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Abstract
We introduce ContinualFlow, a principled frame-
work for targeted unlearning in generative mod-
els via Flow Matching. Our method leverages
an energy-based reweighting loss to softly sub-
tract undesired regions of the data distribution
without retraining from scratch or requiring direct
access to the samples to be unlearned. Instead,
it relies on energy-based proxies to guide the un-
learning process. We prove that this induces gra-
dients equivalent to Flow Matching toward a soft
mass-subtracted target, and validate the frame-
work through experiments on 2D and image do-
mains, supported by interpretable visualizations
and quantitative evaluations.

1. Introduction
Machine unlearning, the removal of specific information
from trained machine learning (ML) models, has moved
from a niche technical concern to a central issue at the inter-
section of law, ethics, and model deployment. The recent
widespread adoption and training of image generation and
large language models (LLMs) has significantly expanded
the scope and stakes of the field (Cooper et al., 2024).

Adapting machine unlearning to generative learning intro-
duces distinct conceptual and technical challenges. While
discriminative models often allow data traces to be linked
directly to outputs, generative models learn complex map-
pings from latent or prior distributions to data, resulting in
entangled and opaque representations. This makes it dif-
ficult to isolate the influence of specific inputs, and even
when behavior is altered, the model may still output related
content through prompting (Meng et al., 2022) or interpo-
lation (Aithal et al., 2024). In this context, the notion of
content erasure remains ambiguous, underscoring the need
for precise definitions and tools tailored to generative set-
tings.
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Learning Unlearning

Figure 1. Conceptual overview of ContinualFlow. Left: Stan-
dard learning via Flow Matching, where a neural vector field
vθ(t, x) maps a base distribution to a known target. Right: Energy-
guided unlearning, where the flow is softly modulated by a proxy
σ(−λF (x)) to steer trajectories away from undesirable regions
without access to samples or exact densities.

Recent research on generative machine unlearning primarily
focuses on two strategies: (1) output suppression and (2)
model patching.

Output suppression restricts undesired content at generation
time without altering internal representations. For instance,
text-to-image models can use guided decoding or inference-
time filters (Gandikota et al., 2023) to avoid producing sen-
sitive outputs. While effective at steering generation, such
methods do not remove the underlying knowledge and can
often be bypassed with adversarial prompts.

Model patching instead modifies model parameters via fine-
tuning or targeted updates. This approach offers more
durable unlearning, such as preventing a model from repro-
ducing a specific content, and is less susceptible to adversar-
ial prompting. However, generative models may still repro-
duce conceptually similar samples via alternate pathways,
and patching can inadvertently impair unrelated abilities—
underscoring the trade-off between effective forgetting and
preserving overall model generalization (Liu et al., 2025).
For a broader taxonomy of generative unlearning methods
and their limitations, see Appendix A.

While most unlearning strategies rely on inference-time fil-
ters or post-hoc model editing, recent advances in generative
modeling open new possibilities for controlling how distribu-
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tions are learned—and unlearned—through trajectory-based
formulations. In particular, Flow Matching (FM) (Lipman
et al., 2023) frames generation as a continuous-time trans-
port process, where samples evolve along learned trajecto-
ries defined by a neural velocity field.

In this work, we explore how this geometric formulation can
be adapted for unlearning by integrating it with energy func-
tions, which act as scalar potentials assigning higher values
to inputs linked to undesirable content. To enable sample-
independent unlearning, we formulate Energy-Reweighted
Flow Matching (ERFM) as a theoretically grounded exten-
sion of the flow matching framework, incorporating energy-
derived weights into the training objective. These weights
softly downregulate high-risk regions in the data space, ef-
fectively steering generative trajectories away from unde-
sired content.

Beyond their role in defining target regions for suppression,
energy functions offer theoretical advantages that support
future extensions. In particular, their modularity enables
compositionality: distinct objectives can, in principle, be
combined to encode evolving unlearning criteria. We further
evaluate, through targeted experiments, how the invertibility
of the energy function influences flow behavior, demon-
strating its impact on the design of adaptive unlearning
mechanisms.

Contributions. Our main contributions are threefold: (1)
we introduce a principled extension of Flow Matching that
integrates energy functions as soft proxies for unlearning,
enabling attenuation of generation in high-risk regions with-
out requiring explicit forget samples; (2) we instantiate this
formulation in ContinualFlow, a modular framework that
supports both learning and unlearning via energy-guided
updates of generative flows; and (3) we evaluate our method
across both 2D and image-based benchmarks, demonstrat-
ing effective unlearning with minimal impact on generation
fidelity and training efficiency.

2. Background: Flow Matching and EBMs
Continuous-Time Generative Flows. Flow Matching is
a paradigm for training continuous-time generative models
by learning a velocity field u : [0, 1]×Rd → Rd that defines
a transport from a tractable base distribution p0 to a target
data distribution p1. The generative process is modeled as a
deterministic flow ϕt(x) defined by the ordinary differential
equation (ODE):

d

dt
ϕt(x) = u(t, ϕt(x)), ϕ0(x) = x, (1)

such that ϕ1(X0) ∼ p1 when X0 ∼ p0.

To make this framework trainable in practice, recent
work introduces Conditional Flow Matching (CFM) frame-

work (Tong et al., 2023), which reformulates the learning
of u(t, x) as a supervised regression task over a family of
conditional displacements. In its original form, CFM trains
a neural velocity field vθ(t, x) to approximate a prescribed
conditional velocity ut(x | z) via the objective:

LCFM(θ) = Et∼U [0,1], z∼q(z), x∼pt(x|z)

[
∥vθ(t, x)− ut(x | z)∥2

]
,

where z = (x0, x1) ∼ p0 × p1, and the components are
defined as:

ψt(x0, x1) = (1− t)x0 + tx1 [Interpolation path]

pt(x | x0, x1) = N (x | ψt(x0, x1), σ
2I) [Conditional distribution]

ut(x | x0, x1) = x1 − x0 [Target velocity]

Rather than directly adopting this approach, we build upon
its formulation to derive a modified objective tailored to our
unlearning setting.

Energy Functions. A standard approach to modeling un-
normalized distributions is the Boltzmann energy-based
representation:

p(x) =
1

Z
exp(−F (x)), (2)

where F (x) : Rd → R is a scalar energy function, and
Z =

∫
exp(−F (x))dx is the partition function ensur-

ing normalization. Since computing Z is generally in-
tractable, training often relies on alternatives such as score
matching (Hyvärinen & Dayan, 2005) or contrastive diver-
gence (Carreira-Perpinan & Hinton, 2005). Sampling from
these unnormalized models is particularly challenging in
high dimensions and is typically addressed using approxi-
mate methods such as Langevin dynamics (Welling & Teh,
2011).

3. Problem Setting: Learning and Unlearning
We consider the task of removing the influence of spe-
cific data from a trained generative model Gθ. Let
Dfull = Dretain ∪ Dforget denote the full training dataset,
where Dretain ∩ Dforget = ∅. Assume a generative model has
been trained on Dfull. We analyze two distinct settings, as-
suming different degrees of access to Dforget.

3.1. Case 1: Sample-Based Unlearning with Full Access

In this setting, we assume direct access to the forget set
Dforget and aim to erase its influence while preserving perfor-
mance on Dretain. Training from scratch typically involves
learning from a standard Gaussian prior or an exact density
to match Dretain, which can be both inefficient and unneces-
sary. Instead, we show that Optimal Transport Flow Match-
ing (OT-FM) (Tong et al., 2023) can be used to directly
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model the transition between samples generated by the orig-
inal model Gθ and the retained data Dretain. This strategy
removes the dependency on a predefined prior and simplifies
training by focusing on the actual optimal shift in distribu-
tion. Further theoretical justification for this approach is
provided in Appendix C.

3.2. Case 2: Unlearning Without Forget Set Access

Unlike the previous setting—where Dforget is explicitly
available—this case addresses a more realistic and chal-
lenging scenario that is the primary focus of our work. In
practice, direct access to such data is often infeasible, partic-
ularly in settings involving privacy regulations or dynamic
content updates, where new instances of sensitive data may
continuously emerge but are not explicitly labeled. Instead,
it is far more common to rely on proxy functions, such as
classifiers or scoring models, trained to detect undesirable
content based on prior knowledge. We treat their output as
an unnormalized energy function F (x) ∝ − log p(x), en-
abling principled, sample-free updates of generative trajec-
tories without requiring normalization constants or explicit
access to the forget distribution.

4. ContinualFlow: Proposed Methodology
We introduce a principled transport-based formulation for
generative unlearning, leveraging trajectory-level modula-
tion for sensitive content via energy-guided updates.

4.1. Soft Mass Subtraction via Energy Reweighting

Let q0(x) denote a known, samplable source distribution,
and let qf (x) represent an unknown distribution over data to
be forgotten. We assume access to a scalar energy function
F (x) ∝ − log qf (x), which scores space configurations
based on their association with the forget distribution.

We construct a reweighted surrogate of q0(x) by modulating
its density as

R̃(x) ∝ q0(x) · σ(−λF (x)),

where σ(z) = 1
1+e−z is the sigmoid function and λ > 0

controls the suppression sensitivity. The term σ(−λF (x))
smoothly downweights high-energy regions, reducing the
influence of samples likely originating from qf .

The corresponding normalized target distribution is:

q̃1(x) =
1

Z
R̃(x), with Z =

∫
q0(x)σ(−λF (x)) dx.

We interpret q̃1 as the terminal marginal of a generative flow
that selectively suppresses regions aligned with qf , without
requiring direct access to qf itself. This yields a continuous,
differentiable relaxation for unlearning via smooth density
reweighting rather than thresholding or sample exclusion.

4.2. Energy-Reweighted Flow Matching Objective

We now formalize the training objective that aligns a pre-
trained generative model on Dfull with the reweighted target
distribution q̃1(x). Unlike inference-time approaches such
as classifier guidance (Dhariwal & Nichol, 2021)—which
steer generation away from undesired regions using external
gradients while keeping the original model unchanged—our
method directly modifies the training loss by reweighting
samples based on their association with the forget distribu-
tion. This reweighting shapes the velocity field to avoid
high-energy regions and favor trajectories toward retained
content. The following theorem shows that our objective is
equivalent (up to a constant) to CFM toward q̃1(x), using
only samples from the base distribution q0.

Theorem 4.1. Let q0 be a base distribution and F (x) ∝
− log qf (x) an energy function for an unknown forget dis-
tribution qf . Define the reweighted target as q̃1(x) ∝
q0(x) · σ(−λF (x)), with λ > 0. Then, the Energy-
Reweighted Flow Matching loss

LERFM(θ) = Ex0,x1∼q0, t∼U [0,1], x∼pt(x|x0,x1)[
σ(−λF (x1)) · ∥vθ(t, x)− ut(x | x0, x1)∥2

]
(3)

satisfies

∇θLERFM(θ) = C · ∇θLq0→q̃1
CFM (θ)

for some constant C > 0.

Each training pair (x0, x1) ∼ q0 × q0 is weighted by
σ(−λF (x1)), yielding an importance-weighted objective
that guides the flow away from high-energy regions. This en-
ables efficient training toward q̃1 without requiring explicit
access to qf . See Algorithm 1 for the full procedure.

Algorithm 1 ContinualFlow: Training procedure

1: Input: Initial distribution q0(x), energy F (x), model vθ ,
steps S, batch size B, learning rate η, scale λ

2: Training:
3: for i = 1 to S do
4: Sample {x(j)0 }Bj=1 ∼ q0; {x(j)1 }Bj=1 ∼ q0
5: Sample {t(j)}Bj=1 ∼ U(0, 1)
6: Interpolate x(j)t = (1− t(j))x(j)0 + t(j)x

(j)
1

7: Define weights w(j) = σ(−λF (x
(j)
1 ))

8: Define targets ∆x(j) = x
(j)
1 − x

(j)
0

9: Compute loss:

L =

∑B
j=1 w

(j)∥vθ(x(j)t , t(j))−∆x(j)∥2∑B
j=1 w

(j)

10: Update θ ← θ − η∇θL
11: end for
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ContinualFlow: Learning and Unlearning with Neural Flow Matching

Table 1. Comparison of unlearning performance across methods and datasets.
Dataset Method Retention Forgetting Efficiency

MMD (↓) Accuracy (↑) Forget Rate (↓) Leakage (↓) Train Time (s)

2D
Retrain (GT) 0.0157 ± 0.0104 0.9999 ± 0.0002 0.0007 ± 0.0007 0.0255 ± 0.0342 64.30 ± 1.25
Fine-tuning 0.0157 ± 0.0104 0.9999 ± 0.0002 0.0007 ± 0.0007 0.0255 ± 0.0342 10.42 ± 0.75

Ours (CFlow) 0.0162 ± 0.0136 0.9999 ± 0.0002 0.0155 ± 0.0107 0.0385 ± 0.0375 50.07 ± 1.56

MNIST
Retrain (GT) 0.0004 ± 0.0000 0.9861 ± 0.0098 0.0050 ± 0.0012 0.0108 ± 0.0009 300.00 ± 15.00
Fine-tuning 0.0039 ± 0.0004 0.9551 ± 0.0167 0.0143 ± 0.0032 0.0214 ± 0.0028 92.86 ± 6.12

Ours (CFlow) 0.0020 ± 0.0003 0.9673 ± 0.0153 0.0005 ± 0.0005 0.0015 ± 0.0003 158.74 ± 11.34

CIFAR-10
Retrain (GT) 0.0056 ± 0.0004 0.8920 ± 0.0000 0.1127 ± 0.0078 0.1546 ± 0.0073 802.37 ± 291.54
Fine-tuning 0.0077 ± 0.0016 0.9005 ± 0.0068 0.2157 ± 0.0095 0.2401 ± 0.0065 252.89 ± 18.72

Ours (CFlow) 0.0064 ± 0.0005 0.8847 ± 0.0077 0.1704 ± 0.0125 0.1748 ± 0.0109 427.15 ± 34.68

5. Results
We evaluate ContinualFlow on structured 2D benchmarks
and image domains to assess its ability to unlearn specific
content while preserving generative performance. Starting
from a model Gθ trained on Dfull, each task targets retention
of Dretain while forgetting Dforget, compared against fine-
tuning and retraining baselines. Our 2D settings include:
(1) Circles, keeping the inner ring; (2) Moons, lower arc
retained; (3) Gaussians, odd-numbered clusters; and (4)
Checkerboard, top row and last column removed. Table 1
summarizes the averaged results, with full metrics available
in Appendix D. We achieve performance comparable to
ground-truth retraining across diverse settings, including
MNIST digit removal and CIFAR-10 class suppression.

Odd

Even

Odd

Even

Figure 2. Top: 2D Circles. A model trained on both rings Dfull is
guided by F (x) (blue surface) to suppress the outer ring Dforget

and generate inner-ring. Bottom: MNIST. Starting from a model
trained on all digits. The top row uses F (x) to guide trajectories
toward even digits (Dretain), suppressing odds; the bottom row
inverts the energy, redirecting flow to generate odd digits.

In Figure 2, we illustrate two settings. In the 2D Circles task
(top), a model trained on both rings (Dfull) is guided by an
energy function to suppress the outer ring (Dforget), yielding
a new model that generates only the inner ring (Dretain).

A distinctive property of our framework is the composability
of energy functions, potentially allowing modular control
over unlearning dynamics; in this work, we specifically
investigate their invertibility, showing how reversing en-
ergy guidance recovers forgotten content without direct
access. As an illustrative example on MNIST (Figure 2,
bottom), we start with a model trained on all digits and
apply F (x) which penalizes odd digits, retaining evens. We
then invert this energy and reapply our method, recovering
a model that suppresses even digits and regenerates the odd
class—without having access to it. Reversing the energy
reorients the learned flow toward Dforget, recovering this
distribution without requiring direct access to its samples.
This unlocks key capabilities for privacy-aware generative
modeling, including augmenting sensitive classes for fair-
ness evaluation, dynamically modulating access to protected
regions, and enabling traceable, reversible unlearning for
accountability in compliance-critical settings.

6. Conclusion
We recast generative unlearning as a distributional transport
problem and introduce ContinualFlow, a framework that re-
shapes generative behavior by modulating flow trajectories
with energy-based weights to suppress undesired regions.
Through the integration of soft importance weights into
training, it enables targeted unlearning without explicit for-
get sets or full retraining. This work frames unlearning not
as an intervention on model weights but as a distributional
shift through modulation of generative flows.

Future Work. A key challenge is learning energy functions
that faithfully align with the forget distribution, as this align-
ment affects unlearning performance. Beyond class-level or
binary proxies, extending to semantic, or geometric formu-
lations is a promising direction. Moreover, the composition-
ality of energy functions can support modular objectives,
particularly in continual and multi-stage unlearning.
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Table 2. Summary of symbols used throughout the paper.
Symbol Description Symbol Description

q0(x) Source distribution (e.g., model output or prior) qf (x) Forget distribution (to be unlearned, unknown)
F (x) Energy function, F (x) ∝ − log qf (x) λ Suppression sensitivity factor
R̃(x) Unnormalized reweighted target q̃1(x) Soft mass-subtracted target
vθ(t, x) Learned velocity field ut(x | x0, x1) Target velocity
pt(x | x0, x1) Interpolated conditional LCFM Flow Matching loss
Z Normalization constant LERFM Energy-Reweighted FM loss

A. Additional Related Work on Generative Machine Unlearning
To contextualize recent advances in generative model unlearning, we organize key works by their approach and focus area,
emphasizing methods that directly tackle unlearning or targeted removal in generative settings.

Output Suppression Methods. These techniques act during or after generation to prevent disallowed content without
modifying the model’s underlying parameters. A common example is post-hoc filtering, where language or image models
employ classifiers or rule-based systems to detect and block sensitive or restricted outputs. For instance, Gandikota et al.
(2023) propose Safe Latent Diffusion (SLD), which augments a diffusion model with nudity and violence detectors that steer
the denoising trajectory away from generating Not Safe for Work (NSFW) or graphic content. While such inference-time
guardrails significantly reduce the likelihood of unwanted outputs, they can often be dialed back or circumvented and may
distort the output if applied too aggressively (Schramowski et al., 2023). In LLMs, suppression is typically implemented
through controlled decoding or fine-tuned refusal behaviors that steer models away from certain topics. Techniques such as
prompt-based “safe completion” or RLHF operate as output-level controls. While effective at reducing harmful generations,
they act more as alignment tools than true unlearning: the underlying knowledge remains encoded, and suppressed content
may still be elicited through alternative prompts (Gandikota et al., 2023).

These limitations motivate the complementary class of model-editing approaches discussed next.

Model Editing and Target Removal Techniques. Beyond suppression, another line of work seeks to edit model parameters
directly to remove undesired concepts. In diffusion models, Kumari et al. (2023) propose a redirection approach, re-mapping
target concepts to generic anchors to suppress stylistic outputs, for instance transforming “in the style of Artist X” into
a neutral painting style. An alternative to suppression is to directly modify the model’s internal parameters to remove
undesired concepts. However, model patching often risks collateral damage, degrading unrelated capabilities. To mitigate
this, Zhang et al. (2024) and Gandikota et al. (2024) introduce adversarial preservation losses that regularize neuron-level
effects during unlearning. Fine-tuning on counterfactual text with KL regularization, or ablating neurons tied to memorized
content, are common strategies for unlearning in LLMs.

These challenges highlight a core limitation of current editing approaches: they rely on brittle interventions that often lack
robustness, theoretical guarantees, and generalizability across tasks or modalities (Wu et al., 2023; Xu et al., 2025).

Continual and Online Unlearning. Continual unlearning extends the classical unlearning setup to scenarios where deletions
must be performed iteratively, without disrupting the model’s overall performance or utility. Heng & Soh (2023) propose
Selective Amnesia, which leverages continual learning tools such as Elastic Weight Consolidation (Kirkpatrick et al., 2017)
and retained data replay to remove target concepts while preserving overall model performance. However, these methods
typically address fixed, one-shot unlearning tasks and rely on access to the data to be removed. Thakral et al. (2025) extend
this to the incremental setting, introducing a formal definition of continual generative unlearning. They show that repeated
removals can cause generalization erosion, where the model’s output quality deteriorates even for unrelated prompts.

Continual unlearning remains an open challenge, raising questions about partial forgetting, compositionality, and robustness
under evolving constraints. Our approach addresses this by enabling flow-based updates toward new targets while softly
subtracting prior content, either using direct access to data distributions or via modular energy proxies. By design,
this mechanism accommodates incremental and modular changes without compromising overall model coherence. This
compositionality makes it especially well-suited for real-world deployments where unlearning needs to be flexible, efficient,
and repeatable. A summary of the symbols used throughout this section is provided in Table 2.
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B. Flow Matching Toward Soft Mass-Subtracted Distributions.
Let q0(x) be a known, samplable base density, and suppose we are given access to an unnormalized energy function
F (x) ∝ − log qf (x) for an unknown target density qf (x). Define the soft mass-subtracted target as:

R̃(x) ∝ q0(x) · σ(−λF (x))

where σ(z) = 1
1+e−z is the sigmoid function and λ > 0 is a scale parameter.

Let q̃1(x) = 1
Z R̃(x) be the normalized version of this target distribution.

Claim. The Energy Reweighted Flow Matching objective with reweighting via σ(−λF (x)) yields a gradient that is equal
(up to a constant) to that of the Conditional Flow Matching (CFM) objective from q0 → q̃1.

Theorem B.1. Let vθ(t, x) be a parameterized velocity field and ut(x|x0, x1) a target interpolation field (e.g., linear
interpolation). Define the ERFM loss as

LERFM(θ) = Ex0,x1∼q0, t∼U [0,1], x∼pt(x|x0,x1)

[
σ(−λF (x1)) · ∥vθ(t, x)− ut(x|x0, x1)∥2

]
Then there exists a constant C > 0 such that

∇θLERFM(θ) = C · ∇θLq0→q̃1
CFM (θ)

where Lq0→q̃1
CFM is the standard CFM loss between q0 and q̃1:

Lq0→q̃1
CFM (θ) = Ex0∼q0, x1∼q̃1, t, x∼pt(x|x0,x1)

[
∥vθ(t, x)− ut(x|x0, x1)∥2

]
Proof. By construction, we have

q̃1(x1) ∝ q0(x1) · σ(−λF (x1))

so we may write
q̃1(x1)

q0(x1)
∝ σ(−λF (x1))

Therefore, the CFM loss from q0 to q̃1 can be rewritten as a reweighted expectation over samples x1 ∼ q0:

Lq0→q̃1
CFM (θ) = Ex0,x1∼q0, t, x

[
q̃1(x1)

q0(x1)
· ∥vθ(t, x)− ut(x|x0, x1)∥2

]
= C−1 · Ex0,x1∼q0, t, x

[
σ(−λF (x1)) · ∥vθ(t, x)− ut(x|x0, x1)∥2

]
for some positive normalizing constant C. This is exactly the ERFM objective. Therefore,

∇θLERFM(θ) = C · ∇θLq0→q̃1
CFM (θ)

as required.

B.1. Classifier-Based Energy Approximation

Suppose we are given a probabilistic binary classifier C(x) ∈ [0, 1] trained to distinguish samples from the base distribution
q0(x) and an unlearned class qf (x). Under Bayes-optimality, the classifier estimates:

C(x) = P(x ∈ qf | x) = qf (x)

q0(x) + qf (x)

We aim to show that such a classifier defines a valid energy function for our method.

Proposition B.2. Let C(x) be the Bayes-optimal probabilistic classifier distinguishing qf from q0. Then the logit score

F (x) := − log

(
C(x)

1− C(x)

)
7
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defines an energy function such that the soft-mass subtracted target

R̃(x) ∝ q0(x) · σ(−λF (x))

is equivalent to

R̃(x) ∝ q0(x) ·
(1− C(x))λ

(1− C(x))λ + C(x)λ

Proof. By the classifier definition, we have:

C(x)

1− C(x)
=
qf (x)

q0(x)
⇒ F (x) = − log

(
qf (x)

q0(x)

)
Hence:

σ(−λF (x)) = 1

1 +
(

C(x)
1−C(x)

)λ
=

(1− C(x))λ

(1− C(x))λ + C(x)λ

This weight decreases as the classifier becomes more confident that x belongs to qf , suppressing contributions in the loss,
and recovering the same behavior as energy-based reweighting.

C. Appendix: Background on Optimal Transport Flow Matching with Empirical Distributions
Optimal Transport Foundations. Given two probability distributions q0 and q1 over Rd, the static 2-Wasserstein distance
between them is defined as:

W 2
2 (q0, q1) = inf

π∈Π(q0,q1)

∫
Rd×Rd

∥x0 − x1∥2 dπ(x0, x1), (4)

where Π(q0, q1) denotes the set of all couplings with marginals q0 and q1.

The dynamic formulation of optimal transport (Benamou-Brenier (Benamou, 2021)) seeks a time-varying density pt and
vector field ut that minimize:

inf
pt,ut

∫ 1

0

∫
Rd

pt(x)∥ut(x)∥2 dx dt, (5)

subject to the continuity equation
∂pt
∂t

+∇ · (ptut) = 0,

with boundary conditions p0 = q0, p1 = q1.

Flow Matching with Empirical Marginals. In the CFM framework (Tong et al., 2023), the velocity field vθ(t, x) is
trained to match an analytically defined vector field ut(x | z), using samples from a conditional distribution pt(x | z). This
is generalized further in the OT-CFM formulation, where the coupling z = (x0, x1) is sampled according to an optimal
transport plan π(x0, x1), instead of an independent product q0(x0)q1(x1).

Given such a coupling, the interpolation and associated velocity fields are:

ψt(x0, x1) = (1− t)x0 + tx1, (6)

pt(x | x0, x1) = N (x | ψt(x0, x1), σ
2I), (7)

ut(x | x0, x1) = x1 − x0. (8)

OT-CFM Justification. Proposition 3.4 of Tong et al. (2023) proves that when the coupling π(x0, x1) is the OT plan and
σ2 → 0, the marginal flow field ut(x) minimizes the dynamic OT objective between q0 and q1. Notably, this formulation
imposes no assumption that q0 must be a Gaussian or that its density is known.

This formulation enables the construction of a transport path between the empirical distribution of samples generated by
a pretrained model Gθ, denoted q0, and the empirical distribution over the retained dataset Dretain, denoted q1, without
requiring access to their explicit densities. Leveraging this coupling, we can train a new velocity field vθ̃ to model the flow
between q0 and q1, thereby avoiding the need to retrain from a fixed prior such as a standard Gaussian. This yields a modular
approach for implementing targeted unlearning and supporting continual distributional updates.
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Minibatch Approximation. In practical settings where the exact OT plan is computationally expensive, minibatch
OT (Nguyen et al., 2021) can be used to approximate π(x0, x1). Empirically, this yields competitive flows and maintains
convergence benefits without incurring the overhead of solving full OT across the dataset.

D. Extended Results and Implementation Details
To rigorously evaluate the performance of targeted unlearning, we report results across three complementary axes: retention,
forgetting, and efficiency. This section formally defines each metric, motivates its inclusion, and provides implementation
details for reproducibility.

Maximum Mean Discrepancy (MMDretain). We compute MMDretain between generated samples and a held-out subset of
retained data to assess distributional alignment. Formally, for two sets X = {xi} and Y = {yj} of generated and retained
samples, we estimate:

MMD2(X,Y ) =
1

n2

∑
i,i′

k(xi, xi′) +
1

m2

∑
j,j′

k(yj , yj′)−
2

nm

∑
i,j

k(xi, yj),

using an RBF kernel with fixed bandwidth σ = 1.0. We report the mean and standard deviation of this value across multiple
randomized evaluations with n = m = 1000.

Retention Accuracy. We evaluate a pretrained binary classifier on real retained samples and report the percentage of
correctly predicted labels. This measures the extent to which information about the preserved content is retained by the
model, and serves as a proxy for functionality preservation.

Forget Rate. To assess how effectively the model suppresses the forgotten content, we measure the proportion of generated
samples that the classifier assigns to the forget class. A low forget rate indicates fewer instances of undesired generation and
stronger unlearning.

Leakage Score. While the forget rate captures coarse-level suppression, the leakage score quantifies fine-grained semantic
resemblance to forgotten content. Specifically, we compute the classifier’s average confidence on the forget class over
generated samples.

Training Time. Training time is recorded as wall-clock duration required to complete a fixed number of optimization
steps. Inference time is measured as the average per-sample generation time (in milliseconds) across 5000 samples using
nsteps = 10 flow integration steps.

Table 3 reports a comprehensive comparison of unlearning performance across four 2D datasets: Circles, Checkerboard,
Moons, and 6 Gaussians. Each experiment is repeated with three independent classifier runs to account for variability, and
all reported values represent the mean and standard deviation across these trials.

Table 3. Comparison of unlearning performance across methods and 2D datasets.
Dataset Method Retention Forgetting Efficiency

MMD (↓) Accuracy (↑) Forget Rate (↓) Leakage (↓) Train Time (s) Inference (ms)

Circles
Retrain (GT) 0.0011 ± 0.0002 1.0000 ± 0.0000 0.0000 ± 0.0000 0.0840 ± 0.0593 10.50 ± 0.50 0.004 ms
Fine-tuning 0.0011 ± 0.0002 1.0000 ± 0.0000 0.0000 ± 0.0000 0.0840 ± 0.0593 1.60 ± 0.20 0.005 ms
Ours (CFlow) 0.0021 ± 0.0002 1.0000 ± 0.0000 0.0173 ± 0.0106 0.1000 ± 0.0675 8.20 ± 0.30 0.004 ms

Checkerboard
Retrain (GT) 0.0136 ± 0.0002 0.9996 ± 0.0001 0.0004 ± 0.0002 0.0006 ± 0.0001 13.50 ± 0.40 0.004 ms
Fine-tuning 0.0136 ± 0.0002 0.9996 ± 0.0001 0.0004 ± 0.0002 0.0006 ± 0.0001 2.20 ± 0.30 0.005 ms
Ours (CFlow) 0.0063 ± 0.0004 0.9996 ± 0.0002 0.0002 ± 0.0000 0.0002 ± 0.0001 9.30 ± 0.50 0.004 ms

Moons
Retrain (GT) 0.0179 ± 0.0002 1.0000 ± 0.0000 0.0005 ± 0.0001 0.0142 ± 0.0039 17.20 ± 0.60 0.005 ms
Fine-tuning 0.0179 ± 0.0002 1.0000 ± 0.0000 0.0005 ± 0.0001 0.0142 ± 0.0039 2.90 ± 0.30 0.006 ms
Ours (CFlow) 0.0194 ± 0.0009 1.0000 ± 0.0000 0.0142 ± 0.0020 0.0199 ± 0.0007 13.60 ± 0.50 0.004 ms

6 Gaussians
Retrain (GT) 0.0303 ± 0.0001 1.0000 ± 0.0000 0.0018 ± 0.0003 0.0031 ± 0.0015 23.10 ± 0.80 0.005 ms
Fine-tuning 0.0303 ± 0.0001 1.0000 ± 0.0000 0.0018 ± 0.0003 0.0031 ± 0.0015 3.70 ± 0.40 0.005 ms
Ours (CFlow) 0.0370 ± 0.0010 1.0000 ± 0.0000 0.0302 ± 0.0083 0.0338 ± 0.0083 19.00 ± 0.60 0.004 ms

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

ContinualFlow: Learning and Unlearning with Neural Flow Matching

D.1. Experimental Settings

MNIST: The quantitative results reported in Table 1 are based on a binary MNIST task where the retain set Dretain includes
even digits (0, 2, 4, 6, 8) and the forget set Dforget includes odd digits (1, 3, 5, 7, 9).

In Figure 3, we visualize generation behavior in a different, more constrained setting. Here, Dretain consists solely of digit
“0”, and Dforget includes digits “1–9”. As shown in the top row, increasing the energy scaling parameter λ progressively
suppresses the forget set, leading the model to generate only digit “0”. In the bottom row, the energy function is reversed to
penalize digit “0” while retaining digits “1–9”. As λ increases, generation shifts away from digit “0”, demonstrating the
model’s ability after training to exclude specific classes while preserving others.

Figure 3. Effect of suppression factor λ. Top row: The energy function F (z) is low on Dretain (digit “0”) and high on Dforget (digits
“1–9”). As λ increases (λ ∈ {0.5, 2, 5, 1000}), the model progressively suppresses Dforget, converging toward samples from Dretain.
Bottom row: Reversing F (z) to penalize digit “0” instead, the model excludes Dretain as λ grows. This demonstrates energy-guided
modulation of generation in ContinualFlow.

2D Distributions: We begin by evaluating ContinualFlow on a set of 2D synthetic distributions commonly used in generative
modeling: Circles, Moons, Gaussians, and Checkerboard. Each task involves learning a mapping from a Gaussian base
distribution to the target, followed by an unlearning phase where a specific region is suppressed via an energy function F (x).
These experiments provide an interpretable setting to assess the trajectory-level behavior of the model during learning and
unlearning. The corresponding averaged quantitative results for these tasks are reported in Table 1. Figure 5 visualizes the
evolution of samples under both phases. For each dataset, the top row shows standard flow-based generation toward the full
target distribution, while the bottom row shows the result of applying energy-reweighted unlearning to suppress designated
regions.

Figure 4. CIFAR-10 latent unlearning. Generation from the full
distribution (left), and after suppressing all classes except automobile
(middle) and airplane (right), which are assigned low energy.

CIFAR-10: Finally, we evaluate ContinualFlow on
CIFAR-10 by operating in a 64-dimensional latent space
derived from a pretrained autoencoder. This experiment
tests the model’s ability to suppress specific semantic
classes while retaining others, under limited latent capac-
ity. The full distribution Dfull = Dretain ∪Dforget consists
of a subset of two CIFAR-10 classes: automobile (1) and
airplane (2). The left column shows samples generated
by a generative model trained on this full distribution. In
the center column, the model is guided to retain only the
automobile class by assigning it low energy and suppress-
ing all other modes. The right column mirrors this by
retaining only the airplane class.
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Figure 5. The left panel shows the target density as a surface plot, with the corresponding energy function F (x) rendered on the floor
plane. The right panel illustrates the learned and unlearned trajectories for four 2D benchmarks: Circles, Moons, 6 Gaussians, and
Checkerboard. The parameter λ = 5 is used for each experiment.
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D.2. Hardware Specifications

All experiments were conducted using NVIDIA GPUs with CUDA-enabled PyTorch acceleration. For low-dimensional 2D
synthetic benchmarks we employed a local workstation equipped with an NVIDIA GeForce RTX 3070 GPU and 8GB of
VRAM.

For experiments in the image domain, we utilized a more powerful NVIDIA L4 GPU with 24GB of VRAM, hosted on
a cloud compute environment. This enabled the training of convolutional encoder–decoder pairs and larger latent flows
required for modeling high-dimensional data distributions.

Table 4. Hardware specifications used for 2D and image-domain experiments.

Property 2D Experiments Image Experiments

GPU NVIDIA GeForce RTX 3070 NVIDIA L4
CUDA Version 12.4 12.4
Driver Version 552.22 550.54.15
VRAM 8GB 24GB

D.3. Architectural Details for Latent-Space Image Generation

For image-based experiments on MNIST and CIFAR-10, we employ a modular autoencoder–flow pipeline composed of a
convolutional encoder, a transposed-convolutional decoder, and a conditional latent flow model. The encoder compresses
the input image into a compact latent vector z ∈ Rd, which serves as a transport space for learning and unlearning tasks.
Sampling proceeds by first generating latent codes from a base Gaussian via conditional flow, followed by energy-reweighted
transformation, and decoding to the image domain.

Table 5. Architectural specifications for MNIST and CIFAR-10 experiments.

Component MNIST (Grayscale, 28× 28) CIFAR-10 (RGB, 32× 32)

Encoder Conv2D(1→32, 4×4, stride=2,
padding=1) → ReLU
Conv2D(32→64, 4×4, stride=2,
padding=1) → ReLU
Flatten → Linear(3136→ d)

UNet-style:
Conv2D(3→64, 3×3, padding=1) →
ReLU
Conv2D(64→64, 3×3, padding=1) →
ReLU → MaxPool
Conv2D(64→128) → ReLU → MaxPool
Conv2D(128→256) → ReLU → Max-
Pool
Conv2D(256→512) → ReLU
Flatten → Linear(8192→ d)

Decoder Linear(d→ 3136) → ReLU
Unflatten → ConvT(64→32) → ReLU
ConvT(32→1) → Tanh

Linear(d→ 8192) → Unflatten(512, 4, 4)
ConvT(512→256) → Conv(256)
ConvT(256→128) → Conv(128)
ConvT(128→64) → Conv(64)
Conv(64→3) → Tanh

Latent Flow Input: (z, t) ∈ Rd+1

Linear(d+1→128) → ReLU
Linear(128→128) → ReLU
Linear(128→ d)

Input: (z, t) ∈ Rd+1

Linear(d+1→256) → ReLU
Linear(256→256) → ReLU
Linear(256→ d)

Latent Usage. For both datasets, the encoder transforms input images x ∈ RC×H×W into a latent vector z ∈ Rd (default:
d = 64 for MNIST, d = 256 for CIFAR-10). A first conditional flow model is trained to transport samples from a base prior
N (0, I) to the encoded latent distribution q0(z).
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