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Abstract

Providing effective emotional support re-
quires strategic approaches because it is in-
herently complex and should account for the
diverse situations and needs of each indi-
vidual. The Emotional Support Conversa-
tion framework structures interactions into
three phases—exploration, comforting, and ac-
tion—guiding strategy selection for response
generation. Although multitask learning has
been used to jointly optimize strategy pre-
diction and response generation, it often suf-
fers from task interference, where conflicting
learning objectives hinder optimization. To
address this, we propose the Strategy-Aware
Refinement Module (STAR), which separates
and selectively integrates the decoder’s hidden
states for strategy prediction and response gen-
eration through a gating mechanism. This ap-
proach preserves task-specific representations
while enabling adaptive information exchange,
thereby mitigating interference. Experimen-
tal results demonstrate that STAR effectively
reduces task interference and achieves state-of-
the-art performance in both strategy prediction
and supportive response generation.

1 Introduction

Emotional support aims to alleviate individual emo-
tional distress while helping individuals understand
and resolve their problems (Burleson, 2003; Lang-
ford et al., 1997; Heaney and Israel, 2008). How-
ever, providing effective emotional support is not
inherently intuitive (Burleson, 2003). To address
this challenge, the Emotional Support Conversation
(ESC) framework is structured into three distinct
phases: Exploration, Comforting, and Action (Liu
et al., 2021). Within each phase, the strategic se-
lection of appropriate strategy mechanisms and the
generation of targeted responses facilitate a more
systematic approach to alleviating users’ emotional
distress.

(A) An Emotional Support Conversation Example

Q |Currently 1am living in a house with my brother, which i co-own and can not afford to move out. ‘

|(Quesuon) Is living with your brother a bad thing? what specifically is making you upset? | &'

Q ‘Yes itis. he dose not care about anyone but himself. | Conversation Context

(B) Multi-Task Learning of Supportive Response Generation
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Figure 1: (A) shows an emotional support conversation
example, highlighting the dual tasks of strategy predic-
tion and supportive response generation. (B) illustrates
the multi-task learning framework, and (C) presents
the STAR module that refines hidden representations to
mitigate task interference.

Motivated by the findings in medical research,
recent Al systems for emotional support have
adopted multitask learning (MTL) to simultane-
ously select appropriate strategies and generate sup-
portive responses (Tu et al., 2022; Zhou et al., 2023;
Peng et al., 2022; Cheng et al., 2022; Zhao et al.,
2023; Deng et al., 2023; Xu et al., 2024; Li et al.,
2024).

However, while the MTL approach is designed
to leverage shared information across tasks to en-
hance learning efficiency, it can sometimes lead
to adverse effects (Zhao et al., 2018). This issue
arises due to task interference, where the repre-
sentational requirements of different tasks may be
inherently misaligned (Gurulingan et al., 2022a),
or when conflicting gradients from multiple tasks
disrupt the optimization process during backprop-
agation (Yu et al., 2020). As a result, instead of
facilitating knowledge transfer, MTL can some-
times hinder model performance by introducing
conflicts between tasks.



To mitigate task interference, various approaches
have been proposed, including independent sub-
nets to isolate task-specific representations (Stre-
zoski et al., 2019), task-specific parameterization
to adjust model capacity per task (Kanakis et al.,
2020), and task grouping to cluster related tasks
and reduce negative transfer (Gurulingan et al.,
2022b). However, despite these advancements, ef-
fective interference suppression strategies tailored
to the Emotional Support Conversation (ESC) do-
main—particularly for response strategy selection
and supportive response generation—remain an
open challenge.

To address these limitations, we propose
the Strategy-Aware Refinement (STAR) module,
which effectively mitigates task interference be-
tween strategy prediction and supportive response
generation while leveraging contextual and strate-
gic cues. STAR consists of two key compo-
nents: Strategy-Aware Representation Adjustment
(SARA) and Strategy Refinement (SR). Specifi-
cally, SR splits the decoder’s hidden states into two
separate representations—one dedicated to strat-
egy prediction and the other to supportive response
generation. To prevent unnecessary entanglement
between these two tasks, SARA dynamically in-
tegrates the representations only when necessary,
ensuring that strategy-related signals remain dis-
tinct from linguistic representations. This design
prevents the overmixing of strategy cues with lin-
guistic features, allowing each task to fully exploit
its unique strengths. As a result, our approach ef-
fectively minimizes task conflicts and consistently
outperforms existing methods.

Our work makes two key contributions:

* We provide an in-depth analysis revealing that
existing multitask learning models for emo-
tional support conversations frequently suf-
fer from task interference, characterized by
conflicting gradients and entangled represen-
tations.

* We propose the Strategy-Aware Refinement
(STAR) module, which effectively mitigates
interference between strategy prediction and
supportive response generation by dynami-
cally adjusting hidden state representations.
Our approach preserves the distinctiveness
of strategy-related signals, reducing negative
transfer between tasks.

* By minimizing task conflicts, our approach

improves both strategy prediction accuracy
and the quality of supportive response genera-
tion. Experimental results validate these im-
provements, demonstrating substantial gains
over existing methods.

2 Related Work

2.1 Emotional Support Conversation

Recent advancements in natural language process-
ing have increasingly focused on enhancing the
ability of dialogue systems to understand and re-
spond empathetically, akin to human interlocutors
(Ramirez, 2024). Within this domain, Emotional
Support Conversation has emerged as a rapidly
growing field, finding applications in mental health
support, customer service, and motivational inter-
viewing, where empathetic and context-aware dia-
logue is crucial (Van der Zwaan et al., 2012; Zhou
et al., 2020).

A foundational ESC framework structures re-
sponse generation into three distinct phases: Ex-
ploration, Comforting, and Action, where the sys-
tem leverages predefined strategy tokens to guide
response generation (Liu et al., 2021). Building
upon this framework, most subsequent studies have
adopted MTL to jointly perform strategy predic-
tion and response generation. However, while MTL
enables shared learning across tasks, it also intro-
duces task interference, which can hinder overall
model performance.

2.2 Multitask Learning for ESC

Many recent ESC studies have leveraged COMET
(Bosselut et al., 2019), a commonsense knowledge-
based language model, to enhance strategy selec-
tion and supportive response generation by incor-
porating external knowledge (Liu et al., 2021; Tu
et al., 2022; Zhou et al., 2023; Peng et al., 2022;
Cheng et al., 2022; Zhao et al., 2023; Deng et al.,
2023; Xu et al., 2024; Li et al., 2024; Peng et al.,
2023; Zhao et al., 2018).

A common strategy in MTL-based ESC systems
is to introduce auxiliary subtasks that reinforce the
model’s core functionalities. For instance, (Li et al.,
2024) and (Zhou et al., 2023) incorporated emo-
tional change prediction as a subtask to facilitate
more accurate strategy selection and context-aware
supportive response generation. Similarly, (Peng
et al., 2023) introduced a task for predicting the pri-
mary cause of conversation initiation, helping the
model capture the underlying psychological intent



of user utterances. Meanwhile, (Xu et al., 2024)
proposed a backward supportive response genera-
tion task to further enhance system performance by
refining historical context comprehension.

Despite these advancements, mitigating task in-
terference and optimizing knowledge integration
in MTL-based ESC systems remain open research
challenges. Addressing these limitations will be
crucial for the development of more robust and
contextually aware emotional support dialogue sys-
tems.

2.3 Task Interference

Task interference is a fundamental challenge in
multitask learning, often leading to degraded model
performance and suboptimal knowledge transfer.
Various strategies have been proposed to mitigate
this issue. Some approaches introduce task-specific
parameters within the encoder (Liu et al., 2019),
while others employ independent subnetworks or
update only task-specific parameters based on task
loss (Strezoski et al., 2019; Kanakis et al., 2020).
While these methods help reduce interference, they
do so at the cost of restricting cross-task knowledge
transfer, which in turn limits model adaptability
and generalization (Gurulingan et al., 2022b).

Alternatively, task grouping strategies have been
explored, where tasks are clustered based on sim-
ilarity to reduce interference (Gurulingan et al.,
2022b). However, these methods rely on statically
predefined task similarity, making them less adapt-
able to ESC systems, where task relationships can
evolve dynamically based on conversational con-
text.

To overcome these limitations, we propose the
strategy-aware refinement approach, which builds
upon task-specific parameterization by dynamically
regulating task separation and integration. Unlike
conventional approaches that completely isolate
task parameters or rely on static groupings, STAR
adaptively controls the degree of independence and
interaction between task-specific representations
within shared parameters. Specifically, it preserves
distinct strategy-related representations to prevent
interference while maintaining sufficient informa-
tion exchange, enabling both task specialization
and effective knowledge sharing. This design effec-
tively mitigates task interference while enhancing
overall model performance.

3 Method

3.1 Overview

The task of emotional support conversation genera-
tion inherently involves alternating between strat-
egy prediction and response generation. In each
decoding cycle, the model first predicts a special
strategy token and then generates the corresponding
response using that token alongside the dialogue
context. This alternating process introduces task in-
terference, as the model must simultaneously learn
to predict effective strategies and generate coherent,
supportive responses.

In response, our approach incorporates the STAR
module. As illustrated in Figure 2, STAR employs
a gating mechanism to dynamically refine hidden
representations. Initially, each user utterance wy
(with U = (uq,ug,...,ur) representing the dia-
logue history) is processed together with an initially
predicted strategy token 7. The response genera-
tion process is defined as generating the optimal
response Y given the dialogue history X, situation
description s, and 7 (i.e., maxp(Y | X, s, 7)). The
STAR module then refines 7 into an optimized strat-
egy 7' through a strategy-aware adjustment process.
The model is ultimately trained to maximize

max p(Y | X, s, 7).

By mitigating task interference through dynamic
gating and refinement, our method enhances re-
sponse fluency, emotional appropriateness, and
strategic coherence, resulting in more effective
emotional support conversations.

3.2 Strategy-Aware Refinement Module

The STAR Module dynamically adjusts the de-
coder’s hidden representations, ensuring that sup-
portive response generation is guided by an optimal
strategy. The STAR module consists of two key
stages: (1) Strategy-Aware Representation Adjust-
ment (SARA) modifies the hidden state to align
with the initially predicted strategy and (2) Strategy
Refinement (SR) leverages the adjusted represen-
tation to refine the strategy and enhance response
generation.

Figure 2 illustrates the STAR Module’s architec-
ture, which operates within the decoder to regulate
the interaction between task-specific and general
knowledge while mitigating interference between
strategy prediction and response generation.

The STAR module is integrated into a
BlenderBot-based decoder, which generates sup-
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Figure 2: Overall architecture of the STAR module for emotional support conversation. Decoder hidden states
from a fine-tuned BlenderBot-Small model are pooled and then fed into two parallel submodules: one computes an
integration value, and the other refines the hidden state. The STAR uses the integration value to balance the refined
and original hidden states, yielding a strategy-refined state for response generation.

portive responses from the dialogue history. Given
a dialogue context, the decoder produces hidden
states that encode conversational semantics. Be-
fore generating the response, a strategy token cor-
responding to the initially predicted strategy is ap-
pended to guide response formulation. These hid-
den states and the strategy token are then processed
through SARA, the first stage of the STAR module.
The SARA stage modifies the decoder’s hidden
state to ensure that it aligns with the predicted strat-
egy while preserving general conversational knowl-
edge. Let h € R? denote the hidden state of the
decoder and let s € N be the predicted strategy
token. SARA first applies a shared attention pool-
ing layer to h, producing a pooled representation z,
which captures global contextual information:

z = Pooling(h). (1)

To regulate the influence of the predicted strat-
egy, the SARA computes an integration value g
as:

g=10(f(2)), 2

where f(-) is a two-layer network with a hidden

layer employing ReLU activation, and o is the sig-
moid function. The integration value g € (0,1)
determines how much strategy-specific knowledge
should contribute to the representation adjustment.

Once the integration value g is computed, the SR
stage further processes the decoder’s hidden rep-
resentation to ensure an optimal balance between
task-specific knowledge and general dialogue un-
derstanding.

The pooled representation z is projected through
a two-layer transformation network P(-), generat-
ing a transformed representation h that maintains
the same dimensionality as h:

h=P(z). (3)

The final strategy-refined hidden state /' is then
computed as:

W=goh+(1-g)oh. 4)

This formulation ensures that strategy-relevant
information is selectively injected into the hidden
state while retaining essential linguistic and con-
textual features from the original representation.



The strategy-refined hidden representation A’
serves as the final hidden state for response genera-
tion, incorporating strategy-aware contextual sig-
nals to enhance coherence, fluency, and emotional
appropriateness. By dynamically adjusting the hid-
den representation and refining the strategy based
on the conversational context, the STAR Module
effectively reduces task interference and improves
the alignment between strategy selection and sup-
portive response generation.

3.3 Model Training

To effectively train our multitask model for both
strategy prediction and supportive response genera-
tion, we define separate loss functions for each task
and combine them into a final loss using a weighted
sum. A dynamic weighting factor, denoted as A, is
introduced to balance the contribution of the sup-
portive response generation loss and the strategy
prediction loss, adapting throughout training.

Our weighting strategy is designed to address
the different learning dynamics of the two tasks.
First, supportive response generation benefits from
the pretrained BlenderBot architecture, which is al-
ready optimized for open-domain conversations, in-
cluding empathetic responses (Roller, 2020). Thus,
it converges faster during training. Strategy pre-
diction, on the other hand, requires high-level
decision-making and a stronger contextual under-
standing, making it harder to optimize early in
training (Yerukola et al., 2023; Vaish and Monroy-
Hernandez, 2017).

To mitigate task interference and promote bal-
anced learning, we initially assign a lower weight to
strategy prediction loss. As training progresses, we
gradually increase its weight, allowing the model to
first refine response generation before optimizing
abstract strategic decisions.

Given a context ¢ and a situation description s,
our model generates a response

r = {7“1,7"2,.. . ,TM},

conditioned on a strategy token 7’ produced by the
STAR module. In our framework, the response gen-
eration objective is to produce an optimal response
Y given X, s, and 7’ (i.e., maxp(Y | X, s, 7).

The language modeling loss is defined as the
negative log-likelihood (NLL) of the generated re-
sponse:

Ny

Ly = —Zlogp(rt | 7<t, ¢, 8, ),
t=1

where n, is the length of the response.
The strategy prediction loss is computed using
cross-entropy:

EST = _1ng(7—, | C,S,-’E),

with 7/ representing the strategy token used to con-
dition response generation.

To balance these losses during training, we intro-
duce a dynamic weighting factor A defined as:

log(E +1)

A=o log(Fmax) ’

where F is the current epoch, Fy.x is the total
number of epochs, and )\ is a scaling hyperparam-
eter.

Initially, X is set low to prioritize response gener-
ation and preserve fluency; as training progresses,
A increases to place greater emphasis on strategy
prediction. The final multitask loss function is
given by:

L=1-=XN Ly +ALsr.

4 Experiment

4.1 Datasets

We evaluated our model using the ESConv bench-
mark dataset, which contains 1,300 dialogues and
a total of 38,365 utterances, each annotated with
eight distinct support strategies. This dataset serves
as a well-established benchmark for assessing emo-
tional support conversation systems, providing a
structured setting for evaluating both strategy pre-
diction and supportive response generation.

4.2 Baselines

To assess the effectiveness of our approach, we
compared it against a range of state-of-the-art mod-
els previously evaluated on the ESConv benchmark.
For models with publicly available code, we repro-
duced their implementations and evaluated them
under identical conditions. Baseline models in-
clude BlenderBot-Joint (Roller, 2020), MISC (Tu
et al., 2022), SUPPORTER (Zhou et al., 2023),
GLHG (Peng et al., 2022), MultiESC (Cheng et al.,
2022), TransESC (Zhao et al., 2023), SCBG (Xu
et al., 2024), KEMI (Deng et al., 2023), and Em-
stremo (Li et al., 2024). These baselines cover
diverse architectures, from multitask frameworks
to knowledge-enhanced models for emotional sup-
port generation.



Model [ F11 [ PPL| B2t B4t R-L?
SCBG (Xu et al., 2024) - - 5.61 2091 14.83
GLHG (Peng et al., 2022) - 15.67 7.57 213 16.37
TransESC (Zhao et al., 2023) - 1585 764 243 1751
SUPPORTER (Zhou et al., 2023) - 1537 7.49 - -

MultiESC (Cheng et al., 2022) - 15.41 9.18 3.09 20.41
BlenderBot-Joint (Roller, 2020) 19.23 16.15 552 129 15.51
MISC (Tu et al., 2022) 19.89 | 16.08 7.62 219 1640
Emstremo (Li et al., 2024) 2130 | 16.12 822 253 18.04
KEMI (Deng et al., 2023) 22.70 | 16.34 8.08 260 17.05

Models with STAR

KEMI + STAR 23.17 | 1742 856 2.65 1742
Emstremo + STAR 2248 | 1596 843 228 18.14
BlenderBot-Joint + STAR 2481 | 1596 8.58 271 17.20

Table 1: Performance comparison of various models on the emotional support conversation task. The table reports
F1 score (1), perplexity (PPL, |), BLEU-2 (B2, 1), BLEU-4 (B4, 1), and ROUGE-L (R-L, 1) metrics. Models with
STAR were reproduced using the proposed method and publicly available code. Specifically, after fine-tuning the
base model, all parameters were frozen except for the STAR module and the shared embedding layer within the
encoder-decoder, which were further trained to integrate the refined strategy into the response generation process.

Model [ F1 [ B2 B4 R-L D1 D2 BERT-P BERT-R BERT-F
BlenderBot-Joint + STAR | 24.81 | 8.58 2.71 1720 2.71 1938  0.8613 0.8561 0.8585
GPT40-mini (0-shot) 2335 | 354 0.66 1213 359 2412  0.8380 0.8492 0.8434
GPT40-mini (5-shot) 2335 | 397 080 1299 359 2445 0.8423 0.8514 0.8467
GPT40-mini (10-shot) 2335 | 409 0.79 13.12 359 24.67 0.8427 0.8520 0.8472
using BlenderBot-Joint + STAR as an strategy classifier
SC+GPT40-mini (0-shot) 2481 | 396 0.84 13.08 3.57 23.65 0.8411 0.8526 0.8467
SC+GPT40-mini (5-shot) 2481 | 420 0.87 13.77 3.65 2510 0.8442 0.8532 0.8485
SC+GPT40-mini (10-shot) | 24.81 | 429 096 13.76 3.65 25.12  0.8446 0.8538 0.8491

Table 2: Experimental results using the GPT40-mini model. The table reports for GPT40-mini in zero-shot, 5-shot,
and 10-shot settings, both when used directly and when combined with a strategy classifier (SC)

We also conducted experiments with GPT4o-
mini (OpenAl et al., 2024) under zero-, five-, and
ten-shot settings. In one configuration, GPT4o-
mini performed both strategy prediction and re-
sponse generation simultaneously. In another, the
best-performing model from our experiments was
used as a strategy classifier to provide strategy la-
bels for GPT40-mini’s response generation.

4.3 Evaluation Metrics

To comprehensively assess the performance of our
model on ESConv, we employ multiple evaluation
metrics covering strategy prediction accuracy, re-
sponse fluency, content preservation, response di-
versity, and semantic similarity. Strategy prediction
accuracy is measured using the Macro F1 score,
which evaluates the model’s ability to classify sup-
port strategies across different categories. To assess
response fluency, we use perplexity (PPL), where
lower values indicate more fluent and coherent text
generation. Content preservation is quantified us-
ing BLEU-2, BLEU-4, and ROUGE-L, which mea-
sure the degree of lexical overlap between gener-
ated responses and reference responses. Response

diversity is evaluated through Distinct-1 (D1) and
Distinct-2 (D2)(Deng et al., 2023; Liu et al., 2021;
Tu et al., 2022), which compute the ratio of unique
n-grams to total n-grams, reflecting lexical vari-
ety and reducing generic responses. Additionally,
we employ BERT-based metrics (BERT-P, BERT-
R, and BERT-F)(Zhang* et al., 2020) to measure
semantic similarity, capturing how well the gener-
ated responses align with reference responses in a
contextual embedding space.

4.4 Implementation Details

For our experiments, we fine-tuned the
BlenderBot-Small model under -carefully
optimized hyperparameters. The model was
trained with a learning rate of 3 x 10>, employing
a linear warmup strategy with 120 warmup steps.
To manage input constraints, we set the maximum
input sequence length to 160 tokens and the
maximum target sequence length to 40 tokens.
During decoding, we applied Top-p sampling
(p = 0.3) and Top-k sampling (k¥ = 30), with a
temperature setting of 0.7 to control response
randomness and a repetition penalty of 1.03 to



mitigate excessive repetition in generated text. The
optimization process was carried out using the
AdamW optimizer, configured with 5; = 0.9
and B> = 0.999, while the loss function was
modulated with a gamma value of 0.8, ensuring
effective gradient scaling throughout training. All
experiments were conducted on a single NVIDIA
RTX A6000 GPU with a batch size of 128, and
training was performed for a total of 10 epochs.

5 Results

5.1 Quantitative Performance Evaluation

As shown in Table 1, our method establishes a
new benchmark in strategy prediction and support-
ive response generation across multiple ESC mod-
els. Notably, it achieves substantial gains in BLEU
and ROUGE scores, indicating improved alignment
with ground truth responses.

When applied to BlenderBot-Joint, our approach
yields an absolute increase of 5.58% in Macro
F1, along with improvements of 3.06% in BLEU-
2 (B2), 1.42% in BLEU-4 (B4), and 1.69% in
ROUGE-L (R-L). For KEM]I, it improves F1 by
0.47%, B2 by 0.48%, B4 by 0.05%, and R-L by
0.37%. On Emstremo, it achieves gains of 1.18%
in F1,0.21% in B2, and 0.1% in R-L.

These results demonstrate STAR’s ability to
consistently enhance performance across architec-
tures by mitigating task interference. By dynami-
cally regulating strategy-conditioned and general
response generation, our method achieves more
robust and contextually appropriate responses. Ad-
ditional qualitative analysis can be found in Ap-
pendix A.

5.2 Benchmarking GPT-40-mini

As shown in Table 2, responses generated by GPT-
40-mini yield lower similarity scores compared to
those from our proposed method and other state-of-
the-art approaches. However, GPT-40-mini demon-
strates superior response diversity, as indicated by
higher Distinct-n (D1 and D2) scores. This high-
lights a trade-off between lexical diversity and refer-
ence alignment, suggesting that increased variabil-
ity may reduce similarity with human-annotated
ground truths.

Furthermore, when our method is applied to
the BlenderBot-Joint model as a strategy classi-
fier, it yields an average improvement of 0.42% in
BLEU-2, 0.18% in BLEU-4, 0.06% in D1, 0.65%
in D2, 0.002% in BERT-P, 0.004% in BERT-R, and

0.002% in BERT-F. These results indicate that our
approach not only preserves response diversity but
also enhances similarity and consistency through
strategy-aware calibration.

5.3 Impact of Task Interference in
MTL-Based ESC

ESC systems inherently rely on MTL for strategy
selection via special tokens. However, a major
challenge in this setting is task interference, which
arises when representation learning for multiple
tasks conflicts, or when gradients exhibit opposing
directions, leading to suboptimal optimization. To
address this, we analyze both representation clus-
tering and gradient conflicts to evaluate the impact
of STAR.

5.3.1 Gradient Conflicts

As shown in Figure 3b, applying STAR to the
BlenderBot-Joint model (see Section 3.3) results
in a cosine similarity of 0.47 between the response
generation loss (L s) and strategy classification
loss (Lgr), indicating a significant reduction in
gradient conflict. In contrast, Figure 3c shows
that TransESC exhibits predominantly negative
or near-zero cosine similarities across tasks (e.g.,
STR, EMO, SEM), suggesting substantial gradient
conflicts. Similarly, Figure 3a illustrates that Em-
stremo’s task similarities (LM, G, V, CONT, etc.)
remain close to zero or negative, reinforcing the
presence of gradient conflicts.

5.3.2 Representation Conflicts

Moreover, Figure 4a indicates that the original
BlenderBot-Joint model struggles with clear task
separation, as evidenced by overlapping cluster
boundaries. A similar issue is observed in the
KEMI model (see Figure 4c). In contrast, Figure 4b
shows that applying STAR leads to distinctly sep-
arated clusters with tighter intra-cluster cohesion,
demonstrating its effectiveness in enforcing task
separation. These results confirm that STAR ef-
fectively reduces task interference by preserving
independent and well-structured task representa-
tions.

6 Conclusion

This paper analyzes and addresses the task inter-
ference problem in MTL-based ESC systems, a
fundamental challenge that arises from conflicts
between strategy-conditioned token generation and
general text generation. To mitigate this issue, we
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clustering with k¥ = 8, reflecting the eight strategy types in the ESConv dataset. As shown, the model variant
employing STAR (middle) achieves more distinct cluster separation, indicating clearer differentiation among

strategies compared to both the baseline (left) and KEMI (right).

propose the Strategy-Aware Refinement module,
which dynamically regulates task separation and in-
tegration by disentangling strategy prediction from
response generation.

Experimental results demonstrate that STAR
achieves significant improvements in both strat-
egy prediction and response generation by effec-
tively mitigating task interference, outperforming
existing methods. These findings highlight the im-
portance of task-aware refinement in MTL-based
ESC systems, paving the way for future research
on optimizing multi-objective dialogue modeling.

Limitations

We acknowledge the following limitations in our
study:

* To the best of our knowledge, this is the first
study to systematically analyze task interfer-
ence in ESC. As such, the proposed evalua-
tion metrics may require further refinement
for more robust future assessments.

* Our study does not focus on leveraging large
language models or exploring various prompt-
based in-context learning techniques. How-
ever, as indicated in Table 2, incorporating
effective prompt-based methods could signifi-
cantly enhance performance.

* The proposed method relies on a gating mech-
anism to dynamically regulate task-specific in-
formation flow. However, if the gate network
fails to optimally balance integration under
varying conditions, performance may degrade.



While this issue was not observed on the ES-
Conv dataset (Table 1), further validation on
diverse datasets is necessary. Constructing
new datasets tailored for ESC systems would
be valuable for assessing generalization.
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Appendix
A Case Study

Table 3 presents two case studies comparing re-
sponses generated by three baseline models and
their counterparts after applying our proposed
method. Overall, responses generated with STAR
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exhibit stronger alignment with designated support
strategies, ensuring more contextually appropriate
and strategically coherent interactions.

In the first case, responses incorporating our
method effectively implement the “Affirmation and
Reassurance” strategy. These responses not only
provide encouragement and support but also incor-
porate concrete recommendations—such as exer-
cise and meditation—resulting in a more thoughtful
and contextually appropriate interaction. In con-
trast, baseline models fail to achieve this level of
strategic refinement. For instance, the BlenderBot-
Joint model merely expresses agreement without
additional guidance, the KEMI model acknowl-
edges the benefits of exercise but lacks elaboration,
and the Emstremo model, despite offering encour-
agement, introduces contextually misaligned con-
tent that may reduce response effectiveness.

A similar pattern emerges in the second case,
where our method effectively applies the “Infor-
mation” strategy by offering relevant details and
actionable guidance to help the user form new so-
cial connections. In contrast, baseline models fail
to fully implement the designated strategy, leading
to responses that lack practical guidance and fail to
maximize user engagement.

These case studies demonstrate that STAR not
only preserves response diversity but also enhances
strategic calibration, enabling more effective, con-
textually coherent, and user-centered interactions.
This underscores the importance of strategy-aware
refinement in ESC, highlighting its potential to sig-
nificantly improve both conversational quality and
strategic fidelity.
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Case 1

Seeker: “okay i will try this and see if this works.
shall i also try walking or exercsing”

Supporter: “yeah, anything to take your mind of
it:)”

Strategy: Affirmation and reassurance

BlenderBot-Joint: “yes, that’s a great idea!”
BlenderBot-Joint + STAR: “yes, that is a great
idea. you can also try to meditate in the morning,
it is a good way to relax and get your mind off of
things.”

KEMI: “yes, i think that is a great idea. exercise
is a good way to relax”

KEMI + STAR: “yes, that is a great idea. exercise
is great for releasing endorphins and releasing end-
pressants”

Emstremo: “Yeah, anything to take your mind of
it:)”

Emstremo + STAR: “i know that it can be a chal-
lenge, but it’s a of who knows what you could
possibly do with such talents!”

Case 2

Seeker: “most of my old friends are no longer
around...”

Supporter: “social networks online, you can con-
nect with family or old coworkers. and post pic-
tures and see what other people are doing with their
lives.”

Strategy: Information

BlenderBot-Joint: “you can join new groups and
meet new people. there are many online forums
out there.”

BlenderBot-Joint + STAR: “There is a social me-
dia platform that you can use to chat with people.”
KEMI: “i understand. i’m sure you’ll find some-
one.”

KEMI + STAR: “i understand. i think you are
going through a tough time. i’m sure you will find
the way in online.”

Emstremo: “i’'m glad to hear that
Emstremo + STAR: “It’s a social networking site
that lets you connect and chat with other people.”
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Table 3: Two example cases illustrating how different
models respond to user queries under distinct situations.
The first case focuses on exercise as a coping strategy,
while the second highlights social networking for main-
taining connections.
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