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ABSTRACT

In line with global sustainability goals, such as the Paris Agreement, accurate
mapping and monitoring of solar farms are critical for achieving net zero emis-
sions by 2050. However, many solar installations remain undocumented, posing
a challenge. This work introduces Solis-seg, a Deep Neural Network optimized
for detecting solar farms in satellite imagery. Solis-seg achieves a mean Intersec-
tion over Union (IoU) of 96.26% on a European dataset, outperforming existing
solutions.
The study leans heavily on advances in semantic segmentation and NAS for so-
lar farm detection. Semantic segmentation has evolved through technologies like
Fully Convolutional Network (FCN) and U-Net, which have shown strong perfor-
mance on satellite imagery. In NAS, Differentiable Architecture Search (DARTS)
and its variants like Auto-DeepLab (ADL) have become efficient ways to automate
the creation of architectures. This study also challenges the prevailing method of
using transfer learning from classification tasks for semantic segmentation, sug-
gesting new avenues for research.
Thus, this work contributes to both the field of earth observation machine learning
and the global transition to renewable energy by providing an efficient, scalable
solution for tracking solar installations. We believe that our research offers valu-
able insights into the application of advanced machine learning techniques for
solar farm detection and also encourages further exploration in earth observation
and sustainability.

1 INTRODUCTION

Context. With the Paris Agreement of 2015, a vast majority of nations globally have committed to
reaching net zero emissions by 2050. Achieving this monumental goal requires a large-scale tran-
sition from fossil fuels towards renewable energy alternatives like solar and wind power. Currently,
fossil fuels are responsible for nearly 80% of the global energy consumption and emit over 14 giga-
tonnes of CO2, as reported by the International Energy Agency IEA (2022). The shift towards green
energy sources such as wind, hydro, and solar is fundamental to meeting the Paris Agreement’s cli-
mate objectives within the prescribed timeline. Non-compliance with these objectives could lead to
catastrophic impacts on human civilization. In this work, we focus on solar energy production and
in particular the problem of solar farm identification from satellite imagery.

Challenges. Despite the demonstrated prowess of Neural Architecture Search (NAS) in surpassing
human-designed architectures in image classification competition datasets Elsken et al. (2018), its
application in the field of solar farm identification from satellite imagery remains uncharted territory.
Furthermore, while NAS has seen extensive use in well-established benchmarks, its practical appli-
cation for novel datasets is still under-researched White et al. (2023). Recognizing these challenges,
our study embarks on a multifaceted mission and makes several contributions.

Contributions. Building upon previous research Costa et al. (2021); Layman (2019), which in-
vestigates different architecture performances but does not explore NAS-derived solutions, we study
NAS optimization for the real-world semantic segmentation task of solar farms and assess its broader
performance beyond established benchmarks. In the process, we critically re-evaluate the strategy

1



Under review as a conference paper at ICLR 2024

of using transfer learning to develop segmentation networks from classification models with the pur-
pose of locating solar farms in satellite imagery Yu et al. (2018); Kruitwagen et al. (2021); Hou et al.
(2019). Our lessons learned may have implications for both solar farm segmentation and the wider
application of NAS.

2 BACKGROUND

Identifying Solar Farms from Images. Several studies have explored the detection of solar panels
on satellite imagery, utilizing both ANNs and other methods. For instance, a random forest model
was employed by Plakman et al. Plakman et al. (2022) to detect solar panels, and this model was
trained and evaluated using a publicly accessible dataset from the Netherlands. Hou et al. devel-
oped SolarNet, a system that integrates the merits of Expectation-Maximization Attention Networks
and a U-Net architecture, to uncover new photovoltaic (PV) systems in China Hou et al. (2019).
Meanwhile, in Brazil, a study used high-performing segmentation models with different pre-trained
backbones Costa et al. (2021).

A group from Stanford has identified and compiled large-scale solar platforms and rooftop solar
installations in the US into the publicly accessible DeepSolar database Yu et al. (2018)1. Astraea
Earth trained a Deep Convolutional Neural Network in the US and utilized it to identify new solar
farms in China Layman (2019).

One particularly significant contribution is the paper by Kruitwagen et al. (2021). Along with the
paper, they released a global dataset of solar energy facilities, which expanded the existing asset-
level data by an impressive 432%. This work represents the most substantial single contribution to
this field to date, measured by the number of previously unknown facilities discovered and added
to public datasets. Focusing on PV platforms larger than 10 000 m2, they achieved a precision of
98.6%, a recall of 90%, and an Intersection over Union (IoU) of 90% for the segmentation task on
their test set. They employed a U-Net-based CNN model and used two sources of remote sensing
imagery to achieve these results. Importantly, they leveraged the non-visible bands of Sentinel-2,
demonstrating their significant role in the model’s solar panel recognition.

Semantic Segmentation. Semantic segmentation is an area where CNNs have exhibited substantial
success, highlighted by the victory of the Fully Convolutional Network (FCN) Long et al. (2014)
in the COCO segmentation task in 2014. This achievement was credited to replacing the fully
connected layers at the end of popular networks like AlexNet, VGG, and GoogLeNet with convolu-
tional layers. This modification led to significant speed increases during both forward and backward
passes in training Long et al. (2014). The method employs upsampling techniques to restore the
output feature map of the image to its original size for pixel-by-pixel predictions.

U-Net further improved in 2017 by incorporating the output before each subsampling stage as in-
put during the upsampling phase. This enhancement aids in more accurately mapping recognized
features back to the original image size Ronneberger et al. (2015). As per Tao et al. (2022), U-Net
is particularly effective for semantic segmentation on remote sensing imagery due to its superior
performance with less training data in comparison to other algorithms. This can be an advantage if
the original dataset is very small. Hou et al. (2019) and Kruitwagen et al. (2021) both use a U-Net
for semantic segmentation of solar farms.

Dilated convolutions, also referred to as ”atrous” convolutions, are a variant of convolutional neural
network (CNN) layers that utilize dilated kernels to enlarge the receptive field of a layer without
augmenting the number of parameters Chen et al. (2017). Traditional CNNs determine the receptive
field of a layer based on its filter size and stride. However, dilated convolutions employ filters with
gaps or ”dilations,” the size of which is decided by the dilation rate, enabling the filters to cover
a larger input area without augmenting the number of parameters or computational complexity.
This characteristic is particularly beneficial for semantic segmentation, where maintaining spatial
resolution while increasing receptive field to capture long-range dependencies in data is crucial
Garcia-Garcia et al. (2017).

Neural Architecture Search. The roots of Neural Architecture Search (NAS) can be traced back
to 1989, when an evolutionary algorithm was first applied by Miller et al. (1989) to optimize neural

1https://deepsolar.web.app/
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network architectures. Since that seminal work, an array of diverse algorithms has been introduced
to enhance the efficiency and robustness of neural architecture generation. NAS algorithms fall
into two main categories: One-Shot methods and black-box methods. A NAS method may not fall
squarely into either category or may straddle both White et al. (2023). Black-box methods have
been notable for their frequent use in the field. NAS strategies, including Bayesian optimization,
evolutionary algorithms, and reinforcement learning, have been widely adopted Liu et al. (2021).
However, one downside of these techniques is their significant computational cost, with some studies
reporting the use of thousands of GPU days for their experiments Elsken et al. (2018); White et al.
(2023). In contrast, one-shot methods have gained traction due to their considerable efficiency.
These methods manage to generate promising results within a far shorter time span - typically a few
GPU days, and in some cases, as reported by Dong et al. Dong & Yang (2019), even within a span
of just a couple of hours.

The Differentiable Architecture Search (DARTS) paradigm, proposed by Liu et al. (2018), presents
a novel approach to the automation of network architecture search Liu et al. (2018). DARTS is a
unique combination of a cell-based search space and a gradient-based one-shot model, facilitating
efficient exploration and evaluation of architectures. The search space in this context is realized
as a Directed Acyclic Graph (DAG) where each edge of which can perform one out of 8 potential
operations.

Auto-DeepLab (ADL) is a specialized variant of Differentiable Neural Architecture Search (NAS)
that was developed to create effective architectures specifically for semantic segmentation tasks
within the DeepLab framework Liu et al. (2019). Originating from the work of Liu et al., ADL en-
hances the DARTS-based, cell-centric search space Liu et al. (2018) by incorporating a hierarchical
component to manage spatial resolution during the architecture search Elsken et al. (2022). In line
with DeepLab conventions, the architecture search concludes with an Atrous Spatial Pyramid Pool-
ing (ASPP) module Chen et al. (2017). However, unlike traditional DeepLab models, ADL utilizes
only three branches in the ASPP module instead of the typical five Liu et al. (2019).

3 METHODS AND MODELS

3.1 CRITERIA AND METRICS

To study the effectiveness of transfer learning, we chose Auto-DeepLab (ADL) as our Neural Ar-
chitecture Search (NAS) model. The selection was based on multiple criteria:

• Computational Efficiency: One-shot models like ADL significantly reduce the computa-
tional burden, making it feasible to perform multiple experiments.

• Task Specificity: ADL specializes in semantic segmentation, directly aligning with our
research focus.

• Documented Performance: Previous works have validated ADL’s effectiveness, providing
a reliable starting point for our own evaluations White et al. (2023).

This NAS methodology serves as the underlying architecture for Experiment 1, where we intend to
evaluate the role of transfer learning in semantic segmentation tasks.

3.2 TRAINING ENVIRONMENT AND DATA

Our experiments were conducted on a Computing Cluster equipped with NVIDIA A100 and V100
GPUs. Some tests also utilized an NVIDIA RTX 3090. The hardware environment is essential for
Experiment 2, where we aim to understand the impact of dataset size on NAS outcomes. Further-
more, we contrast a model pre-trained on solar farm classification with one exclusively trained for
segmentation tasks. We refer to these models as solis-transfer and solis-seg respectively.

A collection of over 200,000 Sentinel-2 level-2A images, serves as the empirical foundation of our
research. Each image is a 224x224 pixel chip with 12 bands, and approximately half are positive
examples featuring solar farms. Data size and quality are well-known to influence the performance
and reliability of machine learning models. Experiment 2 will specifically delve into the impact of
dataset size on the NAS process. To counter potential biases and overfitting, we employed a diverse
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set of images from various geographical regions. Data augmentation techniques, including random
horizontal and vertical flips, were applied to enhance model robustness.

3.3 IMPLEMENTATION AND PARAMETER SELECTION

Our research utilized a PyTorch adaptation of the original AutoDeepLab model2, optimized and
modified for our dataset. This codebase serves as the foundation for all our experiments and is
available for public scrutiny

In terms of parameter settings, we followed the guidelines set by Liu et al. Liu et al. (2019), with
modifications to suit our specific hardware limitations. For instance, we adjusted the batch sizes to
22 or 12 depending on the available GPU memory. These parameter choices are especially relevant
for Experiment 2, where we explore the NAS process under varying computational constraints.

3.4 COMPARING NAS RESULTS

3.4.1 OBJECTIVES AND METHODOLOGIES

Our research aims to provide a comprehensive evaluation of Auto-DeepLab’s performance, partic-
ularly focusing on its adaptability to different input data sizes and types. This is directly tied to
Experiment 2, which aims to understand how these factors influence the NAS process.

3.4.2 PERFORMANCE EVALUATION OF FINAL MODELS

Our final models will be trained on the complete Solis dataset, adhering to an 80/20 train-test split.
This training regimen is aligned with our final experiment, where the best-performing model will be
deployed in a real-world scenario to discover new solar farms.

• Solis models: The existing and new versions will serve as our primary benchmarks, partic-
ularly for Experiment 1 which focuses on transfer learning.

• ADL-cs: This model, found to be the best-performing by Liu et al. during their Cityscapes
search Liu et al. (2019), will provide an external point of comparison.

• ChatGPT generated model: A randomly generated architecture will also be included as a
lower-bound performance measure.

The primary metric is validation set mIoU, except for the Solis-transfer model where F1-score is
used due to mIoU not having been captured during its training. The final test involves deploying the
best model on untrained regions (the state of New York) to assess its generalization capabilities

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENT 1: EVALUATING THE EFFECTIVENESS OF TRANSFER LEARNING

Name mIoU F1-score
Solis-seg 0.9629 0.9621
10k-L 0.9593 0.9582
ADL-cs 0.9586 0.9575
10k 0.9567 0.9555
ChatGPT 0.9565 0.9552
Solis-transfer N/A 0.89

Table 1: Top 5 models ranked by validation mIoU
achieved during retraining.

The purpose of this experiment is to evaluate
the effectiveness of transfer learning, particu-
larly as employed by the Solis-transfer model.
Our intention is to investigate if the prevalent
approach of transfer learning from classifica-
tion tasks remains the optimal strategy or if
training directly on segmentation tasks from the
outset can produce improved outcomes. To fa-
cilitate this analysis, we implemented a vari-
ant of the Solis model, Solis-seg, trained exclu-
sively on segmentation.

Contrary to our expectations, not only did the
Solis-seg model exhibit a marked performance

2https://github.com/NoamRosenberg/autodeeplab
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Figure 1: Validation mIoU for different dataset sizes during search.

improvement compared to Solis-transfer by increasing the best F1-score from 0.89 to 0.9621, it even
ascended to the position of the highest-performing model. With an impressive final validation mIoU
of 0.9629, it surpassed all the models obtained through our NAS experiments, emerging as the only
model breaching the 0.96 threshold. Table 1 provides a summary of the top five models, ranked
based on the mIoU scores achieved during the retraining phase. It underscores the dominance of
Solis-seg in this experiment.

4.2 EXPERIMENT 2: ASSESSING THE IMPACT OF DATASET SIZE ON NAS

Name val mIoU
(search)

val mIoU
(retrain)

train mIoU
(retrain)

10k 0.741 0.9567 0.9653
2k 0.536 0.9563 0.9637
5k 0.733 0.9550 0.9630
20k 0.785 0.9531 0.9607

Table 2: mIoU results for different dataset sizes.

In this experiment, we explored how the size
of the dataset influences the outcome of Neural
Architecture Search (NAS). Due to computa-
tional limitations, we opted for smaller subsets
of the full dataset, specifically sizes of 2,000,
5,000, 10,000, and 20,000 images, referred to
as 2k, 5k, 10k, and 20k. These subsets were
considered to be representative samples for the
purpose of architecture discovery.

During the search, we observe a correlation be-
tween the dataset size and the resulting valida-

tion mIoU as seen in Figure 1. The smallest dataset (2k) shows more variability in results, indicating
sensitivity to data selection. Most of the searches reached peak performance shortly after 20 epochs,
thus we scrutinize the structural components of the resulting architectures. Interestingly, despite
similar performance metrics, the architectures exhibit considerable structural differences.

Upon retraining these architectures on the full dataset, the performance discrepancies observed dur-
ing the search phase were not as pronounced. For example, the model trained on the largest dataset
(20k) unexpectedly yielded the lowest performance when applied to the full dataset.

The results did not indicate a strong correlation between dataset size and final performance, suggest-
ing that either an element of randomness was at play or that the subsets were sufficiently represen-
tative of the full dataset for this application.

4.3 DEPLOYING THE BEST MODEL TO FIND NEW SOLAR FARMS

In our final experiment, we deployed Solis-seg, our best-performing model, to detect new solar farms
in satellite imagery covering New York State from 2022. The model identified 874 polygons, which,
after accounting for multiple polygons representing single facilities, equate to approximately 583
potential solar farms. Figure 2 depicts a solar farm found by our model. Several of these locations
are not documented in publicly available databases such as OpenStreetMap.
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Figure 2: Example of a solar farm detected in New York state.

While Solis-seg was effective in identifying numerous solar farms, its performance was not as robust
in the New York dataset as it was with the solar farms in our validation set. We noticed that the model
detected some solar farms and entirely missed others, suggesting challenges in generalizing to new
geographical regions (see Figure 3).

Figure 3: Example of a solar farm partially detected by the model.

This limitation under-
scores the importance
of diverse train-
ing data, a notion
supported by exist-
ing literature. The
model’s struggle to
generalize indicates
that it could benefit
from a more diverse
dataset that includes
various architectural
styles, landscapes,
and environmental
conditions.

Another challenge
was the verification of

the model’s predictions due to the absence of up-to-date, high-resolution imagery. This issue made
it difficult to determine whether certain polygons were indeed solar farms or false positives (see
Figure 4).

Despite these challenges, Solis-seg’s real-world deployment was largely successful. As a contri-
bution to the community, we have made the dataset of detected solar farms in New York publicly
available in a GitHub repository.3 This addition enriches the growing body of solar farm data and
can serve as a valuable resource for future research.

3To keep this submission anonymous, we do not include the URL here, and request that reviewers do not
search for this data. If the paper is accepted to ICLR, we will include the URL in the camera-ready version of
the paper.
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5 DISCUSSION OF EXPERIMENTAL RESULTS

5.1 RE-EVALUATING THE EFFICACY OF TRANSFER LEARNING

Figure 4: High-resolution image indicating a potential false positive.

The Solis-seg and Solis-
transfer models differ
solely in their training
methodology as detailed
in Section 4.1. Solis-seg is
dedicated to the exclusive
task of semantic segmenta-
tion of solar farms, whereas
the ResNet component of
Solis-transfer is initially
trained to identify whether
an image does or does
not contain a solar farm
(classification), and only
thereafter it is trained for
the task of segmentation.

Despite numerous trials with Solis-transfer, it has yet to surpass an F1 score of 0.89. In contrast,
the single experiment conducted with Solis-seg yielded a significantly superior F1 score (0.962),
clearly highlighting the effectiveness of task-specific training. The increase in performance is thus
evidently attributable to the switch in training strategy, as no other alterations were made during the
training process.

This surprising outcome suggests that the methods employed by the classification model to discern
the presence of a solar farm differ considerably from the pixel-wise recognition performed during
semantic segmentation. It posits the idea that the competencies required for these tasks might diverge
to an extent that proficiency in one (classification) could potentially impede the ability to learn the
other (segmentation).

Moreover, this experiment highlights the notion that the benefits of transfer learning are not univer-
sally applicable, but are contingent upon various factors including the degree of similarity between
the source and target tasks, and the specific nature of these tasks. Our study, for example, points
towards instances where a model specifically trained for a particular task from inception can outper-
form one that capitalizes on transferred knowledge from an ostensibly related task.

In summarizing our findings, it’s compelling to note that our best-performing model surpassed the
IoU score of 0.9 obtained by Kruitwagen et al. Kruitwagen et al. (2021). While an apples-to-apples
comparison isn’t feasible due to their employment of a considerably larger and globally distributed
dataset, our results hold significance given the markedly higher relative score attained on our dataset.

5.2 THE ROBUSTNESS OF NAS IN SATELLITE IMAGE SEGMENTATION

Our research offers insights into applying Neural Architecture Search (NAS) for semantic segmen-
tation of solar farms on Sentinel-2 imagery, the results of which were highlighted by our findings
in Section 4.3. The uniformity of data quality across different dataset sizes and subsets resulted in
little variation in performance among the various NAS-derived models. An exception to this was the
model trained on the 20k dataset, which underperformed unexpectedly; see section 4.2. The precise
reasons for this remain unclear, although disruptive data elements or an unfortunate random seed
choice may be possible causes.

An intriguing finding from our experiments was that out of 14 NAS trials, only a single architecture
managed to outperform any of the benchmarks, excluding Solis-transfer. This raises questions re-
garding the effectiveness and cost-benefit value of DARTS and Auto-DeepLab within this particular
context, which will be further elaborated in Section 5.3.

Surprisingly, the randomly sampled architecture produced by ChatGPT outperformed almost all of
the architectures identified via the architecture search. While this might be an outlier event and ad-
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ditional random samples should be examined for validation, it raises questions about the consistency
and effectiveness of the architecture search process in yielding superior architectures for certain use-
cases even when it has demonstrated the capability to accurately assess comparative performance,
as highlighted in Experiment 2.

Furthermore, it was observed that the performance of most models was closely aligned with that
of the random model. This suggests that the search space may be densely populated with models
that deliver comparable performance, thereby making it difficult to continually progress toward an
optimal solution. This hypothesis is supported by studying the search graphs, particularly by the
observation of most searches reaching their peak early. This pervasive challenge is credited by Chen
and Hsieh Chen & Hsieh (2021) to DARTS’ tendency to reach strong local minima in the search
space.

Moreover, the top-performing NAS model, 10k-L, only slightly lagged behind the best-performing
model, Solis-seg. This suggests that under appropriate conditions, NAS has the potential to generate
architectures that approach or even match the state-of-the-art, even in specialized applications such
as satellite imagery segmentation. The robustness and adaptability of NAS, despite the complexities
and challenges, underscore its potential as a valuable technique.

5.3 COMPUTATIONAL TRADE-OFFS IN NAS APPLICATION

Dataset size Search time (h)
2k 20
5k 41
10k 62
20k 104

Table 3: Dataset size and search time.

NAS is a demanding procedure, introducing
substantial overhead to a machine learning
pipeline. Not only does it necessitate training
a model, it requires significant additional time
and resources to discover the model architec-
ture in the first place through search. This in-
herently prompts the question: When is the ex-
tra cost of performing NAS worthwhile?

In evaluating the efficiency of NAS, two main
aspects come into play: the potential perfor-
mance gain and the importance of this gain for the specific application. In our study, NAS proved
to be less time-efficient when compared to traditional methods. Specifically, the Solis-seg model
took 46 hours to train, while the average training time for NAS-derived architectures was around 59
hours. These figures do not yet account for the additional search time required by NAS, as shown in
Table 3. When considering both the search and training times, the total computational time for NAS
architectures vastly exceeds that for Solis-seg. This casts doubt on the cost-effectiveness of NAS,
particularly when an off-the-shelf model like ResNet50-DeepLab performed best on our dataset after
only 14 NAS trials.

Reflecting on the top five models derived from our study, as shown in Table 4, three out of the five
top performers are baseline models that we originally proposed for comparison. Interestingly, even
a randomly suggested model outperformed all but one model discovered through NAS.

While the search outcomes might not seem particularly outstanding — failing to surpass a ResNet-
based model, marginally exceeding a model found by searching on a different dataset, and the cu-
rious case of a random model outperforming all but one NAS architecture — it is important to
recognize that the top model found through the search, 10k-L, does not lag significantly behind the
best model, Solis-seg.

There are potential improvements to our NAS process that could potentially enhance the perfor-
mance of the discovered models. Though even if we were to conduct additional trials and come
across a model that outperforms Solis-seg, the total cost of the new model would exceed the cost
we incurred by training the off-the-shelf model by magnitude for the sake of a slight increase in
performance.4

It’s worth noting that all models outperformed Solis-transfer, implying that the DARTS search space
is replete with viable model architectures. Additionally, given the low-resolution nature of the im-
ages in this study, this presents a relatively unconventional segmentation problem. Considering this,

4Scoring a perfect 1 should be impossible due to data imperfections.
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the obtained results speak to the robustness and versatility of the models derived from the DARTS
search space.

The decision of whether or not to use NAS essentially hinges on the importance of incremental
performance improvement and the available alternatives to increase the performance of the model. In
our case, however, it might be more productive to allocate resources toward enhancing other aspects
of the model, such as augmenting the quality and volume of data Layman (2019) or investigating
the optimal combination of spectral bands.

Name mIoU F1-score
Solis-seg 0.9629 0.9621
10k-L 0.9593 0.9582
ADL-cs 0.9586 0.9575
ChatGPT 0.9565 0.9552
2k 0.9563 0.9550
Solis-transfer N/A 0.89

Table 4: The top 5 models ranked by validation
mIoU obtained during retraining. The model 10k
has been omitted here as it shares the same archi-
tecture as 10k-L. It would have been placed be-
tween ADL-cs and ChatGPT, see Table 1.

Moreover, the high computational cost of NAS
could potentially deter smaller entities or in-
dividual researchers who operate with con-
strained computing resources. Without access
to a computing cluster, this research project
would have likely spanned well over a hundred
continuous training days on an NVIDIA RTX-
3090 GPU.

All these considerations should be factored in
when deciding whether to employ NAS, fur-
ther emphasizing the need for a case-by-case
approach to the application of this technology.

Finally, it is also crucial to remember that NAS
is a relatively nascent field. As with many
emerging technologies, it will likely undergo
considerable refinement and become more ef-
ficient and accessible in the coming years. Future advancements might mitigate many of the current
limitations, enabling more widespread and accessible usage. As such, staying up to date on NAS
development and its potential for evolving machine learning models will be critical to continuously
evaluate its applications and benefits in the future.

6 CONCLUSION AND FUTURE WORK

Addressing the global need for renewable energy monitoring, this work introduces Solis-seg, a
cutting-edge Deep Neural Network for solar farm detection in satellite imagery. With a record
mean Intersection over Union (IoU) of 96.26% on a continental-scale dataset, the model sets new
performance benchmarks. We demonstrate the practical application of Neural Architecture Search
(NAS) in semantic segmentation, a largely unexplored domain for NAS. Our work shows that NAS
methodologies can leverage additional image data, such as spectral bands, offering avenues for cre-
ating data-rich models in specialized tasks.

Contrary to popular practice, we question the efficacy of transfer learning from classification to
semantic segmentation, suggesting that this approach may compromise performance. Our study also
emphasizes the need to weigh the benefits of NAS against practical constraints like computational
resources, particularly when computing resources are limited.

Future research endeavors could uncover further valuable insights by subjecting our model to the
dataset employed by Kruitwagen et al. This approach would allow for the performance evaluation
of our model in a more expansive and diverse setting. Unfortunately, developing a data pipeline,
akin to the one employed by Kruitwagen et al., that synergizes their data with our trained model is
likely a substantial undertaking due to the complex nature of these pipelines. This complexity is the
primary reason we have not endeavored to attempt this in our current study.
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