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ABSTRACT

The flexibility and effectiveness of message passing based graph neural networks
(GNNs) induced considerable advances in deep learning on graph-structured data.
In such approaches, GNNs recursively update node representations based on their
neighbors and they gain expressivity through the use of node and edge attribute
vectors. E.g., in computational tasks such as physics and chemistry usage of edge
attributes such as relative position or distance proved to be essential. In this work,
we address not what kind of attributes to use, but how to condition on this infor-
mation to improve model performance. We consider three types of conditioning;
weak, strong, and pure, which respectively relate to concatenation-based condi-
tioning, gating, and transformations that are causally dependent on the attributes.
This categorization provides a unifying viewpoint on different classes of GNNs,
from separable convolutions to various forms of message passing networks. We
provide an empirical study on the effect of conditioning methods in several tasks
in computational chemistry.

1 INTRODUCTION

Graph neural networks (GNNs) are a family of neural networks that can learn from graph-structured
data. Starting with the success of GCN (Kipf & Welling, 2016) in achieving state-of-the-art per-
formance on semi-supervised classification, several variants of GNNs have been developed for this
task, including Graph-SAGE (Hamilton et al., 2017), GAT (Veličković et al., 2017), GATv2 (Brody
et al., 2021), EGNN (Satorras et al., 2021) to name a few most recent ones.

Most of the models based on the message-passing framework utilize conditional linear layers. We
define ”conditioning” as using additional information together with feature vectors from its neigh-
bors’ nodes. For example, EGNN (Satorras et al., 2021) conditions message vectors on the distance
between two nodes or DimeNet (Gasteiger et al., 2020b) additionally utilizes angle information.
Many neural network models use conditioning in their layers without exploring their different vari-
ants. Therefore, improving upon the type of conditioning could still improve most state-of-the-art
models. We believe that this is the first work that analyzes different conditioning methods in GNNs.

In this paper, we categorize three conditioning methods: weak, strong, and pure. They differ in the
level of dependency on a given quantity, such as edge attributes, and differ in complexity. Message
passing neural network (MPNN) using weak conditioning method concatenates attributes with node
features. In this scenario, linear layers effectively gain an attribute-dependent bias, which we con-
sider a weak type of conditioning as this does not guarantee that the attribute is actually utilized,
i.e., it could be ignored. On the other hand, we have pure conditioning method which forces the
model to always use the attributes by letting them causally parametrize transformation matrices.
However, from a practical perspective pure conditioning is computationally expensive and it can be
simplified to a strong conditioning method, which corresponds to an attribute-dependent gating of
the outputs of linear layers. We experiment with these three conditioning methods in variations of
the EGNN model (Satorras et al., 2021) on computational chemistry datasets QM9 (Ramakrishnan
et al., 2014) and MD17 (Chmiela et al., 2017) and show the advantage of strong conditioning over
weak conditioning in performance, and over pure conditioning in training time.

The main contributions of this paper are:
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(i) A unifying analysis of geometric message passing by formulating conditional transforma-
tions in terms of various forms of conditional linear layers.

(ii) An intuitive exposition of different conditioning methods in the context of convolutional
message passing.

(iii) Empirical studies that show the benefit of strong conditioning methods, as well as the ben-
efit of deep conditioning in multi-layer perceptron-based message functions.

In this work, we address not what kind of attributes to use, but how to condition on this information
to improve model performance. As such, we focus on an intuitive analysis, and in the experimental
section, we do not intend to achieve the best performance but focus on ablation studies in order to
obtain general take-home messages.

2 PRELIMINARIES

In this section, we introduce the relevant materials on graph neural networks on top of which we
will later complement our analysis and definitions of conditioning methods.

2.1 GRAPH NEURAL NETWORK

In this work, we consider the graph regression task as an example. A graph is represented by
G = (V, E) with nodes vi ∈ V and edges eij ∈ E . A typical message passing layer (Gilmer et al.,
2017) is defined as:

mij = ϕe(h
l
i,h

l
j ,aij) (1)

mi =
∑

j∈N(i)

mij (2)

hl+1
i = ϕh(h

l
i,mi) (3)

Where hl
i is the embedding of node vi at layer l, aij is the edge attribute of nodes vi and vj , and

N(i) is the set of neighbors of the node vi. Finally, ϕe and ϕh are the message (edge) and update
(node) functions respectively which are commonly parametrized by Multilayer Perceptrons (MLPs).

2.2 GEOMETRIC GRAPH NEURAL NETWORKS

When the graphs have an embedding in Euclidean space, i.e., each node vi has an associated position
xi ∈ Rn, we want to leverage this geometric information whilst preserving stability/invariance
to rigid-body transformations. That is, many tasks are invariant to Euclidean distance preserving
transformations in E(n). E.g., the prediction of energy of a system of atoms is invariant to its global
position and orientation in space. Several works have shown how to build equivariant message
passing based graph neural networks for such geometric graphs.

Central in those works is the conditioning of the message and update function on invariant geometric
attributes, such as the pairwise distance aij = ∥xj − xi∥, as popularized in (Satorras et al., 2021),
or covariant spherical/circular harmonic embeddings of relative position aij = Y (xj − xi) as is
common steerable group convolution-based graph NNs (Brandstetter et al., 2021). Here we consider
attributes that transform predictably via representations of E(n) as covariants, and those that remain
invariant as invariants. Such covariants typically contain more (directional) information but require
specialized operations such as the Clebsch-Gordan tensor product (Thomas et al., 2018; Anderson
et al., 2019) in order to preserve equivariance of the graph NNs. Satorras et al. (2021) show that
with a simple recipe based on invariant attributes, one can often obtain equally powerful graph NNs.
As such, we focus this paper on the use of aij = ∥xj − xi∥ as a sufficiently expressive attribute,
and model the message and update functions ϕe and ϕh as regular MLPs.

Our objective then is to understand what is the most effective way of utilizing attributes in geometric
graph NNs. To make this notion of conditioning explicit, we will denote the message and update
function as

ϕe(h
l
i,h

l
j |aij) and ϕh(h

l
i |ai) ,

where we note that, although uncommon, it is possible to define invariant or covariant geometric
node attributes ai (Brandstetter et al., 2021).
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3 ANALYSIS OF CONDITIONING METHODS

In the subsequent, we unify several conditioning methods used in literature through the notion of
conditional linear layers, and by discussing them in relation to the prevalent convolution layer and its
variations. As a starting point, we use the fact that convolution is a simple form of message passing
with linear message functions conditioned on relative position, i.e.,

mij = ϕe(fj |xj − xi) = W(xj − xi)fj , (4)

and the following update function typically is the application of a point-wise activation function σ,
i.e., ϕh(fi) = σ(fi), possibly with a skip connection as in ResNets (He et al., 2016). In general,
geometric graph NNs do not just linearly transform node features, but generally do this non-linearly
via message/update functions parametrized by MLPs, leading to a notion of non-linear convolutions
when the attributes are invariant/covariant quantities (Brandstetter et al., 2021).

Importantly, these MLPs themselves are parametrized by linear layers, intertwined with non-linear
activation functions, and nothing prevents from conditioning each of these linear layers on the at-
tributes. It is the purpose of this paper to categorize several options for conditioning and understand
what effect this has on performance.

3.1 CONDITIONAL LINEAR LAYERS

We propose the following modifications of the linear layer, as to make them conditional on attributes

Wah := Wh no (5)
Wah := W (h⊕ a) weak (6)

Wa h := (Waa)⊙ (Wh h) strong (7)
Wah := W(a)h pure (8)

where to keep the similarity to the common notation for linear transformations, we use the notation
Wa to denote that the linear transformation is conditioned on a. We further use to notation h⊕a to
denote the concatenation of vectors h and a, and use ⊙ to denote element-wise multiplication. To
distinguish matrices applied to different attributes, we use italic labels, e.g. Wh.

We stress the hierarchy in terms of the dependence of the transformation on a. The most direct de-
pendence is in the pure method, in which the transformation is causally parametrized by a, followed
by strong conditioning in which a standard unconditional transformation Wh h is gated by a vector
Wa a. Both the pure and strong methods are by construction forced to utilize the attribute, as, in
particular in the strong case, the transformation would not exists without attribute a. We refer to
equation 6 as weak conditioning, as in principle the transformation would still exist in the absence
of the attribute, and moreover, if the dimensionality of h is much larger than that of a, the transfor-
mation of the attribute only contributes to a small extent to the output of this layer. We hypothesize
that this hierarchy correlates with performance and experimentally test this hypothesis in Sec. 5.
What follows is a brief analysis of these types of conditioning.

3.2 PURE CONDITIONING CORRESPONDS TO BI-LINEAR LAYERS

As common for implementations of convolutions, one typically expands the convolution kernel
W(xj − xi) ∈ Rdo×di , i.e., a transformation matrix with elements Woi(xj − xi) that depends
on relative position, in a basis {ϕb : Rn → R}db

b=1 via

Woi(xj − xi) =

db∑
b=1

Wboi ϕb(xj − xi) . (9)

The basis could be the usual 3 × 3 pixel basis, or it could be a continuous basis for when the
continuous structure of the data is to be respected, such as circular or spherical harmonics (Worrall
et al., 2017; Weiler & Cesa, 2019; Thomas et al., 2018; Anderson et al., 2019), B-splines (Bekkers,
2020; Fey et al., 2018), or hermite polynomials (Sosnovik et al., 2020). In recent works on the
parametrization of continuous functions as Neural Fields (Xie et al., 2022) or in transformer-based
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methods (Vaswani et al., 2017), such basis functions are often referred to as coordinate embeddings
or position encodings.

An important observation is that, given such a parametrization through basis functions, the pure
conditioning layer corresponds to a bi-linear layer

hl+1
o =

∑
b

∑
i

ϕb(a)Wboi h
l
i ⇐⇒ hl+1 = ϕ(a)

bilinear

W hl , (10)

where we use i to index the input feature vector, o the output feature vector, and b the basis functions.

Such bilinear layers are often implicitly used in convolutional architectures, where the expansion in
the basis function is typically hard-coded or pre-computed. On continuous data, such as point cloud
methods, the bilinear layer is ubiquitous. Notably, in the context of steerable group equivariant
convolutions, the transformations happen via bilinear operators called the Clebsch-Gordan tensor
product, in combination with spherical harmonic embeddings of relative position (Brandstetter et al.,
2021). Outside of the (group) convolution literature, bilinear layers are often used to explicitly model
conditioning on geometric attributes, for which a relevant example to our current work is DimeNet
(Gasteiger et al., 2020b). DimeNet uses an advanced message passing framework in which messages
and updates are conditioned on geometric quantities (embedded as spherical harmonics and radial
basis functions) via combinations of weak, strong, and pure conditioning.

3.3 STRONG CONDITIONING CORRESPONDS TO DEPTH-WISE SEPARABLE CONVOLUTIONS

In later works, DimeNet was improved by DimeNet++ (Gasteiger et al., 2020a), both in perfor-
mance and speed, by replacing the compute-heavy bilinear layers (pure conditioning) with the more
efficient gating type conditioning (strong conditioning). The computational bottleneck of pure con-
ditioning motives the use of strong conditioning, a route that has proven successful in convolutional
architectures computer vision as well, via the use of so-called depth-wise separable convolutions
(Sifre & Mallat, 2014; Chollet, 2017).

Chollet (2017) shows huge efficiency gains, both in terms of computing and performance, when fac-
torizing convolution kernels in two parts. One part does the channel mixing, which does not depend
on the relative position, while another part depends on the relative position which scales/gates the
output. That is if the kernel is given by

Woi(xj − xi) = W a
o (xj − xi)W

h
oi , (11)

the convolution boils down to message passing with conditional linear layers of the strong type, as
we can write

hl+1 = (W a(xj − xi))⊙ (Whhl) , (12)
where we can define Wa(xj − xi) = Waaij as the linear transformation of a coordinate em-
bedding aij = ϕ(xj − xi) if we want the connection to equation 7 explicit. The fact that the
transformation overall is linear and that it splits into a part that does and a part that doesn’t depend
on pair-wise attributes allows for very efficient implementations that first perform a group-wise
convolution, followed by channel mixing. This principle is at the core of the recently popularized
ConvNeXt architecture (Liu et al., 2022) and plays an essential role in equivariant graph NNs on
(molecular) point clouds in order to be able to scale up (Thomas et al., 2018). Separability recently
also proved necessary in order for equivariant convolutional NNs to scale up to large groups, such
as the scale-rotation-translation group (Knigge et al., 2022). In the context of conditional NN to
parametrize neural fields (Xie et al., 2022), strong conditioning commonly appears in the form of
so-called film layers (Perez et al., 2018).

3.4 WEAK CONDITIONING CORRESPONDS TO LINEAR LAYERS WITH A CONDITIONAL BIAS

Weak conditioning (Eq. 6) corresponds to a standard linear layer with an adaptive bias:

Wa h = W (h⊕ a) = W
′
h︸ ︷︷ ︸

no condition

+ W
′′
a︸ ︷︷ ︸

conditional bias

= W
′
h+ b(a) , (13)

where W
′

are the first dh rows of W that are applied to the h ∈ Rdh of the concatenated vector,
and W

′′
are the last da rows of W that are applied to a ∈ Rda . This simple form of conditioning
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is most used in literature to condition any type of NN on the conditioning vector a, from message
passing methods (Gilmer et al., 2017; Satorras et al., 2021), to conditional neural fields, e.g. as a
simple but effective form of modulation in sirens (Dupont et al., 2022), to conditional variational
auto-encoders (Sohn et al., 2015).

3.5 CONDITIONAL MLPS

With the various forms of conditional linear layers given in equations 6, 7, and 8 we can build
conditional MLPs, by simply replacing the usual linear layers with the conditional ones1. Such
MLPs could e.g. be denoted with MLP(h |a). Usually, only the first layer of such a conditional
MLP is conditional and usually of the weak type, as with EGNN (Satorras et al., 2021). In the
experiments we show that this simple choice is sub-optimal in the context of geometric message
passing à la EGNN, and show that improvements can be made by either by conditioning more
layers, or switching to strong conditioning.

4 RELATED WORK: GEOMETRIC MESSAGE PASSING FOR COMPUTATIONAL
CHEMISTRY

In the previous section, we discussed several options for conditioning message/update functions for
us in message passing graph neural networks, as well as their use in other fields of deep learning.
In our experiments we benchmark the three conditioning methods (equations 6, 7, 8) in the context
geometric message passing for computational chemistry. Recent works in this category, and the
types of conditioning used in those works, are as follows.

EGNN (Satorras et al., 2021) is a message passing neural network (MPNN) that uses a weak condi-
tioning method to utilize the distance between nodes. DimeNet (Gasteiger et al., 2020b) is the type
of MPNN, where message embeddings interact based on the distance between atoms and the angle
directions. Pure conditioning is adapted to utilize angle directions in message update and aggrega-
tion. Tensor Field Network (Thomas et al., 2018) is a neural network for 3D point clouds. Each
point in TFN is associated with a vector in a representation of SO(3). To condition one representa-
tion on another, a tensor product of representations is used which in its general form corresponds to
pure conditioning. However, many works of the steerable message passing kind, including TFN and
NequIP (Batzner et al., 2022), implement a separable variation (strong conditioning) for the sake of
computational efficiency. The exception is steerable EGNN (Brandstetter et al., 2021), which uses
steerable MLPs with pure conditioning in each layer, i.e., not only the first layer of the message
function as in EGNN.

DimeNet++ (Klicpera et al., 2020) is an extension of DimeNet which changed conditioning method
from pure to strong to increase efficiency. Klicpera et al. (2020) showed that changing the condi-
tioning method decreased the runtime time of the original DimeNet by a factor of 5. SchNet (Schütt
et al., 2017) is another example of MPNN that utilizes atom locations using a strong conditioning
method. PaiNN (Schütt et al., 2021) further extends SchNet by projecting the interatomic distances
via radial basis functions and iteratively updating the vectors along with the scalar features but also
using a strong conditioning method.

5 EXPERIMENTS

In this section, we design experiments to evaluate the effectiveness of three conditioning methods
shown in equation 6, 7, and 8 on two real-world datasets: QM9 (Ramakrishnan et al., 2014) and
MD17 (Chmiela et al., 2017). We want to demonstrate the effect of the choice of the conditioning
method and present the results of some other models on benchmarks to provide context. In our
experiments, we report Mean Absolute Error (MAE) between model predictions and ground truth.

Implementation details As a baseline architecture, we use the EGNN model that consists of 7 lay-
ers, 128 features per hidden layer, and a 2-layer message (edge) function ϕe = MLP(hi⊕hj | ∥xj−
xi∥2) with only weak conditioning via equation 6 in the first layer. We will test modifications of this

1Code is available at https://github.com/YeskendirK/conditioning-GNNs
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model by changing the weak conditioning, to strong or pure, and explore the effect of conditioning
multiple layers in the edge function MLP.

We found it useful to pass geometric distances through two-layer MLP, as a form of vectoriza-
tion/coordinate embedding of the pairwise distance, for the QM9 dataset and Random Fourier Fea-
ture layer (Rahimi & Recht, 2007) for the MD17 dataset.

We use the same values for hyperparameters from the EGNN paper (Satorras et al., 2021) for both
datasets: we trained each model on QM9/MD17 dataset for a total of 1.000/500 epochs, used Adam
optimizer, batch size 96 (64 for pure-EGNN), weight decay 1e-16, and cosine decay for the learning
rate starting at 5e-4.

QM9 The QM9 (Ramakrishnan et al., 2014) dataset consists of small molecules represented as a
set of atoms (up to 29 atoms per molecule), each atom having a 3D position associated and a five-
dimensional one-hot node embedding that describes the atom type (H, C, N, O, F). The QM9 dataset
has 3D coordinate locations of each atom and we use the distance between two atoms (nodes) as an
edge attribute. The dataset comprises 12 quantum properties for each of the molecules. We use 100k
molecules for training, 18k for validation, and 13k for testing.

Table 1 shows the Mean Absolute Error for the prediction of 12 molecular properties for weak
and strong conditioning methods. We can clearly see that using strong conditioning shows lower
MAE than weak conditioning for all properties by an average of 10%. Due to a large number of
data points and our limited computational resources, we limit our experiments to weak and strong
conditioning methods. Training one epoch of pure-EGNN was on average 267x longer than training
strong-EGNN, which made it intractable to validate pure conditioning on this dataset.

Table 1: Mean Absolute Error for the molecular property prediction benchmark in QM9 dataset.

Task α ∆ϵ ϵHOMO ϵLUMO µ Cv G H R2 U U0 ZPV E
Units bohr3 meV meV meV D cal/mol K meV meV bohr3 meV meV meV

SchNet .235 69 43 38 .030 .040 19 17 .180 20 20 1.50
DimeNet++ .044 33 25 20 .030 .023 8 7 .331 6 6 1.21
EGNN (baseline) .071 48 29 25 .029 .031 12 12 .106 12 11 1.55

weak-EGNN (ours) .067 50.52 28.11 25.74 .032 .031 9.81 10.51 .138 11.14 9.94 1.455
strong-EGNN (ours) .061 44.52 27.48 23.83 .023 .029 9.79 10.29 .088 9.39 9.88 1.45

The advantage in the performance of strong conditioning over weak conditioning is clearly shown
in Table 1. We also hypothesize that the advantage of the strong conditioning method will be more
evident in constrained settings of shallow networks. In order to test whether strong conditioning
provide a more efficient parametrization then weak conditioning, we repeat experiments from Table
1 on three molecular properties, but with a more shallow network. Table 2a shows the MAE for the
prediction of three molecular properties for weak and strong conditioning methods for models with
7 and 3 layers. On average improvement of strong conditioning over weak conditioning was more
highlighted for the shallow network than for the deep network (10.8% vs 7.7%). It demonstrates the
importance of conditioning methods in models with less capacity.

We define conditioning depth as the number of conditional layers in the message function. In our
experiments, the conditioning depth was 2 as we conditioned all two layers in the message function.
We test the effect of conditioning depth for different conditioning methods. Table 2b shows the
MAE for the prediction of five molecular properties for weak and strong conditioning methods for
models with conditioning depths 1 and 2. The weak-EGNN shows better performance with a single
conditional layer while strong-EGNN benefits more from two conditional layers.

MD17 MD17 (Chmiela et al., 2017) is a dataset of eight small organic molecules containing up
to 17 total atoms composed of the atoms H, C, N, O, F. For each molecule, an ab-initio molecular
dynamics simulation was run using DFT to calculate the ground state energy and forces. At inter-
mittent timesteps, the energy, forces, and configuration (positions of each atom) were recorded. We
uniformly sample 50k molecules for training, 10k for validation, and 10k for testing.

Table 3 shows the Mean Absolute Error for the prediction of energies for 8 molecules for three
conditioning methods. From Table 3 we can see that strong conditioning improved the performance
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Table 2: Mean Absolute Error (MAE) for the molecular property prediction benchmark in the QM9
dataset for different numbers of layers and conditioning depths. ∆ is the percentage difference of
MAE, lower ∆ is better.

(a) shallow vs. deep models

Task α ∆ϵ ϵHOMO

Units bohr3 meV meV

weak-EGNN (7 layers) .067 50.52 28.11
strong-EGNN (7 layers) .061 44.52 27.48

∆ -9.22% -11.88% -2.24 %

weak-EGNN (3 layers) .076 61.26 36.48
strong-EGNN (3 layers) .069 53.25 32.9

∆ -9.68% -13.08% -9.81%

(b) 1 vs. 2 conditional layers

Task α ∆ϵ ϵHOMO ϵLUMO µ
Units bohr3 meV meV meV D

weak-EGNN (cond. depth=1) .061 46.48 28.59 22.76 .024
weak-EGNN (cond. depth=2) .067 50.52 28.11 25.74 .032

strong-EGNN (cond. depth=1) .066 45.72 27.16 22.41 .026
strong-EGNN (cond. depth=2) .061 44.52 27.48 23.83 .023

of 5 molecules by an average of 14.5%. It did not show improvement in molecules that initially had
high MAE. In experiments with pure conditioning, to decrease computational cost we used half of
the model: 2 → 1 conditional layers, hidden embedding size of 128 → 64, and 7 → 3 layers. With
these changes, a pure-EGNN model was 14.3x and 16x times slower than strong-EGNN and weak-
EGNN respectively. The negative impact of decreasing the number of layers on the performance of
strong-EGNN on the QM9 dataset can be seen in Table 2a. Considering that we reduced by half the
number of layers, hidden embedding size, and conditioning depth, pure-EGNN shows competitive
performance with weak/strong-EGNN on 5 molecules and outperforms it on some of them. This
potential gain in performance might, however, not outweigh the computation costs of pure over
strong or weak conditioning.

Table 3: Mean Absolute Error (MAE) for the conformational energies (meV) prediction benchmark
on MD17 dataset.

Molecule Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic acid Toluene Uracil

Cormorant 4.25 0.997 1.171 1.778 1.258 2.862 1.474 0.997
sGDML 8.239 4.336 3.035 4.336 5.204 5.204 4.336 4.77
SchNet 5.204 3.035 2.168 3.469 4.77 4.336 3.903 4.336

weak-EGNN 25.608 4.262 2.576 11.755 13.693 19.132 16.447 12.468
strong-EGNN 29.168 3.265 2.278 10.454 13.794 15.131 18.804 11.726
pure-EGNN* 34.706 3.513 4.582 12.403 21.421 27.221 14.692 12.249

* pure-EGNN network is smaller than weak/strong-EGNN.

6 CONCLUSION

In this work, we explore how graph neural networks can recursively update node embeddings with
edge attribute information such as geometric distance. We provide a unifying analysis of several
works in literature that utilize attributes, through a notion of conditional linear layers. We present
three conditioning methods to this end: weak, strong, and pure. Weak conditioning method con-
catenates edge attributes to node features, strong conditioning method gates node features, and in
pure conditioning, edge attributes causally parametrize transformation matrices. We explain the in-
tuition of each method and apply them to the EGNN model to empirically show their difference in
performance and computational cost on QM9 and MD17 datasets.

Our conclusion is that strong conditioning (gating) generally beats weak conditioning (concatena-
tion) in the message passing framework. We also conclude that pure conditioning is computationally
prohibitive in geometric message passing, whilst it can achieve competitive performance with weak
and strong conditioning methods with a smaller network. This confirms the impact observed by
other works on separable convolutions, s.a. in Depth-wise separable convolutions (Chollet, 2017)
and ConvNeXt (Liu et al., 2022), and justifies the use of separable (group) convolutions of steerable
tensor-based methods such as TFN (Thomas et al., 2018). While these methods can be formulated
as linear message passing methods of the convolutional form, we show that performance gains can
be achieved through multi-layer conditional message functions, as a form of non-linear convolution
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(Brandstetter et al., 2021). In this setting, we show that it can be beneficial to condition all layers in
the conditional MLP, rather than to only condition the first layer as is the convention.

We believe that our categorization of conditioning methods, combined with our empirical findings
can be used as a guideline in designing the next generation of geometric graph neural network
architectures.

Acknowledgements: This work is part of the research programme VENI with project ”context-
aware AI” with number 17290, which is (partly) financed by the Dutch Research Council (NWO).
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uncertainty-aware directional message passing for non-equilibrium molecules. In Machine Learn-
ing for Molecules Workshop, NeurIPS, 2020a.

Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for
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Laurent Sifre and Stéphane Mallat. Rigid-motion scattering for texture classification. arXiv preprint
arXiv:1403.1687, 2014.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran As-
sociates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
8d55a249e6baa5c06772297520da2051-Paper.pdf.

Ivan Sosnovik, Michał Szmaja, and Arnold Smeulders. Scale-equivariant steerable networks. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=HJgpugrKPS.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.
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