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Abstract

Providing effective emotional support re-001
quires strategic approaches because it is in-002
herently complex and should account for the003
diverse situations and needs of each indi-004
vidual. The Emotional Support Conversa-005
tion framework structures interactions into006
three phases—exploration, comforting, and ac-007
tion—guiding strategy selection for response008
generation. Although multitask learning has009
been used to jointly optimize strategy pre-010
diction and response generation, it often suf-011
fers from task interference, where conflicting012
learning objectives hinder optimization. To013
address this, we propose the Strategy-Aware014
Refinement Module (STAR), which separates015
and selectively integrates the decoder’s hidden016
states for strategy prediction and response gen-017
eration through a gating mechanism. This ap-018
proach preserves task-specific representations019
while enabling adaptive information exchange,020
thereby mitigating interference. Experimen-021
tal results demonstrate that STAR effectively022
reduces task interference and achieves state-of-023
the-art performance in both strategy prediction024
and supportive response generation.025

1 Introduction026

Emotional support aims to alleviate individual emo-027

tional distress while helping individuals understand028

and resolve their problems (Burleson, 2003; Lang-029

ford et al., 1997; Heaney and Israel, 2008). How-030

ever, providing effective emotional support is not031

inherently intuitive (Burleson, 2003). To address032

this challenge, the Emotional Support Conversation033

(ESC) framework is structured into three distinct034

phases: Exploration, Comforting, and Action (Liu035

et al., 2021). Within each phase, the strategic se-036

lection of appropriate strategy mechanisms and the037

generation of targeted responses facilitate a more038

systematic approach to alleviating users’ emotional039

distress.040

Figure 1: (A) shows an emotional support conversation
example, highlighting the dual tasks of strategy predic-
tion and supportive response generation. (B) illustrates
the multi-task learning framework, and (C) presents
the STAR module that refines hidden representations to
mitigate task interference.

Motivated by the findings in medical research, 041

recent AI systems for emotional support have 042

adopted multitask learning (MTL) to simultane- 043

ously select appropriate strategies and generate sup- 044

portive responses (Tu et al., 2022; Zhou et al., 2023; 045

Peng et al., 2022; Cheng et al., 2022; Zhao et al., 046

2023; Deng et al., 2023; Xu et al., 2024; Li et al., 047

2024). 048

However, while the MTL approach is designed 049

to leverage shared information across tasks to en- 050

hance learning efficiency, it can sometimes lead 051

to adverse effects (Zhao et al., 2018). This issue 052

arises due to task interference, where the repre- 053

sentational requirements of different tasks may be 054

inherently misaligned (Gurulingan et al., 2022a), 055

or when conflicting gradients from multiple tasks 056

disrupt the optimization process during backprop- 057

agation (Yu et al., 2020). As a result, instead of 058

facilitating knowledge transfer, MTL can some- 059

times hinder model performance by introducing 060

conflicts between tasks. 061
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To mitigate task interference, various approaches062

have been proposed, including independent sub-063

nets to isolate task-specific representations (Stre-064

zoski et al., 2019), task-specific parameterization065

to adjust model capacity per task (Kanakis et al.,066

2020), and task grouping to cluster related tasks067

and reduce negative transfer (Gurulingan et al.,068

2022b). However, despite these advancements, ef-069

fective interference suppression strategies tailored070

to the Emotional Support Conversation (ESC) do-071

main—particularly for response strategy selection072

and supportive response generation—remain an073

open challenge.074

To address these limitations, we propose075

the Strategy-Aware Refinement (STAR) module,076

which effectively mitigates task interference be-077

tween strategy prediction and supportive response078

generation while leveraging contextual and strate-079

gic cues. STAR consists of two key compo-080

nents: Strategy-Aware Representation Adjustment081

(SARA) and Strategy Refinement (SR). Specifi-082

cally, SR splits the decoder’s hidden states into two083

separate representations—one dedicated to strat-084

egy prediction and the other to supportive response085

generation. To prevent unnecessary entanglement086

between these two tasks, SARA dynamically in-087

tegrates the representations only when necessary,088

ensuring that strategy-related signals remain dis-089

tinct from linguistic representations. This design090

prevents the overmixing of strategy cues with lin-091

guistic features, allowing each task to fully exploit092

its unique strengths. As a result, our approach ef-093

fectively minimizes task conflicts and consistently094

outperforms existing methods.095

Our work makes two key contributions:096

• We provide an in-depth analysis revealing that097

existing multitask learning models for emo-098

tional support conversations frequently suf-099

fer from task interference, characterized by100

conflicting gradients and entangled represen-101

tations.102

• We propose the Strategy-Aware Refinement103

(STAR) module, which effectively mitigates104

interference between strategy prediction and105

supportive response generation by dynami-106

cally adjusting hidden state representations.107

Our approach preserves the distinctiveness108

of strategy-related signals, reducing negative109

transfer between tasks.110

• By minimizing task conflicts, our approach111

improves both strategy prediction accuracy 112

and the quality of supportive response genera- 113

tion. Experimental results validate these im- 114

provements, demonstrating substantial gains 115

over existing methods. 116

2 Related Work 117

2.1 Emotional Support Conversation 118

Recent advancements in natural language process- 119

ing have increasingly focused on enhancing the 120

ability of dialogue systems to understand and re- 121

spond empathetically, akin to human interlocutors 122

(Ramírez, 2024). Within this domain, Emotional 123

Support Conversation has emerged as a rapidly 124

growing field, finding applications in mental health 125

support, customer service, and motivational inter- 126

viewing, where empathetic and context-aware dia- 127

logue is crucial (Van der Zwaan et al., 2012; Zhou 128

et al., 2020). 129

A foundational ESC framework structures re- 130

sponse generation into three distinct phases: Ex- 131

ploration, Comforting, and Action, where the sys- 132

tem leverages predefined strategy tokens to guide 133

response generation (Liu et al., 2021). Building 134

upon this framework, most subsequent studies have 135

adopted MTL to jointly perform strategy predic- 136

tion and response generation. However, while MTL 137

enables shared learning across tasks, it also intro- 138

duces task interference, which can hinder overall 139

model performance. 140

2.2 Multitask Learning for ESC 141

Many recent ESC studies have leveraged COMET 142

(Bosselut et al., 2019), a commonsense knowledge- 143

based language model, to enhance strategy selec- 144

tion and supportive response generation by incor- 145

porating external knowledge (Liu et al., 2021; Tu 146

et al., 2022; Zhou et al., 2023; Peng et al., 2022; 147

Cheng et al., 2022; Zhao et al., 2023; Deng et al., 148

2023; Xu et al., 2024; Li et al., 2024; Peng et al., 149

2023; Zhao et al., 2018). 150

A common strategy in MTL-based ESC systems 151

is to introduce auxiliary subtasks that reinforce the 152

model’s core functionalities. For instance, (Li et al., 153

2024) and (Zhou et al., 2023) incorporated emo- 154

tional change prediction as a subtask to facilitate 155

more accurate strategy selection and context-aware 156

supportive response generation. Similarly, (Peng 157

et al., 2023) introduced a task for predicting the pri- 158

mary cause of conversation initiation, helping the 159

model capture the underlying psychological intent 160
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of user utterances. Meanwhile, (Xu et al., 2024)161

proposed a backward supportive response genera-162

tion task to further enhance system performance by163

refining historical context comprehension.164

Despite these advancements, mitigating task in-165

terference and optimizing knowledge integration166

in MTL-based ESC systems remain open research167

challenges. Addressing these limitations will be168

crucial for the development of more robust and169

contextually aware emotional support dialogue sys-170

tems.171

2.3 Task Interference172

Task interference is a fundamental challenge in173

multitask learning, often leading to degraded model174

performance and suboptimal knowledge transfer.175

Various strategies have been proposed to mitigate176

this issue. Some approaches introduce task-specific177

parameters within the encoder (Liu et al., 2019),178

while others employ independent subnetworks or179

update only task-specific parameters based on task180

loss (Strezoski et al., 2019; Kanakis et al., 2020).181

While these methods help reduce interference, they182

do so at the cost of restricting cross-task knowledge183

transfer, which in turn limits model adaptability184

and generalization (Gurulingan et al., 2022b).185

Alternatively, task grouping strategies have been186

explored, where tasks are clustered based on sim-187

ilarity to reduce interference (Gurulingan et al.,188

2022b). However, these methods rely on statically189

predefined task similarity, making them less adapt-190

able to ESC systems, where task relationships can191

evolve dynamically based on conversational con-192

text.193

To overcome these limitations, we propose the194

strategy-aware refinement approach, which builds195

upon task-specific parameterization by dynamically196

regulating task separation and integration. Unlike197

conventional approaches that completely isolate198

task parameters or rely on static groupings, STAR199

adaptively controls the degree of independence and200

interaction between task-specific representations201

within shared parameters. Specifically, it preserves202

distinct strategy-related representations to prevent203

interference while maintaining sufficient informa-204

tion exchange, enabling both task specialization205

and effective knowledge sharing. This design effec-206

tively mitigates task interference while enhancing207

overall model performance.208

3 Method 209

3.1 Overview 210

The task of emotional support conversation genera- 211

tion inherently involves alternating between strat- 212

egy prediction and response generation. In each 213

decoding cycle, the model first predicts a special 214

strategy token and then generates the corresponding 215

response using that token alongside the dialogue 216

context. This alternating process introduces task in- 217

terference, as the model must simultaneously learn 218

to predict effective strategies and generate coherent, 219

supportive responses. 220

In response, our approach incorporates the STAR 221

module. As illustrated in Figure 2, STAR employs 222

a gating mechanism to dynamically refine hidden 223

representations. Initially, each user utterance ut 224

(with U = (u1, u2, . . . , uT ) representing the dia- 225

logue history) is processed together with an initially 226

predicted strategy token τ . The response genera- 227

tion process is defined as generating the optimal 228

response Y given the dialogue history X , situation 229

description s, and τ (i.e., max p(Y | X, s, τ)). The 230

STAR module then refines τ into an optimized strat- 231

egy τ ′ through a strategy-aware adjustment process. 232

The model is ultimately trained to maximize 233

max p(Y | X, s, τ ′). 234

By mitigating task interference through dynamic 235

gating and refinement, our method enhances re- 236

sponse fluency, emotional appropriateness, and 237

strategic coherence, resulting in more effective 238

emotional support conversations. 239

3.2 Strategy-Aware Refinement Module 240

The STAR Module dynamically adjusts the de- 241

coder’s hidden representations, ensuring that sup- 242

portive response generation is guided by an optimal 243

strategy. The STAR module consists of two key 244

stages: (1) Strategy-Aware Representation Adjust- 245

ment (SARA) modifies the hidden state to align 246

with the initially predicted strategy and (2) Strategy 247

Refinement (SR) leverages the adjusted represen- 248

tation to refine the strategy and enhance response 249

generation. 250

Figure 2 illustrates the STAR Module’s architec- 251

ture, which operates within the decoder to regulate 252

the interaction between task-specific and general 253

knowledge while mitigating interference between 254

strategy prediction and response generation. 255

The STAR module is integrated into a 256

BlenderBot-based decoder, which generates sup- 257
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Figure 2: Overall architecture of the STAR module for emotional support conversation. Decoder hidden states
from a fine-tuned BlenderBot-Small model are pooled and then fed into two parallel submodules: one computes an
integration value, and the other refines the hidden state. The STAR uses the integration value to balance the refined
and original hidden states, yielding a strategy-refined state for response generation.

portive responses from the dialogue history. Given258

a dialogue context, the decoder produces hidden259

states that encode conversational semantics. Be-260

fore generating the response, a strategy token cor-261

responding to the initially predicted strategy is ap-262

pended to guide response formulation. These hid-263

den states and the strategy token are then processed264

through SARA, the first stage of the STAR module.265

The SARA stage modifies the decoder’s hidden266

state to ensure that it aligns with the predicted strat-267

egy while preserving general conversational knowl-268

edge. Let h ∈ Rd denote the hidden state of the269

decoder and let s ∈ N be the predicted strategy270

token. SARA first applies a shared attention pool-271

ing layer to h, producing a pooled representation z,272

which captures global contextual information:273

z = Pooling(h). (1)274

To regulate the influence of the predicted strat-275

egy, the SARA computes an integration value g276

as:277

g = σ(f(z)), (2)278

where f(·) is a two-layer network with a hidden279

layer employing ReLU activation, and σ is the sig- 280

moid function. The integration value g ∈ (0, 1) 281

determines how much strategy-specific knowledge 282

should contribute to the representation adjustment. 283

Once the integration value g is computed, the SR 284

stage further processes the decoder’s hidden rep- 285

resentation to ensure an optimal balance between 286

task-specific knowledge and general dialogue un- 287

derstanding. 288

The pooled representation z is projected through 289

a two-layer transformation network P (·), generat- 290

ing a transformed representation ĥ that maintains 291

the same dimensionality as h: 292

ĥ = P (z). (3) 293

The final strategy-refined hidden state h′ is then 294

computed as: 295

h′ = g ⊙ ĥ+ (1− g)⊙ h. (4) 296

This formulation ensures that strategy-relevant 297

information is selectively injected into the hidden 298

state while retaining essential linguistic and con- 299

textual features from the original representation. 300
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The strategy-refined hidden representation h′301

serves as the final hidden state for response genera-302

tion, incorporating strategy-aware contextual sig-303

nals to enhance coherence, fluency, and emotional304

appropriateness. By dynamically adjusting the hid-305

den representation and refining the strategy based306

on the conversational context, the STAR Module307

effectively reduces task interference and improves308

the alignment between strategy selection and sup-309

portive response generation.310

3.3 Model Training311

To effectively train our multitask model for both312

strategy prediction and supportive response genera-313

tion, we define separate loss functions for each task314

and combine them into a final loss using a weighted315

sum. A dynamic weighting factor, denoted as λ, is316

introduced to balance the contribution of the sup-317

portive response generation loss and the strategy318

prediction loss, adapting throughout training.319

Our weighting strategy is designed to address320

the different learning dynamics of the two tasks.321

First, supportive response generation benefits from322

the pretrained BlenderBot architecture, which is al-323

ready optimized for open-domain conversations, in-324

cluding empathetic responses (Roller, 2020). Thus,325

it converges faster during training. Strategy pre-326

diction, on the other hand, requires high-level327

decision-making and a stronger contextual under-328

standing, making it harder to optimize early in329

training (Yerukola et al., 2023; Vaish and Monroy-330

Hernández, 2017).331

To mitigate task interference and promote bal-332

anced learning, we initially assign a lower weight to333

strategy prediction loss. As training progresses, we334

gradually increase its weight, allowing the model to335

first refine response generation before optimizing336

abstract strategic decisions.337

Given a context c and a situation description s,338

our model generates a response339

r = {r1, r2, . . . , r|r|},340

conditioned on a strategy token τ ′ produced by the341

STAR module. In our framework, the response gen-342

eration objective is to produce an optimal response343

Y given X , s, and τ ′ (i.e., max p(Y | X, s, τ ′)).344

The language modeling loss is defined as the345

negative log-likelihood (NLL) of the generated re-346

sponse:347

LLM = −
nr∑
t=1

log p(rt | r<t, c, s, x),348

where nr is the length of the response. 349

The strategy prediction loss is computed using 350

cross-entropy: 351

LST = − log p(τ ′ | c, s, x), 352

with τ ′ representing the strategy token used to con- 353

dition response generation. 354

To balance these losses during training, we intro- 355

duce a dynamic weighting factor λ defined as: 356

λ = λ0 ·
log(E + 1)

log(Emax)
, 357

where E is the current epoch, Emax is the total 358

number of epochs, and λ0 is a scaling hyperparam- 359

eter. 360

Initially, λ is set low to prioritize response gener- 361

ation and preserve fluency; as training progresses, 362

λ increases to place greater emphasis on strategy 363

prediction. The final multitask loss function is 364

given by: 365

L = (1− λ)LLM + λLST . 366

4 Experiment 367

4.1 Datasets 368

We evaluated our model using the ESConv bench- 369

mark dataset, which contains 1,300 dialogues and 370

a total of 38,365 utterances, each annotated with 371

eight distinct support strategies. This dataset serves 372

as a well-established benchmark for assessing emo- 373

tional support conversation systems, providing a 374

structured setting for evaluating both strategy pre- 375

diction and supportive response generation. 376

4.2 Baselines 377

To assess the effectiveness of our approach, we 378

compared it against a range of state-of-the-art mod- 379

els previously evaluated on the ESConv benchmark. 380

For models with publicly available code, we repro- 381

duced their implementations and evaluated them 382

under identical conditions. Baseline models in- 383

clude BlenderBot-Joint (Roller, 2020), MISC (Tu 384

et al., 2022), SUPPORTER (Zhou et al., 2023), 385

GLHG (Peng et al., 2022), MultiESC (Cheng et al., 386

2022), TransESC (Zhao et al., 2023), SCBG (Xu 387

et al., 2024), KEMI (Deng et al., 2023), and Em- 388

stremo (Li et al., 2024). These baselines cover 389

diverse architectures, from multitask frameworks 390

to knowledge-enhanced models for emotional sup- 391

port generation. 392
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Model F1 ↑ PPL ↓ B2 ↑ B4 ↑ R-L ↑
SCBG (Xu et al., 2024) - - 5.61 2.91 14.83
GLHG (Peng et al., 2022) - 15.67 7.57 2.13 16.37
TransESC (Zhao et al., 2023) - 15.85 7.64 2.43 17.51
SUPPORTER (Zhou et al., 2023) - 15.37 7.49 - -
MultiESC (Cheng et al., 2022) - 15.41 9.18 3.09 20.41
BlenderBot-Joint (Roller, 2020) 19.23 16.15 5.52 1.29 15.51
MISC (Tu et al., 2022) 19.89 16.08 7.62 2.19 16.40
Emstremo (Li et al., 2024) 21.30 16.12 8.22 2.53 18.04
KEMI (Deng et al., 2023) 22.70 16.34 8.08 2.60 17.05

Models with STAR
KEMI + STAR 23.17 17.42 8.56 2.65 17.42
Emstremo + STAR 22.48 15.96 8.43 2.28 18.14
BlenderBot-Joint + STAR 24.81 15.96 8.58 2.71 17.20

Table 1: Performance comparison of various models on the emotional support conversation task. The table reports
F1 score (↑), perplexity (PPL, ↓), BLEU-2 (B2, ↑), BLEU-4 (B4, ↑), and ROUGE-L (R-L, ↑) metrics. Models with
STAR were reproduced using the proposed method and publicly available code. Specifically, after fine-tuning the
base model, all parameters were frozen except for the STAR module and the shared embedding layer within the
encoder-decoder, which were further trained to integrate the refined strategy into the response generation process.

Model F1 B2 B4 R-L D1 D2 BERT-P BERT-R BERT-F
BlenderBot-Joint + STAR 24.81 8.58 2.71 17.20 2.71 19.38 0.8613 0.8561 0.8585
GPT4o-mini (0-shot) 23.35 3.54 0.66 12.13 3.59 24.12 0.8380 0.8492 0.8434
GPT4o-mini (5-shot) 23.35 3.97 0.80 12.99 3.59 24.45 0.8423 0.8514 0.8467
GPT4o-mini (10-shot) 23.35 4.09 0.79 13.12 3.59 24.67 0.8427 0.8520 0.8472

using BlenderBot-Joint + STAR as an strategy classifier
SC+GPT4o-mini (0-shot) 24.81 3.96 0.84 13.08 3.57 23.65 0.8411 0.8526 0.8467
SC+GPT4o-mini (5-shot) 24.81 4.20 0.87 13.77 3.65 25.10 0.8442 0.8532 0.8485
SC+GPT4o-mini (10-shot) 24.81 4.29 0.96 13.76 3.65 25.12 0.8446 0.8538 0.8491

Table 2: Experimental results using the GPT4o-mini model. The table reports for GPT4o-mini in zero-shot, 5-shot,
and 10-shot settings, both when used directly and when combined with a strategy classifier (SC)

We also conducted experiments with GPT4o-393

mini (OpenAI et al., 2024) under zero-, five-, and394

ten-shot settings. In one configuration, GPT4o-395

mini performed both strategy prediction and re-396

sponse generation simultaneously. In another, the397

best-performing model from our experiments was398

used as a strategy classifier to provide strategy la-399

bels for GPT4o-mini’s response generation.400

4.3 Evaluation Metrics401

To comprehensively assess the performance of our402

model on ESConv, we employ multiple evaluation403

metrics covering strategy prediction accuracy, re-404

sponse fluency, content preservation, response di-405

versity, and semantic similarity. Strategy prediction406

accuracy is measured using the Macro F1 score,407

which evaluates the model’s ability to classify sup-408

port strategies across different categories. To assess409

response fluency, we use perplexity (PPL), where410

lower values indicate more fluent and coherent text411

generation. Content preservation is quantified us-412

ing BLEU-2, BLEU-4, and ROUGE-L, which mea-413

sure the degree of lexical overlap between gener-414

ated responses and reference responses. Response415

diversity is evaluated through Distinct-1 (D1) and 416

Distinct-2 (D2)(Deng et al., 2023; Liu et al., 2021; 417

Tu et al., 2022), which compute the ratio of unique 418

n-grams to total n-grams, reflecting lexical vari- 419

ety and reducing generic responses. Additionally, 420

we employ BERT-based metrics (BERT-P, BERT- 421

R, and BERT-F)(Zhang* et al., 2020) to measure 422

semantic similarity, capturing how well the gener- 423

ated responses align with reference responses in a 424

contextual embedding space. 425

4.4 Implementation Details 426

For our experiments, we fine-tuned the 427

BlenderBot-Small model under carefully 428

optimized hyperparameters. The model was 429

trained with a learning rate of 3×10−5, employing 430

a linear warmup strategy with 120 warmup steps. 431

To manage input constraints, we set the maximum 432

input sequence length to 160 tokens and the 433

maximum target sequence length to 40 tokens. 434

During decoding, we applied Top-p sampling 435

(p = 0.3) and Top-k sampling (k = 30), with a 436

temperature setting of 0.7 to control response 437

randomness and a repetition penalty of 1.03 to 438
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mitigate excessive repetition in generated text. The439

optimization process was carried out using the440

AdamW optimizer, configured with β1 = 0.9441

and β2 = 0.999, while the loss function was442

modulated with a gamma value of 0.8, ensuring443

effective gradient scaling throughout training. All444

experiments were conducted on a single NVIDIA445

RTX A6000 GPU with a batch size of 128, and446

training was performed for a total of 10 epochs.447

5 Results448

5.1 Quantitative Performance Evaluation449

As shown in Table 1, our method establishes a450

new benchmark in strategy prediction and support-451

ive response generation across multiple ESC mod-452

els. Notably, it achieves substantial gains in BLEU453

and ROUGE scores, indicating improved alignment454

with ground truth responses.455

When applied to BlenderBot-Joint, our approach456

yields an absolute increase of 5.58% in Macro457

F1, along with improvements of 3.06% in BLEU-458

2 (B2), 1.42% in BLEU-4 (B4), and 1.69% in459

ROUGE-L (R-L). For KEMI, it improves F1 by460

0.47%, B2 by 0.48%, B4 by 0.05%, and R-L by461

0.37%. On Emstremo, it achieves gains of 1.18%462

in F1, 0.21% in B2, and 0.1% in R-L.463

These results demonstrate STAR’s ability to464

consistently enhance performance across architec-465

tures by mitigating task interference. By dynami-466

cally regulating strategy-conditioned and general467

response generation, our method achieves more468

robust and contextually appropriate responses. Ad-469

ditional qualitative analysis can be found in Ap-470

pendix A.471

5.2 Benchmarking GPT-4o-mini472

As shown in Table 2, responses generated by GPT-473

4o-mini yield lower similarity scores compared to474

those from our proposed method and other state-of-475

the-art approaches. However, GPT-4o-mini demon-476

strates superior response diversity, as indicated by477

higher Distinct-n (D1 and D2) scores. This high-478

lights a trade-off between lexical diversity and refer-479

ence alignment, suggesting that increased variabil-480

ity may reduce similarity with human-annotated481

ground truths.482

Furthermore, when our method is applied to483

the BlenderBot-Joint model as a strategy classi-484

fier, it yields an average improvement of 0.42% in485

BLEU-2, 0.18% in BLEU-4, 0.06% in D1, 0.65%486

in D2, 0.002% in BERT-P, 0.004% in BERT-R, and487

0.002% in BERT-F. These results indicate that our 488

approach not only preserves response diversity but 489

also enhances similarity and consistency through 490

strategy-aware calibration. 491

5.3 Impact of Task Interference in 492

MTL-Based ESC 493

ESC systems inherently rely on MTL for strategy 494

selection via special tokens. However, a major 495

challenge in this setting is task interference, which 496

arises when representation learning for multiple 497

tasks conflicts, or when gradients exhibit opposing 498

directions, leading to suboptimal optimization. To 499

address this, we analyze both representation clus- 500

tering and gradient conflicts to evaluate the impact 501

of STAR. 502

5.3.1 Gradient Conflicts 503

As shown in Figure 3b, applying STAR to the 504

BlenderBot-Joint model (see Section 3.3) results 505

in a cosine similarity of 0.47 between the response 506

generation loss (LLM ) and strategy classification 507

loss (LST ), indicating a significant reduction in 508

gradient conflict. In contrast, Figure 3c shows 509

that TransESC exhibits predominantly negative 510

or near-zero cosine similarities across tasks (e.g., 511

STR, EMO, SEM), suggesting substantial gradient 512

conflicts. Similarly, Figure 3a illustrates that Em- 513

stremo’s task similarities (LM, G, V, CONT, etc.) 514

remain close to zero or negative, reinforcing the 515

presence of gradient conflicts. 516

5.3.2 Representation Conflicts 517

Moreover, Figure 4a indicates that the original 518

BlenderBot-Joint model struggles with clear task 519

separation, as evidenced by overlapping cluster 520

boundaries. A similar issue is observed in the 521

KEMI model (see Figure 4c). In contrast, Figure 4b 522

shows that applying STAR leads to distinctly sep- 523

arated clusters with tighter intra-cluster cohesion, 524

demonstrating its effectiveness in enforcing task 525

separation. These results confirm that STAR ef- 526

fectively reduces task interference by preserving 527

independent and well-structured task representa- 528

tions. 529

6 Conclusion 530

This paper analyzes and addresses the task inter- 531

ference problem in MTL-based ESC systems, a 532

fundamental challenge that arises from conflicts 533

between strategy-conditioned token generation and 534

general text generation. To mitigate this issue, we 535
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(a) Emstremo (b) BlenderBot + STAR (c) TransESC

Figure 3: Loss correlation matrices for three different models. Each matrix is obtained by storing the gradient
vectors corresponding to each loss component, then computing the cosine similarity among these gradient vectors. A
higher correlation value indicates reduced gradient conflict between losses, suggesting more harmonious multi-task
optimization.

(a) BlenderBot-Joint (b) BlenderBot-Joint + STAR (c) KEMI

Figure 4: t-SNE visualizations of the final hidden states extracted from three different models. We apply K-means
clustering with k = 8, reflecting the eight strategy types in the ESConv dataset. As shown, the model variant
employing STAR (middle) achieves more distinct cluster separation, indicating clearer differentiation among
strategies compared to both the baseline (left) and KEMI (right).

propose the Strategy-Aware Refinement module,536

which dynamically regulates task separation and in-537

tegration by disentangling strategy prediction from538

response generation.539

Experimental results demonstrate that STAR540

achieves significant improvements in both strat-541

egy prediction and response generation by effec-542

tively mitigating task interference, outperforming543

existing methods. These findings highlight the im-544

portance of task-aware refinement in MTL-based545

ESC systems, paving the way for future research546

on optimizing multi-objective dialogue modeling.547

Limitations548

We acknowledge the following limitations in our549

study:550

• To the best of our knowledge, this is the first 551

study to systematically analyze task interfer- 552

ence in ESC. As such, the proposed evalua- 553

tion metrics may require further refinement 554

for more robust future assessments. 555

• Our study does not focus on leveraging large 556

language models or exploring various prompt- 557

based in-context learning techniques. How- 558

ever, as indicated in Table 2, incorporating 559

effective prompt-based methods could signifi- 560

cantly enhance performance. 561

• The proposed method relies on a gating mech- 562

anism to dynamically regulate task-specific in- 563

formation flow. However, if the gate network 564

fails to optimally balance integration under 565

varying conditions, performance may degrade. 566
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While this issue was not observed on the ES-567

Conv dataset (Table 1), further validation on568

diverse datasets is necessary. Constructing569

new datasets tailored for ESC systems would570

be valuable for assessing generalization.571
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Appendix719

A Case Study720

Table 3 presents two case studies comparing re-721

sponses generated by three baseline models and722

their counterparts after applying our proposed723

method. Overall, responses generated with STAR724

exhibit stronger alignment with designated support 725

strategies, ensuring more contextually appropriate 726

and strategically coherent interactions. 727

In the first case, responses incorporating our 728

method effectively implement the “Affirmation and 729

Reassurance” strategy. These responses not only 730

provide encouragement and support but also incor- 731

porate concrete recommendations—such as exer- 732

cise and meditation—resulting in a more thoughtful 733

and contextually appropriate interaction. In con- 734

trast, baseline models fail to achieve this level of 735

strategic refinement. For instance, the BlenderBot- 736

Joint model merely expresses agreement without 737

additional guidance, the KEMI model acknowl- 738

edges the benefits of exercise but lacks elaboration, 739

and the Emstremo model, despite offering encour- 740

agement, introduces contextually misaligned con- 741

tent that may reduce response effectiveness. 742

A similar pattern emerges in the second case, 743

where our method effectively applies the “Infor- 744

mation” strategy by offering relevant details and 745

actionable guidance to help the user form new so- 746

cial connections. In contrast, baseline models fail 747

to fully implement the designated strategy, leading 748

to responses that lack practical guidance and fail to 749

maximize user engagement. 750

These case studies demonstrate that STAR not 751

only preserves response diversity but also enhances 752

strategic calibration, enabling more effective, con- 753

textually coherent, and user-centered interactions. 754

This underscores the importance of strategy-aware 755

refinement in ESC, highlighting its potential to sig- 756

nificantly improve both conversational quality and 757

strategic fidelity. 758
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Case 1
Seeker: “okay i will try this and see if this works.
shall i also try walking or exercsing”
Supporter: “yeah, anything to take your mind of
it : )”
Strategy: Affirmation and reassurance
BlenderBot-Joint: “yes, that’s a great idea!”
BlenderBot-Joint + STAR: “yes, that is a great
idea. you can also try to meditate in the morning,
it is a good way to relax and get your mind off of
things.”
KEMI: “yes, i think that is a great idea. exercise
is a good way to relax”
KEMI + STAR: “yes, that is a great idea. exercise
is great for releasing endorphins and releasing end-
pressants”
Emstremo: “Yeah, anything to take your mind of
it:)”
Emstremo + STAR: “i know that it can be a chal-
lenge, but it’s a of who knows what you could
possibly do with such talents!”
Case 2
Seeker: “most of my old friends are no longer
around...”
Supporter: “social networks online, you can con-
nect with family or old coworkers. and post pic-
tures and see what other people are doing with their
lives.”
Strategy: Information
BlenderBot-Joint: “you can join new groups and
meet new people. there are many online forums
out there.”
BlenderBot-Joint + STAR: “There is a social me-
dia platform that you can use to chat with people.”
KEMI: “i understand. i’m sure you’ll find some-
one.”
KEMI + STAR: “i understand. i think you are
going through a tough time. i’m sure you will find
the way in online.”
Emstremo: “i’m glad to hear that!”
Emstremo + STAR: “It’s a social networking site
that lets you connect and chat with other people.”

Table 3: Two example cases illustrating how different
models respond to user queries under distinct situations.
The first case focuses on exercise as a coping strategy,
while the second highlights social networking for main-
taining connections.

11


	Introduction
	Related Work
	Emotional Support Conversation
	Multitask Learning for ESC
	Task Interference

	Method
	Overview
	Strategy-Aware Refinement Module
	Model Training

	Experiment
	Datasets
	Baselines
	Evaluation Metrics
	Implementation Details

	Results
	Quantitative Performance Evaluation
	Benchmarking GPT-4o-mini
	Impact of Task Interference in MTL-Based ESC
	Gradient Conflicts
	Representation Conflicts


	Conclusion
	Case Study

