
CPSample: Classifier Protected Sampling for
Guarding Training Data During Diffusion

Joshua Kazdan1, Hao Sun2, Jiaqi Han2, Felix Petersen2, Frederick Vu3, Stefano Ermon2

1Department of Statistics, Stanford University
2Department of Computer Science, Stanford University

3Department of Mathematics, UCLA

Abstract

Diffusion models have a tendency to exactly replicate their training data, especially
when trained on small datasets. Most prior work has sought to mitigate this problem
by imposing differential privacy constraints or masking parts of the training data,
resulting in a notable substantial decrease in image quality. We present CPSample,
a method that modifies the sampling process to prevent training data replication
while preserving image quality. CPSample utilizes a classifier that is trained to
overfit on random binary labels attached to the training data. CPSample then uses
classifier guidance to steer the generation process away from the set of points
that can be classified with high certainty, a set that includes the training data.
CPSample achieves FID scores of 4.97 and 2.97 on CIFAR-10 and CelebA-64,
respectively, without producing exact replicates of the training data. Unlike prior
methods intended to guard the training images, CPSample only requires training a
classifier rather than retraining a diffusion model, which is computationally cheaper.
Moreover, our technique provides diffusion models with greater robustness against
membership inference attacks, wherein an adversary attempts to discern which
images were in the model’s training dataset. We show that CPSample behaves like
a built-in rejection sampler, and we demonstrate its capabilities to prevent mode
collapse in Stable Diffusion.

1 Introduction

Diffusion models are an emerging method of image generation that have surpassed GANs on many
common benchmarks [11], achieving state-of-the-art FID scores on CIFAR-10 [28], CelebA [30],
ImageNet [10], and other touchstone datasets. Although their capabilities are impressive, diffusion
models still suffer from the tendency to exactly replicate images found in their training sets [5, 24,
41]. Given that diffusion models are sometimes trained on sensitive content, such as patient data [26,
38] or copyrighted data [11], this behavior is generally unacceptable. Indeed, Google, Midjourney,
and Stability AI are already facing lawsuits for using copyrighted data to train image generation
models [3, 4], some of which exactly replicate images from their training data during inference [32].

The strongest formal guarantee against replicating or revealing training data is differential privacy
(DP) [16]. Although differentially private training methods for GANs (DP-GAN) [49], diffusion
models (DPDM, DP-Diffusion) [12, 18], and latent diffusion models (DP-LDM) [31] have been
developed, they typically result in significant degradation of image quality, and the balancing of
privacy and image quality is complicated by the need to retrain models when adjusting desired levels
of privacy. Due to this trade-off, some researchers have focused on producing model characteristics
that are guaranteed by differential privacy, such as robustness to membership inference attacks [22],
whereby the attacker aims to infer whether a given image was used to train the model. While
a multitude of membership inference attacks have been developed, so far, few methods besides

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

differential privacy and data augmentation [33, 37] explicitly aim to defend against these attacks.
Ambient diffusion [8] is one method to prevent excessive similarity to the training data without
enforcing differential privacy; however, ambient diffusion still has notable negative effects on FID
scores.

Until recently, preventing image replication by diffusion models has involved corruption-based
training methods, such as adding noise to gradients [1], diversifying images and captions [42], or
corrupting the images themselves [8]. Hyperparameter tuning for these methods requires retraining,
making it difficult to calibrate them to the necessary level of privacy. Rejection sampling is a simple
alternative that can guarantee that the training images will not be exactly replicated. However, rejec-
tion sampling is inefficient, and in extreme cases of mode collapse as seen in Stable Diffusion [45],
the model must be queried hundreds of times for an original image. Furthermore, rejection sampling
is prone to membership inference attacks and privacy leakages [2].

We present classifier-protected sampling (CPSample), a diffusion-specific data protection technique
that, while not strictly differentially private, fortifies against some membership inference attacks
and greatly reduces excessive similarity between the training and generated data. By overfitting
a classifier on random binary labels assigned to the training data, CPSample guides the image
generation process away from training data points. While rejection sampling only protects the final
output, CPSample offers protection against some membership inference attacks during the generation
process. CPSample achieves SOTA image quality, improving over previous data protection methods,
such as ambient diffusion, DPDMs, and PAC Privacy Preserving Diffusion Models [50] for similar
levels of “privacy”, and offers flexibility in adjusting the level of protection without retraining, making
it more efficient and adaptable for existing models. We summarize the primary contributions of our
work as follows:

• In Section 3.1, we introduce CPSample, a novel method of classifier-guidance for privacy
protection in diffusion models that can be applied to existing models without retraining.

• We show theoretically in Section 3.2 and empirically in Section 4.1 that CPSample prevents
training data replication in unguided diffusion. We also provide evidence in Section 4.2 that
CPSample can protect text-based image generation models, like Stable Diffusion.

• We give empirical evidence that CPSample can foil some membership inference attacks in
Section 4.3.

• We demonstrate in Section 4.4 that CPSample attains better FID scores than existing methods
of privacy protection while still eliminating replication of the training data.

2 Background and Related Work

2.1 Diffusion Models

We begin with a review of diffusion models. Denoising diffusion probabilistic models (DDPMs) [40,
20] gradually add Gaussian noise to image data during the “forward” process. Meanwhile, one trains
a “denoiser” to predict the original image from the corrupted samples in a so-called “backward”
process. During the forward process, one assigns

xt =
√
αtx0 +

√
1− αtϵ (2.1)

where ϵ ∼ N (0, I), x0 is the original image, and αt indicates the noise schedule. The variable
t ∈ {0, ..., T} specifies the step of the forward process, where x0 represents an image in the training
data. When αT is set sufficiently close to 0, xT is approximately drawn from a standard normal
distribution. During intermediate steps, the distribution of xt is

q(xt | x0) = N (xt;
√
αtx0, (1− αt)I). (2.2)

During training, one performs gradient descent on θ to minimize the score-matching loss, given by

Eϵ∼N (0,1),x0∼D

[
T∑

t=1

1

2σ2
t

∥ϵ− ϵθ(
√
αtx0 +

√
1− αtϵ, t)∥2

]
. (2.3)

Here, D is the target distribution, which is approximated by sampling from the training data. Finally,
to generate a new image, one samples standard Gaussian noise xT ∼ N (0, I). Then, one gradually

2

denoises xT by letting

xt−1 =
1
√
αt

(
xt −

1− αt√
1− αt

ϵθ(xt, t)

)
+ σtzt, (2.4)

where in each step, one has zt ∼ N (0, I), and σt and αt are scalar functions determined by the noise
schedule that govern the rate of the backward diffusion process.

Despite the superior image quality afforded by DDPMs, the sampling process sometimes involves
1 000 or more steps, which has led to a variety of sampling schemes and distillation methods for
speeding up inference [43, 27, 44, 19]. One of the most commonly used modifications to the sampling
process is denoising diffusion implicit models (DDIMs), which enable skipping steps in the backward
process.

Currently, the state-of-the-art for guided generation is achieved by models with classifier-free guid-
ance [21]. However, since CPSample employs a classifier to prevent replication of its training
data, it is more useful for us to review its predecessor, classifier-guided diffusion [29, 11]. In clas-
sifier guided diffusion, a pretrained classifier pϕ(y | xt, t) assigns a probability to the event that
xt =

√
αtx0+

√
1− αtϵ for some x0 with label y. The sampling process for classifier-guided DDIM

is modified by

ϵ̂t = ϵθ(xt)−
√
1− αt∇xt

log pϕ(y | xt, t) (2.5)

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ̂t√
αt

)
+
√
1− αtϵ̂t. (2.6)

Such a modification of the sampling procedure corresponds to sampling xt from the joint distribution:

pθ,ϕ(xt, y | xt+1, t) = Zpθ(xt | xt+1, t)pϕ(y | xt, t) (2.7)

where Z is a normalization constant. This formulation can be adapted for continuous-time models,
but for discrete-time models, additional care must be taken to ensure accuracy (see Appendix A for
additional details).

2.2 Privacy in Diffusion Models

Differential privacy (DP) is generally considered to be the gold standard for protecting sensitive data.
The formal definition of (ε-δ) differential privacy is as follows [16]:

Definition 2.1 ((ε-δ)-Differential privacy). Let A be a randomized algorithm that takes a dataset as
input and has its output in X . If D1 and D2 are datasets with symmetric difference 1, then A is ε-δ
differentially private if for all S ⊂ X ,

P(A(D1) ∈ S) ≤ P(A(D2) ∈ S)eε + δ. (2.8)

DP ensures that the removal or addition of a single data point to the dataset does not significantly
affect the outcome of the algorithm, thus protecting the identity of individuals within the dataset. It is
highly improbable that a DP model will exactly reveal members of its training data. Therefore, while
preventing exact replication of training data alone does not imply differential privacy, it still captures
one of its desirable properties: the reduced likelihood of revealing one of its training data points.

Though DP offers a formal guarantee that one’s data is secure, imposing a DP constraint in practice
severely compromises the quality of the synthetic images. Researchers thus often use empirical
measures of similarity to determine the effectiveness of the models in providing privacy. For example,
one can measure the distance of generated images to their nearest neighbors in the training set and
try to ensure that the number with similarity exceeding some threshold is small [9, 8]. One typically
computes similarity either via least squares or via cosine similarity, given by

xT · C(x)
∥x∥ · ∥C(x)∥

, (2.9)

with cosine similarity typically being computed in a feature space rather than the raw pixel space [35,
48]. Here, C(x) denotes the nearest neighbor of x among the training data. In 2023, MetaAI

3

developed the FAISS library for efficient similarity search using neural networks [13], making this
type of privacy metric possible to compute approximately in a reasonable amount of time.

Until recently, all attempts at enforcing privacy for diffusion models occurred during training.
In 2023, [50] developed a method of classifier-guided sampling (PACPD) that has PAC privacy
advantages over standard denoising. For text-guided models, [42] developed a method of randomly
changing influential input tokens to avoid exact memorization, and [46] protected training data using a
regularization technique on the classifier-free guidance network during training. In 2024, [7] devised
a guidance method (AMG) which calculates similarity metrics at each step in the denoising schedule
in order to guide the sampling process away from similar data points in the training corpus. By
utilizing similarity metrics directly, they were able to effectively eliminate memorization in both
text-conditional and unconditional diffusion models. Though theoretically valuable, the need to have
access to the training data and to compute similarity measures at runtime is impractical for use outside
of a research environment.

2.3 Membership Inference Attacks

A third privacy measurement comes from membership inference attacks [15, 36, 14, 47], whereby
one tries to discern whether a given data point was a member of the training set for the model.
Membership inference attacks against diffusion models usually hinge on observed differences in
reconstruction loss or likelihood that come from overfitting. If the resulting mean reconstruction error
is significantly higher for test data than for training data, then we say that the diffusion model has
failed the inference attack. Robustness to membership inference attacks is implied by differential
privacy. In this paper, we test CPSample against a slight modification of the membership inference
attack from [34], as described in Algorithm 1 in Appendix E.

3 Protecting Privacy During Sampling

In this section, we address the problem of training data replication in diffusion models, which poses
significant privacy risks. One common solution to this problem is rejection sampling, whereby sam-
ples that closely resemble training data are discarded, but this method is computationally expensive
and inefficient, as in extreme cases of mode collapse, one may need to generate dozens of images
before generating original content.

To overcome these limitations, we introduce CPSample, a method that integrates classifier guidance
into the sampling process to avoid resampling. By overfitting a classifier on random binary labels
assigned to the training data, CPSample steers away the generation process from the training data,
thereby reducing the likelihood of replicating training data while preserving image quality.

3.1 Sampling Method

The first step in CPSample is to train a classifier to assess the likelihood that a sample xt will coincide
with a member of the training data at the end of the denoising process. The classifier is trained to
memorize random binary labels assigned to the training data. It was shown in [51] that this can be
achieved with a network with a number of parameters that is linearly proportional to the size of the
dataset, with a small constant of proportionality. Additionally, the training time required to memorize
random labels is only a small constant factor more compared to the time it takes to memorize real,
non-random labels. To address duplicated data in the training corpus, after the classifier has been
sufficiently trained, items for which the classifier still shows significant loss can be reassigned a
common label. Further training then ensures the classifier memorizes these items.

During the denoising process, whenever the classifier predicts a label y ∈ {0, 1} for xt with
probability greater than 1 − α, we perturb xt−1 towards data points with the opposite label using
classifier guidance. For example, if the classifier predicts the label 1 with high probability, we adjust
the sampling process to draw from the conditional distribution pθ,ϕ(xt−1 | xt, t, y = 0), leading to a
reduced likelihood of the final generated sample being close to the training data.

To state our procedure more precisely, let ϵθ(·, ·) be the denoiser. Note that the classifier is trained
only once on the training data and not during each sample generation. The sampling process is then
modified in the following steps:

4

1. Randomly assign Bernoulli(0.5) labels to each member of the training data, and let B ∈
{0, 1}n index these random labels. Train a classifier pϕ(y | xt, t) to predict these labels.
Here, xt is generated by corrupting the training data x0 with noise: xt =

√
αtx0+

√
1− αtϵ

for ϵ ∼ N (0, I) and t ∈ {0, ..., T}.
2. Set a tolerance threshold 0 < α < 0.5 and a scale parameter s. Let pϕ(y | xt, t) be the

probability assigned to the label y by the classifier pϕ(y | xt, t). Sample xT ∼ N (0, I). For
t ∈ {T,, 1}, if pϕ(y = 0 | xt, t) < α, replace ϵθ(xt, t) with

ϵ̂θ,ϕ(xt, t) = ϵθ(xt, t)− s
√
1− αt · ∇ log(pϕ(y = 0 | xt, t)).

If pϕ(y = 1 | xt, t) < α, replace ϵθ with

ϵ̂θ,ϕ(xt, t) = ϵθ(xt, t)− s
√
1− αt · ∇ log(pϕ(y = 1 | xt, t)).

Otherwise, we leave the sampling process unchanged.

The perturbation applied by the gradient of the log probability in CPSample moves the generated
images away from regions where they can be easily classified as similar to the training data. Using
random labels for the classifier has significant advantages over other approaches. If instead attributes
of the data were used as labels, the classifier could push the generated images towards or away from
specific attributes, influencing the content of the generated images in ways that could compromise
their authenticity and diversity. This method is additionally far more effective than adding random
noise, which would require significant amounts to achieve the same effect, thus degrading image
quality.

Unlike past training-based methods of privacy protection such as ambient diffusion and DPDM, once
we have trained the classifier, we can adjust the level of protection by tuning the hyperparameters
s and α without necessitating retraining of the classifier or denoiser. Our method also does not
require access to the training data or excessive additional computation during sampling as the
inferenced-based method AMG does.

3.2 Theory

In this section, we show that CPSample functions similarly to rejection sampling when preventing
exact replication of the training images. We work under the following assumptions:
Assumption 1. Suppose that the classifier pϕ(y | x, t) has Lipschitz constant L in the argument x
with respect to a metric d(·, ·) : χ× χ→ R≥0, where χ denotes the image space.
Assumption 2. Let yi be the random label assigned to xi ∈ D, where D is the training data. Let
κ < 1

2 be such that for all xi ∈ D, we have

pϕ(yi | xi, 0) ∈ (1− κ, 1]. (3.1)

Assumption 3. Suppose that CPSample generates data x̃ such that λ < pϕ(y | x̃, 0) < 1 − λ
with probability greater than 1− ν, where we are able to govern ν and λ by adjusting s and α in
Section 3.1.

In Assumption 1 the constant L can be difficult to evaluate, but the assumption holds for neural
network classifiers. Methods exist that can bound the local Lipschitz constant around the training
data [23], which one can use to strengthen the guarantees of Lemma 1. Assumption 3 holds well
empirically, and in Assumption 2, one can typically exert strong control over the size of κ without
incurring too much additional computational overhead [51]. Concretely, we were able to train our
classifier to have a cross-entropy loss below 0.05 in the experiments from Sections 4.1 and 4.2.
Moreover, during sampling, we observed that CPSample had control over the quantity pϕ(y | xt, t).
An example is given in Figure 5.

Given these assumptions, we can demonstrate the following simple lemma, which links the behavior
of CPSample to that of a rejection sampler without requiring expensive comparisons to the training
dataset. A proof can be found in Appendix A.

Lemma 1. Under the above assumptions, choose ε > 0 and 0 < δ <
1
2−κ

L . Setting ν = ε and
λ = κ+Lδ, when drawing a single sample, with probability greater than 1− ε, CPSample generates
an image that lies outside of S =

⋃
x∈D Bδ(x) in the metric space defined by d.

5

Note that the ability to control P
(
x̃ ∈

⋃
x∈D Bδ(x)

)
gives the same guarantee offered by rejection

sampling. However, in extreme instances of mode collapse such as those exhibited by Stable Diffusion
in Section 4.2, one might have to resample hundreds of times to generate original images, making
standard rejection sampling highly inefficient. CPSample is able to produce original images without
this high level of inefficiency.

4 Empirical Results

We run three distinct sets of experiments to demonstrate the ways in which CPSample protects the
privacy of the training data. First, we statistically test the ability of CPSample to reduce similarity
between generated data and the training set for unguided diffusion. We then demonstrate that
CPSample can prevent Stable Diffusion from generating memorized images. Finally, we measure
robustness against membership inference attacks. Hyperparameters, in all empirical tests, are chosen
to maximize image quality while eliminating exact matches.

Figure 1: Cosine similarity in feature space between generated images and their nearest neighbor in
the fine-tuning dataset for standard DDIM sampling (red) and CPSample (blue) with α = 0.001, s = 1
on CIFAR-10 (left) and with α = 0.001, s = 1000 on CelebA-64 (right). Similarity scores were
computed for 21 000 generated samples for CIFAR-10 and 8 000 images for CelebA. Note that
standard DDIM exhibits many more samples with similarity scores exceeding the thresholds from
Table 3.

4.1 Similarity Reduction

We generate images using DDIM with CPSample and 1 000 denoising steps. The nearest neighbor
to each generated image is found using Meta’s FAISS model [13]. Similarity between two images
is measured by cosine similarity in a feature space defined by FAISS. We empirically find that a
similarity score exceeding 0.97 often indicates nearly-identical images for CIFAR-10. For CelebA
and LSUN Church, the thresholds lie around 0.95 [8] and 0.90, respectively. Note that a cosine
similarity score above the thresholds given is a necessary but not sufficient condition for images to
look very alike. To ensure that we can observe a larger number of images with similarities exceeding
our thresholds, we fine-tune the models using DDIM [43] on a subset of the data that consisted
of 1 000 images, as was done in [8]. This modification allows us to statistically test the efficacy
of CPSample without the large number of samples required to do hypothesis testing on rare exact
replication events. After fine-tuning, up to 12.5% of the images produced by unprotected DDIM are
nearly exact replicates of the fine-tuning data. One can see from Table 3 that CPSample significantly
reduces the fraction of generated images that have high cosine similarity to members of the fine-tuning
set. One can see histograms of the similarity score distribution with and without CPSample in Figures
1 and 9. Figures 2 and 8 show the most similar pairs of samples and fine-tuning data points. Uncurated
images generated from CPSample can be found in Appendix F.

While CPSample effectively reduces the similarity between generated images and the training data,
our results in Table 6 indicate that CPSample achieves minimal degradation in quality compared to
previous methods.

6

DDIM

(Unprotected)

CPSample

(Protected)

DDIM

(Unprotected)

CPSample

(Protected)

Figure 2: Generated images and their most similar training image pairs for DDIM sampling and
CPSample with α = 0.001, s = 1 on CIFAR-10 (left) and α = 0.1, s = 10 on LSUN Church (right).
For each pair, the image on the left is the generated sample, and the one on the right is its nearest
neighbor in the training set. These are the four examples out of 21 000 images on CIFAR-10 and two
out of 1 700 images on LSUN Church with the highest similarity scores with their nearest neighbor.

4.2 Stable Diffusion

Figure 3: Selected examples for Stable Diffusion:
original image (left), image generated from a simi-
lar caption by Stable Diffusion v1.4 (center), image
generated with CPSample (right).

As a second demonstration of CPSample, we
present evidence that CPSample can prevent
well-known examples of mode collapse in
near-verbatim attacks against Stable Diffusion
[45, 46]. We curate a small dataset of com-
monly reproduced images [42] and include
other images from the LAION dataset depict-
ing the same subjects, while ensuring that this
dataset contains no duplicates. In this more
targeted application, CPSample can prevent
exact replication when used with the right
hyperparameters. See Figure 3 and Table 4
for more details. Although CPSample does
not provide as robust protection in this setting
compared to [42, 46], these results highlight
its potential for data protection in text-guided
diffusion models. Moreover, the methods de-
veloped in [42, 46] do not apply to unguided
diffusion models.

4.3 Membership Inference Attacks

We also assess CPSample’s ability to protect against membership inference attacks. Following
Algorithm 1, we compute the mean reconstruction error for the training and test datasets and
determine whether there is a statistically significant difference. To evaluate resistance to inference
attacks, we use a model trained on the entire set of 50 000 CIFAR-10 training images. We compare
the reconstruction loss on these 50 000 training images to the reconstruction loss on the 10 000
withheld test samples included in the CIFAR-10 dataset. We compare the difference in reconstruction
loss between these two datasets both for CPSample, using a classifier trained on the entirety of the
CIFAR-10 training data with random labels, and for standard DDIM sampling. We demonstrate
CPSample’s resistance to inference attacks for α ∈ {0.5, 0.25, 0.001} over approximately 8 000
images from each of the training and test datasets. The p-values in this experiment are based on a
two-sample, single-tailed Z-score that tests the null hypothesis “the average training reconstruction
loss is less than or equal to the average test reconstruction loss.” Precisely, let n denote the number of
training data points and m denote the number of sampled test data points. The test statistic is then

7

given by
µtest − µtrain√

Vtest/m+ Vtrain/n
.

Here, the symbol V indicates the variance and µ indicates the mean. In this context, failure to reject
the null hypothesis indicates a success for CPSample.

We observe that in our experiments, a very low value of α leads to a higher p-value, which is counter-
intuitive on first glance. However, we believe that this occurs due to the fact that a small value of α
results in a more targeted application of CPSample, driving the loss up exclusively around the training
data points. As shown in Table 5, for values of α between 0 and 0.5, a conclusive membership
inference attack against CPSample is not possible. We provide a second black-box membership
inference attack based on permutation testing in Appendix E.

4.4 Quality Comparison

Figure 4: The generated and real images
with the highest similarity for CIFAR-10
(left) and CelebA (right) out of 50 000
samples used to compute FID score.

As mentioned in the introduction and Section 4.1, other
methods of privacy protection suffer from severe degrada-
tion of quality as measured by FID score. Here, we provide
an FID score comparison between the CPSample model
fine-tuned on curated subsets of CIFAR-10 and CelebA
and existing methods of privacy protection. FID scores
for unconditional generation of CIFAR-10 and CelebA
are presented in Table 6. The images with the highest
similarity to the training set, determined using FAISS, are
shown in Figure 4. The particular values of α and s were
set in an attempt to find the least aggressive settings that
still completely prevent exact replication of the training
data. FID scores over a range of values for α and s are
displayed in Table 7.

5 Limitations

As mentioned in Section 3.1, the difference in training time required to get a classifier to memorize
random labels versus real labels has been shown to be only a small constant factor [51]. Compared to
other leading methods of protecting training data, such as ambient diffusion, DPDM, and AMG, our
method is significantly easier to employ in terms of computational resources. However, as we lack
the resources to provide further empirical evidence beyond what has already been demonstrated in
the literature, we leave this remark as a flag for a potential practical limitation of our method.

Of slight theoretical concern is the difficulty in providing practical upper bounds on the Lipschitz
constant of the classifier, for which a lower value would provide stronger formal guarantees of privacy.
Further research into employing Lipschitz regularizations may both improve the performance of our
method and provide stronger guarantees. In practice, we observe stronger protections than the formal
guarantees provide.

6 Conclusion

We have presented a new approach to prevent memorized images from appearing during inference
time. Our method is applicable to both guided and unguided diffusion models. Unlike previous
methods intended to protect privacy of unguided diffusion models, CPSample does not necessitate
retraining the denoiser. Moreover, the presence of duplicated data in the training corpus does not
affect on our approach, and after training the classifier, one can adjust the level of protection enforced
by CPSample without further training. We have shown theoretically that our method behaves similarly
to rejection sampling without necessitating resampling. Finally, we have provided empirical evidence
with rigorous statistical testing that our method is effective in unguided settings. We have also given
examples in which CPSample was able to prevent extreme instances of mode collapse in Stable
Diffusion. Despite its efficacy at preventing replication of training images, CPSample has little
negative impact on image quality.

8

References
[1] Martin Abadi et al. “Deep Learning with Differential Privacy”. In: Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security. CCS ’16. Vienna,
Austria: Association for Computing Machinery, 2016, pp. 308–318. ISBN: 9781450341394.
DOI: 10 . 1145 / 2976749 . 2978318. URL: https : / / doi . org / 10 . 1145 / 2976749 .
2978318.

[2] Jordan Awan and Vinayak Rao. “Privacy-aware rejection sampling”. In: Journal of machine
learning research 24.74 (2023), pp. 1–32.

[3] Blake Brittain. “Artists take new shot at Stability, Midjourney in updated copyright lawsuit”.
In: Reuters (2023). URL: https://www.reuters.com/legal/litigation/google-
sued-by-us-artists-over-ai-image-generator-2024-04-29/.

[4] Blake Brittain. “Google sued by US artists over AI image generator”. In: Reuters (2024). URL:
https://www.reuters.com/legal/litigation/google-sued-by-us-artists-
over-ai-image-generator-2024-04-29/.

[5] Nicholas Carlini et al. “Extracting Training Data from Large Language Models”. In: 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association, Aug. 2021,
pp. 2633–2650. ISBN: 978-1-939133-24-3. URL: https://www.usenix.org/conference/
usenixsecurity21/presentation/carlini-extracting.

[6] Mathilde Caron et al. Emerging Properties in Self-Supervised Vision Transformers. 2021.
arXiv: 2104.14294 [cs.CV].

[7] Chen Chen, Daochang Liu, and Chang Xu. Towards Memorization-Free Diffusion Models.
2024. arXiv: 2404.00922 [cs.CV]. URL: https://arxiv.org/abs/2404.00922.

[8] Giannis Daras et al. “Ambient diffusion: Learning clean distributions from corrupted data”. In:
Advances in Neural Information Processing Systems 36 (2024).

[9] Giannis Daras et al. Soft Diffusion: Score Matching for General Corruptions. 2022. arXiv:
2209.05442 [cs.CV].

[10] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2009), pp. 248–255. URL:
http://www.image-net.org/papers/imagenet_cvpr09.pdf.

[11] Prafulla Dhariwal and Alexander Nichol. “Diffusion models beat GANs on image synthesis”.
In: Advances in neural information processing systems 34 (2021), pp. 8780–8794.

[12] Tim Dockhorn et al. “Differentially Private Diffusion Models”. In: Transactions on Machine
Learning Research (2023). ISSN: 2835-8856. URL: https://openreview.net/forum?id=
ZPpQk7FJXF.

[13] Matthijs Douze et al. The Faiss library. 2024. arXiv: 2401.08281 [cs.LG].
[14] Jinhao Duan et al. Are Diffusion Models Vulnerable to Membership Inference Attacks? 2023.

arXiv: 2302.01316 [cs.CV].
[15] Jan Dubiński et al. “Towards More Realistic Membership Inference Attacks on Large Diffusion

Models”. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV). Jan. 2024.

[16] Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Privacy. Foun-
dations and Trends in Theoretical Computer Science, 2014.

[17] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-Weighted Linear Units for Neural
Network Function Approximation in Reinforcement Learning. 2017. arXiv: 1702.03118
[cs.LG].

[18] Sahra Ghalebikesabi et al. Differentially Private Diffusion Models Generate Useful Synthetic
Images. Feb. 2023. DOI: 10.48550/arXiv.2302.13861.

[19] Jiatao Gu et al. BOOT: Data-free Distillation of Denoising Diffusion Models with Bootstrap-
ping. 2023. arXiv: 2306.05544 [cs.CV].

[20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic models”. In:
Advances in neural information processing systems 33 (2020), pp. 6840–6851.

[21] Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance. 2022. arXiv: 2207.12598
[cs.LG].

[22] Hailong Hu and Jun Pang. Membership Inference of Diffusion Models. 2023. arXiv: 2301.
09956 [cs.CR].

9

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://www.reuters.com/legal/litigation/google-sued-by-us-artists-over-ai-image-generator-2024-04-29/
https://www.reuters.com/legal/litigation/google-sued-by-us-artists-over-ai-image-generator-2024-04-29/
https://www.reuters.com/legal/litigation/google-sued-by-us-artists-over-ai-image-generator-2024-04-29/
https://www.reuters.com/legal/litigation/google-sued-by-us-artists-over-ai-image-generator-2024-04-29/
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2404.00922
https://arxiv.org/abs/2404.00922
https://arxiv.org/abs/2209.05442
http://www.image-net.org/papers/imagenet_cvpr09.pdf
https://openreview.net/forum?id=ZPpQk7FJXF
https://openreview.net/forum?id=ZPpQk7FJXF
https://arxiv.org/abs/2401.08281
https://arxiv.org/abs/2302.01316
https://arxiv.org/abs/1702.03118
https://arxiv.org/abs/1702.03118
https://doi.org/10.48550/arXiv.2302.13861
https://arxiv.org/abs/2306.05544
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2301.09956
https://arxiv.org/abs/2301.09956

[23] Yujia Huang et al. “Training Certifiably Robust Neural Networks with Efficient Local Lipschitz
Bounds”. In: Advances in Neural Information Processing Systems. Ed. by A. Beygelzimer
et al. 2021. URL: https://openreview.net/forum?id=FTt28RYj5Pc.

[24] Matthew Jagielski et al. “Measuring Forgetting of Memorized Training Examples”. In: The
Eleventh International Conference on Learning Representations. 2023. URL: https://
openreview.net/forum?id=7bJizxLKrR.

[25] Tero Karras et al. Elucidating the Design Space of Diffusion-Based Generative Models. 2022.
arXiv: 2206.00364 [cs.CV].

[26] Amirhossein Kazerouni et al. Diffusion Models for Medical Image Analysis: A Comprehensive
Survey. 2023. arXiv: 2211.07804 [eess.IV].

[27] Dongjun Kim et al. “Consistency Trajectory Models: Learning Probability Flow ODE Tra-
jectory of Diffusion”. In: The Twelfth International Conference on Learning Representations.
2024. URL: https://openreview.net/forum?id=ymjI8feDTD.

[28] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Tech. rep. University
of Toronto, 2009. URL: https://www.cs.toronto.edu/~kriz/cifar.html.

[29] Sungbin Lim et al. “Score-based Generative Modeling through Stochastic Evolution Equations
in Hilbert Spaces”. In: Thirty-seventh Conference on Neural Information Processing Systems.
2023. URL: https://openreview.net/forum?id=GrElRvXnEj.

[30] Ziwei Liu et al. “Deep Learning Face Attributes in the Wild”. In: Proceedings of International
Conference on Computer Vision (ICCV) (2015).

[31] Saiyue Lyu et al. Differentially Private Latent Diffusion Models. 2024. arXiv: 2305.15759
[stat.ML].

[32] Gary Marcus and Reid Southen. Generative AI Has a Visual Plagiarism Problem. 2024. URL:
https://spectrum.ieee.org/midjourney-copyright.

[33] Tomoya Matsumoto, Takayuki Miura, and Naoto Yanai. “Membership Inference Attacks
against Diffusion Models”. In: May 2023, pp. 77–83. DOI: 10.1109/SPW59333.2023.00013.

[34] Tomoya Matsumoto, Takayuki Miura, and Naoto Yanai. Membership Inference Attacks against
Diffusion Models. 2023. arXiv: 2302.03262 [cs.CR].

[35] Hieu V. Nguyen and Li Bai. “Cosine Similarity Metric Learning for Face Verification”. In:
Computer Vision – ACCV 2010. Ed. by Ron Kimmel, Reinhard Klette, and Akihiro Sugimoto.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 709–720. ISBN: 978-3-642-19309-5.

[36] Yan Pang and Tianhao Wang. Black-box Membership Inference Attacks against Fine-tuned
Diffusion Models. 2023. arXiv: 2312.08207 [cs.CR].

[37] Yan Pang et al. White-box Membership Inference Attacks against Diffusion Models. 2023.
arXiv: 2308.06405 [cs.CR].

[38] Walter H. L. Pinaya et al. Brain Imaging Generation with Latent Diffusion Models. 2022.
arXiv: 2209.07162 [eess.IV].

[39] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. 2015. arXiv: 1505.04597 [cs.CV].

[40] Jascha Sohl-Dickstein et al. “Deep unsupervised learning using nonequilibrium thermodynam-
ics”. In: International conference on machine learning. PMLR. 2015, pp. 2256–2265.

[41] Gowthami Somepalli et al. “Diffusion art or digital forgery? investigating data replication in
diffusion models”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2023, pp. 6048–6058.

[42] Gowthami Somepalli et al. “Understanding and mitigating copying in diffusion models”. In:
Advances in Neural Information Processing Systems 36 (2023), pp. 47783–47803.

[43] Jiaming Song, Chenlin Meng, and Stefano Ermon. “Denoising Diffusion Implicit Models”. In:
International Conference on Learning Representations. 2021. URL: https://openreview.
net/forum?id=St1giarCHLP.

[44] Yang Song et al. Consistency Models. 2023. arXiv: 2303.01469 [cs.LG].
[45] Ryan Webster. A Reproducible Extraction of Training Images from Diffusion Models. 2023.

arXiv: 2305.08694 [cs.CV].
[46] Yuxin Wen et al. “Detecting, Explaining, and Mitigating Memorization in Diffusion Models”.

In: The Twelfth International Conference on Learning Representations. 2024. URL: https:
//openreview.net/forum?id=84n3UwkH7b.

10

https://openreview.net/forum?id=FTt28RYj5Pc
https://openreview.net/forum?id=7bJizxLKrR
https://openreview.net/forum?id=7bJizxLKrR
https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2211.07804
https://openreview.net/forum?id=ymjI8feDTD
https://www.cs.toronto.edu/~kriz/cifar.html
https://openreview.net/forum?id=GrElRvXnEj
https://arxiv.org/abs/2305.15759
https://arxiv.org/abs/2305.15759
https://spectrum.ieee.org/midjourney-copyright
https://doi.org/10.1109/SPW59333.2023.00013
https://arxiv.org/abs/2302.03262
https://arxiv.org/abs/2312.08207
https://arxiv.org/abs/2308.06405
https://arxiv.org/abs/2209.07162
https://arxiv.org/abs/1505.04597
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2305.08694
https://openreview.net/forum?id=84n3UwkH7b
https://openreview.net/forum?id=84n3UwkH7b

[47] Yixin Wu et al. Membership Inference Attacks Against Text-to-image Generation Models. 2022.
arXiv: 2210.00968 [cs.CR].

[48] Peipei Xia, Li Zhang, and Fanzhang Li. “Learning similarity with cosine similarity ensemble”.
In: Information Sciences 307 (2015), pp. 39–52. ISSN: 0020-0255. DOI: https://doi.org/
10.1016/j.ins.2015.02.024. URL: https://www.sciencedirect.com/science/
article/pii/S0020025515001243.

[49] Liyang Xie et al. Differentially Private Generative Adversarial Network. 2018. arXiv: 1802.
06739 [cs.LG].

[50] Qipan Xu et al. PAC Privacy Preserving Diffusion Models. 2023. arXiv: 2312 . 01201
[cs.LG].

[51] Chiyuan Zhang et al. “Understanding deep learning requires rethinking generalization”. In:
5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL: https:
//openreview.net/forum?id=Sy8gdB9xx.

11

https://arxiv.org/abs/2210.00968
https://doi.org/https://doi.org/10.1016/j.ins.2015.02.024
https://doi.org/https://doi.org/10.1016/j.ins.2015.02.024
https://www.sciencedirect.com/science/article/pii/S0020025515001243
https://www.sciencedirect.com/science/article/pii/S0020025515001243
https://arxiv.org/abs/1802.06739
https://arxiv.org/abs/1802.06739
https://arxiv.org/abs/2312.01201
https://arxiv.org/abs/2312.01201
https://openreview.net/forum?id=Sy8gdB9xx
https://openreview.net/forum?id=Sy8gdB9xx

A Proofs

Details of classifier guidance For completeness, we include a derivation of the classifier-guidance
introduced in [11].

During the conditional denoising process, one should sample xt−1 from the conditional distribution

P(xt−1 | xt, y) =
P(xt−1, xt, y)

P(xt, y)
=

P(xt−1 | xt)P(y | xt, xt−1)

P(y | xt)
. (A.1)

One can show that P(y | xt, xt−1) = P(y | xt−1) (see [11] for details). The denominator P(y | xt)
does not depend on xt−1. Therefore, we write this term as Z. To get an estimate of the probability
P(y | xt−1), we train a classifier of the form pϕ(y | xt−1). Thus, we should estimate the conditional
probability P(xt−1 | xt, y) via

pθ,ϕ(xt−1 | xt, y) = Zpθ(xt−1 | xt)pϕ(y | xt−1). (A.2)

In continuous time, we can write p(xt, y) = p(xt)p(y | xt), and the score function is:

∇xt
log(pθ(xt)pϕ(y | xt)) = ∇xt

log pθ(xt) +∇xt
log pϕ(y | xt). (A.3)

The network ϵθ(xt, t) predicts the noise added to a sample, which can be used to derive the score
function

∇xt
log pθ(xt, t) = −

1√
1− αt

ϵθ(xt, t).

Substituting this into (A.3), we get

− 1√
1− αt

ϵθ(xt) +∇xt
log pϕ(y | xt). (A.4)

This leads to a new prediction for

ϵ̂θ(xt) = ϵθ(xt)−
√
1− αt∇xt

log pϕ(y | xt).

The conditional sampling then follows in the same manner as standard DDIM with ϵθ replaced by ϵ̂θ.

Proof of Lemma 1

Proof. Let x′ ∈ Bδ(x0), where x0 ∈ D is assigned the random label y. By Lipschitz continuity, we
have that

|pϕ(y | x0, t)− pϕ(y | x′, t)| < Ld(x0, x
′).

By Assumption 2, we have pϕ(y | x0, 0) > 1− κ, it follows that

pϕ(y | x′, 0) = pϕ(y | x0, 0)− pϕ(y | x0, 0) + pϕ(y | x′, 0)

= pϕ(y | x0, 0)− (pϕ(y | x0, 0)− pϕ(y | x′, 0))

≥ pϕ(y | x0, 0)− |pϕ(y | x0, 0)− pϕ(y | x′, 0)|
≥ pϕ(y | x0, 0)− Ld(x0, x

′)

≥ pϕ(y | x0, 0)− Lδ

≥ 1− κ− Lδ

= 1− λ.

Therefore, for all points x′ ∈ S, we have pϕ(y | x′, 0) ∈ [0, λ]
⋃
[1 − λ, 1]. By Assumption 3,

CPSample generates samples x̃ with pϕ(y | x̃) ∈ [λ, 1− λ] with probability at least 1− ε. Thus, we
have that CPSample generates samples outside of S with probability at least 1− ε.

12

Figure 5: CPSample is able to generate images with pϕ(y | x̃, 0) ∈ (λ, 1− λ). This example shows
the probability pϕ(y = 1 | xt, t) during the generation process with Stable Diffusion guided by the
caption “Rambo 5 and Rocky Spin-Off - Sylvester Stallone gibt Updates." Note that a higher step
indicates a later point in the denoising process. In this example, Stable diffusion exactly replicated
the memorized image of Stallone, whereas CPSample (α = 0.5, s = 2000) produced an original
image.

B Class Guided Diffusion

As a final experiment, we implement CPSample alongside classifier-free guidance for CIFAR-10 to
ensure that CPSample does not cause frequent out-of-category samples. The models used for guided
diffusion were smaller, so the image quality is naturally lower.

Figure 6: Uncurated samples using classifier-free guidance on CIFAR-10. The image in the position
second row, third column from the top left is a near-exact replica of a member of the training data.

13

Figure 7: Uncurated samples using CPSample (ϵ = 0.1, s = 10) along with classifier-free guidance
on CIFAR-10. Note that although CPSample slightly reduces image quality, it does not cause out-of-
category samples.

C Training details

Training classifiers. For training the classifier, we randomly selected subsets of 1 000 images each
from the CIFAR-10, CelebA, and LSUN Church datasets, on which we trained the classifier from
scratch. The architecture of our classifier is a modified version of the U-Net model. We retained
key components of the U-Net [39] model structure, including the timestep embedding, multiple
convolutional layers for downsampling, and middle blocks. The output from the middle blocks
underwent processing through Group Normalization, SiLU [17] activation layers, and pooling layers
before being fed into a single convolutional layer, yielding the classifier’s output. Parameters for
layers identical to the standard U-Net were consistent with those used to pretrain the DDIM model on
these datasets. Additionally, akin to the pretraining of DDIM, we incorporated Exponential Moving
Average during training to stabilize the training process. The training of each classifier model was
conducted using 4 NVIDIA A4000 GPUs with 16GB of memory. For subsets of 1 000 images, the
classifier took only hours to train. For larger datasets consisting of 60 000− 160 000 data points, the
classifier took up to 1 week to train. By comparison, retraining a diffusion model to be differentially
private or using the method presented in [8] can take weeks or months depending on the dataset.

Fine-tuning pretrained denoiser model on subsets. For fine-tuning the pretrained denoiser model
on subsets, we commenced with the 500 000-step pretrained checkpoints available for the denoiser
DDIM model. Fine-tuning was performed on subsets of 1 000 images each from the CIFAR-10,
CelebA, and LSUN Church datasets until the model began generating data highly resembling the
respective subsets. The number of training steps varied across different models, and specific details
regarding the fine-tuning process can be found in Table 1. Throughout the fine-tuning process,
hyperparameters remained consistent with those used during the pretraining phase. We employed 2
NVIDIA A5000 GPUs with 24GB of memory for fine-tuning each model on the subsets.

D Evaluation Details

Numerical stability For the purposes of numerical stability, we slightly modified the sampling
process described in Section 3.1. We noticed in earlier iterations of our method that very small
numbers of images were becoming discolored or black because in float16, the classifier was predicting

14

Table 1: Training Parameters & Steps
Batch Size LR Optimizer EMA Rate Classifier Steps Fine-tune Steps

CIFAR-10 256 2e-4 Adam 0.9999 560 000 110 000
CelebA 128 2e-4 Adam 0.9999 610 000 150 000
LSUN Church 8 2e-5 Adam 0.999 1 250 000 88 000

probabilities of 0.0000 or 1.0000 for the random label 1, causing the logarithm to blow up. To fix this
in practice, we do the following. Sample xT ∼ N (0, I). For t ∈ {T,, 1}, if pϕ(y = 0|xt, t) < α,
replace ϵθ(xt, t) with

ϵ̂θ,ϕ(xt, t) = ϵθ(xt, t)− s
√
1− αt · ∇ log(τ + pϕ(y = 0|xt, t)).

If pϕ(y = 1|xt, t) < α, replace ϵθ with

ϵ̂θ,ϕ(xt, t) = ϵθ(xt, t)− s
√
1− αt · ∇ log(τ + pϕ(y = 1|xt, t)).

Otherwise, leave the sampling process unchanged.

By setting τ equal to 0.001, we were able to prevent the undesirable behavior.

Similarity Reduction Evaluation. We employ the fine-tuned denoiser model to generate 3 000
image samples for each of the aforementioned datasets. Additionally, we utilize the Classifier-guided
method to generate another set of 3 000 images. Subsequently, we employ DINO [6] to find nearest
neighbors in the subset using a methodology akin to ambient diffusion. From the perspectives of
both DINO’s similarity scores and human evaluation, we observe that images generated through the
classifier-guided approach exhibit significantly lower similarity to the original images in the subset
compared to those generated without guidance.

FID Evaluation. For each dataset, we utilize the denoiser model fine-tuned on the subset to
generate 30 000 images under the guidance of the classifier. Subsequently, we employ the FID score
implementation from the EDM [25] paper to compute the FID score.

Inference Speed Although speed was not a goal of our method, we provide some context for how
fast it is compared to standard diffusion. We do our comparison using a batch size of 1 to generate 10
images with 50 denoising steps. CPSample with α = 0.5 (i.e. computing gradients of the classifier at
every step) had an average per-image generation time of 26.1± 0.029s. By contrast, standard stable
diffusion had an average generation time of 23.92± 0.055s. Therefore, when the classifier is small
compared to the size of the diffusion model, the added time cost is insignificant.

E Membership Inference Attacks

Algorithm 1 Test statistic for membership inference attack against diffusion models [34]

Input: Target samples x1, ..., xm, CPSample denoiser ϵ̂θ,ϕ, noise schedule αt =
∏t

s=1(1− βs)
total_error ← 0
for x in {x1, ..., xm} do

total_error ← total_error + ∥ϵ− ϵ̂θ,ϕ(
√
αtx+

√
1− αtϵ, t)∥2

end for
mean_error ← total_error/m.

In keeping with our goal of preventing membership inference attacks that are based on high similarity
to a single member of the training set, we also perform a permutation test to ensure that we are
not producing images that are anomalously close to the training data. Explicitly, we test the null
hypothesis: generating images from CPSample produces images that are no more similar to the
training data than they are to arbitrary points drawn from the data distribution. Our tests are performed
in the same setting used in Section 4.1. Let S = {x1, ..., xk} be the data used for fine-tuning. Let
T = {x1, ..., xk, xk+1, ..., xn} be the entire training set. Finally, let P = {x̃1, ..., x̃m} be samples
from CPSample. Then our permutation test is as follows:

15

1. Sample x̃1, ..., x̃k from P without replacement. For each x̃i, compute the quantity in 2.9
where the nearest neighbor is chosen among S. Let the similarity score of the most similar
pair be a.

2. Repeat the following process ℓ times: sample Si ⊂ T without replacement from T so that
|Si| = k. Sample P i without replacement from P so that |P i| = k. Compute the most
similar image in Si for each member of P i. Call the similarity of the most similar pair ai.

3. For a pre-specified level α, reject the null hypothesis if 1
ℓ

∑ℓ
i=1 1{a0 > ai} > α.

The results can be found in Table 2. Note that the test fails to reject on CIFAR-10 and LSUN Church,
but succeeds on CelebA. This is likely because we fine-tuned the CelebA model more extensively
than the other two.

Table 2: Reduction in cosine similarity between generated images and nearest neighbor in fine-tuning
data.

Dataset FT Steps α Scale DDIM CPSample

CIFAR-10 150k 0.001 1 0.92 0.47
CelebA 650k 0.001 1 000 0.99 0.99

LSUN Church 455k 0.1 10 0.99 0.60
1 p-values were computed using a log rank test for H0: CPSam-
ple did not reduce the fraction of images with similarity score
exceeding the threshold.

F Additional Empirical Results

Figure 8: Generated image and most similar training image pairs for DDIM sampling (left) and
CPSample with α=0.001, s=1000 (right). We sample 100 images and display the four with the
highest similarity to their nearest neighbors in the training data.

16

Table 3: Reduction in cosine similarity between generated images and nearest neighbor in fine-tuning
data.

Dataset FT Steps α Scale Threshold DDIM CPSample p-value1

CIFAR-10 150k 0.001 1 0.97 6.25% 0.00 % <0.0001
CelebA 650k 0.001 1 000 0.95 12.5% 0.10% <0.0001

LSUN Church 455k 0.1 10 0.90 0.73% 0.04% 0.013
1 p-values were computed using a log rank test for H0: CPSample did not reduce the
fraction of images with similarity score exceeding the threshold.

Table 4: Details of generation on Stable Diffusion.
Image Original caption Modified caption α scale guidance

A “Rambo 5 and Rocky
Spin-Off - Sylvester Stallone
gibt Updates"

“Rocky and Rambo
Spin-Off - Sylvester Stallone
gibt Updates"

0.5 2 000 1.5

B “Classic cars for sale" “Classic car for sale" 0.3 100 1.5
C “Red Exotic Fractal Pattern

Abstract Art On Canvas-7
Panels"

“Red Exotic Fractal Pattern
Abstract Art On Canvas-7
Panels"

0.5 2 000 1.5

0.0 0.2 0.4 0.6 0.8 1.0
s(x, NN(x))

0

10

20

30

40

50

60

70

N
um

be
r o

f s
am

pl
es

Similarity Scores with Nearest Neighbor for LSUN Church

Standard DDIM
CPSample

Figure 9: Similarity scores with nearest neighbor for standard DDIM and CPSample (α = 0.1,
scale= 10) on LSUN Church. In both cases, the network was fine-tuned for 455k gradient steps on a
subset of 1 000 images.

17

Table 5: Difference in mean reconstruction error
between train and test data for CIFAR-10.

Method Test statistic p-value

DDIM 138 ≈ 0
Ambient (Corruption 0.2) 0.141 0.44
Ambient (Corruption 0.8) -0.024 0.51

CPSample (α = 0.5) 0.59 0.28
CPSample (α = 0.25) 0.23 0.41
CPSample (α = 0.001) -0.86 0.81

Table 6: FID score comparison on the CIFAR-
10 and CelebA datasets.

Method CIFAR-10 CelebA

DDIM 3.17 1.27

Ambient (Corruption 0.2) 11.70 25.95
DPDM (ϵ = 10) 97.7 78.3
DP-Diffusion (ϵ = 10) 9.8 -
DP-LDM (ϵ = 10) 8.4 16.2

CPSample (α = 0.001, 0.05) 4.97 2.97

Table 7: FID score w.r.t. α and Scale on CIFAR-10.
α = 0.001 α = 0.01 α = 0.1 α = 0.25 α = 0.49

Scale = 1 4.14275 4.15467 4.19058 4.19208 4.21859
Scale = 5 4.15772 4.20731 4.36005 4.58839 4.9566
Scale = 10 4.18083 4.26594 5.05858 6.17326 7.88949
Scale = 100 4.96727 16.7173 74.7247 113.199 139.626

Figure 10: Uncurated samples using standard DDIM fine-tuned for 455k gradient steps on a subset of
1 000 images from LSUN Church.

18

Figure 11: Uncurated samples using CPSample (α = 0.1, scale= 10) applied to a network fine-tuned
for 455k gradient steps on a subset of 1 000 images from LSUN Church. Note that there is no visual
discrepancy in quality between these and the images from standard DDIM.

19

Figure 12: Uncurated samples using standard DDIM fine-tuned for 580k gradient steps on a subset of
1 000 images from CelebA.

Figure 13: Uncurated samples using CPSample (α = 0.001, scale= 1000) applied to a network
fine-tuned for 580k gradient steps on a subset of 1 000 images from CelebA. Note that there is little
visual discrepancy in quality between these and the images from standard DDIM.

20

Figure 14: Uncurated samples using standard DDIM fine-tuned for 150k gradient steps on a subset of
1 000 images from CIFAR-10.

Figure 15: Uncurated samples using CPSample (α = 0.001, scale= 1) applied to a network fine-
tuned for approximately 150k gradient steps on a subset of 1 000 images from CelebA. Note that
there is little visual discrepancy in quality between these and the images from standard DDIM.

21

	Introduction
	Background and Related Work
	Diffusion Models
	Privacy in Diffusion Models
	Membership Inference Attacks

	Protecting Privacy During Sampling
	Sampling Method
	Theory

	Empirical Results
	Similarity Reduction
	Stable Diffusion
	Membership Inference Attacks
	Quality Comparison

	Limitations
	Conclusion
	Proofs
	Class Guided Diffusion
	Training details
	Evaluation Details
	Membership Inference Attacks
	Additional Empirical Results

