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Abstract

Increasing concerns have been raised on deep learning fairness in recent years. Existing
fairness-aware machine learning methods mainly focus on the fairness of in-distribution
data. However, in real-world applications, it is common to have distribution shift between
the training and test data. In this paper, we first show that the fairness achieved by
existing methods can be easily broken by slight distribution shifts. To solve this problem, we
propose a novel fairness learning method termed CUrvature MAtching (CUMA), which can
achieve robust fairness generalizable to unseen domains with unknown distributional shifts.
Specifically, CUMA enforces the model to have similar generalization ability on the majority
and minority groups, by matching the loss curvature distributions of the two groups. We
evaluate our method on three popular fairness datasets. Compared with existing methods,
CUMA achieves superior fairness under unseen distribution shifts, without sacrificing either
the overall accuracy or the in-distribution fairness.

1 Introduction

With the wide deployment of deep learning in modern business applications concerning individual lives and
privacy, there naturally emerge concerns on machine learning fairness (Podesta et al., 2014; Muñoz et al.,
2016; Smuha, 2019). Although research efforts on various fairness-aware learning algorithms have been carried
out (Edwards & Storkey, 2016; Hardt et al., 2016; Du et al., 2020), most of them focus only on equalizing
model performance across different groups on in-distribution data.

Unfortunately, in real-world applications, one commonly encounters data with unforeseeable distribution shifts
from model training. It has been shown that deep learning models have drastically degraded performance
(Hendrycks & Dietterich, 2019; Hendrycks et al., 2020; 2021; Taori et al., 2020) and show unpredictable
behaviors (Qiu et al., 2019; Yan et al., 2021) under unseen distribution shifts. Most previous fairness learning
algorithms aim to achieve fairness on in-distribution data. However, those algorithms do not take into
consideration the stability or “robustness” of their found fairness-aware minima. Taking object detection in
self-driving cars for example, it might have been calibrated over high-quality clear images to be “fair” with
different pedestrian skin colors; however such fairness may break down when applied to data collected in
adverse visual conditions, such as inclement weather, poor lighting, or other digital artifacts. Our experiments
also find that previous state-of-the-art fairness algorithms would be jeopardized if distributional shifts are
present in test data. The above findings beg the following question:
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(a) Normal learning
(Unfair)

(b) Traditional fairness learning
(In-distribution fairness)

(c) Our robust fairness learning
(In-distribution & robust fairness)

Figure 1: Illustrating the achieved fairness of normal training, traditional fair training and our proposed
robust fair training algorithms. Horizontal and vertical axes represent input x and corresponding loss value
L(x), respectively. Solid blue curves show the loss landscapes. Circles denote majority data points (xa and
x′

a), while triangles denote minority data points (xi and x′
i). Green points (xa and xi) are in-distribution

data while red ones (x′
a and x′

i) are sampled from test sets with distribution shifts. (a) Normal training
results in unfair models: minority group has worse performance (i.e., larger loss values). (b) Traditional
fairness learning algorithms can achieve in-distribution fairness but not in a robust way: a small distribution
shift can break the fairness due to loss curvature biases across different groups. In fact, such learned fair
models can have almost the same large bias as the normally trained models when facing distribution shifts.
(c) Our robust fairness learning algorithm can simultaneously achieve fairness both on in-distribution data
and at distribution shifts, by matching both loss values and loss curvatures across different groups.

Using the currently available training set, how to achieve robust fairness that is generalizable to unseen
domains with unpredictable distribution shifts?

To solve this problem, we decompose it into the following two-step objectives and achieve them one by one:

1. The minority and majority groups should have similar prediction true positive rates and false positive
rates on in-distribution data. This is usually attained by traditional in-distribution fairness goals.

2. The minority and majority groups should have similar robustness under unseen distributional shifts.
In this context, the “robustness” refers to model performance gap between in-distribution and unseen
out-of-distribution data: the larger gap the weaker.

The first objective is well studied and can be achieved by existing fairness learning methods such as adversarial
training Edwards & Storkey (2016); Hardt et al. (2016); Du et al. (2020). In this paper, we focus our efforts
on addressing the second objective, which has been much less studied. We present empirical evidence that
the fairness achieved by existing in-distribution oriented methods can be easily compromised by even slight
distribution shifts.

Next, to mitigate this fragility, we note that model robustness against distributional shift is often found to be
highly correlated with the loss curvature (Bartlett et al., 2017; Weng et al., 2018). Our experiments further
observed that, the local loss curvature of minority group is often much larger than that of majority group,
which explains their discrepancy of robustness. Motivated by the above, we propose a new fairness learning
algorithm, termed Curvature Matching (CUMA), to robustify the fairness. Specifically, CUMA enforces
the model to have similar robustness on the majority and minority groups, by matching the loss curvature
distributions of the two groups. As a plug-and-play modular, CUMA can be flexibly combined with existing
in-distribution fairness learning methods, such as adversarial training, to fulfil our overall goal of robust
fairness. We illustrate the core idea of CUMA and its difference compared with traditional in-distribution
fairness methods in Figure 1.We evaluate our method on three popular fairness datasets: Adult, C&C, and
CelebA. Experimental results show that CUMA achieves significantly more robust fairness against unseen
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distribution shifts, without sacrificing either overall accuracy or the in-distribution fairness, compared to
traditional fairness learning methods.

2 Preliminaries

2.1 Machine Learning Fairness

Wide Existence of Unfairness in Machine Learning With the wide application of machine learning in
real-world applications, increasing concerns have been raised on the potential unfairness in machine learning
model and algorithms. For instance, Buolamwini & Gebru (2018) shows current commercial gender-recognition
systems have substantial accuracy disparities among groups with different genders and skin colors. Wilson
et al. (2019) observe that state-of-the-art segmentation models achieve better performance on pedestrians with
lighter skin colors. In (Shankar et al., 2017; de Vries et al., 2019), it is found that the common geographical
bias in public image databases can lead to strong performance disparities among images from locales with
different income levels. Nagpal et al. (2019) reveal that the focus region of face-classification models depends
on people’s ages or races, which may explain the source of age- and race-biases of classifiers. On the awareness
of the unfairness, many efforts have been devoted to mitigate such biases in computer vision tasks.

Problem Setting and Metrics Machine learning fairness can be generally categorized into individual
fairness and group fairness (Du et al., 2020). Individual fairness requires similar inputs to have similar
predictions (Dwork et al., 2012). This paper focuses on group fairness, whose definition is provided below.
Given input data X ∈ Rn with sensitive attributes A ∈ {0, 1} and their corresponding ground truth labels
Y ∈ {0, 1}, group fairness requires a learned binary classifier f(·; θ) : Rn → {0, 1} parameterized by θ to give
equally accurate predictions (denoted as Ŷ := f(X)) on the two groups with A = 0 and A = 1. Multiple
fairness criteria have been defined in this context. Demographic parity (DP) (Edwards & Storkey, 2016)
requires identical ratio of positive predictions between two groups: P (Ŷ = 1|A = 0) = P (Ŷ = 1|A = 1).
Equalized Odds (EO) (Hardt et al., 2016) requires identical false positive rates (FPRs) and false negative
rates (FNRs) between the two groups: P (Ŷ ̸= Y |A = 0, Y = y) = P (Ŷ ̸= Y |A = 1, Y = y), ∀y ∈ {0, 1}.
Based on these fairness criteria, quantified metrics are defined to measure fairness. For example, the EO and
EOpp distances (Madras et al., 2018) are defined as follows:

∆EO :=
∑

y∈{0,1}

|P (Ŷ ̸= Y |A = 0, Y = y) − P (Ŷ ̸= Y |A = 1, Y = y)|, (1)

∆EOpp := |P (Ŷ ̸= Y |A = 0, Y = 1) − P (Ŷ ̸= Y |A = 1, Y = 1)|. (2)

Mary et al. (2019) proposed to generalize the fairness measurements from binary variables to multi-variate
or continuous variables by using the Renyi maximum correlation coefficient.

Bias Mitigation Methods Many methods have been proposed to mitigate model bias. Data pre-processing
methods such as re-weighting (Kamiran & Calders, 2012) and data-transformation (Calmon et al., 2017) have
been used to reduce discrimination before model training. In contrast, Hardt et al. (2016) and Zhao et al.
(2017) propose post-processing methods to calibrate model predictions towards a desired fair distribution
after model training. Instead of pre- or post-processing, researchers have explored to enhance fairness
during training. For example, Madras et al. (2018) uses a adversarial training technique and shows the
learned fair representations can transfer to unseen target tasks. The key technique, adversarial training
(Edwards & Storkey, 2016), was designed for feature disentanglement on hidden representations such that
sensitive (Edwards & Storkey, 2016) or domain-specific information (Ganin et al., 2016) will be removed
while keeping other useful information for the target task. The hidden representations are typically the
output of intermediate layers of neural networks (Ganin et al., 2016; Edwards & Storkey, 2016; Madras et al.,
2018). Instead, methods, like adversarial debiasing (Zhang et al., 2018) and its simplified version (Wadsworth
et al., 2018), directly apply the adversary on the output layer of the classifier, which also promotes the model
fairness. Observing the unfairness due to ignoring the worst learning risk of specific samples, Hashimoto
et al. (2018) proposes to use distributionally robust optimization which provably bounds the worst-case risk
over groups. Creager et al. (2019) proposes a flexible fair representation learning framework based on VAE
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(Kingma & Welling, 2013), that can be easily adapted for different sensitive attribute settings during run-time.
Sarhan et al. (2020) uses orthogonality constraints as a proxy for independence to disentangles the utility and
sensitive representations. Martinez et al. (2020) formulates group fairness with multiple sensitive attributes as
a multi-objective learning problem and proposes a simple optimization algorithm to find the Pareto optimality.
Another line of research focuses on learning unbiased representations from biased ones (Bahng et al., 2020;
Nam et al., 2020). Bahng et al. (2020) proposes a novel framework to learn unbiased representations by
explicitly enforcing them to be different from a set of pre-defined biased representations. Nam et al. (2020)
observes that data bias can be either benign or malicious, and removing malicious bias along can achieve
fairness. Li & Vasconcelos (2019) jointly learns a data re-sampling weight distribution that penalizes easy
samples and network parameters. Li et al. (2019) scaled by higher-order power to re-emphasize the loss of
minority samples (or nodes) in distributed learning. Agarwal et al. (2018) formulates a fairness-constrained
optimization to train a randomized classifier which is provably accurate and fair. Quadrianto et al. (2019)
casts the sensitive information removal problem as a data-to-data translation problem with unknown target
domain. Wang et al. (2019) shows the effectiveness of adversarial debiasing technique (Zhang et al., 2018) in
fair image classification and activity recognition tasks. Beyond the supervised learning, FairFaceGAN (Hwang
et al., 2020) is proposed to prevent undesired sensitive feature translation during image editing. Similar ideas
have also been successfully applied to visual question answering (Park et al., 2020). Szabó et al. (2021)
proposed tilted cross-entropy to achieve fairness in semantic segmentation. Prost et al. (2019) proposed to
improve the trade-off between performance and fairness by kernel-based distribution matching. Baharlouei
et al. (2019) used Renyi correlation as a regularization term in training to impose group fairness. Cho et al.
(2020) used kernel density estimation to quantify fairness measurements in a differentiable way, which is used
in training to optimize the trade-off between accuracy and fairness. Recently, Lowy et al. (2022) developed
the first stochastic in-processing fairness algorithm with guaranteed convergence in stochastic optimization
with any batch size. The proposed method, named FERMI, is capable of achieving fairness on multiple
(non-binary) sensitive attributes and non-binary targets, performing well even with minibatch size as small
as one. FERMI empirically achieves state-of-the-art performance across multiple different problem settings,
outperforming previous methods by a significant margin. For more related works on machine learning fairness,
please refer to the recent survery (Hort et al., 2022).

Fairness under distributional shift Recently, several papers have investigated the fairness learning
problem under distributional shift (Mandal et al., 2020; Zhang et al., 2021; Rezaei et al., 2021; Singh et al.,
2021; Dai & Brown, 2020). Although these works are relevant with ours, there are significant differences in
the problem settings. Zhang et al. (2021) studied the problem of enforcing fairness in online learning, where
the training distribution constantly shifts. The authors proposed to adapt the model to be fair on the current
known data distribution. In contrast, our work aims to generalize fairness learned on current distribution to
unknown and unseen target distributions. In our setting, the algorithm can not access any training data
from the unknown target distributions. Rezaei et al. (2021) studied to preserve fairness under covariate
shift. However, their method requires unlabeled data from the target distribution. In other words, they
assume the target distribution to be known. In contrast, our method is more general and works on unknown
target distributions. Singh et al. (2021) also studied to preserve fairness under covariate shift. However, their
method is based on model adaptation and requires the existence of a joint causal graph to represent the data
distribution for all domains. Our method, however, does not require such and generally works on any unseen
target distributions. Dai & Brown (2020) studies fairness under label distributional shift, while we focus on
covariate shift and temporal shift. Mehrabi et al. (2021) proposed data poisoning attacks targeting fairness.

2.2 Model Robustness and Smoothness

Model generalization and robustness have been shown to be highly correlated with model smoothness
(Moosavi-Dezfooli et al., 2019; Weng et al., 2018). Weng et al. (2018) and Guo et al. (2018) use the local
Lipschitz constant to estimate model robustness against small perturbations on inputs within a hyper-ball.
Moosavi-Dezfooli et al. (2019) proposes to improve model robustness by adding a curvature constraint to
encourage model smoothness. Miyato et al. (2018) approximates model local smoothness by the spectral
norm of Hessian matrix, and improves model robustness against adversarial attacks by regularizing model
smoothness.
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3 The Challenge of Robust Fairness

In this section, we show that the current state-of-the-art in-distribution fairness learning methods suffer
significant performance drop under unseen distribution shifts. Specifically, we train the model using normal
training, AdvDebias (Zhang et al., 2018) and LAFTR (Madras et al., 2018) on Adult (Kohavi, 1996) dataset
(i.e., US Census data before 1996). We evaluate the ∆EO on the original Adult test set and the 2015 subset
of Folktables datase (Ding et al., 2021) (i.e., US Census data in 2015) respectively, in order to check whether
the fairness achieved on in-distribution data is preserved under the temporal distribution shift. The results
are shown in Figure 3.

As we can see, LAFTR and AdvDebias successfully improve the in-distribution fairness compared with normal
training. However, both methods suffer significant performance drop in terms of ∆EO and ∆EOpp under
the temporal distribution shift. Moreover, under the distribution shift, the ∆EO and ∆EOpp achieved by
LAFTR and AdvDebias are almost the same with or even worse than that of normal training. In other words,
the models trained by LAFTR and AdvDebias are almost as unfair as a normally trained model under this
naturally occurring distribution shift.

4 Curvature Matching: Towards Robust Fairness under Unseen Distributional Shifts

In this section, we present our proposed solution for the robust fairness challenge described in Section 3.

4.1 Loss Curvature as the Measure for Robustness

Before introducing our robust fairness learning method, we need to first define the measure for model
robustness under unseen distributional shifts.

Consider a binary classifier f(·; θ) trained on two groups of data X1 and X2. Our goal is to define a metric
to measure the gap of model robustness between the two groups. Previous research (Guo et al., 2018; Weng
et al., 2018) has shown both theoretically and empirically that deep model robustness scales with its model
smoothness.1 Motivated by the above, we use the spectral norm of Hessian matrix to approximate local
smoothness as a measure of model robustness. Specifically, given an input x, the Hessian matrix H(x)
is defined as the second-order gradient of L(x) with respect to model weights θ: H(x) = ∇2

θL(x). The
approximated local curvature C(x) at point x is thus defined as:

C(x) = σ(H(x)), (3)

where σ(H) is the spectral norm (SN) of H: σ(H) = supv:∥v∥2=1 ∥Hv∥2. Intuitively, C(x) measures the
maximal directional curvature or change rate of the loss function at x. Thus, smaller C(x) indicates better
local smoothness around x.

Practical Curvature Approximation It is inefficient to directly optimize the loss curvature through
Eq. (3), since it involves high order gradients.2 To solve this problem, we use a one-shot power iteration
method (PIM) for practical approximation of C(x) during training. First we rewrite C(x) with the following
form: C(x) = σ(H(x)) = ∥H(x)v∥, where v is the dominant eigenvector with the maximal eigenvalue,
which can be calculated by power iteration method. In practice, we estimate the dominant eigenvector
v by the gradient direction: ṽ := sign(g)

∥sign(g)∥ ≈ v, where g = ∇θL(x). This is because previous works have
observed a large similarity between the dominant eigenvector and the gradient direction (Miyato et al., 2018;
Moosavi-Dezfooli et al., 2019). We further approximate Hessian matrix by finite differentiation on gradients:

1We mainly focus on covariate shift since the curvature smoothness is related to robustness under covariate shift. Our
experiments on CelebA and C&C datasets verified the effectiveness of our method under covariate shift. For example, on CelebA
dataset, the source (training) distribution contains young faces and the target (test) distribution contains old faces, which is a
covariate shift setting. Our method is also empirically effective against temporal shift, as verified in our experiments on Adult
dataset.

2The Hessian matrix itself involves second order gradients, and backpropagation through Eq. (3) requires even higher order
gradient on top of the Hessian matrix SN.
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H(x)v ≈ ∇θL(x+hv)−∇θL(x)
h where h is a small constant. As a result, the final approximation of curvature

smoothness is

C(x) ≈ ∥∇θL(x + hṽ) − ∇θL(x)∥
|h|

. (4)

4.2 Curvature Matching

Equipped with the practical curvature approximation, now we can match the curvature distribution of the
two groups by minimizing their maximum-mean-discrepancy (MMD) (Gretton et al., 2012) distance. Suppose
C(X1) ∼ Q1 and C(X2) ∼ Q2, where C̃(·) is defined in Eq. 4, we define the curvature matching loss functions
as:

Lcm = MMD2(Q1, Q2), (5)

The MMD distance, which is widely used to measure the distance between two high-dimensional distributions
in deep learning (Li et al., 2015; 2017; Bińkowski et al., 2018), is defined as

MMD2(P, Q) =EP [k(X, X)]−
2EP,Q[k(X, Y )] + EQ[k(Y, Y )] (6)

where X ∼ P, Y ∼ Q and k(·, ·) is the kernel function. In practice, we use finite samples from P and Q to
statistically estimate their MMD distance:

MMD2(P, Q) = 1
M2

M∑
i=1

M∑
i′=1

k(xi, xi′)

− 2
MN

M∑
i=1

N∑
j=1

k(xi, yj) + 1
N2

N∑
j=1

N∑
j′=1

k(yj , yj′) (7)

where {xi ∼ P}M
i=1, {yj ∼ Q}N

j=1, and we use the mixed RBF kernel function as k(x, y). Selecting a proper
kernel width is important for RBF kernel (Sutherland et al., 2016; Liu et al., 2020). We follow Li et al. (2015;
2017) to use a series of different kernel width simultaneously: k(x, y) =

∑
σ∈S e− ∥x−y∥2

2σ2 with S = {1, 2, 4, 8, 16}.
During training, we use the whole batch of training samples to estimate MMD, where the batch size is 64. In
other words, M + N = 64 in equation 7.

As a side note, MMD has been previously used in fairness learning. Quadrianto & Sharmanska (2017) defines
a more general fairness metric using MMD distance, and shows DP and EO to be the special cases of their
unified metric. Their paper, however, still focuses on the in-distribution fairness. In contrast, our CUMA
minimizes the MMD distance on the curvature distributions to achieve robust fairness.

Back to our method. After defining Lcm, we add it to the traditional adversarially fair training (Ganin et al.,
2016; Madras et al., 2018) loss function as a regularizer, in order to attain both in-distribution fairness and
robust fairness. As illustrated in Figure 2, our model follows the same “two-head” structure as traditional
adversarial learning frameworks (Ganin et al., 2016; Madras et al., 2018), where ht is the utility head for
the target task, ha is the adversarial head to predict sensitive attributes, and fs is the shared backbone.3
Suppose for each sample xi, the sensitive attribute is ai and the corresponding target label is yi, then our
overall optimization problem can be written as:

min
θs,θt

max
θa

L = min
θs,θt

max
θa

(Lclf − αLadv + γLcm) (8)

3Thus the binary classifier f(·; θ) = ht(fs(·; θs); θt), with θ = θt ∪ θs.
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where

Lclf = 1
N

N∑
i=1

ℓ(ht(fs(xi; θs); θt), yi), (9)

Ladv = 1
N

N∑
i=1

ℓ(ha(fs(xi; θs); θa), ai), (10)

ℓ(·, ·) is the cross-entropy loss function, α and γ are trade-off hyperparameters, and N is the number of
training samples.

𝑥 𝑓𝑠(∙; θs) ℎ𝑡(∙; θ𝑡)

ℎ𝑎(∙; θ𝑎)

𝑓 ∙; θ = ℎ𝑡(𝑓𝑠(∙; θs); θ𝑡)

𝐿𝑎𝑑𝑣

𝐿𝑐𝑙𝑓

𝐶(∙)
𝐿𝑐𝑚𝑄1

𝑄2

Figure 2: The overall framework of CUMA. x is the input sample. ht is the utility head for the target task.
ha is the adversarial head to predict sensitive attributes. fs is the shared backbone. C(·) is the curvature
estimation function, as defined in Eq. (3). Q1 and Q2 are local curvature distributions of majority and
minority groups, respectively. Lcm, Lclf and Ladv are three loss terms as defined in Eq. (5), (9), and (10),
respectively.

5 Experiments

5.1 Experimental Setup

Datasets and pre-processing Experiments are conducted on three datasets widely used to evaluate
machine learning fairness: Adult (Kohavi, 1996), and CelebA (Liu et al., 2015), and Communities and Crime
(C&C) (Redmond & Baveja, 2002).4 Adult dataset has 48,842 samples with basic personal information such
as education and occupation, where 30,000 are used for training and the rest for evaluation. The target task
is to predict the person’s annual income, and we use “gender” (male or female) as the sensitive attribute. The
features in Adult dataset are of either continuous (e.g., age) or categorical (e.g. sex) values. We use one-hot
encoding on the categorical features and then concatenate them with the continuous ones. We use data
whitening on the concatenated features. CelebA has over 200,000 images of celebrity faces, with 40 attribute
annotations. The target task is to predict gender (male or female) and the sensitive attribute to protect
is “chubby”. We randomly select 10, 000 as training samples and 1, 000 as testing samples. All images are
center-cropped and resized to 64 × 64, and pixel values are scaled to [0, 1]. C&C dataset has 1,994 samples
with neighborhood population statistics, where 1,500 are used for training and the rest for evaluation. The
target task is to predict violent crime per capita, and we use “RacePctBlack” (percentage of black population
in the neighborhood) as sensitive attributes. All features in C&C dataset are of continous values in [0, 1]. To

4Traditional image classification datasets (e.g., ImageNet) are not directly applicable since they lack fairness attribute labels.
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fit in the fairness problem setting, we binarilize the target and sensitive attributes with the top-30% largest
value as the threshold (As a result P[A = 0] = 30% and P[Y = 0] = 30%). We also do data-whitening on
C&C.
Models For C&C and Adult datasets, we use two-layer MLPs for fs, ht and ha. Specifically, suppose
the input feature dimension is d, then the dimensions of hidden layers in fs and ht are d → 100 → 64 and
64 → 32 → 2, respectively. ha has identical model structure with ht. For all three sub-networks, ReLU
activation function and dropout layer with 0.25 dropout ratio are applied between the two fully connected
layers. For CelebA dataset, we use ResNet18 as backbone, where the first three stages are used as fs and the
last stage (together with the fully connected classification layer) is used as ht. The auxiliary adversarial head
ha has the same structure as ht.

Baseline methods We compare CUMA with the following state-of-the-art in-distribution fairness algo-
rithms. Adversarial debiasing (AdvDebias) (Zhang et al., 2018) is one of the most popular fair training
algorithm based on adversarial training (Ganin et al., 2016). Madras et al. (2018) proposes a similar framework
termed Learned Adversarially Fair and Transferable Representations (LAFTR), by replacing the cross-entropy
loss used in (Zhang et al., 2018) with a group-normalized ℓ1 loss, which is shown to work better on highly
unbalanced datasets. We also include normal (fairness-ignorant) training as a baseline. We also add the
“Oracle” baseline method: We train with AdvDebias on the target distribution and tested the model on the
target distribution, to see how hard it is to directly achieve fairness on the target data distribution. Lastly,
we also add RobustFair(Mandal et al., 2020), a previous method to pursue fairness beyond the training data,
as a baseline.

Evaluation metric We report the overall accuracy on all test samples in the original test sets. To measure
in-distribution fairness, we use ∆EO and ∆EOpp on the original test sets. To measure robust fairness under
distribution shifts, we use ∆EO and ∆EOpp on test sets with distribution shifts. See the following paragraph
for the details in constructing distribution shifts. Since there is inherent trade-off between fairness and
accuracy, we report the trade-offs between fairness and accuracy by setting the loss function weights (e.g., α
and γ) to different values. For example, the larger α, the better fairness and the worse accuracy. We show
the results by visualizing the trade-off curves between fairness and accuracy of different methods. The closer
the curve to the top-left corner (i.e., with larger accuracy and smaller ∆EO or ∆EOpp ), the better Pareto
frontier is achieved.

Distribution shifts Adult dataset contains US Census data collected before 1996. We use the 2014 and
2015 subset of Folktables dataset (Ding et al., 2021), which contain US Census data collected in 2014 and 2015
respectively, as the test sets with distribution shifts. This simulates the real-world temporal distributional
shifts.

On CelebA dataset, we train the model on 10, 000 “young” face images. We use another 1, 000 “young”
face images as in-distribution test set and 1, 000 “not young” face images as the test set with distribution
shifts. This simulates the real-world scenario when the model is trained and used on people with different
age groups. We also construct another test set with a different type of distribution shift, by applying strong
JPEG compression on the original 1, 000 “young” test images, following Hendrycks & Dietterich (2019). This
simulates the scenario when the model is trained on good quality images while the test images has poor
visual quality.

For C&C dataset, we construct two artificial distribution shifts by adding random Gaussian and uniform
noises, respectively, to the test data. Specifically, the categorical features in C&C dataset are first one-hot
encoded and then whitened into float-value vectors, where noises are added. Both types of noises have mean
µ = 0 and has standard derivation σ = 0.03 .

Implementation details Unless further specified, we set the loss trade-off parameter α to 1 in all
experiments by default. We use Adam optimizer (Kingma & Ba, 2014) with initial learning rate 10−3 and
weight decay 10−5. The learning rate is gradually decreased to 0 by cosine annealing learning rate scheduler
(Loshchilov & Hutter, 2016). On both Adult and C&C datasets, we train for 50 epochs from scratch for all
methods. On CelebA dataser, we first normally train a model for 100 epochs, and then finetune it for 20
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Figure 3: Trade-off curves between fairness and accuracy of different methods. Results are reported on Adult
dataset with “Sex” as the sensitive attribute.

epochs using CUMA. For fair comparison, we train for 120 epochs on CelebA for all baseline methods. The
constant h in Eq. (4) is set to 1 by default.

5.2 Main Results

Experimental results on three datasets with different sensitive attributes are shown in Figures 3, 4, 5, where
we compare CUMA with the baseline methods on different metrics as discussed in Section 5.1. “Normal”
means standard training without any fairness regularization. All numbers are shown as percentages. Many
intriguing findings can be concluded from the results.

First, we see that previous state-of-the-art fairness learning algorithms would be jeopardized if distributional
shifts are present in test data. For example, on Adult dataset (Figure 3), LAFTR achieves ∆EO = 11.96% on
in-distribution test set, while that number is increased to 13.95% on the 2014 test set and 14.80% on the
2015 test set, which is almost as unfair as the normally trained model. Similarly, on CelenA dataset with
“Chubby” as the sensitive attribute (Figure 4), LAFTR achieves ∆EO = 31.02% on the original CelebA test
set, while that number is increased to 35.88% and 37.46% under distribution shifts of user age and image
quality, respectively.

Second, we see that CUMA achieves the best robust fairness under distribution shifts under all evaluated
settings, while maintaining similar in-distribution fairness and overall accuracy. For example, on Adult dataset
(Figure 3), CUMA achieves 1.92% and 1.96% less ∆EO than the second-best performer (AdvDebias) on the
2014 and 2015 Census dataset, respectively. On CelebA dataset (Figure 4) with “Chubby” as the sensitive
attribute, CUMA achieves 2.62% and 2.74% less ∆EO than the second-best performers under distribution
shifts of user age and image quality, respectively. Moreover, still in Figure 4, CUMA and LAFTR achieve
almost identical in-distribution fairness (the difference between their ∆EO on original test set is 0.5%), CUMA
keeps the fairness under distribution shifts (with only around 1.6% increase in ∆EO), while the fairness
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Figure 4: Trade-off curves between fairness and accuracy of different methods. Results are reported on
CelebA dataset with “Chubby” as the sensitive attribute.

achieved by LAFTR is significantly worse, especially under the image quality distribution shift, where the
∆EO is increased by 6.44%.

5.3 Ablation Study

In this section, we check the sensitivity of CUMA with respect to its hyper-parameters: the loss trade-off
parameters α and γ in Eq. (8) and h in Eq. (4). Results are shown in Table 1. When fixing α = 1, the best
trade-off between overall accuracy and robust fairness is achieved at round γ = 1, which we use as the default
γ. Varying the value of h hardly affects the performance of CUMA.

Table 1: Ablation study results on the loss trade-off parameters α and γ in the CUMA algorithm. Results
are reported on C&C dataset with “RacePctBlack” as the sensitive attribute.

α γ h
0 0.1 1 10 0 0.1 1 10 0.1 1

Accuracy 89.21 86.94 85.40 83.75 84.79 85.19 85.40 84.79 85.32 85.40
∆EO

with Gaussian noise 64.27 66.51 28.74 33.16 39.84 38.85 28.74 27.95 30.56 28.74

6 Conclusion

In this paper, we first observe the challenge of robust fairness: Existing state-of-the-art in-distribution fairness
learning methods suffer significant performance drop under unseen distribution shifts. To solve this problem,
we propose a novel robust fairness learning algorithm, termed Curvature Matching (CUMA), to simultaneously
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Figure 5: Trade-off curves between fairness and accuracy of different methods. Results are reported on C&C
dataset with “RacePctBlack” as the sensitive attribute.

achieve both traditional in-distribution fairness and robust fairness. Experiments show CUMA achieves more
robust fairness under unseen distribution shifts, without more sacrifice on either overall accuracies or the
in-distribution fairness compared with traditional in-distribution fairness learning methods.

7 Broader Impact

With the wide application of machine learning models in many real-world applications, new requirements
have been raised to guarantee machine learning models make ethical and fair decisions. This work takes one
step forward in this direction, by generalizing the fairness on in-distribution data to out-of-distribution data.

Limitations and Future Works Following previous fairness learning works (Zhang et al., 2018; Madras
et al., 2018), this paper focuses on the binary classification problem with binary privacy attributes. The
proposed method can potentially be generalized to the multiclass classification or continuous prediction
problems following similar ideas as in (Mary et al., 2019; Denis et al., 2021), which we leave as the future
work. We also empirically find that the proposed method do not directly benefit model accuracy under
distributional shifts. It would be a good future direction to investigate how to simultaneously achieve better
model accuracy and fairness under distributional shifts. Another topic we leave as future work is to study
the theoretical guarantees on the generalization bounds for fairness.
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