\mathbf{x}] & \mathbb{E}[\mathbf{y}\mathbf{x}] \\ \mathbb{E}[\mathbf{y}\mathbf{x}^\top] & 1 \end{bmatrix} \mathbf{1}_{d+1} \geq 1. \quad (A160)$$

1799 Representing $\mathbb{E}[\mathbf{b}^\top \mathbf{Z}_\Delta \mathbf{M} \mathbf{Z}_\Delta^\top \mathbf{A}/N] = [g(d_{\text{rob}}, d_{\text{vul}}, d_{\text{irr}}, \alpha, \beta, \gamma) \cdots g(d_{\text{rob}}, d_{\text{vul}}, d_{\text{irr}}, \alpha, \beta, \gamma)]$
1800 using some positive function $g(d_{\text{rob}}, d_{\text{vul}}, d_{\text{irr}}, \alpha, \beta, \gamma) > 0$, there exists a positive constant $C > 0$
1801 such that

$$1802 \quad \mathbb{E}\left[\frac{1}{N}\mathbf{b}^\top \mathbf{Z}_\Delta \mathbf{M} \mathbf{Z}_\Delta^\top \mathbf{A}(y_{N+1}\mathbf{x}_{N+1} - \epsilon\mathbf{1}_d)\right] \\ 1803 \quad = \begin{bmatrix} g(d_{\text{rob}}, d_{\text{vul}}, d_{\text{irr}}, \alpha, \beta, \gamma) \\ \vdots \\ g(d_{\text{rob}}, d_{\text{vul}}, d_{\text{irr}}, \alpha, \beta, \gamma) \end{bmatrix}^\top (\mathbb{E}[y_{N+1}\mathbf{x}_{N+1}] - \epsilon\mathbf{1}_d) \quad (A161)$$

$$1809 \quad = g(d_{\text{rob}}, d_{\text{vul}}, d_{\text{irr}}, \alpha, \beta, \gamma)(\Theta(d_{\text{rob}}\alpha + d_{\text{vul}}\beta) - d\epsilon) \quad (A162)$$

$$1810 \quad \leq g(d_{\text{rob}}, d_{\text{vul}}, d_{\text{irr}}, \alpha, \beta, \gamma)(C(d_{\text{rob}}\alpha + d_{\text{vul}}\beta) - (d_{\text{rob}} + d_{\text{vul}} + d_{\text{irr}})\epsilon). \quad (A163)$$

1811 \square

1813 **Theorem 3.6** (Adversarial pretraining case). Suppose that q_{rob} and q_{vul} defined in [Assumption 3.2](#)
1814 are sufficiently small. There exist constants $C_1, C_2 > 0$ such that

$$1816 \quad \mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1} \stackrel{\text{i.i.d.}}{\sim} \mathcal{D}^{\text{te}}} \left[\min_{\|\Delta\|_\infty \leq \epsilon} y_{N+1} [f(\mathbf{Z}_\Delta; \mathbf{P}^{\text{adv}}, \mathbf{Q}^{\text{adv}})]_{d+1, N+1} \right] \\ 1817 \quad \geq \underbrace{C_1(d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1)(d_{\text{rob}}\alpha^2 + d_{\text{vul}}\beta^2)}_{\text{Prediction for original data}} \\ 1818 \quad - \underbrace{C_2 \left\{ (d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1) \left(d_{\text{rob}}\alpha + d_{\text{vul}}\beta + \frac{d_{\text{irr}}\gamma}{\sqrt{N}} \right) + d_{\text{irr}} \left(\sqrt{\frac{d_{\text{irr}}}{N}} + 1 \right) \gamma^2 \right\} \epsilon.}_{\text{Adversarial effect}} \quad (9)$$

1826 *Proof.* This is the special case of the following theorem. \square

1828 **Theorem E.1** (General case of [Theorem 3.6](#)). There exist constants $C, C', C'' > 0$ such that

$$1830 \quad \mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^{N+1} \stackrel{\text{i.i.d.}}{\sim} \mathcal{D}^{\text{te}}} \left[\min_{\|\Delta\|_\infty \leq \epsilon} y_{N+1} [f(\mathbf{Z}_\Delta; \mathbf{P}^{\text{adv}}, \mathbf{Q}^{\text{adv}})]_{d+1, N+1} \right] \\ 1831 \quad \geq C(d_{\text{rob}}\alpha + d_{\text{vul}}\beta) \{(1 - cq_{\text{rob}})d_{\text{rob}}\alpha^2 + (1 - cq_{\text{vul}})d_{\text{vul}}\beta^2\} + C'(d_{\text{rob}}\alpha^2 + d_{\text{vul}}\beta^2) \\ 1832 \quad - C''' \left\{ (d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1) \left(d_{\text{rob}}\alpha + d_{\text{vul}}\beta + \frac{d_{\text{irr}}\gamma}{\sqrt{N}} \right) + d_{\text{irr}} \left(\sqrt{\frac{d_{\text{irr}}}{N}} + 1 \right) \gamma^2 \right\} \epsilon, \quad (A164)$$

1836

where

1838

$$c := \frac{(\max_{i \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}} C_i)(\max_{i \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}} C_{i,2})}{\min_{i \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}} C_i^3}. \quad (\text{A165})$$

1840

In particular, if there exists a constant $C''' > 0$ such that $1 - cq_{\text{rob}} \geq C'''$ and $1 - cq_{\text{vul}} \geq C'''$, then
1841 there exist constants $C_1, C_2 > 0$ such that [Ineq. \(9\)](#) holds.

1842

1843

1844

Proof. Similarly to [Eq. \(A29\)](#), we can solve the minimization as

1846

1847

1848

$$\begin{aligned} & \min_{\|\Delta\|_\infty \leq \epsilon} y_{N+1} [\mathbf{f}(\mathbf{Z}_\Delta; \mathbf{P}, \mathbf{Q})]_{d+1, N+1} \\ &= \min_{\|\Delta\|_\infty \leq \epsilon} \frac{1}{N} \mathbf{b}^\top \mathbf{Z}_\Delta \mathbf{M} \mathbf{Z}_\Delta^\top \mathbf{A} y_{N+1} (\mathbf{x}_{N+1} + \Delta) \end{aligned} \quad (\text{A166})$$

1849

1850

1851

$$= \frac{1}{N} \mathbf{b}^\top \mathbf{Z}_\Delta \mathbf{M} \mathbf{Z}_\Delta^\top \mathbf{A} y_{N+1} \mathbf{x}_{N+1} - \epsilon \left\| \frac{1}{N} \mathbf{b}^\top \mathbf{Z}_\Delta \mathbf{M} \mathbf{Z}_\Delta^\top \mathbf{A} \right\|_1. \quad (\text{A167})$$

1852

By [Eq. \(A157\)](#), we can rearrange the first term as

1853

1854

1855

1856

1857

1858

1859

$$\begin{aligned} & \mathbb{E} \left[\frac{1}{N} \mathbf{b}^\top \mathbf{Z}_\Delta \mathbf{M} \mathbf{Z}_\Delta^\top \mathbf{A} y_{N+1} \mathbf{x}_{N+1} \right] \\ &= \mathbf{1}_{d+1}^\top \begin{bmatrix} \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{x}^\top] \\ \mathbb{E}[\mathbf{y} \mathbf{x}^\top] \end{bmatrix} \mathbb{E}[y_{N+1} \mathbf{x}_{N+1}] + \mathbf{1}_d^\top \mathbb{E}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^\top] \mathbb{E}[y_{N+1} \mathbf{x}_{N+1}]. \end{aligned} \quad (\text{A168})$$

1860

The first term of [Eq. \(A168\)](#) can be rearranged as

1861

1862

1863

1864

1865

1866

1867

1868

$$\begin{aligned} & \mathbf{1}_{d+1}^\top \begin{bmatrix} \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{x}^\top] \\ \mathbb{E}[\mathbf{y} \mathbf{x}^\top] \end{bmatrix} \mathbb{E}[y_{N+1} \mathbf{x}_{N+1}] \\ &= \mathbf{1}_{d+1}^\top \begin{bmatrix} C_i C_j \alpha^2 & C_i C_j \alpha \beta & \mathbf{0} \\ C_i C_j \alpha \beta & C_i C_j \beta^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & C_i^2 \gamma^2 \mathbf{I} \\ C_i \alpha & C_i \beta & \mathbf{0} \end{bmatrix} \begin{bmatrix} C_i \alpha \\ C_i \beta \\ \mathbf{0} \end{bmatrix} \end{aligned} \quad (\text{A169})$$

1869

1870

1871

$$= \left(\sum_{i \in \mathcal{S}_{\text{rob}}} C_i \alpha + \sum_{i \in \mathcal{S}_{\text{vul}}} C_i \beta + 1 \right) \left(\sum_{i \in \mathcal{S}_{\text{rob}}} C_i^2 \alpha^2 + \sum_{i \in \mathcal{S}_{\text{vul}}} C_i^2 \beta^2 \right) \quad (\text{A170})$$

1872

1873

1874

$$= \left(\min_{i \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}} C_i^3 \right) (d_{\text{rob}} \alpha + d_{\text{vul}} \beta) (d_{\text{rob}} \alpha^2 + d_{\text{vul}} \beta^2) + \sum_{i \in \mathcal{S}_{\text{rob}}} C_i^2 \alpha^2 + \sum_{i \in \mathcal{S}_{\text{vul}}} C_i^2 \beta^2. \quad (\text{A171})$$

1875

Consider the second term of [Eq. \(A168\)](#). Now,

1876

1877

1878

1879

1880

1881

$$\begin{aligned} & |\mathbb{E}[(x_i - \mathbb{E}[x_i])(x_j - \mathbb{E}[x_j])]| \\ & \leq \begin{cases} \sqrt{C_{i,2}} \sqrt{C_{j,2}} \alpha^2 & (i, j \in \mathcal{S}_{\text{rob}}) \\ \sqrt{C_{i,2}} \sqrt{C_{j,2}} \beta^2 & (i, j \in \mathcal{S}_{\text{vul}}) \\ \sqrt{C_{i,2}} \sqrt{C_{j,2}} \alpha \beta & (i \in \mathcal{S}_{\text{rob}} \wedge j \in \mathcal{S}_{\text{vul}}) \vee (i \in \mathcal{S}_{\text{vul}} \wedge j \in \mathcal{S}_{\text{rob}}) \end{cases}. \end{aligned} \quad (\text{A172})$$

1882

1883

1884

1885

1886

1887

Let

$$\mathcal{S} := \left\{ i \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}} \mid \sum_{j \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}} \mathbb{E}[(x_i - \mathbb{E}[x_i])(x_j - \mathbb{E}[x_j])] < 0 \right\}. \quad (\text{A173})$$

1888

The second term of [Eq. \(A168\)](#) can be computed as

1889

$$\mathbf{1}_d^\top \mathbb{E}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^\top] \mathbb{E}[y_{N+1} \mathbf{x}_{N+1}]$$

$$\begin{aligned}
& \geq - \begin{bmatrix} \sqrt{C_{i,2}}\alpha \left(\sum_{j \in \mathcal{S}_{\text{rob}}} \sqrt{C_{j,2}}\alpha + \sum_{j \in \mathcal{S}_{\text{vul}}} \sqrt{C_{j,2}}\beta \right) \\ \vdots \\ \sqrt{C_{i,2}}\alpha \left(\sum_{j \in \mathcal{S}_{\text{rob}}} \sqrt{C_{j,2}}\alpha + \sum_{j \in \mathcal{S}_{\text{vul}}} \sqrt{C_{j,2}}\beta \right) \\ \mathbf{0} \\ \sqrt{C_{i,2}}\beta \left(\sum_{j \in \mathcal{S}_{\text{rob}}} \sqrt{C_{j,2}}\alpha + \sum_{j \in \mathcal{S}_{\text{vul}}} \sqrt{C_{j,2}}\beta \right) \\ \vdots \\ \sqrt{C_{i,2}}\beta \left(\sum_{j \in \mathcal{S}_{\text{rob}}} \sqrt{C_{j,2}}\alpha + \sum_{j \in \mathcal{S}_{\text{vul}}} \sqrt{C_{j,2}}\beta \right) \\ \mathbf{0} \end{bmatrix}^\top \begin{bmatrix} C_i \alpha \\ C_i \beta \\ \mathbf{0} \end{bmatrix} \quad (\text{A174})
\end{aligned}$$

$$\begin{aligned}
& = - \left(\sum_{i \in \mathcal{S}_{\text{rob}}} \sqrt{C_{i,2}}\alpha + \sum_{i \in \mathcal{S}_{\text{vul}}} \sqrt{C_{i,2}}\beta \right) \\
& \quad \times \left(\sum_{i \in \mathcal{S}_{\text{rob}} \cap \mathcal{S}} C_i \sqrt{C_{i,2}}\alpha^2 + \sum_{i \in \mathcal{S}_{\text{vul}} \cap \mathcal{S}} C_i \sqrt{C_{i,2}}\beta^2 \right) \quad (\text{A175})
\end{aligned}$$

$$\begin{aligned}
& \geq - \left(\max_{i \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}} \sqrt{C_{i,2}} \right) \left(\max_{i \in (\mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}) \cap \mathcal{S}} C_i \sqrt{C_{i,2}} \right) \\
& \quad \times (d_{\text{rob}}\alpha + d_{\text{vul}}\beta)(q_{\text{rob}}d_{\text{rob}}\alpha^2 + q_{\text{vul}}d_{\text{vul}}\beta^2) \quad (\text{A176})
\end{aligned}$$

$$\geq - \left(\max_{i \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}} C_i \right) \left(\max_{i \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}} C_{i,2} \right) (d_{\text{rob}}\alpha + d_{\text{vul}}\beta)(q_{\text{rob}}d_{\text{rob}}\alpha^2 + q_{\text{vul}}d_{\text{vul}}\beta^2). \quad (\text{A177})$$

By [Lemma E.2](#), we can compute the second term as

$$\begin{aligned}
& \mathbb{E} \left[\left\| \frac{1}{N} \mathbf{b}^\top \mathbf{Z}_\Delta \mathbf{M} \mathbf{Z}_\Delta^\top \mathbf{A} \right\|_1 \right] \\
& = \mathcal{O} \left((d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1) \left(d_{\text{rob}}\alpha + d_{\text{vul}}\beta + \frac{d_{\text{irr}}\gamma}{\sqrt{N}} \right) + d_{\text{irr}} \left(\sqrt{\frac{d_{\text{irr}}}{N}} + 1 \right) \gamma^2 \right). \quad (\text{A178})
\end{aligned}$$

Finally,

$$\begin{aligned}
& \mathbb{E} \left[\frac{1}{N} \mathbf{b}^\top \mathbf{Z}_\Delta \mathbf{M} \mathbf{Z}_\Delta^\top \mathbf{A} \mathbf{y}_{N+1} \mathbf{x}_{N+1} \right] - \epsilon \mathbb{E} \left[\left\| \frac{1}{N} \mathbf{b}^\top \mathbf{Z}_\Delta \mathbf{M} \mathbf{Z}_\Delta^\top \mathbf{A} \right\|_1 \right] \\
& \geq \left(\min_{i \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}} C_i^3 \right) (d_{\text{rob}}\alpha + d_{\text{vul}}\beta)(d_{\text{rob}}\alpha^2 + d_{\text{vul}}\beta^2) + \sum_{i \in \mathcal{S}_{\text{rob}}} C_i^2 \alpha^2 + \sum_{i \in \mathcal{S}_{\text{vul}}} C_i^2 \beta^2 \\
& \quad - \left(\max_{i \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}} C_i \right) \left(\max_{i \in \mathcal{S}_{\text{rob}} \cup \mathcal{S}_{\text{vul}}} C_{i,2} \right) (d_{\text{rob}}\alpha + d_{\text{vul}}\beta)(q_{\text{rob}}d_{\text{rob}}\alpha^2 + q_{\text{vul}}d_{\text{vul}}\beta^2) \\
& \quad + \mathcal{O} \left((d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1) \left(d_{\text{rob}}\alpha + d_{\text{vul}}\beta + \frac{d_{\text{irr}}\gamma}{\sqrt{N}} \right) + d_{\text{irr}} \left(\sqrt{\frac{d_{\text{irr}}}{N}} + 1 \right) \gamma^2 \right). \quad (\text{A179})
\end{aligned}$$

□

Lemma E.2. If $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$ are i.i.d. and follow \mathcal{D}^{te} , then

$$\begin{aligned}
& \mathbb{E} \left[\left\| \frac{1}{N} \mathbf{b}^\top \mathbf{Z}_\Delta \mathbf{M} \mathbf{Z}_\Delta^\top \mathbf{A} \right\|_1 \right] \\
& = \mathcal{O} \left((d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1) \left(d_{\text{rob}}\alpha + d_{\text{vul}}\beta + \frac{d_{\text{irr}}\gamma}{\sqrt{N}} \right) + d_{\text{irr}} \left(\sqrt{\frac{d_{\text{irr}}}{N}} + 1 \right) \gamma^2 \right), \quad (\text{A180})
\end{aligned}$$

where $\mathbf{b} = \mathbf{1}_{d+1}$ and $\mathbf{A}^\top := [\mathbf{I}_d \quad \mathbf{0}_d]$.

1944
1945

Proof. We can rearrange the given expectation as

1946
$$\mathbb{E} \left[\left\| \frac{1}{N} \mathbf{b}^\top \mathbf{Z}_\Delta M \mathbf{Z}_\Delta^\top \mathbf{A} \right\|_1 \right] = \mathbb{E} \left[\left\| \frac{1}{N} \mathbf{1}_{d+1}^\top \begin{bmatrix} \sum_{n=1}^N \mathbf{x}_n \mathbf{x}_n^\top & \sum_{n=1}^N y_n \mathbf{x}_n \\ \sum_{n=1}^N y_n \mathbf{x}_n^\top & N \end{bmatrix} \begin{bmatrix} \mathbf{I}_d \\ \mathbf{0}_d^\top \end{bmatrix} \right\|_1 \right] \quad (\text{A181})$$

1947
1948
1949
1950
1951
1952
1953
1954

$$= \mathbb{E} \left[\left\| \frac{1}{N} \mathbf{1}_{d+1}^\top \begin{bmatrix} \sum_{n=1}^N \mathbf{x}_n \mathbf{x}_n^\top \\ \sum_{n=1}^N y_n \mathbf{x}_n^\top \end{bmatrix} \right\|_1 \right] \quad (\text{A182})$$

$$= \sum_{i=1}^d \mathbb{E} \left[\left\| \frac{1}{N} \sum_{n=1}^N \left(y_n + \sum_{j=1}^d x_{n,j} \right) x_{n,i} \right\|_1 \right]. \quad (\text{A183})$$

1955 By the Lyapunov inequality, for $N + 1$ i.i.d. random variables X, X_1, \dots, X_N ,

1956
1957
1958
1959

$$\mathbb{E} \left[\left\| \frac{1}{N} \sum_{n=1}^N X_n \right\| \right] \leq \sqrt{\mathbb{E} \left[\left(\frac{1}{N} \sum_{n=1}^N X_n \right)^2 \right]} = \sqrt{\frac{1}{N} \mathbb{E}[X^2] + \frac{N-1}{N} \mathbb{E}[X]^2}. \quad (\text{A184})$$

1960 Thus, using $(\mathbf{x}, y) \sim \mathcal{D}^{\text{te}}$,

1961
1962
1963
1964
1965
1966
1967
1968
1969

$$\begin{aligned} & \sum_{i=1}^d \mathbb{E} \left[\left\| \frac{1}{N} \sum_{n=1}^N \left(y_n + \sum_{j=1}^d x_{n,j} \right) x_{n,i} \right\| \right] \\ & \leq \sum_{i=1}^d \sqrt{\frac{1}{N} \mathbb{E} \left[\left(y + \sum_{j=1}^d x_j \right)^2 x_i^2 \right] + \frac{N-1}{N} \mathbb{E} \left[\left(y + \sum_{j=1}^d x_j \right) x_i \right]^2}. \end{aligned} \quad (\text{A185})$$

1970 From [Lemma E.3](#), we can compute the second term of using

1971
1972
1973
1974

$$\mathbb{E} \left[\left(y + \sum_{j=1}^d x_j \right) x_i \right] = \mathbb{E}[yx_i] + \sum_{j=1}^d \mathbb{E}[x_j x_i] \quad (\text{A186})$$

1975
1976
1977

$$= \begin{cases} \mathcal{O}(\alpha(d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1)) & (i \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\beta(d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1)) & (i \in \mathcal{S}_{\text{vul}}) \\ \mathcal{O}(\gamma^2) & (i \in \mathcal{S}_{\text{irr}}) \end{cases}. \quad (\text{A187})$$

1978 From [Lemma E.3](#), we can compute the first term of using

1979
1980
1981
1982
1983

$$\mathbb{E} \left[\left(y + \sum_{j=1}^d x_j \right)^2 x_i^2 \right] = \mathbb{E}[x_i^2] + 2 \sum_{j=1}^d \mathbb{E}[yx_j x_i^2] + \sum_{j,k=1}^d \mathbb{E}[x_j x_k x_i^2] \quad (\text{A188})$$

1984
1985
1986
1987

$$= \begin{cases} \mathcal{O}(\alpha^2 \{(d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1)^2 + d_{\text{irr}}\gamma^2\}) & (i \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\beta^2 \{(d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1)^2 + d_{\text{irr}}\gamma^2\}) & (i \in \mathcal{S}_{\text{vul}}) \\ \mathcal{O}(\gamma^2 \{(d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1)^2 + d_{\text{irr}}\gamma^2\}) & (i \in \mathcal{S}_{\text{irr}}) \end{cases}. \quad (\text{A189})$$

1988 Thus,

1989
1990
1991
1992
1993
1994
1995
1996
1997

$$\begin{aligned} & \sum_{i=1}^d \sqrt{\frac{1}{N} \mathbb{E} \left[\left(y + \sum_{j=1}^d x_j \right)^2 x_i^2 \right] + \frac{N-1}{N} \mathbb{E} \left[\left(y + \sum_{j=1}^d x_j \right) x_i \right]^2} \\ & = \mathcal{O} \left(d_{\text{rob}} \left(\alpha(d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1) + \sqrt{\frac{d_{\text{irr}}}{N}} \alpha \gamma \right) \right. \\ & \quad \left. + d_{\text{vul}} \left(\beta(d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1) + \sqrt{\frac{d_{\text{irr}}}{N}} \beta \gamma \right) \right) \end{aligned}$$

1998
1999
2000

$$+ d_{\text{irr}} \left(\gamma^2 + \frac{\gamma}{\sqrt{N}} \left((d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1) + \sqrt{d_{\text{irr}}}\gamma \right) \right) \quad (\text{A190})$$

2001
2002
2003

$$= \mathcal{O} \left((d_{\text{rob}}\alpha + d_{\text{vul}}\beta + 1) \left(d_{\text{rob}}\alpha + d_{\text{vul}}\beta + \frac{d_{\text{irr}}\gamma}{\sqrt{N}} \right) + d_{\text{irr}} \left(\sqrt{\frac{d_{\text{irr}}}{N}} + 1 \right) \gamma^2 \right). \quad (\text{A191})$$

2004
2005

2006
2007
2008

Lemma E.3. If $(x, y) \sim \mathcal{D}^{\text{te}}$, then

(a)

2009
2010
2011
2012
2013
2014

$$\mathbb{E}[x_j x_i] = \begin{cases} \mathcal{O}(\alpha^2) & (i, j \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\beta^2) & (i, j \in \mathcal{S}_{\text{vul}}) \\ \mathcal{O}(\gamma^2) & (i = j) \wedge (i, j \in \mathcal{S}_{\text{irr}}) \\ \mathcal{O}(\alpha\beta) & (i \in \mathcal{S}_{\text{rob}} \wedge j \in \mathcal{S}_{\text{vul}}) \vee (i \in \mathcal{S}_{\text{vul}} \wedge j \in \mathcal{S}_{\text{rob}}) \\ 0 & (i \neq j) \wedge (i \in \mathcal{S}_{\text{irr}} \vee j \in \mathcal{S}_{\text{irr}}) \end{cases}. \quad (\text{A192})$$

(b)

2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

$$\mathbb{E}[y x_j x_i^2] = \begin{cases} \mathcal{O}(\alpha^3) & (i, j \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\beta^3) & (i, j \in \mathcal{S}_{\text{vul}}) \\ \mathcal{O}(\alpha^2\beta) & (i \in \mathcal{S}_{\text{rob}} \wedge j \in \mathcal{S}_{\text{vul}}) \\ \mathcal{O}(\alpha\beta^2) & (i \in \mathcal{S}_{\text{vul}} \wedge j \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\alpha\gamma^2) & (i \in \mathcal{S}_{\text{irr}} \wedge j \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\beta\gamma^2) & (i \in \mathcal{S}_{\text{irr}} \wedge j \in \mathcal{S}_{\text{vul}}) \\ 0 & (j \in \mathcal{S}_{\text{irr}}) \end{cases}. \quad (\text{A193})$$

(c)

2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038

$$\mathbb{E}[x_j x_k x_i^2] = \begin{cases} \mathcal{O}(\alpha^4) & (i, j, k \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\beta^4) & (i, j, k \in \mathcal{S}_{\text{vul}}) \\ \mathcal{O}(\gamma^4) & (j = k) \wedge (i, j, k \in \mathcal{S}_{\text{irr}}) \\ \mathcal{O}(\alpha^3\beta) & (i \in \mathcal{S}_{\text{rob}}) \wedge \{(j \in \mathcal{S}_{\text{rob}} \wedge k \in \mathcal{S}_{\text{vul}}) \vee (j \in \mathcal{S}_{\text{vul}} \wedge k \in \mathcal{S}_{\text{rob}})\} \\ \mathcal{O}(\alpha\beta^3) & (i \in \mathcal{S}_{\text{vul}}) \wedge \{(j \in \mathcal{S}_{\text{rob}} \wedge k \in \mathcal{S}_{\text{vul}}) \vee (j \in \mathcal{S}_{\text{vul}} \wedge k \in \mathcal{S}_{\text{rob}})\} \\ \mathcal{O}(\alpha^2\beta^2) & (i \in \mathcal{S}_{\text{rob}} \wedge j, k \in \mathcal{S}_{\text{vul}}) \vee (i \in \mathcal{S}_{\text{vul}} \wedge j, k \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\alpha^2\gamma^2) & (i \in \mathcal{S}_{\text{irr}} \wedge j, k \in \mathcal{S}_{\text{rob}}) \vee (j = k \wedge j, k \in d_{\text{irr}} \wedge i \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\beta^2\gamma^2) & (i \in \mathcal{S}_{\text{irr}} \wedge j, k \in \mathcal{S}_{\text{vul}}) \vee (j = k \wedge j, k \in d_{\text{irr}} \wedge i \in \mathcal{S}_{\text{vul}}) \\ \mathcal{O}(\alpha\beta\gamma^2) & (i \in \mathcal{S}_{\text{irr}}) \wedge \{(j \in \mathcal{S}_{\text{rob}} \wedge k \in \mathcal{S}_{\text{vul}}) \vee (j \in \mathcal{S}_{\text{vul}} \wedge k \in \mathcal{S}_{\text{rob}})\} \\ 0 & (j \neq k) \wedge (j \in \mathcal{S}_{\text{irr}} \vee k \in \mathcal{S}_{\text{irr}}) \end{cases}. \quad (\text{A194})$$

2039
2040
2041

Proof. We first note that

2042
2043
2044

$$\mathbb{E}[x_i^2] = \mathbb{E}[(yx_i)^2] = \mathbb{E}[(yx_i - \mathbb{E}[yx_i])^2] + \mathbb{E}[yx_i]^2 = \begin{cases} \mathcal{O}(\alpha^2) & (i \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\beta^2) & (i \in \mathcal{S}_{\text{vul}}) \\ \mathcal{O}(\gamma^2) & (i \in \mathcal{S}_{\text{irr}}) \end{cases}, \quad (\text{A195})$$

2045
2046

$$\mathbb{E}[yx_i^3] = \mathbb{E}[(yx_i)^3] \quad (\text{A196})$$

2047

$$= \mathbb{E}[(yx_i - \mathbb{E}[yx_i])^3] + 3\mathbb{E}[(yx_i)^2]\mathbb{E}[yx_i] - 2\mathbb{E}[yx_i]^3 \quad (\text{A197})$$

2048
2049
2050
2051

$$= \begin{cases} \mathcal{O}(\alpha^3) & (i \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\beta^3) & (i \in \mathcal{S}_{\text{vul}}) \\ 0 & (i \in \mathcal{S}_{\text{irr}}) \end{cases}, \quad (\text{A198})$$

2051

$$\mathbb{E}[x_i^4] = \mathbb{E}[(yx_i - \mathbb{E}[yx_i])^4] + 4\mathbb{E}[yx_i^3]\mathbb{E}[yx_i] - 6\mathbb{E}[x_i^2]\mathbb{E}[yx_i]^2 + 3\mathbb{E}[yx_i]^4 \quad (\text{A199})$$

$$\begin{aligned}
&= \begin{cases} \mathcal{O}(\alpha^4) & (i \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\beta^4) & (i \in \mathcal{S}_{\text{vul}}) \\ \mathcal{O}(\gamma^4) & (i \in \mathcal{S}_{\text{irr}}) \end{cases} . \tag{A200}
\end{aligned}$$

(a) For $(i \neq j) \wedge (i \in \mathcal{S}_{\text{irr}} \vee j \in \mathcal{S}_{\text{irr}})$, $\mathbb{E}[x_j x_i] = \mathbb{E}[x_j] \mathbb{E}[x_i] = 0$. Using the Cauthy-Schwarz inequality,

$$\mathbb{E}[x_j x_i] \leq \sqrt{\mathbb{E}[x_j^2]} \sqrt{\mathbb{E}[x_i^2]} \tag{A201}$$

$$\begin{aligned}
&= \begin{cases} \mathcal{O}(\alpha^2) & (i, j \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\beta^2) & (i, j \in \mathcal{S}_{\text{vul}}) \\ \mathcal{O}(\gamma^2) & (i, j \in \mathcal{S}_{\text{irr}}) \wedge (i = j) \\ \mathcal{O}(\alpha\beta) & (i \in \mathcal{S}_{\text{rob}} \wedge j \in \mathcal{S}_{\text{vul}}) \vee (i \in \mathcal{S}_{\text{vul}} \wedge j \in \mathcal{S}_{\text{rob}}) \end{cases} . \tag{A202}
\end{aligned}$$

(b) For $j \in \mathcal{S}_{\text{irr}}, j = i$, $\mathbb{E}[y x_j x_i^2] = \mathbb{E}[y] \mathbb{E}[x_i^3] = 0$. For $j \in \mathcal{S}_{\text{irr}}, j \neq i$, $\mathbb{E}[y x_j x_i^2] = \mathbb{E}[x_j] \mathbb{E}[y x_i^2] = 0$. Using the Cauthy-Schwarz inequality,

$$\mathbb{E}[y x_j x_i^2] \leq \sqrt{\mathbb{E}[x_j^2]} \sqrt{\mathbb{E}[x_i^4]} = \begin{cases} \mathcal{O}(\alpha^3) & (i, j \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\beta^3) & (i, j \in \mathcal{S}_{\text{vul}}) \\ \mathcal{O}(\alpha^2\beta) & (i \in \mathcal{S}_{\text{rob}} \wedge j \in \mathcal{S}_{\text{vul}}) \\ \mathcal{O}(\alpha\beta^2) & (i \in \mathcal{S}_{\text{vul}} \wedge j \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\alpha\gamma^2) & (i \in \mathcal{S}_{\text{irr}} \wedge j \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\beta\gamma^2) & (i \in \mathcal{S}_{\text{irr}} \wedge j \in \mathcal{S}_{\text{vul}}) \end{cases} . \tag{A203}$$

(c) For $(j \neq k) \wedge (j \in \mathcal{S}_{\text{irr}} \vee k \in \mathcal{S}_{\text{irr}})$, $\mathbb{E}[x_j x_k x_i^2] = 0$. For $j = k$, using the Cauthy-Schwarz inequality,

$$\mathbb{E}[x_j x_k x_i^2] \leq \sqrt{\mathbb{E}[x_j^4]} \sqrt{\mathbb{E}[x_i^4]} = \begin{cases} \mathcal{O}(\gamma^4) & (j = k) \wedge (i, j, k \in \mathcal{S}_{\text{irr}}) \\ \mathcal{O}(\alpha^2\gamma^2) & (j = k) \wedge (j, k \in \mathcal{S}_{\text{irr}} \wedge i \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\beta^2\gamma^2) & (j = k) \wedge (j, k \in \mathcal{S}_{\text{irr}} \wedge i \in \mathcal{S}_{\text{vul}}) \end{cases} . \tag{A204}$$

Using the Cauthy-Schwarz inequality,

$$\begin{aligned}
&\mathbb{E}[x_j x_k x_i^2] \\
&\leq \sqrt{\mathbb{E}[x_j^2]} \sqrt{\mathbb{E}[x_k^2]} \sqrt{\mathbb{E}[x_i^4]} \tag{A205}
\end{aligned}$$

$$\begin{aligned}
&= \begin{cases} \mathcal{O}(\alpha^4) & (i, j, k \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\beta^4) & (i, j, k \in \mathcal{S}_{\text{vul}}) \\ \mathcal{O}(\alpha^3\beta) & (i \in \mathcal{S}_{\text{rob}}) \wedge \{(j \in \mathcal{S}_{\text{rob}} \wedge k \in \mathcal{S}_{\text{vul}}) \vee (j \in \mathcal{S}_{\text{vul}} \wedge k \in \mathcal{S}_{\text{rob}})\} \\ \mathcal{O}(\alpha\beta^3) & (i \in \mathcal{S}_{\text{vul}}) \wedge \{(j \in \mathcal{S}_{\text{rob}} \wedge k \in \mathcal{S}_{\text{vul}}) \vee (j \in \mathcal{S}_{\text{vul}} \wedge k \in \mathcal{S}_{\text{rob}})\} \\ \mathcal{O}(\alpha^2\beta^2) & (i \in \mathcal{S}_{\text{rob}} \wedge j, k \in \mathcal{S}_{\text{vul}}) \vee (i \in \mathcal{S}_{\text{vul}} \wedge j, k \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\alpha^2\gamma^2) & (i \in \mathcal{S}_{\text{irr}} \wedge j, k \in \mathcal{S}_{\text{rob}}) \\ \mathcal{O}(\beta^2\gamma^2) & (i \in \mathcal{S}_{\text{irr}} \wedge j, k \in \mathcal{S}_{\text{vul}}) \\ \mathcal{O}(\alpha\beta\gamma^2) & (i \in \mathcal{S}_{\text{irr}}) \wedge \{(j \in \mathcal{S}_{\text{rob}} \wedge k \in \mathcal{S}_{\text{vul}}) \vee (j \in \mathcal{S}_{\text{vul}} \wedge k \in \mathcal{S}_{\text{rob}})\} \end{cases} . \tag{A206}
\end{aligned}$$

□

F PROOF OF THEOREM 3.7 (TRADE-OFF)

Theorem 3.7 (Accuracy-robustness trade-off). Assume $|\mathcal{S}_{\text{rob}}| = 1$, $|\mathcal{S}_{\text{vul}}| = d - 1$, and $|\mathcal{S}_{\text{irr}}| = 0$. In addition to [Assumption 3.2](#), for $(\mathbf{x}, y) \sim \mathcal{D}^{\text{te}}$, suppose that $y x_i$ takes α with probability $p > 0.5$ and $-\alpha$ with probability $1 - p$ for $i \in \mathcal{S}_{\text{rob}}$. Moreover, $y x_i$ takes β with probability one for $i \in \mathcal{S}_{\text{vul}}$. Let $\tilde{f}(\mathbf{P}, \mathbf{Q}) := \mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^N} \stackrel{\text{i.i.d.}}{\sim} \mathcal{D}^{\text{te}} [y_{N+1} [f(\mathbf{Z}_0; \mathbf{P}, \mathbf{Q})]_{d+1, N+1}]$. Then, there exist strictly positive

2106 functions $g_1(d, \alpha, \beta)$ and $g_2(d, \alpha, \beta)$ such that
 2107

$$\tilde{f}(\mathbf{P}^{\text{std}}, \mathbf{Q}^{\text{std}}) = \begin{cases} g_1(d, \alpha, \beta)(\alpha + (d-1)\beta) & (\text{w.p. } p) \\ g_1(d, \alpha, \beta)(-\alpha + (d-1)\beta) & (\text{w.p. } 1-p) \end{cases}, \quad (10)$$

$$\tilde{f}(\mathbf{P}^{\text{adv}}, \mathbf{Q}^{\text{adv}}) \leq g_2(d, \alpha, \beta)\{-(2p-1)\alpha^2 + (d-1)\beta^2\} \quad (\text{w.p. } 1-p). \quad (11)$$

2113 *Proof.* Using \mathbf{b} and \mathbf{A} defined in [Appendix D](#), we can rearrange $\tilde{f}(\mathbf{P}, \mathbf{Q})$ as
 2114

$$\tilde{f}(\mathbf{P}, \mathbf{Q}) := \mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^N} [y_{N+1} [f(\mathbf{Z}_0; \mathbf{P}, \mathbf{Q})]_{d+1, N+1}] \quad (A207)$$

$$= \frac{1}{N} \mathbf{b}^\top \mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^N} [\mathbf{Z}_0 \mathbf{M} \mathbf{Z}_0^\top] \mathbf{A} y_{N+1} \mathbf{x}_{N+1}. \quad (A208)$$

2118 **Standard Transformer.** Similarly to the proof of [Theorem 3.5](#), using some positive function
 2119 $g(d, \alpha, \beta) > 0$, we can represent $\mathbb{E}[\mathbf{b}^\top \mathbf{Z}_0 \mathbf{M} \mathbf{Z}_0^\top \mathbf{A} / N] = [g(d, \alpha, \beta) \cdots g(d, \alpha, \beta)]$. Thus,
 2120

$$\frac{1}{N} \mathbf{b} \mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^N} [\mathbf{Z}_0 \mathbf{M} \mathbf{Z}_0^\top] \mathbf{A} y_{N+1} \mathbf{x}_{N+1} = \begin{bmatrix} g(d, \alpha, \beta) \\ \vdots \\ g(d, \alpha, \beta) \end{bmatrix}^\top y_{N+1} \mathbf{x}_{N+1} \quad (A209)$$

$$= g(d, \alpha, \beta) y_{N+1} \sum_{i=1}^d x_{N+1, i} \quad (A210)$$

$$= \begin{cases} \alpha + (d-1)\beta & (\text{w.p. } p) \\ -\alpha + (d-1)\beta & (\text{w.p. } 1-p) \end{cases}. \quad (A211)$$

2130 **Adversarially Trained Transformer.** Now,

$$\begin{aligned} & \frac{1}{N} \mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^N} [\mathbf{Z}_0 \mathbf{M} \mathbf{Z}_0^\top] \\ &= \begin{bmatrix} \mathbb{E}[(\mathbf{y}\mathbf{x})(\mathbf{y}\mathbf{x}^\top)] & \mathbb{E}[\mathbf{y}\mathbf{x}] \\ \mathbb{E}[\mathbf{y}\mathbf{x}^\top] & 1 \end{bmatrix} \end{aligned} \quad (A212)$$

$$= \begin{bmatrix} \alpha^2 & (2p-1)\alpha\beta & \cdots & (2p-1)\alpha\beta & (2p-1)\alpha \\ (2p-1)\alpha\beta & \beta^2 & \cdots & \beta^2 & \beta \\ (2p-1)\alpha\beta & \beta^2 & \cdots & \beta^2 & \beta \\ \vdots & & & & \\ (2p-1)\alpha\beta & \beta^2 & \cdots & \beta^2 & \beta \\ (2p-1)\alpha & \beta & \cdots & \beta & 1 \end{bmatrix}. \quad (A213)$$

2142 Thus,

$$\frac{1}{N} \mathbf{b}^\top \mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^N} [\mathbf{Z}_0 \mathbf{M} \mathbf{Z}_0^\top] \mathbf{A} = \begin{bmatrix} \alpha\{\alpha + (d-1)(2p-1)\beta + (2p-1)\} \\ \beta\{(2p-1)\alpha + (d-1)\beta + 1\} \\ \vdots \\ \beta\{(2p-1)\alpha + (d-1)\beta + 1\} \end{bmatrix}^\top. \quad (A214)$$

2148 Therefore,

$$\begin{aligned} & \frac{1}{N} \mathbf{b}^\top \mathbb{E}_{\{(\mathbf{x}_n, y_n)\}_{n=1}^N} [\mathbf{Z}_0 \mathbf{M} \mathbf{Z}_0^\top] \mathbf{A} y_{N+1} \mathbf{x}_{N+1} \\ &= \begin{bmatrix} \alpha\{\alpha + (d-1)(2p-1)\beta + (2p-1)\} \\ \beta\{(2p-1)\alpha + (d-1)\beta + 1\} \\ \vdots \\ \beta\{(2p-1)\alpha + (d-1)\beta + 1\} \end{bmatrix}^\top \begin{bmatrix} y_{N+1} x_{N+1, 1} \\ \beta \\ \vdots \\ \beta \end{bmatrix} \end{aligned} \quad (A215)$$

$$= \begin{cases} \alpha^2\{\alpha + (d-1)(2p-1)\beta + (2p-1)\} & (\text{w.p. } p) \\ +(d-1)\beta^2\{(2p-1)\alpha + (d-1)\beta + 1\} & \\ -\alpha^2\{\alpha + (d-1)(2p-1)\beta + (2p-1)\} & \\ +(d-1)\beta^2\{(2p-1)\alpha + (d-1)\beta + 1\} & (\text{w.p. } 1-p) \end{cases}. \quad (A216)$$

2160 In particular,

$$\begin{aligned} & -\alpha^2\{\alpha + (d-1)(2p-1)\beta + (2p-1)\} + (d-1)\beta^2\{(2p-1)\alpha + (d-1)\beta + 1\} \\ & = \{(2p-1)\alpha + (d-1)\beta + 1\}(-C\alpha^2 + (d-1)\beta^2), \end{aligned} \quad (\text{A217})$$

2165 where

$$\begin{aligned} C &= \frac{\alpha + (d-1)(2p-1)\beta + (2p-1)}{(2p-1)\alpha + (d-1)\beta + 1} > \frac{(2p-1)^2\alpha + (d-1)(2p-1)\beta + (2p-1)}{(2p-1)\alpha + (d-1)\beta + 1} \quad (\text{A218}) \\ &= 2p-1. \end{aligned} \quad (\text{A219})$$

2170 \square

2172 G PROOF OF THEOREM G.1 (NEED FOR LARGER SAMPLE SIZE)

2174 **Theorem G.1** (Need for Larger Sample Size). Assume the same assumptions in [Theorem 3.7](#). Then,

$$\mathbb{E}_{\mathbf{x}_{N+1}, y_{N+1}}[y_{N+1}[f(\mathbf{Z}_0; \mathbf{P}^{\text{std}}, \mathbf{Q}^{\text{std}})]_{d+1, N+1}] > 0 \quad (\text{w.p. at least } 1 - e^{-pN}). \quad (\text{A220})$$

2178 In addition, suppose that there exists a constant $0 < C < 1$ such that $(d-1)\beta + 1 < C\alpha$. Moreover, 2179 assume that N is an even number. Then, as $p \rightarrow \frac{1}{2}$ with $p > \frac{1}{2}$, for $4 \leq N \leq \frac{2}{C}$,

$$\begin{aligned} & \mathbb{E}_{\mathbf{x}_{N+1}, y_{N+1}}[y_{N+1}[f(\mathbf{Z}_0; \mathbf{P}^{\text{adv}}, \mathbf{Q}^{\text{adv}})]_{d+1, N+1}] > 0 \\ & \left(\text{w.p. at most } 1 - \frac{0.483}{\sqrt{N}} < 1 - e^{-pN} \right). \end{aligned} \quad (\text{A221})$$

2185 *Proof.* Using \mathbf{b} and \mathbf{A} defined in [Appendix D](#), we can calculate

$$\mathbb{E}_{\mathbf{x}_{N+1}, y_{N+1}}[y_{N+1}[f(\mathbf{Z}_0; \mathbf{P}, \mathbf{Q})]_{d+1, N+1}] = \frac{1}{N} \mathbf{b}^\top \mathbf{Z}_0 \mathbf{M} \mathbf{Z}_0^\top \mathbf{A} \mathbb{E}[y_{N+1} \mathbf{x}_{N+1}]. \quad (\text{A222})$$

2189 Now,

$$\begin{aligned} & \frac{1}{N} \mathbf{Z}_0 \mathbf{M} \mathbf{Z}_0^\top \\ &= \begin{bmatrix} \alpha^2 & \frac{\beta}{N} \sum_{n=1}^N y_n x_{n,1} & \cdots & \frac{\beta}{N} \sum_{n=1}^N y_n x_{n,1} & \frac{1}{N} \sum_{n=1}^N y_n x_{n,1} \\ \frac{\beta}{N} \sum_{n=1}^N y_n x_{n,1} & \beta^2 & \cdots & \beta^2 & \beta \\ \frac{\beta}{N} \sum_{n=1}^N y_n x_{n,1} & \beta^2 & \cdots & \beta^2 & \beta \\ \vdots & & & & \\ \frac{\beta}{N} \sum_{n=1}^N y_n x_{n,1} & \beta^2 & \cdots & \beta^2 & \beta \\ \frac{1}{N} \sum_{n=1}^N y_n x_{n,1} & \beta & \cdots & \beta & 1 \end{bmatrix}. \end{aligned} \quad (\text{A223})$$

2201 **Standard Transformer.** From the configuration of \mathbf{b} and \mathbf{A} , all the entries of $\mathbf{b}^\top \mathbf{Z}_0 \mathbf{M} \mathbf{Z}_0^\top \mathbf{A}$ are the 2202 same. Since all the entries of $\mathbb{E}[y_{N+1} \mathbf{x}_{N+1}]$ are positive, with some positive function $g(d, \alpha, \beta) > 0$,

$$\frac{1}{N} \mathbf{b}^\top \mathbf{Z}_0 \mathbf{M} \mathbf{Z}_0^\top \mathbf{A} \mathbb{E}[y_{N+1} \mathbf{x}_{N+1}] = g(d, \alpha, \beta) \frac{1}{N} \mathbf{1}_{d+1}^\top \mathbf{Z}_0 \mathbf{M} \mathbf{Z}_0^\top \mathbf{1}_{d+1}. \quad (\text{A224})$$

2206 Now,

$$\begin{aligned} & \frac{1}{N} \mathbf{1}_{d+1}^\top \mathbf{Z}_0 \mathbf{M} \mathbf{Z}_0^\top \mathbf{1}_{d+1} \\ &= (d-1)^2 \beta^2 + 2(d-1)\beta + 1 + \alpha^2 + \frac{2}{N} \sum_{n=1}^N y_n x_{n,1} + 2(d-1) \frac{\beta}{N} \sum_{n=1}^N y_n x_{n,1} \end{aligned} \quad (\text{A225})$$

$$= \{(d-1)\beta + 1\}^2 + \alpha^2 + \frac{2\{(d-1)\beta + 1\}}{N} \sum_{n=1}^N y_n x_{n,1} \quad (\text{A226})$$

$$2214 = [\{(d-1)\beta + 1\} - \alpha]^2 + \frac{2\{(d-1)\beta + 1\}}{N} \sum_{n=1}^N (\alpha + y_n x_{n,1}) \quad (A227)$$

$$2217 > 0 \quad (\text{w.p. at least } 1 - (1-p)^N > 1 - e^{-pN}). \quad (A228)$$

2219 **Adversarially Trained Transformer.** Note that $\mathbb{E}[y_{N+1} \mathbf{x}_{N+1}] = [(2p-1)\alpha \ \beta \ \dots \ \beta]$. Thus,

$$2221 \frac{1}{N} \mathbf{1}_{d+1}^\top \mathbf{Z}_0 \mathbf{M} \mathbf{Z}_0^\top \mathbf{I}_d \mathbb{E}[y_{N+1} \mathbf{x}_{N+1}] \\ 2222 = (2p-1)\alpha \left(\alpha^2 + (d-1) \frac{\beta}{N} \sum_{n=1}^N y_n x_{n,1} + \frac{1}{N} \sum_{n=1}^N y_n x_{n,1} \right) \\ 2223 + (d-1)\beta \left(\frac{\beta}{N} \sum_{n=1}^N y_n x_{n,1} + (d-1)\beta^2 + \beta \right) \quad (A229)$$

$$2228 = [(2p-1)\alpha^3 + (d-1)\beta^2\{(d-1)\beta + 1\}] \\ 2229 + [(2p-1)\alpha\{(d-1)\beta + 1\} + (d-1)\beta^2] \frac{1}{N} \sum_{n=1}^N y_n x_{n,1}. \quad (A230)$$

2233 This indicates $\mathbb{E}_{\mathbf{x}_{N+1}, y_{N+1}}[y_{N+1} f(\mathbf{Z}_0; \mathbf{P}^{\text{adv}}, \mathbf{Q}^{\text{adv}})]_{d+1, N+1} > 0$ only if

$$2234 \frac{1}{N} \sum_{n=1}^N y_n x_{n,1} > -\frac{(2p-1)\alpha^3 + (d-1)\beta^2\{(d-1)\beta + 1\}}{(2p-1)\alpha\{(d-1)\beta + 1\} + (d-1)\beta^2}. \quad (A231)$$

2237 Representing $y_n x_{n,1} = \alpha(2X_n - 1)$ with X_n taking 1 with probability p and 0 with probability
2238 $1 - p$,

$$2240 \frac{1}{N} \sum_{n=1}^N \alpha(2X_n - 1) > -\frac{(2p-1)\alpha^3 + (d-1)\beta^2\{(d-1)\beta + 1\}}{(2p-1)\alpha\{(d-1)\beta + 1\} + (d-1)\beta^2} \\ 2243 \iff \sum_{n=1}^N X_n > \frac{N}{2} \left(1 - \frac{1}{\alpha} \frac{(2p-1)\alpha^3 + (d-1)\beta^2\{(d-1)\beta + 1\}}{(2p-1)\alpha\{(d-1)\beta + 1\} + (d-1)\beta^2} \right). \quad (A232)$$

2245 Let $Y \sim B(N, p)$, where $B(N, p)$ is the Binomial distribution. Consider the following probability:

$$2247 \mathbb{P}_{Y \sim B(N, p)} \left[Y > \frac{N}{2} \left(1 - \frac{1}{\alpha} \frac{(2p-1)\alpha^3 + (d-1)\beta^2\{(d-1)\beta + 1\}}{(2p-1)\alpha\{(d-1)\beta + 1\} + (d-1)\beta^2} \right) \right]. \quad (A233)$$

2250 When $p \rightarrow 1/2$,

$$2251 \mathbb{P}_{Y \sim B(N, p)} \left[Y > \frac{N}{2} \left(1 - \frac{1}{\alpha} \frac{(2p-1)\alpha^3 + (d-1)\beta^2\{(d-1)\beta + 1\}}{(2p-1)\alpha\{(d-1)\beta + 1\} + (d-1)\beta^2} \right) \right] \\ 2254 \rightarrow \mathbb{P}_{Y \sim B(N, 1/2)} \left[Y > \frac{N}{2} \left(1 - \frac{(d-1)\beta + 1}{\alpha} \right) \right] \quad (A234)$$

$$2256 \leq \mathbb{P}_{Y \sim B(N, 1/2)} \left[Y > \frac{N}{2} (1 - C) \right] \quad (A235)$$

$$2259 \leq \mathbb{P}_{Y \sim B(N, 1/2)} \left[Y > \frac{N}{2} - 1 \right]. \quad (A236)$$

2261 From [Ash \(1990\)](#), for an integer $0 < k < N/2$,

$$2262 \mathbb{P}_{Y \sim B(N, 1/2)}[Y \leq k] \geq \frac{1}{\sqrt{8N} \frac{k}{N} (1 - \frac{k}{N})} \exp \left(-ND \left(\frac{k}{N} \middle/ \frac{1}{2} \right) \right), \quad (A237)$$

2265 where D is the Kullback–Leibler divergence. Substituting $k = \frac{N}{2} - 1$,

$$2267 \mathbb{P}_{Y \sim B(N, 1/2)} \left[Y \leq \frac{N}{2} - 1 \right]$$

2268
 2269

$$\geq \frac{1}{\sqrt{8N(\frac{1}{2} - \frac{1}{N})\{1 - (\frac{1}{2} - \frac{1}{N})\}}} \exp\left(-ND\left(\frac{1}{2} - \frac{1}{N} \middle/ \frac{1}{2}\right)\right) \quad (\text{A238})$$
 2270
 2271

2272

$$= \frac{1}{\sqrt{2(1 - \frac{4}{N^2})}} \frac{1}{\sqrt{N}} \exp\left(-ND\left(\frac{1}{2} - \frac{1}{N} \middle/ \frac{1}{2}\right)\right). \quad (\text{A239})$$
 2273

2274 Note that

2275

$$D\left(\frac{1}{2} - \frac{1}{N} \middle/ \frac{1}{2}\right) = \frac{1}{2} \left\{ \left(1 - \frac{2}{N}\right) \ln\left(1 - \frac{2}{N}\right) + \left(1 + \frac{2}{N}\right) \ln\left(1 + \frac{2}{N}\right) \right\}. \quad (\text{A240})$$
 2276
 2277

2278 For $N \geq 4$,

2279

$$\frac{1}{\sqrt{2(1 - \frac{4}{N^2})}} \exp\left(-ND\left(\frac{1}{2} - \frac{1}{N} \middle/ \frac{1}{2}\right)\right) > 0.483. \quad (\text{A241})$$
 2280
 2281
 2282

2283 In summary,

2284

$$\mathbb{P}_{Y \sim B(N, 1/2)} \left[Y > \frac{N}{2} - 1 \right] = 1 - \mathbb{P}_{Y \sim B(N, 1/2)} \left[Y \leq \frac{N}{2} - 1 \right] \leq 1 - \frac{0.483}{\sqrt{N}}. \quad (\text{A242})$$
 2285
 2286

2287 \square

2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321