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Abstract
Unmanned aerial vehicles could accurately accomplish complex navigation and ob-
stacle avoidance tasks under external control. However, enabling unmanned aerial
vehicles (UAVs) to rely solely on onboard computation and sensing for real-time
navigation and dynamic obstacle avoidance remains a significant challenge due to
stringent latency and energy constraints. Inspired by the efficiency of biological
systems, we propose a fully neuromorphic framework achieving end-to-end obsta-
cle avoidance during navigation with an overall latency of just 2.3 milliseconds.
Specifically, our bio-inspired approach enables accurate moving object detection
and avoidance without requiring target recognition or trajectory computation. Ad-
ditionally, we introduce the first monocular event-based pose correction dataset
with over 50,000 paired and labeled event streams. We validate our system on
an autonomous quadrotor using only onboard resources, demonstrating reliable
navigation and avoidance of diverse obstacles moving at speeds up to 10 m/s under
different light conditions, with energy consumption reduced to 21% compared to
traditional architecture.

1 Introduction

The utilization of UAVs across various applications expanded rapidly over the past decade [1].
Currently, most UAVs rely heavily on external aids such as positioning systems like Global Positioning
System (GPS) [2] for localization and ground stations [3] for navigation and dynamic obstacle
avoidance. However, such external aid is not feasible in all circumstances as it could be easily
jammed [4] or interfered in multiple scenarios, including dense urban areas [5], caves, or even war
zones [6]. Therefore, it is vital for UAVs to fully perform navigation and dynamic obstacle avoidance
tasks using only sensors and computing resources onboard, without any dependence on external
signals or infrastructure. Although applicable options are well researched, most solutions are designed
for larger platforms but not for tiny UAV systems [7]. Ranging sensors like the Li-DAR system
could provide accurate positioning information, but are too heavy and power-hungry to be deployed
on tiny autonomous systems [8]. Vision-based approach may be an appropriate way for tiny UAVs
since, firstly, visual sensors can be both lightweight and power-efficient [9, 10, 11]. Secondly, visual
algorithms achieve state-of-the-art performance in multiple tasks. However, such high performance
comes at excessive computational and memory costs. Mainstream approaches like simultaneous
localization and mapping (SLAM) algorithms [12] and object recognition-based trajectory estimation
methods [13, 14, 15] consume hundreds of megabytes to several gigabytes of memory and hundreds
of gigaflops [16]. Such high consumption makes tiny UAV autonomy challenging.

Neuromorphic hardwares provide a solution to this problem since the asynchronous and sparse nature
of their biomimetic data format could exceed the current standard of energy efficiency, computational
consumption, and task accuracy, and thus represents a paradigm shift compared to the traditional
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computer vision approach [17, 18, 19]. Ideally, such data structure could lead to a data processing
method with higher processing speed and lower energy consumption, but contemporary methods treat
event data similar to a traditional image frame [20, 21] using "event frames" [22, 23, 24, 25], and
hence fails to fully leverage the inherent sparsity of event streams [26], resulting in a performance
similar to traditional methods. Inspired by the efficiency of biological systems, we observed frogs can
accurately localize fast-moving insects while exhibiting significant disregard for stationary objects.
Our further anatomical analysis of their visual neural pathways revealed a striking similarity between
the frog’s predatory behavior and the working principles of real-time scene interaction; hence, by
leveraging this similarity, a purely neuromorphic dynamic obstacle avoidance approach—mimicking
frog visual neurons becomes feasible.

In this paper, we exhibit a fully neuromorphic pipeline. With only one monocular event camera and
an inertial measurement unit (IMU), the autonomous UAV could accomplish the navigation task and
the dynamic obstacle avoidance task simultaneously, purely with its onboard computing resources
without any external aid. In the navigation module, the quadrotor uses IMU data to navigate long
distances, and by coupling the visual-homing algorithm and event data, the quadrotor employs an
SCNN network to mitigate the effects of error drift. To the best of our knowledge, we construct the
first monocular event-based pose correction dataset with 50,234 paired event streams, each labeled
with its ground truth extrinsic obtained by a motion capture system. In the obstacle avoidance module,
by implementing our bio-inspired algorithm, the quadrotor could suppress the events produced by
static objects. With only events generated by dynamic objects preserved, the algorithm bypasses target
recognition and trajectory computation steps, directly outputting evasion maneuvers, and reduces the
latency of obstacle avoidance to only 2.3 milliseconds. The significantly reduced latency provides
UAVs with a longer time window for evasion maneuvers, substantially enhancing their performance
when encountering high-speed moving objects. The comparative evaluation with other state-of-
the-art dynamic obstacle approaches demonstrates the superior performance of our neuromorphic
architecture and bio-inspired algorithm. Additionally, we have validated the effectiveness and
robustness of our approach in real-world environments through physical flight experiments under
different light conditions, with energy consumption reduced to 21% compared to the traditional
structure.

In summary, our contributions to the community include:

• A fully neuromorphic framework enabling tiny UAVs to rely solely on onboard computation
and sensing for real-time navigation and dynamic obstacle avoidance.

• A bio-inspired approach enabling tiny UAVs to accurately avoid dynamic obstacles at speeds
up to 10 m/s with a latency of 2.3 milliseconds.

• An open-sourced monocular event-based pose correction dataset with over 50,234 paired
and labeled event streams.

2 Related Work

2.1 Neuromorphic Control of Quadrotors

While some studies discuss the topic of neuromorphic control on objects like larger robots and robot
arms [27, 28, 29], the neuromorphic control system on quadrotors remains an underexplored area in
research. A Viale et al. [30] proposed the first example of a neuromorphic vision-based controller
solving a high-speed UAV control task by using a spiking neuronal network with an Intel Loihi chip
[31]. Dupeyroux et al. [32] accomplished the task of UAV landing with a 3-layer spiking neuronal
network on Loihi, and recently, Paredes-Vallés et al. proposed the first fully neuromorphic vision
and control pipeline for controlling an autonomous quadrotor and made the quadrotor successfully
take off, fly along a given route, and then land [33]. The study of neuromorphic control of quadrotors
is highly restricted by the hardware performance of embedded neuromorphic processing platforms
[34, 35] in terms of the number of available neurons and synapses. The Intel Kapoho Bay with 2
Loihi chips [31] carries 262,100 neurons [30], and the SpiNNaker(SNN architecture) version [36]
has 768,000 neurons. Though higher-neuron neuromorphic platforms expand computational capacity,
they remain inadequate for tasks like optical flow estimation (requiring > 3.7M neurons [37]). In this
work, we use Speck [38], a neuromorphic SoC (System on Chip) with 327,000 neurons [39] that
could support at most 8 layers of SNNs.
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2.2 Visual-homing Algorithm

Visual-homing comes from the idea that small insects such as ants and bees can navigate long
distances despite their tiny brains. The mechanism behind such behavior can be categorized into two
parts: path integration and drift error elimination. Cartwright and Collet [40] first proposed a snapshot
model that describes the homing behavior of bees, and researchers in the field of robotics use this
concept to develop efficient navigation algorithms for tiny robots [41, 42]. Subsequent researches
focus on reducing the memory required for visual-homing, and has been made in two directions. The
first is the reduction of the memory consumed by snapshots: Stürzl and Mallot [43] transformed the
snapshot into the frequency domain and remembered only the lowest-frequency component, and
reduced the size of the snapshot remarkably. The second direction is to increase the spacing between
snapshots. Denuelle and Srinivasan [44] proposed a study that uses the homing vector as a position
estimate relative to the snapshot, enabling the drone to navigate some distance toward the next
snapshot area. Van Dijk et al. [45] combined two directions and successfully deployed visual-homing
on a tiny 56-gram autonomous drone with one panoramic camera. For detailed biological concepts,
please take a look at the supplementary note 3.

2.3 Frog-eye Receptive Field

In nature, frogs’ visual systems exhibit high-fidelity motion detection for fast-moving objects with
deliberate suppression of static background stimuli. The observed motion selectivity stems from
specialized receptive field organization in the anuran retinotectal system [46, 47]. During the
past decades, researchers conducted extensive research on such a mechanism and found that R3
ganglion cells respond to stimuli to ON-OFF brightness changes, create motion-sensitive detection
zones[48, 49, 50]. In the standard model of such detection zones, ERF (excitatory receptive field)
and IRF (inhibitory receptive field) generate symmetrical excitatory and inhibitory responses to
ON-OFF stimuli. Extending these findings, Hoshino et al.[51] identified a functional asymmetry in
the spatial organization of ERF and IRF. For detailed biological concepts, please take a look at the
supplementary note 3.

2.4 Dynamic Obstacle Avoidance

The dynamic obstacle avoidance problem for unmanned aerial vehicles has been widely researched in
recent years, but mainly in the aspect of quasi-static environment[52] and low-speed obstacles. Even
though existing literature that relies on monocular vision[53, 54, 55, 14], stereo vision[56, 57]and
depth camera [13, 58, 59] exhibits satisfactory performance on slow-moving objects like pedestrians
[60], their performance dealing with high-speed dynamic obstacles like thrown balls, birds[61] and
even other unmanned aerial vehicles cannot meet the requirement of real-time avoidance. However,
despite Falanga et al.[26] displaying the concept of using event stream directly, many researchers still
treat events in the form of "event frame" [23]. To the best of our knowledge, this is the first work
that implements low-latency (2.3 milliseconds) dynamic obstacle avoidance when the quadrotor is
executing a navigation task without the help of any external infrastructure.

3 Methods

In this section, we introduce our neuromorphic navigation and dynamic obstacle avoidance pipeline,
which includes a neuromorphic control framework that allocates computing resources to minimize
evasion latency and maximize navigation correctness, an event-visual-homing based end-to-end
method and a bio-inspired dynamic obstacle avoidance algorithm that reduces the latency of obstacle
detection to 2.3 milliseconds and applicable for dodging multiple high-speed obstacles when the
drone is navigating to its destination.

3.1 Overview of Neuromorphic Control

The neuromorphic control framework is implemented on the Speck Neuromorphic SoC [38] and
deployed on a small quadrotor for navigation and dynamic obstacle avoidance. The schematic of
the quadrotor is illustrated in Fig. 2. In this framework, we assume the quadrotor first performs an
outbound flight towards a designated target, which could be under any control law, including manual
control, and then performs an inbound navigation and avoids multiple dynamic obstacles during
this navigation in a fully autonomous fashion. Since our focus is on the navigation and dynamic
obstacle avoidance during the inbound flight, we assume the outbound flight is performed without
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Figure 1: Overview of the whole task. During the outbound flight, which could be under any control
law (1) and periodically records event stream (2). During the inbound flight, the quadrotor uses
IMU information to travel to the location near next snapshot point and avoid any dynamic obstacles
during its flight (3), and then records event stream continuously to recalibrate it’s position (4) until the
distance to the snapshot point is smaller than the threshold (5). These steps repeat until the quadrotor
reaches its destination.

any collision, the environment is static (surroundings don’t change), and no dynamic obstacles appear
when the quadrotor is recalibrating the drift error of the IMU.

To minimize the obstacle avoidance latency under strict computational resource restriction [38] for
longer response windows and higher success rates, we need to minimize the resources used for
navigation. By introducing visual-homing, navigation during most of the flight is accomplished
solely by odometry with negligible computational overhead, thereby reserving sufficient resources
for obstacle avoidance. Moreover, both the calibration phase and obstacle avoidance module share
the same monocular event camera, which not only reduces computational load but also significantly
decreases the UAV’s payload, ultimately enhancing its motion performance.

3.2 Event Visual-homing

IMU During the outbound flight, the quadrotor records all IMU information it produces without
any correction. Generally, the IMU drift error stacks over time and will gradually become too large

Figure 2: Schematic of the neuromorphic quadrotor system The left part is the quadrotor used
in this work, total weight of 856 g; tip-to-tip diameter of 240 mm, with the numbers indicating
the components in the right part. The right part is the hardware overview with the display of data
flow, with components divided into two frameworks: the neuromorphic framework and the motion
framework. One for processing neuromorphic data and the other one processing the movement
control.
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Figure 3: Illustration of Visual-homing and CalibNet.The quadrotor continuously calibrates itself
in the catchment area until it reaches the snapshot zone. The catchment area is defined as a circular
region with a 60cm radius, within which the quadrotor must remain positioned when initiating the
calibration process. The snapshot zone constitutes a smaller 20cm-radius circular area centered
within the catchment area; calibration terminates once the quadrotor enters this central zone.

to provide applicable navigation information for the quadrotor[62]. A simplified version of the
stack-over-time error can be defined as follows:

δrN = δrN,0 + δvN,0,t +
1

2
(g · δΘ0 + bαN )t2 +

1

6
(g · bgE)t3 (1)

where δrN,0 is the initial position error, remains the same for all time; δvN,0,t is the initial velocity
error with linear amplification; g · δΘ0 denotes initial attitude angle error, bαN denotes accelerometer
error, and the third term exhibits quadratic divergence; g · bgE denotes angular velocity error, and the
last term exhibits cubic divergence. As shown in the formula, the IMU error exhibits approximately
cubic drift over time. We let the quadrotor use a visual-homing algorithm to periodically return to
snapshot positions, and recalibrate IMU drift error before the error aggregates too high. After the
homing, the only error is the homing error during the recalibration process.

Event-based Drift Error Recalibration Network As we have shown in formula 1, we can
periodically recalibrate the error caused by drift before it becomes too large, thereby keeping it at a
relatively small level consistently. By quantitatively analyzing IMU error propagation, as shown in
supplementary material 8, we can estimate the maximum potential position drift of the quadrotor, and
set the calibration interval to a value that guarantees the quadrotor will remain within the catchment
area. To fully utilize the advantage of event data and a neuromorphic framework, we use an SCNN
(spiking convolutional neural network) with a Siamese structure [63]. The feature extractor of the
network extracts features from two continuous event streams with a temporal time window of 50
ms. The first event stream is filmed at snapshot position during the outbound flight, and the second
event stream is filmed near snapshot position during the inbound flight. Two feature tensors are then
concatenated and passed to the calibration module. Finally, the network outputs a vector containing
the relative x, y coordinate differences and the yaw angle difference between two captured points, as
illustrated in Figure. 3.

To solve the scale issue which makes the network impossible to determine the absolute scale of object
brought by the monocular event camera, we train the network using data obtained in a similar-scale
environment and design a cyclic correction method where the UAV continues capturing event stream
from the corrected position and performs repeated correction until the position error output by the
network falls below a specific threshold. Training details are shown in supplementary note 6.
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(A) Raw Event (B) ERF (C) IRF (D) Event RF (E) Raw PF (F) Diffused PF

Figure 4: Illustration of the workflow of the Event RF Model and the potential field movement
command generator. The UAV avoids dynamic obstacles’ high-energy zones via the gradient descent
method. The red dot is the representation of the quadrotor and the length and direction of the red
arrow represent the moving direction and speed of the quadrotor.

Dataset To address the absence of benchmark data for monocular event-based pose correction, we
constructed a novel dataset containing 50,234 event stream pairs, each precisely annotated with 4-DoF
relative pose (∆x,∆y,∆z,∆ϕ) ground truth. There are four distinct indoor scenarios contained
in the dataset, and maximum object-camera proximity is constrained to a 10-meter range. The
camera was mounted on a DJI Ronin SC gimbal (±0.02◦ stabilization accuracy) during shooting,
which eliminated the influence of pitch and roll angles while simulating the stabilized attitude of a
drone equipped with flight controllers. The ground truth of camera’s shooting position is obtained
by a motion capture system with 12 Vicon Vero 2.2 motion capture camera, each featuring with a
resolution of 2048 x 1088 and a max frame rate of 330 Hz.

3.3 Bio-inspired Dynamic Obstacle Avoidance

Event Receptive Field Model The brightness-sensitive biological mechanism behind anuran
ganglion cells exhibits isomorphic correspondence with event-based vision sensing. By leveraging the
ERF-IRF spatial asymmetry, we proposed an Event RF (receptive field) model, used for suppressing
the event stream produced by static objects and background, and enhancing the event stream produced
by dynamic obstacles:
F (x, y, en, t) = min(A1K(t, τe)G(x, y, en), Eth)−min(A2K(t−∆t, τi)G(x, y, en), Ith) (2)

where A1 is ERF parameter, A2 is IRF parameter, τ is energy decay parameter, ∆t is IRF delay
parameter, and K(t, τ) is time kernel function:

K(t, τ) =

{
e−t/τ t ≥ 0

0 t < 0
(3)

and the first term min(A1K(t, τe)G(x, y, en), Eth) is the ERF energy level, while Eth is ERF
energy threshold, the second term min(A2K(t − ∆t, τi)G(x, y, en), Ith) is the IRF suppression
level, while Ith is the IRF suppression threshold.

en is the event passed to the model, with its coordinates and timestamp as (xn, yn, tn). G(x, y, en)
is the Gaussian kernel function:

G(x, y, en) =
1

2πσxσy
exp(− (x− xn)

2

2σ2
x

− (y − yn)
2

2σ2
y

) (4)

where σx and σy are standard deviations along the major and minor axes of the 2D elliptical Gaussian
function.In this model, the event stream from static objects is quickly suppressed by the IRF, which
drives the energy level close to zero. In contrast, the event stream produced by moving objects resists
suppression, allowing it to maintain a high energy level persistently, as shown in Fig. 4A–4D. The
demonstration of the equivalence between the dynamic and static event selection mechanism of Event
RF model and the receptive field mechanism of the frog eye can be found in the supplementary note
2.

Potential Field Based Movement Command Generator We proposed a potential field-based
method to generate movement commands from the processed event stream obtained from the Event
RF Model. By converting the energy map directly to the activation map, we can consider the event
camera’s field of view as a 2-dimensional plane and construct potential on this plane based on the
energy level of the event stream, as shown in Fig. 4E. After removing the points with excessively low
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potential in this potential field (here we set the threshold as half of the maximum potential), we can
consider that the potential field fully represents the moving obstacles within the event camera’s field
of view, as shown in Fig. 4F.

Since we are using a monocular event camera as the only sensor to capture the dynamic obstacle, the
depth information of the dynamic obstacle cannot be obtained, which means obstacles far from the
quadrotor can also be considered as dangerous objects that need to be avoided. To solve this, we use
the Two-Pass Algorithm to make a connected component detection. Neglecting the potential level of
points, we consider points with potential as 1 and points without potential as 0, and convert the map
to a binary image I:

I = {I(i, j)|I(i, j) ∈ {0, 1}, 1 ≤ i ≤ H, 1 ≤ j ≤ W} (5)
By making the connected component detection, we can assess the danger level of dynamic obstacles
based on the proportion of their potential field regions occupying the entire field of view. For those
dangerous potential field clusters, we define a dilation function:

(I ⊕B)(x, y) = max I(x+ i)(y + j) for (i, j) ∈ B (6)
where ⊕ is the symbol of dilation operation, (x, y) is the coordinate of the point in the plane surface,
(i, j) is the offset in the structuring element B.
After the dilation process, since we can consider the position of the quadrotor in the center of the
potential field map, we can now determine the motion direction and motion intensity of the quadrotor
using gradient descent in the artificial potential field.

4 Experiments

4.1 Simulation Experiments
Before combining visual navigation and dynamic obstacle avoidance into a single neuromorphic
system, we conducted separate experiments to verify the effectiveness of each part. The whole
simulation experiment is in the Gazebo simulation environment.

Visual-homing Navigation We trained the Siamese Network using the dataset we constructed, and
we test the navigation process in three different customized maps, with difficulty from low to high.
The flight distance is 40 meters for the easiest map and 130 meters for the other two maps.
Fig. 3 shows the resulting trajectories for the proposed method. The quadrotor successfully and
steadily followed the route of outbound flight and reached the starting point. Based on the calculated
drift error propagation, we set the snapshot interval at 7.5 meters, with each snapshot occupying
240 KB of storage space. We conducted repeated experiments to analyze the propagation degrees of
X-axis translations, Y-axis translations, and yaw angle errors. By obtaining these data, we ensured
that under our setting of calibration interval, the quadrotor’s positional drift remains strictly bounded
within the designated 60cm-radius catchment area. Details on IMU error analysis can be found in
supplementary note 8. We test the navigation procedure 10 times in each map, and in every single
test, the quadrotor successfully reaches the destination.

Dynamic Obstacle Avoidance We use ESIM [51], an event camera simulator in Gazebo, to simulate
event camera imaging effects for the quadrotor and conducted 300 dynamic obstacle avoidance tests.
The dynamic obstacles were categorized into three groups based on size: coin-sized, tennis ball-sized,
and basketball-sized. Each group was tested 25 times at four different distance ranges: within 0.2
- 0.5m, 0.5-1m, 1-2m, and beyond 2m. We set the closest starting distance of obstacles at 0.2m
since firstly, if the obstacle is too close to the quadrotor, the entire field of view will be occupied by
the dynamic obstacles and the algorithm cannot make effective obstacle avoidance commands, and
secondly, in real-world scenarios, it is generally impossible for dynamic to abruptly appear within the
drone’s immediate proximity.
For each obstacle detection, we also marked its centroid in the image frame and compared it with the
centroid of the algorithm-processed event stream to validate the position error in dynamic obstacle
detection, as shown in Table 1. Details about the calculation are provided in supplementary note 4.
To quantify the computational cost of the model, we recorded multiple event streams of dynamic
obstacles and processed these event streams with our algorithm to calculate the processing time to
evaluate the delay of our model. Since the model relies on generating IRF fields from prior processed
events and applying decay on both ERF and IRF fields, biased results inevitably arise when processing
arbitrarily cropped sections of the raw event stream. We use our algorithm to process the whole event
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Table 1: Centroid Difference Between RF Model and GT (m)
Obstacle Type Distance Mean Median Std. Dev. M.A.D SR

Coin-sized

0.2m - 0.5m 0.0179 0.0164 0.0089 0.0015 94%
0.5m - 1m 0.0177 0.0134 0.0094 0.0008 92%
1m - 2m 0.0138 0.0126 0.0077 0.0202 90%
2m+ 0.0132 0.0123 0.0053 0.0042 86%

Tennis-sized

0.2m - 0.5m 0.0213 0.0228 0.0093 0.0052 92%
0.5m - 1m 0.0180 0.0169 0.0072 0.0093 98%
1m - 2m 0.0168 0.0146 0.0095 0.0002 100%
2m+ 0.0129 0.0102 0.0103 0.0057 96%

Basketball-sized

0.2m - 0.5m 0.0306 0.0297 0.0141 0.0017 84%
0.5m - 1m 0.0271 0.0261 0.0135 0.0026 96%
1m - 2m 0.0196 0.0196 0.0059 0.0081 100%
2m+ 0.0222 0.0169 0.0166 0.0109 100%

stream and compute the ratio between the processing time and the total length of the event stream to
obtain the unbiased average latency of 2.3 ms. Detailed data are shown in supplementary note 11.

Combined Task Simulation With the core algorithms proven, we then demonstrated the complete
pipeline by combining the complex tasks together. Using the 3 maps we created in Gazebo (mentioned
in 4.1.1), we made the quadrotor traverse the outbound route using odometry without any global
position information and added randomly throwing dynamic obstacles when the quadrotor is flying
during its inbound journey. Among 50 tests on each map, the success rate is 100% for the first map,
98% for the second map, and 94% for the last map. Figure demonstrations and other details are
shown in supplementary note 7.

4.2 Real-world Experiments

In this section, we conduct indoor experiments using our neuromorphic platform mentioned in section
3.1, and also conduct extra indoor experiments under different extreme conditions (flicker condition
and darkish condition) to validate the algorithm’s robustness.

Figure 5: Real-world Experiment The
quadrotor avoids the tennis ball thrown
by experimenters during navigation.

Indoor Experiment As previously mentioned, the main
goal of the indoor experiment is to verify the effectiveness
of our neuromorphic framework in a real-world setup and
test our neuromorphic structure’s advantage in computa-
tional resource consumption, energy consumption, and
verify the performance of the framework with such low
consumption in a tiny autonomous quadrotor. The exper-
iment is conducted in a 10m * 10m flight arena. Three
experimenters stationed at designated locations threw dy-
namic obstacles at passing drones, and experimenters were
instructed to remain stationary to prevent the quadrotor
from misidentifying them as dynamic obstacles. During
10 repeated trials, the quadrotor successfully avoided all
dynamic obstacles and reached the destination in every instance, as shown in Fig. 5. Details about
obstacles are shown in supplementary note 5.

Table 2: Quantitative evaluation on Outdoor Environ-
ments and Cluttered Indoor Environments

Scenario Obstacle Type SR

Office building corridor
Thrown objects 94.6%
Sparse pedestrians 93.8%
Dense pedestrians 62.1%

Outdorr square
Thrown objects 94.1%
Sparse pedestrians 93.7%
Dense pedestrians 54.8%

Complex Environment Experi-
ments We conducted additional
experiments in both outdoor (a square
with static boxes) and cluttered indoor
environments (office corridors), test-
ing three dynamic obstacles: thrown
objects, sparse crowds, and dense
crowds. Results show consistent per-
formance across environments, with
outdoor lighting/airflow variations
causing no significant impact. The
system maintained high navigation
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success rates for thrown objects and sparse crowds, with performance degrading only in extreme
crowd densities.

Reduced Energy Consumption on Neuromorphic Hardware We tested the energy consump-
tion and run time between different setups, and a main observation is that the neuromorphic chip
demonstrates a two orders of magnitude reduction in power consumption compared to conventional
devices. Systems equipped with this neuromorphic chip achieve a 95% reduction in operational
energy consumption (down to 5% of original levels) when executing identical tasks using the same
algorithms. The total system energy consumption decreases to 21% of baseline values. Notably, in
neuromorphic systems, the primary energy expenditure originates from three core processes: the
onboard computer operations, data exchange between the neuromorphic chip and flight controller,
and motion command execution. Details about the energy consumption of each architecture are
displayed in supplementary note 10.

Robustness Under Extreme Light Condition Despite our main goal is to validate the advantage of
our bio-inspired algorithm and fully neuromorphic framework, to better demonstrate the effectiveness
of the unique event stream data modality, we need to test the framework under extreme light conditions
to prove its robustness. We test the flight performance in the same arena under three different light
conditions: light (10 - 100 lux), flicker (1 - 100 lux), dim (1 - 10 lux), and dark (0 - 1 lux). The
result shows that the performance of the quadrotor is approximately the same under different light
conditions, but it does not work in dark conditions. Experiment details are shown in supplementary
note 9.

4.3 Comparison and Analysis

Table 3: Quantitative evaluation on Dynamic Obstacle Avoid-
ance Task Only Method 4 utilized non-visual sensors, and experi-
ments that did not employ onboard computational resources were
specifically marked.

Method Latency Pos. Err. SR

Method 1 [64] 19.12 ms 0.11 m 96.3
Method 2 [13] 39.49 ms 0.11 m 89.1
Method 3 [26] 3.56 ms 0.09 m 86.7
Method 4 (GTX 4090) [65] 14 ms LiDAR 95.75
Method 4 (onboard) [65] 27 ms LiDAR 86.5
Ours 2.34 ms 0.02 m 94.5

Comparison with the State-of-
the-Arts Since this work is the
first to implement a fully neu-
romorphic pipeline on complex
navigation and dynamic obsta-
cle avoidance tasks, to provide a
reference level, we compare our
Event RF model to some related
traditional approaches based on
object recognition and trajectory
estimation[64, 13, 26, 65], as
shown in Table 3. These ap-
proaches are tested under the
same simulation environment us-
ing their official codes. Since Li-DAR can get precise position information of obstacles, there is
no position error for the Li-DAR method. Among all the works, our system achieves the lowest
latency, with a 88.6% reduction compared to the average latency of other methods. The only approach
with comparable latency is the method 3 [26], which also employs an event camera but lacks a
navigation module, thus allocating all computational resources to obstacle avoidance. Since our
method does not perform object recognition or trajectory estimation, we cannot compare prediction
speed errors. However, in terms of positional error, our work also achieves the lowest. Regarding
obstacle avoidance success rate, our performance is very close to the best, with only a 2% gap.

Table 4: Model Performance with Fixed Parameters
vs. Obstacles at Various Speeds While the model ex-
hibits general robustness across a range of velocities,
task-specific parameter tuning can yield superior perfor-
mance in dedicated scenarios.

Type SR

Low-speed (2m/s) 100%
High-speed (8m/s) 100%
Ultra-high-speed (15m/s) 70%
Ultra-high-speed (specified parameters) 90%

Analysis of Event RF Model We delve
into the parameter choosing for the Event
RF model and conduct simulation ex-
periments on multiple dynamic obstacles
of different sizes to evaluate the effect
of parameter selection on performance
and the generalizability of the parame-
ters, as shown in Table. 4. There are
3 pairs of parameter in Event RF model:
(A1, A2), (τe, τi), (Eth, Ith), and 3 sepa-
rate parameters: ∆t, σx, σy, and the value
of each parameter significantly affects the
model’s performance.
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σx, σy, as the standard deviation along the major and minor axes of the 2D elliptical Gaussian
function, affects the size of the receptive field generated by each event. Under perfect motion
compensation, σx = σy = 1 makes the IRF just sufficient to suppress the stimulation caused
by the ERF. However, considering the limited computational resources, achieving perfect motion
compensation is challenging, along with the inherent noise introduced by the event camera itself.
Setting σx = σy = 2 could achieve a better result. Making σx and σy unequal could enable the
model to exhibit anisotropy, reducing sensitivity to motion in specific directions, especially when
setting different σx and σy for ERF and IRF individually.
∆t affects the delay of the IRF relative to the ERF. Higher ∆t increases the size of high-energy
regions for dynamic objects in the model, thereby increasing the distance between the centroid of
the real obstacle and the centroid of the dynamic obstacle in the model, resulting in greater error.
However, if ∆t is too small, the ERF will be rapidly overridden by the IRF, thereby reducing the
model’s sensitivity to slow-moving objects. In experiments, we find ∆t = 5 ms delivers optimal
performance, and this value is suitable for the vast majority of dynamic obstacle avoidance scenarios.

Through mathematical derivation, we found that the model achieves optimal performance when
A1

A2
= e−∆t/τi , the model reaches optimal performance, and since τe < τi, we can determine the

values of A1, A2 and τe based on the value of τi. In biological systems, the value of τi typically
ranges from 25 to 50 ms. We conducted tests at 5-millisecond (ms) intervals and found the best value
as 25 ms. Therefore, A1

A2
should be 1.22, and when τe = 5 ms we get the best result. Under ideal

conditions, setting Eth = Ith would enable perfect static event cancellation. However, in practice,
sensor noise and firing threshold fluctuations in biological neurons necessitate permitting minor
deviations to prevent noise-induced false dynamic responses; here we choose Ith

Eth
= 1.2 based on

our experimental testing. Details on the analysis process can be found in supplementary note 12.

5 Conclusion
This paper presents a fully autonomous neuromorphic navigation and dynamic obstacle avoidance
pipeline for tiny autonomous unmanned aerial vehicles. Its Event RF Model is the first bio-inspired
algorithm that could make the quadrotor bypass the object recognition and trajectory estimation
processes, thus avoiding dynamic obstacles in a real-time manner. By reducing the latency to 2.3
ms, the model gives a much longer reaction time window for the quadrotor when facing dynamic
obstacles with speeds up to 10m/s.Comparative evaluations under identical experimental conditions
prove our neuromorphic approach outperforms current state-of-the-art solutions for autonomous
UAVs, delivering significantly lower latency in high-velocity dynamic obstacle avoidance while
maintaining comparable success rates under stringent onboard computational constraints. Moreover,
with reduced energy consumption and robustness under various light conditions, this work presents
a substantial step toward neuromorphic sensing and controlling for UAVs, and exhibits the great
potential of neuromorphic architecture on tiny autonomous robots, revealing the possibility of tiny
autonomous robots to evolve to higher levels of operational capability and performance.

Broader Impacts and Safeguards While this work on autonomous drones aims to benefit applica-
tions like search and rescue in GPS-denied environments, we acknowledge its dual-use potential. To
mitigate risks such as privacy invasion and malicious payload delivery, our approach integrates key
safeguards. Primarily, the use of an event camera—which captures only illumination changes rather
than identifiable imagery—provides an inherent layer of privacy protection by design. Furthermore,
our open-source license and code documentation explicitly prohibit harmful misuse. These measures
help ensure the technology’s responsible development and deployment.

Limitation and Future Work The current work relies on IMU information for navigation, and
the monocular event camera could not obtain depth information of the dynamic obstacle. Future
work will further explore the Event RF Model’s capabilities by leveraging its ability to distinguish
between dynamic and static objects. A stereo vision setup will be used to explore the possibility of
tiny autonomous neuromorphic quadrotors exploring and avoiding dynamic obstacles in completely
unfamiliar environments without relying on any prior information.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.
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of the paper.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will release the code upon acceptance.
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• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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results?
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that is necessary to appreciate the results and make sense of them.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Errors are provided in the table 1 and in the supplementary material.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Training details are provided in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the broader impacts in the conclusion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We discuss the safeguards in the conclusion.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets used in this paper are properly credited, the license and terms of use
are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The model proposed in this paper is clearly documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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