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The essential premise of causal inference is that data gen-
erating processing can be described by causal relationships
between variables. [1–5] Understanding the implications of
such causal relationships enables not only adjudication be-
tween competing causal hypothesis but even the quantita-
tive effect estimation of counterfactual interventions. Graph-
ical models vary in terms of the strictness of their assump-
tions. The strongest assumption is typically causal suffi-
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Figure 1: Two examples of causal structures involving latent
nodes (reddish circles) for which we we able to establish that
they each implies inequality constraints on their observed
nodes (yellowish triangles).

ciency, which is the belief that the observed data arose from
a self-contained process not involving any latent variables.
In contrast to general causal structures involving latent con-
founding, latent-free causal structures have two exceptional
features: Firstly, all counterfactual do-conditionals are point-
identifiable in the absence of latent variables. Secondly, ev-
ery distribution which is Markov relative to a latent-free
structure — i.e., the distribution exhibits corresponding con-
ditional independence for every d-separation relation be-
tween visible nodes in the structure — is compatible with the
structure, i.e., admits a structural equation model realization.

For causal structures involving latent variables, however,
these properties need not hold. We focus on the second prop-
erty: For some causal structures — including but not limited
to all latent-free structures — Markovianity implies com-
patibility. For other causal structures, Markovianity is insuf-
ficient, and all observable statistics compatible with such
a structure must satisfy inequality constraints. We provide
a rigorous and extensive classification of latent-involving
causal structures relative to whether or not the presence of
the latent variables contribute additional constraints that
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Figure 2: One of only three latent-involving causal structures
with four observed nodes which we failed to classify. We
strongly suspect this structure implies inequality constraints.
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manifest as inequalities.

Our work illuminates the many obstacles which have pre-
vented prior work from performing such a classification for
causal structures involving more than three observable vari-
ables. Our progress is a result of combining superficially-
unrelated methods from across disparate literature [6–13].
We especially build on the work of Robin Evans, by work-
ing within the modern framework of mDAGs [10], exploit-
ing ideas such as e-separation [8, 12], and by leveraging the
recently-proven result that a latent-involving structure al-
ways implies inequality constraints unless the structure is
observationally equivalent to a latent-free one [13]. We also
derive novel theorems that allow us to exploit certain meth-
ods more computationally efficiently than would otherwise
be possible.

Some example results collected in our work are that a causal
structure (hereafter, “DAG”) must imply inequality con-
straints whenever:

• There is a pair of d-inseparable visible nodes in the
DAG are not directly connected. [7]

• There is a set of visible nodes in the DAG each pair of
which is d-inseparable but such that the whole set does
not share a common ancestor.

• The Partial Ancestral Graph (PAG) associated with the
DAG contains a bidirected edge. [13]

• There is a support which is simultaneously Markov
with respect to a DAG but not actually compatible with
the DAG.

We also show that the technique of analyzing (in)compatible
supports [11] ultimately subsumes all other results. We de-
veloped an open-source Python implementation of the sup-
port analysis technique and utilized it to great effect for this
classification task, highlighting the plethora of DAGs recog-
nized as manifesting inequality constraints that would have
been overlooked by traditional methods.

This classification task required us to push forward on two
distinct research frontiers: Not only have we made head-
way with regards to recognizing the presence of inequal-
ity constraints, we also advanced the start of the art with
regards to certifying the absence of inequality constraints.
We adapt and modernize prior results of theoretical physi-
cists [9] to develop an algorithm capable of showing that
a latent-involving DAG is observationally equivalent to a
latent-free one. It has been conjectured that this algorithm
successfully picks out all DAGs not impying inequality con-
straints, and our work provides further evidence in favor of
this conjecture.

In practice, we unambiguously classify 99.9989% of all pos-
sible DAGs involving latent confounding. We would like to
call the attention of the community to three causal structures
which we strongly suspect imply inequality constraints de-

spite being unable to prove as such by the techniques avail-
able to us.

In conclusion, our research significantly advances the
methodology of causal hypothesis testing by introducing a
sophisticated framework for recognizing the implications of
inequality constraints with a high degree of precision. Drop-
ping the causal sufficiency assumption necessitates account-
ing for the complex interplay of observed and latent vari-
ables, but doing so allows data scientists to improve the relia-
bility of causal claims. The deeper theoretical understanding
of causal implications afforded by our work paves the way
for more accurate inference in data obscured by unobserved
factors. This can have practical ramifications in domains
such as epidemiology, economics, and social sciences.

This work has additional foundational implications, in that it
clarifies how to certify the existence of some inequality with-
out actually constructing said inequality. Our techniques,
rather, witness an implicit inequality by constructing a dis-
tribution which is incompatible with the given causal struc-
ture despite being Markov relative to it. Collecting such in-
compatible distributions, and appreciating the graphical fea-
tures which make them incompatible, may inspire future re-
search into inequality derivation or even causal discovery
sensitive to inequality constraints, either explicit or implicit.
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